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This paper endogenizes intervention in financial crises as the strategic
negotiation between a regulator and creditors of distressed banks. In-
centives for banks to contribute to a voluntary bail-in arise from their ex-
posure to financial contagion. In equilibrium, a bail-in is possible only if
the regulator’s threat to not bail out insolvent banks is credible. Con-
trary to models without intervention or with government bailouts only,
sparse networks enhance welfare for two main reasons: they improve the
credibility of the regulator’s no-bailout threat for large shocks, and they
reduce freeriding incentives among bail-in contributors when the threat
is credible.
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I. Introduction

Financial institutions are linked to each other via bilateral contractual ob-
ligations and are thus exposed to counterparty risk of their obligors. If one
institution defaults on its liabilities, it affects the solvency of its creditors.
Since the creditors are also borrowers, they may not be able to repay what
they owe and may default themselves—problems in one financial institu-
tion spread to others in what is known as financial contagion. Large
shocks can trigger a cascade of defaults, which impose negative external-
ities on the economy. The extent of these cascades—the magnitude of
the systemic risk—depends on the nature of the linkages, thatis, the struc-
ture of the financial system. In the 2008 crisis, it became apparent that the
financial system had evolved in a way that enhanced its ability to absorb
small shocks but made it more fragile in the face of a large shock. While
a few studies called attention to these issues before the crisis,' it was only
after the crisis that the impact of the network structure on systemic risk
became a major object of analysis. Most of the existing studies analyze
the systemic risk implications of a default cascade, taking into account
the network structure, asset liquidation costs, and different forms of inef-
ficiencies that arise at default. Many of these models, however, do not ac-
countfor the possibility of intervention to stop the cascade. Either there is
no rescue of insolvent banks or the regulator (or central bank or other
government institution) intervenes by following an exogenously specified
protocol. The goal of our paper is to endogenize the intervention mech-
anism as the equilibrium outcome of the strategic interaction between
regulator and financial institutions.

The most common default resolution procedure during the 2007-9 fi-
nancial crisis was the bailout.? In a bailout, the government injects liquidity
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! Most notably, Allen and Gale (2000) and Stiglitz and Greenwald (2003). See also Boissay
(2006), Elsinger, Lehar, and Summer (2006), Castiglionesi (2007), May, Levin, and Sugihara
(2008), and Nier etal. (2007). One of the reasons for the limited study is the scarce availabil-
ity of data on interbank linkages.

* The Bush administration bailed out large financial institutions (AIG Insurance, Bank
of America, Bear Stearns, and Citigroup) and government-sponsored entities (Fannie Mae,
Freddie Mac) at the heart of the crisis. The European Commission intervened to bail out fi-
nancial institutions in Greece and Spain.
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to help distressed banks service their debt, effectively transferring liabili-
ties from the private sector to the public sector. Some governments, such
as Germany’s, have called for private-sector participation through bail-ins,
in which creditors write down their interbank claims against troubled
banks.? Bail-ins effectively amount to a transfer of liabilities within the pri-
vate sector, which places the burden of losses on creditors, as opposed to
taxpayers. A prominent example of a bail-in is the rescue of the hedge
fund Long-Term Capital Management (LTCM).* In our paper, we also
consider assisted bail-ins, in which the regulator provides some liquidity
assistance to incentivize the formation of a bail-in.

The negotiation process between the regulator and the banks consists
of three stages. In the first stage, the regulator proposes an assisted bail-
in allocation, which specifies the contributions by each solvent bank, as
well as the liquidity injections provided to each bank. In the second stage,
the banks simultaneously decide whether or not to participate in the pro-
posed rescue. If they all participate, the game ends with the proposed res-
cue consortium. Otherwise, the regulator reacts in the third stage by either
(1) proceeding with the residual bail-in at increased taxpayer expense,
(2) proceeding with a bailout, or (3) avoiding any intervention. After
transfers are made, the banks’ liabilities are cleared simultaneously in the
spirit of Eisenberg and Noe (2001), possibly leading to a default cascade
if the outcome of the negotiation leaves some banks insolvent.

Financial contagion in our model occurs through the two most prom-
inent channels identified by historical events.® First, distressed banks may
have to liquidate some of their asset holdings in order to fulfill their ob-
ligations. In the liquidation process, the asset is transferred to buyers with
lower levels of expertise in managing the asset, causing a drop in its value.
As a result of financial frictions, additional units of the asset are sold to

* In spite of such calls and the design of instruments to make private-sector participation
automatic, there have been few successful bail-ins. Automatic participation is implemented
through the use of “bail-in-able debt” such as contingent-convertible bonds, in order to re-
duce the banks’ credit risk. The focus of this paper is on the welfare impact of default resolu-
tion policies after these risk-mitigating instruments have already been used.

* LTCM Portfolio collapsed in the late 1990s. On September 23, 1998, a recapitalization
plan of $3.6 billion was coordinated under the supervision of the Federal Reserve Bank of
New York (FRBNY). A total of 14 banks agreed to participate, and two banks (Bear Stearns
and Lehman Brothers) rejected the proposal.

> Quoting Federal Reserve Board Chairman Alan Greenspan (1998), “It was the judg-
ment of officials at the Federal Reserve Bank of New York, who were monitoring the situ-
ation on an ongoing basis, that the act of unwinding LTCM’s portfolio in a forced liquida-
tion would not only have a significant distorting impact on market prices but also in the
process could produce large losses, or worse, for a number of creditors and counterparties,
and for other market participants who were not directly involved with LTCM. In that envi-
ronment, it was the FRBNY’s judgment that it was to the advantage of all parties—including
the creditors and other market participants—to engender if at all possible an orderly res-
olution rather than let the firm go into disorderly fire-sale liquidation following a set of
cascading cross defaults.”
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marginally less efficient buyers. Hence, one bank’s liquidation decision
affects the value that another bank is able to recover from its asset sale.
Second, if a distressed bank defaults on its obligations, its creditors collect
only a fraction of their claims. Bankruptcy imposes deadweight losses,
which are amplified by feedback loops among defaulting banks.

We investigate the structure of default resolution plans that arise in
equilibrium when the regulator cannot commit ex ante to a fixed resolu-
tion policy. The lack of commitment power has important consequences
for the regulator’s negotiation power: if banks are aware that without their
participation, the regulator prefers a bailout over no intervention, then
they have no incentive to participate in any assisted bail-in. We say that,
in this case, the regulator’s no-intervention threat fails to be credible.’
Only if the threat is credible can an assisted bail-in be organized in equi-
librium. Individually, a bank is willing to contribute up to the maximum it
would lose in a default cascade. However, because losses are amplified
as the shock propagates through the system, aggregate losses exceed
the required ex ante contributions. Therefore, it is not necessary that ev-
ery bank contributes, and banks have an incentive to free-ride on the con-
tributions of others. In the equilibrium bail-in, the set of contributing
banks minimizes free-riding incentives by consisting of the banks with
the largest exposure to contagion. It thus follows that banks are willing
to contribute more in sparser networks: because losses are more concen-
trated, the benefits of a bail-in are more targeted to the contributors than
in more diversified networks, thereby reducing free-riding incentives.

A key determinant of the equilibrium outcome is the credibility of the
regulator’s no-intervention threat. We show that the threat is credible if
and only if the losses generated by the regulator’s inaction—equal to the
amplification of the shock as it propagates through the network—do not
exceed a given threshold. Whether the shock amplification increases with
the size of the initial shock faster than the threshold rises depends on asset
illiquidity and on the network structure. We identify a variable, which we
call the “total throughput” of defaulting banks, as a sufficient statistic for
the dependence of the credibility on the network structure, conditional
on the banks’ levels of solvency and their total claims on solvent banks.
The total throughput measures the rate of spillover losses transmitted to
the solvent banks in the system. Conditional on the banks’ solvency, the to-
tal throughput depends only on the network structure and not on the
banks’ balance sheets, making it a convenient measure to compare the po-
tential to propagate losses among different network structures. We demon-
strate that the throughputincreases as the connectivity of defaulting banks

° Several attempted bail-ins failed because the threat of not undertaking a bailout was
not credible; see Stiglitz (2002).
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increases. As a result, in sparsely connected networks, the regulator’s
threat may not be credible for small shocks, but the credibility improves
as the shock grows larger. Because the total throughput is small, the systemic
threat does not increase much with the size of the shock. By contrast, in
more diversified network structures, small losses can be well absorbed,
and the threat not to intervene is credible. However, because the total
throughput is large, the threat becomes less credible as the shock size in-
creases. As illustrated in figure 1, endogeneity of the default resolution
plan thus reverses the relative desirability of network structures for inter-
mediate shock sizes—between §; and S, in figure 1—when compared to
models without intervention or models with bailouts only.

We then proceed to investigate the structure of optimal intervention
plans, that is, the set of banks that are rescued. A bank is not rescued
in a bailout if its creditors have the capacity to absorb a significant por-
tion of the losses due to contagion. In a bail-in, not only the total loss
absorption capacity but also its distribution among the creditors matters.
When a bank has a single creditor, that creditor cannot free-ride on the
contributions of others. Proposing a bail-in for a bank whose losses are
absorbed by a single creditor thus leads to an increase in welfare. How-
ever, if contagion effects are spread among many creditors, rescuing that
bank does not substantially increase contributions from the private sec-
tor, because of the inherent free-riding incentives among the banks’
many creditors. It may then be welfare enhancing to not rescue such a
bank. Banks rescued in the optimal bail-in may thus default in the opti-
mal bailout, and vice versa.

Our results uncover the economic forces behind the decision to rescue
banks that default as a result of fundamental shocks versus those failing as

welfare losses , dense
b s

sparse

> shock size

F16. 1.—Comparison of equilibrium welfare losses in a dense and a sparse network in
the presence (solid lines) and absence (dashed lines) of intervention. The dotted line rep-
resents welfare losses in a public bailout. Because the total throughput is small (large)
in sparse (dense) networks, welfare losses in the absence of intervention are concave
(convex).
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aresult of contagion. For example, the government opted to rescue AIG,
as opposed to Goldman Sachs, during the global financial crisis.” Because
loss absorption capacities were low in the aftermath of the Lehman
Brothers default, a bankruptcy filing by AIG might have had far-reaching
consequences, bringing under many of its creditors, including Goldman
Sachs. If the financial system had been in a more resilient state, in which
Goldman Sachs was the only contagiously defaulting bank, it might have
been welfare enhancing to let AIG default and provide liquidity assis-
tance only to Goldman Sachs after the depletion of its capital buffers.
The remainder of the paper is organized as follows. In section II, we
relate our work to the existing literature. We develop the model in sec-
tion III. We characterize incentives and the equilibrium intervention out-
come for any financial network in section IV. In section V, we analyze the
impact of the network structure, the shock size, and asset illiquidity on
the public bailout and the credibility of the no-intervention threat. In sec-
tion VI, we characterize the set of banks to be optimally rescued in bail-ins
and bailouts. We discuss the impact of the network structure on the equi-
librium intervention plan in section VII using a model calibrated to a data
set of the European Banking Authority (EBA). Section VIII concludes.
The proofs of the main results are contained in appendixes B and C. Sup-
plementary results and auxiliary proofs are in the online appendix.

II. Literature Review

Our paper is related to a vast branch of literature on financial contagion
in interbank networks, pioneered by Allen and Gale (2000) and Eisen-
berg and Noe (2001). Cifuentes, Ferrucci, and Shin (2005) have extended
those models to include contagion through asset sell-offs, a contagion
channel that is also present in our paper. In a model that draws parallels
between the financial crisis and a systemic bank run, Uhlig (2010) pro-
vides a microfoundation for fire-sale contagion through uncertainty aver-
sion and adverse selection. The impact of the network structure on the ex-
tent of financial contagion has been studied by Gai and Kapadia (2010),
Gai, Haldane, and Kapadia (2011), Battiston et al. (2012), Elliott, Golub,
and Jackson (2014), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Glasser-
man and Young (2015), Capponi, Chen, and Yao (2016), and Cabrales,
Gottardi, and Vega-Redondo (2017). The above-mentioned works show

7 The bailout of AIG was widely speculated to be an indirect bailout of Goldman Sachs,
to which it had sold millions of dollars worth of insurance. Because of the large exposure,
AIG’s default might have lead to the contagious default of Goldman Sachs, the largest in-
vestment bank at the time. Our analysis highlights the factors that rationally should have
motivated the decision about whether to bail out AIG or allow AIG to go under and then
possibly bail out Goldman Sachs.
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that in the absence of any intervention, dense connections tend to reduce
financial contagion for small shocks but can serve as an amplifier of large
shocks. While this effect remains present in our model with strategic inter-
ventions, dense networks additionally cause free-riding incentives among
bail-in contributors, further reducing the desirability of dense networks.
We refer to Glasserman and Young (2016), Benoit et al. (2017), and Jack-
son and Pernoud (2021) for thorough surveys on systemic risk and finan-
cial contagion.

The role of the government in stopping financial contagion has been
studied since the works of Freixas, Parigi, and Rochet (2000) and Gale
and Vives (2002). Many papers have focused on the moral hazard prob-
lem that bailouts create ex ante, causing banks to take on excessive risks.
In order to trigger a bailout more frequently when the market moves
against them, banks have an incentive to overborrow (Chari and Kehoe
2016) or correlate their investments (Acharya and Yorulmazer 2007; Farhi
and Tirole 2012). Despite those perverse incentives, committing to a no-
bailout policy can lead to a reduction of welfare ex ante (Keister 2016).
We focus instead on the incentives needed ex post for private-sector in-
volvement in resolving financial distress. These incentives also crucially
depend on the government’s preferred bailout through the credibility
of the no-bailout threat. Our model, like the rest of the literature on fi-
nancial networks, does not account for the endogenous structure of the
interbank network. The exception is Erol (2018), which shows that bail-
outs incentivize banks to form a core-periphery network. The regulator
in our model, unlike that in Erol (2018), is strategic and cannot commit
to a bailout or a no-intervention policy.

A few papers have studied private default resolutions or bail-ins in mod-
els different from ours. In Rogers and Veraart (2013), banks can prevent a
default cascade through mergers. In their paper, however, a merger need
not be incentive compatible for the shareholders of an individual bank,
nor does the government take an active role. By contrast, the credibility
of the regulator’s actions and the rational responses of other banks, in-
cluding their incentives to free-ride, are at the heart of our analysis. Duffie
and Wang (2017) consider a bargaining model in which bail-ins are done
contractually rather than through a central planner. They show that pri-
vate bail-ins reached in a three-bank network are efficient in the limit as
bargaining failures are disallowed. Unlike us, they abstract away from
cross-network externalities and the government’s involvement. In our pa-
per, reducing externalities from asset liquidation and bankruptcy losses
are the regulator’s main motivation to facilitate bail-ins by providing
well-designed subsidies. Schilling (2018) shows that if the regulator can
impose a mandatory bail-in on depositors in a single-bank model, the
depositors will preempt such a policy by running on the bank more fre-
quently ex ante. Because bail-ins and bailouts are financed by solvent
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financial institutions and the government in our paper, interventions al-
ways make depositors better off.

III. Model

We consider an economy consisting of 7 risk-neutral financial institu-
tions ¢ = 1,..., n, called “banks,” that lasts for three periods ¢ = 0,
1,2. At the initial period, each bank ¢is endowed with capital that it can
lend to other banks, invest into a liquid asset, called “cash,” or invest
into an illiquid asset yielding a random return at time ¢ = 1 and a non-
pledgeable return at ¢t = 2. Because long-term returns are nonpledge-
able, liabilities have to be cleared at time ¢ = 1. After short-term returns
are realized, banks may liquidate their risky asset to help service their
debt, but doing so imposes a downward impact on its value because the
asset is sold to less efficient users.

Banks negotiate debt contracts with each other at ¢ = 0. We denote by
[/ bank 7s liabilities to bank jat time ¢ = 1 and use L' = 2/, I/ to de-
note bank ¢’s total interbank liabilities. Let ¢’ denote the market value
of bank ¢’s liabilities, which may be lower than the notional value L’ if
bank iis unable to repay its liabilities in full. If p’ < L', we say that bank
i defaults. All interbank liabilities have equal seniority: if bank ¢ defaults,
each creditor j receives 7/p' from bank i, where

L'/ i L' >0,

ji

0 otherwise.

financial network. In addition to its liabilities within the financial net-
work, bank 7 has financial commitments ' outside the financial sector
due at time ¢ = 1, which have higher seniority than the interbank liabil-
ities. These commitments include wages, depositors’ claims, and other
operating expenses.

For each bank i, we denote by ¢ the long-term returns of the illiquid
asset held by i. We denote by ¢ the sum of #’s cash holdings and short-
term returns realized at time ¢ = 1. If a bank 7 is not able to meet its li-
abilities out of current income, it will sell a portion ¢ € [0, ¢'] of its illig-
uid asset. Liquidation imposes a downward impact on the value of the
asset, yielding a recovery rate of

alf) = eXp<—7i£f). (1)

Equation (1) captures the fact that buyers of the asset have a lower expertise
than the seller and that additional units of the asset are sold to marginally
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less efficient buyers. The parameter v > 0 captures the rate at which the
pool of efficient asset buyers diminishes.®

A defaulting bank liquidates all of its assets to repay the maximal
amount that it can to its creditors. Because liquidation is costly, a solvent
bank liquidates just enough to meetits liabilities. If interbank repayments
are p and the asset recovery rate is «, bank i thus liquidates an amount

.

0 (p, ) = min i L'+w = =3ap | e, (2)
j=1

where ()" = max(-, 0) denotes the positive part.’ If a bank i cannot meet

its liabilities even after liquidating all of its assets, it will default. The de-

fault creates losses proportional to the banks’ asset value: only a fraction

B € (0, 1] of the value is paid to the creditors, and a fraction 1 — Bislost."

The market value of bank 7’s interbank liabilities is thus equal to

_ L if ¢ +al' + (7p)' = L'+ o',
v = _ , L (3)
(B(c' + ae' + (mp)') — w')  otherwise,

where (7p)' = =/, 77p/ is the market value of bank #’s interbank claims.
To summarize, the financial system in our model is parameterized by
(L, 7, e, ¢, w, 7y, ), where L, ¢, ¢, and w are vectors whose entries are the
corresponding balance sheet quantities of each bank.

How much a bank is able to repay depends on the solvency of the other
banks in the system. In a clearing equilibrium, every solvent bank repays
its liabilities in full and every insolvent bank pays the entire value (after
bankruptcy costs) to its creditors.

DEerFINITION 3.1, The triple of repayments, liquidation decisions, and
recovery rate (p, £, ) is a clearing equilibrium for a financial system (L, , e,
¢, w, vy, B) if it satisfies equations (1)—(3).

For payments p, recovery rate ¢, and liquidation decisions ¢, the value
of bank 7’s equity is

Viplia) = ((mp)' ++ e —(1—a)f —w' — L), (4)

® The elasticity parameter v typically depends on the asset class: Ellul, Jotikasthira, and
Lundblad (2011) find that v is on the order of 10~* for corporate bonds (see table 8 therein).

¢ The model can be adjusted to account for liquidity requirements such as Basel III (Ba-
sel Committee on Banking Supervision 2013). This can be achieved by setting ¢ equal to
the amount of liquid assets that can be liquidated before hitting the liquidity coverage ratio
requirement.

1" According to Moody’s analysis, the average recovery rate for unsecured corporate bonds
ranges from 30% to 43%; see exhibit 8 in https:/ /www.moodys.com/sites/products/Default
Research/2006600000428092.pdf.
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If the payment p made by bank i is positive, it is divided pro rata among
bank ¢’s junior creditors and the senior creditors are paid in full. If p' =
0, the junior creditors lose the full amount of their claims and the senior
creditors of bank i suffer a loss of

§'(p,a) = (wi — B(ci + o' + (Wj))i))Jr. (5)

We denote by D(p, b, &) = {i | L' + w' > ¢ + al' + (7p)'} the set of de-
faulting banks. Welfare losses in a clearing equilibrium are defined as
the weighted sum of default costs, that is,

Wa(p, £ ) = (1 — a)éef +(1=0) S (¢ +ae+ (p))

i€D(p.la)

+N S () (6)

ieD(p,l,0r)

The first term captures losses due to a misallocation of the asset when it
is sold to less efficient users. The second term quantifies deadweight
losses from bankruptcy. The last term is the welfare losses borne by the
senior creditors. The factor N > 0 captures the importance the regulator
assigns to those losses relative to deadweight losses. A regulator with A =
0 views losses of senior creditors simply as transfers of wealth and not
as losses to the economy. A higher value of A indicates a higher priority
to the economy outside of the banking sector.

Every financial system admits a clearing equilibrium due to Tarski’s
fixed-point theorem. In financial systems with bankruptcy costs (8 < 1)
or price impacts due to asset liquidation (y > 0), there may exist multiple
clearing equilibria. Following standard practices in the literature, liabili-
ties are then cleared with the unique Pareto-efficient clearing equilibrium.

LemMmaA 3.1.  For any financial system, there exists a greatest clearing
equilibrium (ﬁ, l, @) that is Pareto efficient for any A > 0; that is, for any
other clearing equilibrium (p, ¢, @), it holds that & > a and V4(p, l,
@) < Wa(p, b, ) as well as p' > p, £ < 0/, and Vi(p, l, @) = Vi(p, L, o) for
any bank .

A, Contagion and Default Cascade

We position ourselves at time ¢ = 1, when short-term returns have been
realized but banks have not yet cleared their liabilities. If the banks
and/or the regulator have implemented automatic bail-in triggers such
as contingent convertible bonds, then (L, , ¢, ¢, w, o, B) represents the
state of the financial system after these risk-mitigating actions are accounted
for. Depending on the size of the shock, banks may still need to liquidate
their assets to remain solvent, and defaults may still occur.
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There are two channels of financial contagion in our model. The first
channel is the downward price pressure imposed on an asset sold by illig-
uid banks. As a result of financial frictions, additional units of the asset
are sold to marginally less efficient buyers, as formalized in equation (1).
Since illiquid banks target the same pool of potential buyers, one bank’s
liquidation decision affects the average recovery value of other distressed
banks. This leads to a downward spiral, which converges to the highest re-
covery rate, for which the asset’s demand—given by the inverse of equa-
tion (1)—equals the liquidated amount.

LeMMA 3.2, For any vector p of repayments, there exists a solution
(4,, o) to equations (1) and (2) such that o < a, and ¢}, < ¢’ for any bank
¢ and any other solution (4, ) to equations (1) and (2).

The second channel of contagion in our model is credit contagion. A
defaulting bank i does not repay its creditors in full, thereby imposing
losses L' — p' on the rest of the financial system. Creditors with large in-
terbank exposures may thus default as a consequence of these losses
and trigger a cascade of defaults. The cascade starts with the set F :=
{i| ¢+ aly + (wL) < L' + w'} of fundamentally defaulting banks, that
is, the set of banks that are unable to repay their liabilities even if every
other bank repays its liabilities in full. If there are no fundamentally de-
faulting banks, then (L, ¢, o;) is the Pareto-efficient clearing equilibrium,
and all interbank liabilities are honored.

B.  Coordination of Rescues

Financial stability can be ensured by providing distressed banks with suf-
ficient liquidity to meet their liabilities. In a bailout, these injections are
funded through taxpayer contributions, whereas in a bail-in, creditors of
insolvent banks voluntarily take a haircut on their claims. As an interme-
diate option, we also consider assisted bail-ins, which include transfers by
both banks and taxpayers.

DEFINITION 3.2, An assisted bail-in (b, s) specifies, for each bank i, the
contribution ¥ to be made by 7 and the size s’ of the subsidy ¢ receives.
The government’s contribution to the bail-in is - (s" — 5), which is re-
quired to be nonnegative."

Observe that assisted bail-ins contain bailouts and privately backed
bail-ins as special cases. As in any negotiation, the outcome depends cru-
cially on the bargaining dynamics—which party gets to make offers at
which pointin time. We choose to model the negotiation as a three-stage
interaction. First, the regulator makes a take-it-or-leave-it bail-in proposal to
the banks. This allows us to capture the regulator’s role as a coordinator as

" This formulation is equivalent to one in which creditors write down their claims on
insolvent banks such that ¥ is the net debt forgiven by bank i and s'is the sum of govern-
ment injections and net debt forgiven to bank ¢ by #’s creditors.
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well as the fact that the government holds much of the bargaining power.
Second, the banks simultaneously decide whether or not to participate in
the proposed bail-in. Third, the regulator decides what to do if banks re-
ject the proposal. This captures the fact that the government is the lender
of last resort and cannot credibly commit to not bailing out banks if it is
welfare maximizing to do so.

In our model, the regulator knows the financial position of each bank,
and thus he can anticipate the banks’ responses to any bail-in proposal.
Therefore, he need not make a proposal thatis notincentive compatible,
and the negotiation collapses into a single stage.' In reality, the regulator
is not fully informed, and the coordination of a bail-in might take the
form of a strategic bargaining game instead. Some banks might reject
the regulator’s initial proposal, after which the regulator revises his pro-
posal to either exclude those banks or accommodate them."

Organization of a rescue—In our model, rescues are organized as follows.

1. The regulator proposes an assisted bail-in (b, s).

2. The banksin A(b) = {j & F | b/ > 0} are considered to be part of
the negotiation, and each bank i € A(b) chooses an action ' €
{0, 1}, indicating whether it agrees to contribute #."

3. The regulator chooses his response r from the following three
options.

(i) Bail-in. Proceed with the proposed subsidies s, using taxpayer
money to make up for the missing contributions. Cash holdings
and financial commitments to outside parties of each bank iare
then equal to ¢'(s) = ¢ + s and w'(b, a) = w' + b'l(,-y), re-
spectively, where 1, is the indicator function that is equal to 1
if A'is true and 0 otherwise. The resulting financial system is
cleared as in section III, where we denote the Pareto-dominant

'* Bail-ins are typically organized over short periods of time. For example, the critical ne-
gotiations leading to the bail-in of LTCM and the takeover of Bear Stearns by JPMorgan
Chase took place over the span of a weekend. It is thus reasonable to assume that there
is no discounting between rounds of negotiation. Therefore, the solution to our model co-
incides with the Stidhl bargaining solution for any finite number of rounds of negotiation
in which the regulator makes the last proposal. Indeed, in any such bargaining game, a
bail-in can be implemented without the regulator’s approval only if it is backed privately.
Since a bank is willing to contribute only if it also has to contribute to the regulator’s pre-
ferred proposal, the only privately backed bail-in that can arise as a subgame Pareto-efficient
equilibrium is, in fact, the regulator’s preferred proposal.

¥ The original proposal made by the FRBNY for the rescue of LTCM involved a total of
16 of LTCM’s creditors. However, Bear Stearns and Lehman Brothers later declined to par-
ticipate. Upon the rejection of these two banks, the Fed adjusted its proposal so that the
contributions of Bear Stearns and Lehman Brothers were covered by the remaining 14 banks.
The fact that these two banks decided not to cooperate shows that participation in the bail-in
was at least partially voluntary.

' We assume that a bank i with 4" = 0 is simply not part of the negotiation and hence
has no power to reject the proposal. For ease of notation, we write @' = 1 for such a bank.
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clearing equilibrium by (p(, s, a), Z_(b, s, a),a(b, s, a)). Bank i’s
equityvalue isequal to VI(p(b, s, a), U(b, s, a), a(b, s, a)). Welfare
losses are obtained from equation (6) by additionally account-

ing for the social cost of government subsidies, that is,"”

Wa(b, s, a) = Wa(p(b, s, a), U(b, s, a),a(b, s, a))
0 (7)
+ )\E(Si - bil{arzl}).

(ii) Bailout. Resort to a public bailout (0, 5) with subsidies s de-
cided by the regulator. Then, cash holdings of bank i are
equal to ¢'(3) = ¢ + 5, and we denote by (p(3), £(5), a(3))
the Pareto-dominant clearing equilibrium. Each bank 7’s eq-
uity value is Vi(5(3), £(5), @(5)), and welfare losses are denoted
by A(3) = Wi(0,5,0).

(iii) No intervention. Abandon the rescue, which results in the de-
fault cascade described in section III. We denote by (px, Ix, an)
the Pareto-dominant clearing equilibrium and by Wy the wel-

fare losses in the default cascade in the absence of intervention.

REMARK 3.1.  Some banks may be left with zero equity after they are
bailed in or bailed out. Such banks cease to exist as separate entities after
the intervention, and their bail-ins or bailouts should be understood as an
orderly liquidation through takeovers by the bail-in contributors or the gov-
ernment.'® Because these banks have zero equity value after the interven-
tion, we do not model how the assets are distributed among contributors.

Our solution concept is that of a subgame Pareto-efficient equilibrium,
defined as follows.

DEFINITION 3.3. A strategy profile (b, s, a, 1) is subgame Pareto efficient
if it is subgame perfect and if after any proposal (b, s) there is no other
continuation equilibrium (&, 7) of the accepting/rejecting subgame that
Pareto-dominates (a, 7) for the banks in A(d) and the regulator.

This equilibrium concept is meant to capture that the coordination of
a bail-in is a negotiation between the regulator and the banks in A(b). For
example, during the bail-in of LTCM, Peter Fisher of the FRBNY sat down
with representatives of LTCM’s creditors to find an appropriate solution;

'» We assume that the regulator assigns the same weight to taxpayer contributions as to
losses of senior creditors. One way to interpret this is that the senior creditors are the de-
positors of the banks, who are protected by a deposit insurance scheme that is financed
through taxpayer contributions. Our results continue to hold if the regulator uses differ-
ent weights.

' Examples of such takeovers from the global 2007-9 financial crisis are plentiful. Among
the most prominent ones are the takeovers of Bear Stearns and Merrill Lynch by JP Morgan
Chase and Bank of America, respectively, or the federal takeovers of Fannie Mae and Freddie
Mac.
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and it is implausible that they would have agreed on a bail-in that is Pa-
reto dominated. Note that banks in the complement of A(b) are poten-
tially worse off than in an alternative continuation equilibrium of the ac-
cepting/rejecting subgame because they are not part of the discussion.

Any proposal of the regulator admits an equilibrium response by the
banks due to the following lemma. This result also implies existence of
subgame Pareto-efficient equilibria in our model.

LemMmA 3.3.  After any proposal (b, s), the resulting accepting/reject-
ing subgame has a subgame Pareto-efficient continuation equilibrium
(@, ) in pure strategies.

Because subgame Pareto efficiency is a refinement of subgame perfec-
tion, it eliminates the noncredible threat by the regulator to abandon the
rescue in the third stage if a public bailout leads to lower welfare losses
than a default cascade in the absence of intervention. This inability to
commit to a no-intervention policy limits the regulator’s ability to incen-
tivize banks to contribute, as we discuss in section IV.B. Because the state
of the financial system is common knowledge among the banks and the
regulator in our model, we may assume without loss of generality that the
regulator proposes only so-called feasible bail-ins, in which every bank
can afford the proposed contribution.

DEFINITION 3.4. A bail-in proposal (b, s) is feasibleif b = 0 for any fun-
damentally defaulting bank i€ F and L'+ w' + 0 < ¢ + s + a(b, s,
1)0i(b,s,1) + =/ 77 p/(b, s, 1) for any bank i & F, where 1 = (1,...,1) is
the response vector of unanimous agreement.

While a bank ¢ can refuse to make the proposed contribution ¥, in our
model it cannot reject the subsidies s it is supposed to receive. Thus, if
the regulator chooses option “bail-in,” the same subsidies are paid re-
gardless of the banks’ responses. Since less taxpayer money flows into
the financial system in (b, s, 1) than in (b, s, @) forany a # (1, ..., 1), each
bank is better off in the latter. Feasibility thus guarantees that each bank
can afford the proposed contribution in any response vector."”

IV. Incentives and Credibility of Intervention Plans

To highlight the primary economic forces at play, we focus on the case
of complete interventions in this section, where the regulator considers
only bailouts and bail-ins that rescue every bank in the system. Section VI
treats the more general case with partial interventions.

'7 We show in lemma E.3 (in the online appendix) that for any given (b, s), the payments
p(b, s, a) and recovery rate &(b, s, a) are weakly decreasing in @. A bail-in proposal (, s)
thus includes a guarantee that clearing payments and asset recovery are at least p(, s, 1)
and a(b, s, 1)—backed by government contributions if necessary. Price guarantees have
played a prominent role in government interventions, e.g., in TARP (Troubled Asset Relief
Program) or in the acquisition of Merrill Lynch by Bank of America.
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A.  Public Bailout

In a complete bailout, the regulator provides subsidies so that every bank
repays its liabilities in full and the resulting clearing payment vector is
L. The smallest provided subsidies are equal to the shortfall s, = (L +
w— ¢ — o f, — wL)" after banks liquidate the maximal feasible amount
¢;, where (¢, ;) is given by lemma 3.2. If asset liquidation is more costly
than taxpayer contributions, the regulator will want to provide addi-
tional subsidies to cover the banks’ shortfall before liquidation,

so=(L+w—c—mL)". (8)

Note that subsidies s, and s, support the clearing equilibria (L, ¢;, o)
and (L, 0, 1), respectively. The welfare-maximizing subsidies sin a com-
plete bailout are such that the marginal losses from liquidation are as
close to the marginal welfare cost A of taxpayer contributions as possible,
given the constraints s; < s' < s, that guarantee solvency of every bank in
the system.

LemmA 4.1. Suppose that the price elasticity v is positive, and let
g(o) = (1 + N)a — 1) In(a) /. In any complete bailout with subsidies
s' < s, for every bank i, welfare losses are equal to

Wi(s) = A + g(a). )

Given that every bank is rescued, the regulator’s choice of subsidies af-
fects welfare only through the induced asset recovery rate. Any bailout
that induces recovery rate o requires banks to liquidate an aggregate
amount —In(a)/y, as seen in equation (1), reducing the required sub-
sidies by the market value of those liquidated assets. Compared to subsi-
dies s, choosing subsidies that induce recovery rate « lowers welfare
cost of subsidies by —AaIn(a)/y but increases liquidation losses by
—(1 — @) In(a)/y. The function g captures this welfare trade-off between
liquidation costs and taxpayer contributions. It is strictly convex, with the
global minimum attained at the indifference recovery rate o;,q. The indif-
ference recovery rate is decreasing in A but does not depend on the rate 7.

LemMA 4.2, The asset recovery rate o in the welfare-maximizing com-
plete bailoutis 1 if v = 0, and o = max (g, ) otherwise. A welfare-
maximizing complete bailout awards subsidies s, if vy = 0. Otherwise, it
awards subsidies s with s; < s’ < s} for every bank i such that

ap In(ap)

Y

Esi = Es() + (10)
i=1 i=1
We denote by W, the corresponding welfare losses.

If op = «;, (ap = 1), subsidies in the bailout are uniquely determined
and equal to s, (s,). However, subsidies are not uniquely determined if
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oy, < ap < 1:since the asset recovery rate depends only on the total amount
of liquidation, welfare depends only on the total subsidies awarded, but
not on how those are distributed among banks. Note that the optimal com-
plete bailout does not depend on the network structure, because all de-
faults are prevented.

B.  Credibility of the Regulator’s Threat

If welfare losses are lower in the public bailout of lemma 4.2 than in the
absence of intervention, banks know that without their participation, the
regulator’s preferred option is a bailout. The regulator thus has no cred-
ible threat to punish recalcitrant banks. Consequently, the banks have
no incentive to participate in any bail-in, and the regulator has no choice
but to resort to a public bailout.

Lemma 4.3. If Wy < W4, then the unique subgame Pareto-efficient
equilibrium outcome is the public bailout described in lemma 4.2, where
We and Wy denote the welfare losses under the public bailout and no-
intervention policies, respectively.

We say that the regulator’s no-intervention threatis credible if and only
if Wi < We. We argue in the following three subsections that when the
threat is credible, the regulator can incentivize banks to participate in
a bail-in. In the remainder of this section, we show that the credibility
of the threat is tightly linked to the amplification of the shock in the ab-
sence of intervention."®

Since losses to senior creditors are not amplified through the financial
system, we exclude those from consideration. The part of the initial shock
thatis amplified through the networkis S = 2i-15) — Zicp( 00’ (Pxs o),
thatis, the difference between aggregate shortfall, defined in equation (8),
and losses to senior creditors. The losses incurred by junior creditors after
the amplification are equal to the decrease in the market value of the banks
Sxo= 2 (VAL 0,1) — Vi(pn, In, an)) where V(L 0, 1) is the book value
of bank ¢’s equity and Vi(px, fx, an) is the value of ¢’s equity after clearing
liabilities in the absence of intervention.

LemMA 4.4. The regulator’s threat is credible if and only if

S =8 < A — T min(e, ) + glow). (11)

i=1
The credibility threshold depends on the welfare cost A of taxpayer con-
tributions, the size of the initial shortfall, and the distribution of such
shortfall across the system captured by the second and third terms on
the right-hand side of equation (11). The second term is a measure of

'® Note that the credibility of the threat is a function of exogenous variables: the welfare
losses W; in the optimal bailout are the result of a minimization problem solved by the reg-
ulator alone, and W, are the welfare losses in the absence of any action.
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the amount of illiquid assets that can be used to absorb the initial shock:
the larger this amount is, the more credible is the threat. The last term in
equation (11) captures the trade-off between liquidation costs and tax-
payer contributions in the optimal bailout for a given distribution of
shocks s,. While this trade-off is minimized at the indifference recov-
ery rate o;,q, the regulator may not be able to attain «;,.. The difference
g(ow) — gl(ouna) is thus a measure of how close to attaining o;,q the regula-
tor can tailor a bailout for a given distribution of shocks s,; see also the dis-
cussion after lemma 4.1.

Lemma 4.4 establishes a link between the credibility of the no-intervention
threat and existing literature on financial networks without intervention,
which often ranks the desirability of network structures according to the
welfare loss criterion Sy — Sy. The studies of Allen and Gale (2000) and
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) show that dense connec-
tions between banks may serve as an amplifier for large initial shocks. For
most sizes of the initial shock, the right-hand side of equation (11) does
not depend on the network structure.'” Therefore, lemma 4.4 indicates
that dense connections are detrimental to the credibility of the threat
when the initial shock is large.

C.  Regulator’s Response in the Last Stage

A consequence of lemma 4.2 is that, for a given bail-in proposal (, s) and
aresponse vector a by the banks, the regulator’s best response in stage 3 is

“no intervention” if Wy < min(VK(d, s, a), Ws),
r(b, s, a) = “bailout” it Wo < min(Wx, V&(b, s, a)), (12)
“bail-in” otherwise.

The regulator chooses the action that minimizes welfare losses if such an
action is unique. Ties are broken according to “no intervention” > “bail-
in” > “bailout” so that (1) taxpayer money is used only if it is strictly wel-
fare increasing and (2) unilateral deviations by banks in stage 2 can be
discouraged when Wy = Wi(b, s, a); see lemma 4.5 and footnote 21 be-
low for details.

D.  Banks’ Equilibrium Responses

In this section, we analyze how the banks respond to a given proposal
when the regulator’s threat is credible. A crucial feature of the banks’

' Only for very large shocks, for which some banks do not repay anything in a clearing
equilibrium, the right-hand side depends on the network through losses to senior creditors
6. Most existing literature does not consider shock sizes this large.
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response vector is whether a sufficient proportion of banks accepts the
proposal for the regulator to implement the residual bail-in.

DeriNiTION 4.1.  Given a bail-in proposal (b, s), a subgame perfect
equilibrium (a, 7) of the continuation game is an accepting equilibrium if
r(b, s, a) = “bail-in,” and it is a rejecting equilibrium otherwise. The banks’
response vector ain (a, r) is an accepting/rejecting equilibrium response.

For a bank to participate, the bail-in has to be both feasible and incen-
tive compatible. A complete bail-in is feasible if the net contribution by any
bank i does not exceed its budget constraint

(e l) = (¢ + al + (7L) —w' — L), (13)
given recovery rate « and liquidation decision ¢.** The incentive-
compatibility conditions in a feasible bail-in proposal are stated in the fol-
lowing lemma.

LEMMA 4.5.  Suppose that the threat is credible, thatis, Wi < W,. Let
(b, 5) be a feasible proposal of a complete bail-in. In any accepting equi-
librium response @, bank ¢ with ' > 0 accepts if and only if

1. welfare losses in the residual bail-in without bank i satisfy V4 (, s,
(0,a™)) = VK, and

2. bank #’s net contribution satisfies o' — s < bi(a(b, s,(1,a™"))),
where

bi(a) = {n[ﬁ min (iw”(ﬂ =)+ (1 =)l — (1 = a)l', n'(cr, f’)). (14)
refo =

Here, (@', a”) indicates the response vector, in which i responds with
@' and j # i responds with @’.

The first condition states that there is no possibility for free-riding: if
bank i were to reject the proposal, then the regulator would choose not
to intervene rather than pay for 7's contribution with taxpayer money.*'
In other words, the set of banks that accept the proposal is minimal in
any accepting equilibrium response. The second condition states that, in
order to prevent a default cascade, bank ¢ is willing to make a net contribu-
tion up to its exposure to the default cascade through both channels of con-
tagion. While the second condition is not entirely explicit, lemma E.3 (in
the online appendix) implies that b%(a(b, s(1, @ *))) is nonincreasing in
b — §'; hence, the incentive constraint satisfies a threshold property.

? This condition is recovered as a special case of definition 3.4 for complete rescues.
The model can easily be adapted to allow for capital requirements of solvent banks by sub-
tracting these requirements from the budget constraint in eq. (13).

*' The regulator prefers “no intervention” to “bail-in” in eq. (12) when they lead to the
same welfare losses, so that a rejection by bank i can be prevented if the welfare losses W (0,
s, (0, a¥)) in the residual bail-in without 7 are equal to WA.
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The requirement that equilibria be subgame Pareto-efficient implies
that banks will accept an incentive-compatible bail-in proposal. While,
in general, accepting equilibria need not be unique, the regulator can
preempt any coordination problems by altering the proposed bail-in so
thatitis incentive compatible for only one consortium of banks to accept
the proposal. If the regulator requests zero contributions from any bank
outside the selected consortium, unanimous acceptance becomes the
unique accepting equilibrium, and hence the unique subgame Pareto-
efficient equilibrium, of the revised proposal. We formalize this discus-
sion in lemmas B.6 and B.7 (in app. B).

E.  Optimal Proposal by the Regulator

Contributions of banks to a bail-in affect welfare in two ways. First, they
reduce the amount of taxpayer contributions needed. Second, if the asset
recovery rate in the optimal bailout is higher than the indifference recov-
ery rate, the regulator can use the contributions of banks to enhance wel-
fare by exploiting the trade-off between asset liquidation and taxpayer
contributions.

LEMMA 4.6. Let b = (¢ + 7L — w — L)" be the largest feasible con-
tributions without asset liquidation, and let g and s, be defined as in
lemma 4.1 and equation (8), respectively. Let (b, s) be a complete feasi-
ble bail-in proposal, with »'s’ = 0 for every bank #.** For any response vec-
tor a, welfare losses are equal to

WA(b,s.a) = We + galb, s, a)) — glaw) + NX( — )"
i=1
. (15)
- )\2 min(bi, bé)l{ar:l}.

i=1
Equation (15) shows how welfare losses in a bail-in compare to welfare
losses in the optimal bailout of lemma 4.2. A contribution of bank ¢up to
the amount 4; does not require asset liquidation; hence it does not affect
the asset recovery rate. Thus, each dollar contributed up to ) improves
welfare by . Contributions in excess of 4 require asset liquidation by the
bank, thereby affecting the recovery rate o and the welfare trade-off g.
Finally, subsidies beyond bank #’s shortfall s, do not reduce losses from
misallocation of the asset, because banks can fulfill all obligations with-
out liquidating assets. Each dollar of subsidies awarded in excess of s,
thus effectively burns A units of welfare. While this generally constitutes

** The restriction b's’ = 0 imposes that bank ¢ either receives subsidies or makes contri-
butions to the bail-in, but not both. We show in lemma C.1 (app. C) that this comes without
loss of generality.
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a decrease in welfare, we illustrate below how welfare burning can be
used by the regulator to deter banks from free-riding.

Next, we analyze how the regulator best implements a rescue plan that
satisfies the incentive-compatibility conditions of lemma 4.5. The no-free-
riding constraint in condition 1 requires that after the rejection by any
bank, welfare losses in the residual bail-in are larger than welfare losses
without intervention. Using equation (15), this is equivalent to requiring
that for any participating bank

Wa(b, s, a) = Wy + g(a(b, s, a)) — g(a(b,s, (0,a ")) — Amin(¥, &). (16)

Equation (16) constitutes a lower bound on attainable welfare losses im-
posed by the no-free-riding constraint. It states that welfare losses in an
incentive-compatible bail-in cannot be lowered from Wy by more than
the welfare impact stemming from the contribution of any participating
bank. The no-free-riding constraint thus drives the regulator to include
banks, which have a potential for large contributions, or banks whose con-
tributions enhance the welfare trade-off between subsidies and asset liqui-
dation. By choosing an incentive-compatible proposal (¥, s), the regulator
implicitly chooses an associated vector of liquidation decisions £(b, s, 1)
and an asset recovery rate &(b, s, 1).* In order to construct a bail-in con-
sortium C with maximal contributions by its participating banks, the reg-
ulator should choose the maximal feasible contribution y’(e, ¢’) by each
bank ¢ € C, defined in equation (13), given the desired asset recovery rate
o and a consistent vector of liquidation decisions £. This contribution is
incentive compatible for ' up to some value £ («), defined as the maxi-
mizer in equation (14). Viewed as a function of @ and ¢, the necessary sub-
sidies to guarantee solvency of every bank are

s(a, ) = (L+w—c—al —7L)". (17)

For a bail-in with subsidies s(c, £) and contributions 7 (e, £) for a specific
choice of C, a, and a consistent vector ¢, each bank i € C contributes
at least o' = min((7(L — pn))" + (1 — an)l4, b)), the maximal incentive-
compatible contribution without asset liquidation, and at most (o), de-
fined in lemma 4.5. The following lemma shows that such bail-ins maxi-
mize welfare among all bail-ins that are individually incentive compatible,
that is, all bail-ins that satisfy condition 2 of lemma 4.5.

LemMa 4.7.  Let (b, s) be a complete feasible bail-in such that the re-
sponse vector 1 = (1, ..., 1) satisfies condition 2 of lemma 4.5 for every
bank. Denote by C := {i|b' > 0} the set of contributing banks, and abbre-
viate o = @(b, 5, 1). Welfare losses in this bail-in satisfy

* By lemma B.6, the regulator can aim to construct bail-ins that can be accepted by all
banks without loss of generality.
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WAi(d,5,1) 2 Wo — g(ow) + gla) = ND0". (18)
ieC
Equality holds if and only if &' — s' > &' for every i € C and s' < s; for ev-
ery i & C.

Equation (18) shows that when contributions are of size 5(c, £), their
welfare impact depends on the liquidation decision only through the in-
duced asset recovery rate. Thus, similarly to the bailout, the regulator op-
timizes bail-ins to induce the asset recovery rate, at which he is indiffer-
ent between additional taxpayer contributions and asset liquidation.

Suppose now that for a bail-in of the above form, some bank ¢ € C hasan
incentive to free-ride, thatis, the regulator proceeds with the residual bail-
in even without ¢’s participation. By condition 1 in lemma 4.5, this occurs
precisely if W& — Wi(b, s, (0, a ")) > 0. If the regulator were able to de-
crease welfare in the proposed bail-in by this amount across all response
vectors, he could eliminate ¢'s free-riding incentives. It follows from lem-
mas 4.6 and 4.7 that welfare in an individually incentive-compatible bail-
in (b, s) with contributing banks in C, exceeds the lower bound in equa-
tion (18) by

A (s = sh) + NS0 — b)) (19)

i ieC

Thus, providing subsidies in excess of s, and requesting contributions
below b are means with which the regulator can decrease, or “burn,” wel-
fare. Since subsidies in excess of s, and contributions below b do not affect
the assetrecovery rate, burning welfare as in equation (19) does not distort
incentives and hence decreases welfare by a constant amount across the
banks’ responses. We denote by xc(«) the minimal amount of welfare
burning needed to eliminate free-riding incentives from an individually
incentive-compatible bail-in with contributing banks C that induces recov-
ery rate a. The mathematical definition of x¢(«) is somewhat convoluted
and is deferred to lemma A.1 (app. A). In theorem D.2 (in the online ap-
pendix), we show that welfare burning is used sparingly in equilibrium.

The analysis above brings us to the characterization of the equilibrium
intervention plan. The result states that when the threat is credible, the
regulator proposes a bail-in thatimplements the minimum value burning
Xc(a) for the optimal choice of C and a. For the sake of reference, we iso-
late the set of all incentive-compatible bail-ins that implement the mini-
mum value burning.

DEFINITION 4.2. Let z(a) = aIn(a) and let z7! be its inverse on the
interval [1/e, 1]. The function g.(x) = g(z ' (z(a) + yx)) — g(«) captures
the welfare impact of liquidating x fewer units of the asset at recovery
rate a. Let Z(C, o) denote the set of all bail-ins (b, s) satisfying

(i) o' — s' < bi(a) for every i € C;
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(if) &' = 0 and s'(a, €) < §' for every i & C;

(iii) (s — 5)" + Bie(b' — B)" = —(aIn(e)/v);

(iv) N2 (s — i) + N2ie(b' — )" = xe(@); and

(v) Amin(?', &) + g.((0' — b)) = Wa — W + g(ap) — g(a) +
N2l — xe(o) for i e C.

The first two conditions state that (b, s) is a feasible, complete bail-in
with contributing banks in C. Conditions (iii) and (iv) state that the bail-
in induces asset recovery rate o and the total amount of welfare burned
is X¢(a). To understand condition (v), recall that a contribution up to 8’
does not require asset liquidation. A total contribution of size ' + x' by
bank i thus has a total impact on welfare of Nb' + g,(x'). Thus, condition (v)
states that there is no free-riding, because the welfare impact of a devia-
tion by bank i (left-hand side) is larger than the difference between the
welfare losses without intervention and in the bail-in. Conditions (i) and
(v) together imply that it is incentive compatible for any bank i € C to ac-
cept the proposal.

TueorEM 4.8. For any bail-in (), s), let £(b, s) denote the vector of
liquidated assets if the proposal is accepted by all banks. For any /, let
i(€), i:(¢), ... denote a decreasing order of banks according to n'(«x(¢), £).
Let C(€) = {i(£), ..., dup ()}, where m(f) denotes the smallest integer &
such that

k

We + (g(a(0)) = glaw)) = NIn""(ee(0), £) < W&

j=1

If Wp < WA, then any subgame Pareto-efficient equilibrium outcome is a
public bailout with welfare losses W, as specified by lemma 4.2. If W, >
Wy, then there exist generically unique C: and «.. such that in any sub-
game Pareto-efficient equilibrium, a bail-in from the set Z(Cy, ) is pro-
posed by the regulator and accepted by all banks.** Welfare losses are
equal to

W = W + (g(ow) — glew)) = NS + xe ()
ieCxe
Finally, if C.. is unique, then Cs. = C(€(b, s)) for all (b, s) € E(Cx, a.).

As we have highlighted above, a bail-in can be organized in equilib-
rium if and only if the regulator’s no-intervention threat is credible.
The set C; consists of banks that are most exposed to contagion at the
equilibrium recovery rate o..: after choosing a set of liquidation decisions

** Generic uniqueness is up to banks i with 4; = 0 because those banks affect welfare only
through the welfare trade-off captured in g “Generically unique” means that it is unique for
an open and dense set of model parameters.
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¢ that induces ., the regulator adds banks into the bail-in consortium in
decreasing order of their incentive-compatible contributions n(c(¢), £)
until welfare losses are lower in the bail-in than in the default cascade with-
out intervention. This occurs after adding the m(f) most exposed banks.
Because of the no-free-riding constraint of lemma 4.5, no more contribu-
tors can be added after that: any additional bank would know that even
without its contribution, the regulator will proceed with the residual con-
sortium; hence, that bank has no incentive to participate.

The recovery rate and the welfare losses are generically unique in equi-
librium. The set of liquidation decisions and the bail-in proposal, how-
ever, are not unique in general. Similarly to the public bailout, welfare de-
pends on the liquidation by banks only through the total amount that is
being liquidated.* This gives the regulator some leeway on how to induce
recovery rate o... Because banks are willing to make larger contributions
to a bail-in that guarantees a higher asset recovery rate, the regulator’s in-
difference recovery rate increases in a bail-in, that is, o > ota.

In online appendix D, we highlight the relationship between the equi-
librium recovery rate and the amount of welfare burned in equilibrium:
in many situations, the regulator will avoid burning welfare and instead
choose to induce a recovery rate, at which the contributions by individual
banks are sufficiently large to deter free-riding. Nevertheless, there are
scenarios in which welfare is burned in equilibrium. One such scenario
occurs when buyers of liquidated assets are fully efficient, that is, when
v = 0; see section VI.

REMARK 4.1.  We briefly discuss the default resolution outcome if the
government had various degrees of commitment power or if a bank had
made a precommitment to participate in a bail-in.

1. Suppose that the regulator had the power to commit to a no-
bailout policy in the third stage. Then, the bail-in described in the-
orem 4.8 will be organized in equilibrium even if W, < W4; hence,
equilibrium welfare losses decrease to W in this case.

2. Suppose that the regulator has full commitment power in the third
stage, that is, that he can commit not only to a no-bailout policy but
also to not proceeding with a residual bail-in if some banks reject
the proposal. Then, the no-free-riding constraint (condition 1 of
lemma 4.5) has to be satisfied only if the proposed bail-in does
not include any government subsidies. Note that a bail-in still has
to be individually incentive compatible (condition 2 of lemma 4.5),
as otherwise, a bank would prefer the default cascade over the

* The only restriction on liquidation by an individual bank is the fifth condition in def-
inition 4.2, specifying the minimal liquidation amount by bank i for the no-free-riding con-
dition to hold.



1828 JOURNAL OF POLITICAL ECONOMY

bail-in. This reflects the fact that in a developed democracy, the
government cannot legally appropriate the banks’ capital.*® We
conclude that the regulator can force his preferred individually
incentive-compatible assisted bail-in unless the banks can agree on
a private bail-in alternative.”

3. Finally, one could easily adapt the model to allow precommitments
by banks to participate in a bail-in, which incurs a legal fee C’ on
bank i if the bank reneges on its promise. In that case, the legal
fee C'is simply added to the left-hand expression in the minimum
in equation (14). The takeover of Merrill Lynch by Bank of Amer-
ica (BOA) could, perhaps, be interpreted as an assisted bail-in with
precommitment by BOA.*®

V. Shocks, Asset Illiquidity, and Total Throughput

In this section, we analyze the dependence of equilibrium quantities, in-
cluding asset recovery rate, awarded subsidies, credibility, and welfare
losses, on the banks’ balance sheet parameters, the network structure,
and the recovery rates from asset liquidation and bankruptcy procedures.
The results are presented under the assumptions thaty > 0, thate’ > 0 for
every bank 7, and that there is at least one fundamentally defaulting bank.
Without this assumption, the results in this section hold when strict
monotonicity is replaced with weak monotonicity.

A, Optimal Bailout

Since every bank is rescued in a complete bailout, there are no bank-
ruptcy costs and no losses that depend on the network structure. Asset re-
covery rate, subsidies, and welfare losses in the complete bailout are thus
independent of 8 and . The dependence of the welfare-maximizing
bailout on the rate y at which the pool of efficient buyers diminishes,

* Without condition 2 of lemma 4.5, the government could demand arbitrarily high
contributions.

*” Formally, such a model would require additional stages of negotiation to give banks the
opportunity to coordinate on a private bail-in alternative. It is easy enough to adapt the re-
sults in section IV.D (by excluding the regulator’s incentives) to show that no two private
bail-ins are Pareto comparable. Therefore, we expect that the subgame Pareto-efficient equi-
librium outcome is a constrained-efficient private bail-in or the regulator’s preferred individ-
ually incentive-compatible assisted bail-in.

* When BOA wanted to withdraw from the purchase of Merrill Lynch, the Federal Re-
serve could have claimed that BOA’s initial interest stalled a successful default resolution,
thereby generating additional losses. To avoid extensive litigation with an uncertain out-
come, both parties agreed on a settlement, in which BOA proceeded to purchase the assets
but the price was lowered and backed with a government guarantee. The resulting deal
was, presumably, close to incentive compatible for BOA.
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Fic. 2.—Dependence of the optimal bailout on y (A), N (B), and e (C) for a calibrated
model of a dense financial network using the 2018 data of the EBA stress test. The asset
recovery rate ap = max(oy, Qina) is shown in solid lines; the minimal-intervention recovery
rate o and the indifference recovery rate o,q are shown in dashed lines. The total subsi-
dies Sy awarded and welfare losses W, are normalized to fit the same scale.

the welfare cost \ of a taxpayer dollar, and the size s, of the banks’ shortfall
is given in the following result and illustrated in figure 2.*

LemMa 5.1. There exist (possibly infinite) thresholds vy, Ax > 0 as
well as finite thresholds s, . > 0 for every bank isuch that the following
conditions hold.*

(i) The recovery rate ap is decreasing for y < v, and it is constant

for v > v.. Subsidies and welfare losses are increasing in 7.

(ii) The recovery rate o and subsidies are decreasing for N < A, and
they are constant for A > ... Welfare losses are increasing in A.

(iii) For any bank i, the recovery rate oy, subsidies, and welfare losses
in the optimal bailout are decreasing for ¢’ < i and constant for
el > el

(iv) For any bank i, the recovery rate oy is decreasing for sh < sk and
constant for s; > si. Subsidies and welfare losses are increasing
in .

# Unlike the calibration done in sec. VII, buyers of liquidated assets are not assumed to
be fully efficient in the calibration that generates figs. 2 and 4. In this calibration, we as-
sume that 90% of the outside assets reported by banks are illiquid and the remaining 10%
are perfectly liquid, i.e., cash.

* The thresholds depend on the other model parameters; i.e., s depends on \, s, and ¢,
etc.
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If the marginal efficiency of buyers decreases slowly—that is, if v is
low—Iliquidation has a small impact on the asset recovery rate and it is wel-
fare maximizing for the regulator to provide only the minimal amount of
subsidies. Under this minimal-intervention policy, the recovery rate of the
asset falls as y increases. The resulting decrease of the banks’ equity value
requires larger subsidies to restore the system to a going concern. If the
marginal efficiency of buyers decreases sufficiently quickly—that is, if
v = v+—the regulator switches from the minimal-intervention policy to
a policy that trades off asset liquidation and taxpayer contributions to
maintain the indifference recovery rate c,q. As y increases and liquidation
becomes more costly, the regulator has to provide additional subsidies to
maintain the indifference recovery rate, further increasing welfare losses.

If the welfare cost \ of a taxpayer dollar is below the threshold A, the
regulator balances taxpayer contributions and asset liquidation to main-
tain the indifference recovery rate. As taxpayer contributions become
more costly in terms of welfare, the regulator decreases the size of subsi-
dies until, at level A, he provides only the minimal subsidies necessary to
guarantee solvency.

A fundamentally defaulting bank i cannot cover its shortfall by liqui-
dating its assets. If the amount ¢’ of illiquid assets held by bank ¢ is small,
the regulator is thus forced to cover a large portion of the shortfall even if
the marginal welfare cost of taxpayer contributions is higher than the
marginal welfare impact of asset liquidation. As ¢’increases, bank iis able
to cover a larger portion of its shortfall by liquidating its assets, which re-
duces the size of the minimal subsidies required. Below the threshold e,
the benefits of reducing subsidies outweigh additional losses from fire
sales, leading to an overall decrease in subsidies and welfare losses.

Finally, both subsidies and welfare losses are increasing in the short-
fall s, of the banks, which can be understood as a measure of the initial
shock size. The asset recovery rate is strictly decreasing in the size of
the shock where it exceeds the indifference recovery rate, and it is con-
stant otherwise.

B.  Credibility

For a given set of parameters, the threat is either credible or not. To an-
alyze how the credibility depends on underlying variables, we study the
difference Wp — Wy between the welfare losses in the optimal bailout
and in the absence of intervention. This measures how close to being
credible the threat is. We say that the credibility of the threatis increasing
or decreasing in a parameter if Wp — W4 is, respectively, increasing and
decreasing in that parameter.

A critical measure for the sensitivity analysis is the total throughput of
a defaulting bank to the solvent members of the economy (i.e., banks
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and senior creditors). Abbreviate Dy = D(pn, In, an), let Cx S Dy denote
the set of defaulting banks that repay their senior creditors in full, and
let Zy denote the set of illiquid but solvent banks, all in the absence of
intervention. For two sets of banks S and C, let 7°¢ denote the submatrix
of m with rows and columns corresponding to banks in S and C, respec-
tively. The throughput of a bank ¢ € Cy to a set of banks S is

055(6, ) = E e (] _ BTCMC\)ﬂp,C-\
jeS\ Dy (20)
+ B E e ([ — 87 N,C\)flp?‘\.

j€SNDy \ Cx

where p% denotes the unit vector in R® in the direction of i. The total
Forabank i € Dy \ Cy, we set 05(8, w) := 1 for any set of banks S that con-
tains 4, and we set 05(8, ) = 0 otherwise.

The total throughput of bank imeasures the exposure of solvent junior
creditors (first term) and senior creditors (second term) to a shock hit-
ting bank : It quantifies the potential for spillover losses triggered by
defaults. For a bank i € Cy, the quantity (I — B7%%)" = Zp,(BaS4)"
captures the amplification of losses due to feedback effects between de-
faulting banks: the term % in the sum corresponds to the propagation
of losses through liability chains in Cy of length k. After bankruptcy losses
are accounted for, the exposure of a solvent creditor to a shock on bank
I'sassets is 7 for a solvent bank jand 87 for the senior creditors of a bank
j € D\ Cx.” The following lemma shows that the total throughput is a
normalized measure for the rate of spillover losses that condenses all net-
work information needed to determine the credibility of the regulator’s
threat.

Lemma 5.2.  The total throughput of any bank is nondecreasing in (3,
and it takes values in [0, 1]. Conditional on the banks’ levels of solvency
(the sets Dy, Cn, Zn) and the total value of their claims on solvent banks,
Wi — Wy depends on 7 only through . 07 (8, ) and = 60°(8, 7).

Observe from equation (20) that the throughput depends on the net-
work structure, the location of the shocked bank(s) within the network,
and the connections of the shocked banks to other defaulting banks, as
well as the recovery rate 3. Conditional on the banks’ levels of solvency,
it does not, however, depend on the asset recovery rate or the banks’

* The total throughput of bank i € Cy is related to the bank’s Bonacich centrality B' =
12.(I — Ba%%)"p%, which captures the total amplification of losses through feedback
loops in Cy. The total throughput additionally takes into account how the losses are distrib-
uted among the creditors. It is important to note that the Bonacich centrality may diverge
to o if 8 — 1, whereas our notion of total throughput is bounded on the interval [0, 1].
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Fic. 3.—Total throughput 6'(8, m,) of bank 1 if Cx = Dy = {1,2} (A) and Cx =
Dy = {1,2,3,4,5} (B) for various levels of 3 in the network m, = pm. + (1 — p)m,, where
7. and 7, denote the complete and the ring networks, respectively, with n = 36 banks.

balance sheet quantities L, ¢, w, and e. The throughputisincreasing in the
connectivity between defaulting banks, as illustrated in figure 3.%
LEMMA 5.3.

(i) The credibility of the threat is increasing in A.

(ii) The credibility of the threatis nondecreasing in 3, and it is strictly
increasing on the set {8 | there exists i € Dy(8) with 6°(8, ) > 0}.

(ii1) The credibility of the threat is nonmonotonic in . However, all
discontinuities of W, — Wy with respect to y are downward dis-
continuities, and the marginal change of W, — W with respect
to 7y at continuity points is decreasing in 3 and 0°(3, 7) for every
defaulting bank .

(iv) For each iand fixed ¢, there exists ¢, such that the credibility of
the threat is decreasing at all ¢ < ¢}, for which B(6°(8, w) +
N0 (B, m)) < 1, as well as all ¢ > e.. At the threshold e., where
bank ¢ becomes solvent, W, — W4 has an upward discontinuity.

As the welfare cost N of the taxpayer contributions increases, a bailout
becomes more costly and the threat becomes more credible. Similarly, as
the recovery rate 8 increases, bankruptcies become less costly and it be-
comes more credible that the regulator will notintervene. If the through-
put of all defaulting banks is 0, then losses generated by defaulting banks
do not spill over to the rest of the system; hence, welfare losses are locally
constantin 3.> However, if the set of defaulting banks is connected to the
rest of the system, then the credibility is strictly increasing in 3.

* The symmetric complete network 7. with @/ = 1(;/(n — 1) is the most diversified
network structure. The ring network 7, with T = 1(j=i+1 mod u} 18 the sparsest network struc-
ture, as measured by the Gini index; see Hurley and Rickard (2009).

* If all senior creditors are repaid in full and the defaulting banks are liable only to each
other but not to the solvent banks in the system, then repayments are just a redistribution
of net zero wealth among defaulting banks.
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As vy increases—that is, the efficiency of buyers of liquidated assets de-
creases more quickly—illiquid banks raise a smaller amount of cash from
their sales, and if y exceeds a certain threshold, such banks are unable to
meet their liabilities. In the absence of intervention, the set of defaulting
banks increases at such a threshold, causing a downward discontinuity in
the credibility of the threat due to bankruptcy losses. Between these dis-
continuities, two counteracting forces determine the change in credibil-
ity: a larger downward pressure on the asset recovery rate causes larger
liquidation losses withoutintervention but also mandates larger subsidies
in a bailout. Which effect dominates depends on the recovery rate and
the network structure via the total throughput of defaulting banks. As il-
lustrated in figure 3, the marginal change in credibility is higher in more
sparsely connected networks. Figure 4A shows that the discontinuous
changes dominate the continuous changes in a model calibrated to data
from the 2018 EBA stress test.

In the absence of intervention, an increase in the amount of illiquid as-
set held by any bank affects welfare losses in two ways: liquidation and
bankruptcy costs increase, while losses of senior creditors decrease be-
cause they are repaid a larger amount with the proceeds from liquidation.
If 65 (B, m) = O—that is, every (direct and indirect) creditor of bank i is
able to fully repay its senior creditors—or if the weight of senior creditor

A4 Wi B Wi
Wp
Wp
L— v B
We=Wn o
C
Wx
Wp

\J Wp — Wy

Fic. 4.—Dependence of the optimal bailout on vy (A), 8 (B), and ¢ (C) for a model of a
dense financial network calibrated to the 2018 data of the EBA stress test. In C, we scale the
size of illiquid assets held by all banks simultaneously.
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losses in the welfare function is sufficiently small (A < 8/(1 — 8)), then
welfare losses in the absence of intervention are increasing in asset hold-
ings ¢'. Since welfare losses in the public bailout are nonincreasing in ¢’ by
lemma 5.1, the credibility of the threatis decreasing in this case, exceptat
the threshold e, where bank i becomes solvent. An increase in asset hold-
ings ¢’ can increase the credibility only if a sufficient proportion of the rev-
enue of the liquidated assets accrue to senior creditors and the reduction
of senior creditor losses is valued sufficiently highly by the regulator, that
is, if 05, (B, m) is sufficiently high.

The following result shows how the credibility of the threat changes
with the size of the initial shock. For the credibility analysis, we write
¢ = ¢ — ¢ as the sum of cash kept in period ¢ = 0 and the realization
of short-term returns on the illiquid assets in period ¢ = 1, where ¢ is in-
terpreted as the size of the shock to those returns. In contrast, the public
bailout depends on the size ¢ of the initial shock only through the short-
fall s,; hence, lemma 5.1 simply states the dependency on s,.

LeMMA 5.4. For each bank i, there exist 0 < &} < &) < & such that the
credibility of the threat is constant for &' < ¢}, decreasing for &' € [¢], &3],
and increasing for ¢’ > &. On the interval [e}, &), the credibility has only
downward discontinuities. The marginal change of W, — W{ at continu-
ity points in [¢}, &] is decreasing in 8 and 6°(3, 7).

For very small shock sizes, bank ¢is able to honor its liabilities without
liquidating its assets. Welfare losses and the credibility of the threat thus
remain unaffected. For small shock sizes in the interval [ei, &], bank i
has to start liquidating its assets in the absence of intervention, but not
in the public bailout, where all interbank claims are honored. The credi-
bility of the threat is thus decreasing in that interval. For intermediate
shock sizes in the region (&}, £}], banks do not have sufficient liquidity to
repay their liabilities, both in the bailout and in the no-intervention out-
come. Whether this leads to a larger increase of welfare losses without in-
tervention than in a bailout—and hence to a decrease in credibility—de-
pends on the recovery rate 3 and the total throughput of bank 7. Finally,
for large shock sizes ¢’ > ¢}, bank idoes not make any payment to its junior
creditors in the absence of intervention; hence, marginal increases in the
shock are notamplified through the network anymore. Consequently, the
credibility is increasing in the shock size.

We conclude this section with the following result, which highlights
that the credibility of the threat is the most important determinant when
comparing welfare losses between two networks.

Lemma 5.5. For fixed L, ¢, ¢, w, v, and B, equilibrium welfare losses
after intervention are smaller in network 7, than in network ., if the reg-
ulator’s threat is credible in 7, but not in 7.

If the regulator’s threat is credible in network 7, but not in network s,
theorem 4.8 implies that Wi (m) < Wy(m) < W = Wi(m). If the threat
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fails to be credible in both networks, then the regulator must resort to a
public bailout in either network, resulting in identical welfare losses. In
section VII, we compare welfare losses when the threat is credible in both
networks. We do so numerically, using a data set from the EBA’s 2018
stress test.

VI. Optimal Intervention with Partial Rescues

In this section, we extend the baseline model of section IV by enlarging
the strategy space of the government from complete rescues to bail-ins
and bailouts that may rescue only a subset of the banks. We also refer to
these interventions as partial interventions or partial rescues. This analysis
reveals the additional forces that contribute to the formation of bail-ins
when the regulator does not necessarily rescue every bank in the system.
To simplify the exposition of our results, we assume that buyers of the asset
are fully efficient, that is, v = 0. This assumption shuts down one of the
channels of contagion and is equivalent to assuming that there are no
fire-sale effects of liquidation.

A.  Public Bailout

Without the participation of the banks, the regulator minimizes welfare
losses over all possible sets of banks he could bail out. The first lemma
describes this minimization procedure.

LemMaA 6.1.  For any set of banks B, let p(B) be the greatest fixed
point of

, L ifie Borc + i‘lrijpf >L + o,
P = =1
(B(c’ + (wp)i) — w’A)+ otherwise.

Define the vector of subsidies s(B) by setting s'(B) := (L' + w' — ¢' —

mipi(B))" for ieB and §(B) =0 otherwise. Let B, =
arg ming 4 (s(B)). A welfare-maximizing partial bailout awards subsidies
from the set Sp = {s(B)|Bs € Bp} and attains welfare losses W, :=
ming Wi (s(B)).

The bailout s(B) is the welfare-maximizing bailout among all bailouts
that rescue banks in B by giving subsidies only to banks in 3. The regulator
thus maximizes welfare by optimally selecting which banks to subsidize.
Generically, B is a singleton; that is, welfare is maximized for a unique
set of banks to be bailed out. Note that in lemma 6.1, we do not preclude
the possibility that the optimal partial bailout rescues no banks at all. In
that case, the optimal “bailout” is no intervention. The following result de-
scribes the structure of the partial bailout by characterizing conditions
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under which it is optimal not to rescue a certain set of banks. Those con-
ditions depend on the shortfall S(B) and the capital buffer C(B) in the
bailout s(B), defined as follows:

S(B) = (L+w—c—7p(B))",
(21)
CB) = (c+mp(B) —w—1L)".

We denote by D(5) and S(B) the set of defaulting and solvent banks, re-
spectively, when liabilities are cleared with p(B). We denote by 6(B) the
corresponding losses to senior creditors.

LEmMMA 6.2. For any two sets of banks B C B, we denote by { :=
w(p(B) — p(B')) the difference between payments received by banks
when liabilities are cleared with p(B) and those cleared with p(5'), and
we denote by R := D(B') \ D(B) the set of banks rescued in bailout s(1)
but not in s(8'). Then, W4(B') < W4(B) if and only if

) A o
S'(B)+ —— in(¢', C'(B
S5+ 5y 3, min(e, ¢ (8) )
>35(B)+ Y min(B¢,6(B)) + X ¢
ieR iD(B) i=S(B)

The left-hand side of inequality (22) captures the benefits of not rescu-
ing banks in R. The first term is proportional to the shortfall of banks in
R if those banks are not rescued. Rescuing them is costly and requires
government expenditures in the form of awarded subsidies. The second
term captures the potential of solvent banks to absorb losses { caused by
the default of banks in R. If solvent banks have sufficiently large capital
buffers, these losses can be absorbed by the system and there is less ben-
efitin rescuing the defaulting banks using public money. The right-hand
side of inequality (22) captures the benefits of rescuing banks in R. These
include the direct benefits to senior creditors (first two terms) and sol-
vent junior creditors (third term) if banks in R are rescued. Benefits to
insolvent banks do not explicitly appear in the expression above because
those benefits are passed on to creditors of rescued banks through the
repayment of liabilities.

Lemma 6.2 implies thata bank is not rescued in the optimal bailout if it
is hit by a very large shock or if such a shock can be well absorbed by the
capital buffer of its creditors. By contrast, a bank is rescued in the optimal
bailout if, relative to the size of the exogenous shock, the bank’s default
causes large losses to its creditors that cannot be absorbed by their capital
buffers. If a bank is hit by a large shock and its bankruptcy causes a default
cascade, it may be welfare enhancing to rescue only the contagiously de-
faulting banks: to rescue the fundamentally defaulting bank, the regula-
tor has to cover the bank’s large shortfall entirely using taxpayer money. If
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he rescues only the contagiously defaulting banks, he can leverage the
balance sheet capacity of those banks and cover the residual shortfall only
after their capital buffers have been depleted.

Even though we do not explicitly model the network formation stage,
our result suggests that a risky bank 7 has incentives to borrow from other
risky banks in the system, so that in case of #’s default, its creditors are
likely to be distressed as well. Then, their potential for absorbing the
losses induced by bank i is small, increasing the chances that bank i is
bailed out.

B.  Banks’ Equilibrium Responses

When the regulator commits to complete rescues, as in section IV, the
threat toward the banks is binary: a bank’s assets are either fully protected
or, in the absence of intervention, exposed to the full extent of the default
cascade. This is no longer the case when the government allows for partial
rescues. A bank’s assets may be protected to varying degrees in a welfare-
maximizing bailout: while some debtors may be rescued, and hence the
claims toward those banks are protected, other debtors may still default,
thereby inducing losses to the remaining banks in the system.

If the regulator announces that he will implement bailout s(53) when
some bank ¢ fails to cooperate, he threatens losses to creditors of banks
in the complement B of B. If there is more than one welfare-maximizing
(i.e., credible) bailout, the regulator can choose which bailout to “threaten”
to which banks. Consider a financial system with two identical defaulting
banks ¢and j, where the welfare-maximizing bailout prescribes the rescue
of only one of them. Since rescuing either is a credible action by the reg-
ulator, he can threaten the creditors of bank ¢ that, without their partici-
pation, he will bail out bank j, and vice versa. This is formalized in the fol-
lowing lemma.

LemMA 6.3. Let (b, s) be a feasible bail-in proposal. In an accepting
equilibrium a, bank i with ' > 0 accepts if and only if for some B, € Bs,
the following conditions hold:

1. Wi(b,s, (0,a™")) > Wy, and
2.0 = s <L (p/(b s, (1,a7)) = p/(B))) — s'(By).

Moreover, if there exists B. € Bp such that condition 2 holds simulta-
neously for every bank i with B; = B, then rejecting equilibria are
subgame Pareto efficient only if s € Sp. If there exists no such By, then
rejecting equilibria are not subgame Pareto dominated by accepting
equilibria.

Analogous to lemma 4.5, condition 1 is a no-free-riding constraint, spec-
ifying that without ¢’s participation, the regulator chooses his preferred
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outside option over the residual bail-in.** Condition 2 states that bank ¢’s
net contribution to the bail-in (4, s) has to be smaller than or equal to
s benefits in the bail-in over the threatened bailout s(5;). If the regulator
threatens different bailouts after a rejection by different banks, the threats
cannot be carried out against all banks simultaneously. Because equilibria
are robust only to unilateral deviations, this has no effect on accepting
equilibria, but it may result in rejecting equilibria also being subgame Pa-
reto efficient.”

C. Optimal Proposal of the Regulator

In a partial bail-in, the regulator selects both rescued banks and contrib-
utors. Because a bank is more willing to contribute to a bail-in that pro-
tects its debtors, the two decisions are interconnected. When the regula-
tor proposes to rescue a set of banks B and threatens the bailout s(B.),
the maximal incentive-compatible contribution by bank ¢, or the threat
level toward bank i, is equal to

15, (B) = min((w(p(B) — p(B:)) — s(B))", C(B)), (23)

where C(B) is the vector of the banks’ capital buffer defined in equa-
tion (21). The notion of threat levels generalizes the credibility of the
threat in section IV.*° If the optimal bailout happens to be the complete
bailout, then threat levels toward all banks are zero and, as in section IV,
the regulator cannot incentivize any banks to participate. If the optimal
bailout is not the complete bailout, then the regulator minimizes welfare
losses over which banks to subsidize, taking into account that it affects
the contributions he can extract from the private sector. We state the re-
sult under the generically satisfied assumption that the optimal bailout is
unique. If the welfare-maximizing bailout fails to be unique, then the
regulator will additionally optimize over which bailouts to threaten.

* Note that in the case of partial rescues, the preferred outside option is the threatened
partial bailout s(5;) leading to welfare losses W,. By contrast, lemma 4.5 for complete res-
cues is formulated under the assumption that the threat is credible, where the regulator’s
preferred outside option is no intervention and yields welfare losses Wi.

* Whether or not it is possible to preclude rejecting equilibria by assigning threats to
response vectors a # (1,...,1) is a combinatorial argument that depends on the number
of participating banks, the number of credible bailout threats, and the rank order of
threats for the individual banks. Since the optimal bailout is generically unique, this anal-
ysis is beyond the scope of the paper.

* Because we consider complete rescues in sec. IV, it follows that B = {1, ..., n} and
hence p(B) = L. With complete rescues, the threat level toward the banks thus either is
0 or is given by &% () in eq. (14) for any bail-in that induces asset recovery rate . Because
¢ = 0and « = 1 in this section, we highlight the dependence on the set B of subsidized
banks.
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THEOREM 6.4. Suppose that By = {B.}. For any set of banks 5, de-
note by 4(B), &(B), ... a nonincreasing ordering of banks according to
i, (B). For any integer k, define

WAB) = Wi(s(B) ~ NSl (B).

Let m(B) denote the smallest k for which W} (B) < W, and set
W(B) = min (W™ (B), W' — Mg (B)). (24)

In the game with partial interventions, welfare losses in any subgame
Pareto-efficient equilibrium are equal to Wy = ming W(B).

As in theorem 4.8, the no-free-riding constraint drives the regulator to
ask for contributions from banks toward which the threatlevel is the high-
est. He includes banks into the bail-in consortium according to the de-
creasing order 4 (B), &:(B), ... until welfare losses are lower than in the op-
timal bailout (first expression in the minimum of eq. [24]). After that, he
can include additional banks into the consortium only by burning wel-
fare (second expression in the minimum of eq. [24]).*

In addition to the above forces that also govern the formation of a
complete bail-in, the selection of rescued banks affects the size of the con-
tributions the regulator can demand from the private sector. In equilib-
rium, the regulator will include few banks into the bail-in consortium,
each willing to make a large contribution, rather than many banks with
small contributions each. It is, therefore, beneficial to rescue banks that
have few large creditors rather than banks with many small creditors. This
is formalized in the following lemma. It characterizes the structure of equi-
librium partial bail-ins by giving conditions under which it is optimal not
to rescue a certain set of banks. We use the same notation as in lemma 6.2
and theorem 6.4 and additionally denote by C(B) = {#(B), ..., iuw) (B)} the
set of contributing banks toward a rescue of banks in B.

LEMMA 6.5.  Suppose that B, = {B.}. Forany two sets of banks B’ € B,
let R = D(B') \ D(B), as in lemma 6.2. Then, Wi(s(B')) — Ziceisy) My (B') <
VV)\(S(B)) - Eigc(g))\’f]i(lg) if and only if

7 If buyers of liquidated assets are fully efficient, the order 7 (1), i, (B), ... of banks most
exposed to contagion does not depend on the number of banks included in the consor-
tium. The order is fixed for given 3 and B,,, and this simplifies the characterization of wel-
fare burning in equilibrium: to include an additional bank iinto the consortium, the reg-
ulator burns W, — W5 (B) units of welfare, so that without 7's participation, welfare in the
residual bail-in and the optimal bailout are identical. Then, bank i does not have an incen-
tive to free-ride. Because banks are decreasingly ordered according to their threat levels,
the regulator will consider burning welfare only to include bank i, (B).
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(25)

1+ N.&o mln(f e (B))

Similarly to the characterization of the optimal bailout in lemma 6.2,
the left-hand side of inequality (25) represents the benefits of not rescu-
ing banks in R, whereas the right-hand side represents the benefits of res-
cuing banks in R. The majority of terms are identical to those in inequal-
ity (22), but there are two key differences. The first is related to the
system’s ability to absorb losses transmitted from banks in R when they
are not rescued (second term on the left-hand side of inequality [25]).
Losses are absorbed either partially or completely by the capital buffers
of R’s creditors. In order to benefit from those capital buffers in a partial
bailout, the regulator has an incentive to let banks in R default. In the
bail-in, the regulator benefits from those capital buffers even if he rescues
the banks in R, because he can extract larger contributions—up to the
amount 7n(B) < C(B)—from contributors in C(B) (the third term on
the right-hand side of inequality [25]). The choice of which banks to res-
cue is thus network dependent: if banks in R have many creditors, only
some of them will be included in C(B), as aresult of free-riding incentives.
Thus, if capital buffers are large and the defaults of banks in R can be well
absorbed, the second term on the left-hand side of inequality (25) is larger
than the third term on the right-hand side, constituting a reason not to res-
cue banks in R. If, however, banks in R have only a few large creditors,
those are likely included in C(B), and hence the two terms balance out.”
While, in the partial bailout, only the size of the absorbed losses matter,
in the partial bail-in the distribution of those losses matters as well because
it determines the contributions that can be elicited from the private sector.

The second difference from the case of complete bailouts is the third
term on the left-hand side of inequality (25). It captures the structure of
rescue consortia in the two alternative bail-ins, stating that it is beneficial
to not rescue banks in R if, by doing so, the regulator does not lose any
contributors. Indeed, if the number of banks contributing toward a

* One can show that min({’, 7'(B)) = min({’, C'(B)) for any bank i with a positive threat
level n(B") when banks in R are not rescued. The terms in the sums for each such bank are
thus identical.
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bail-in rescuing banks in B’ is larger than when rescuing banks in B—that
is, m(B') = m(B)—then this term is positive because C(B') is the set of
banks of size m(B') that maximizes contributions of size n(B').

Both lemmas 6.2 and 6.5 imply that itis beneficial for banks to have only
a small number of creditors. To be rescued in a bailout, the bank must
cause large contagion effects. To be rescued in a bail-in, the bank’s credi-
tors must be among the largest potential contributors to the rescue consor-
tium. Both these conditions are more likely to happen when the losses
caused by the bank’s default are spread across only a few creditors. Because
the regulator prefers sparsely connected networks, it follows that ex ante
incentives of banks are better aligned with the regulator’s objective when
he allows for partial intervention, rather than when restricting himself to
complete rescues only.

Our final result relates the structure and welfare losses of partial bail-
ins and bailouts.

LemMa 6.6. Let BC B, with welfare losses Wi (s(B')) < Wi(s(B)) in
the corresponding partial bailouts. Then, welfare losses in the optimal
partial bail-ins, defined in equation (24), satisfy W(B') < W(B).

For B’ € By, lemma 6.6 shows that it cannot be optimal to rescue a smaller
set of banks in a bail-in than in the optimal bailout: by lemma 6.3, no bank
would have any incentive to contribute to such a bail-in. Lemma 6.6, how-
ever, does not imply that all banks from the optimal bailout are rescued
in the optimal bail-in; we provide a counterexample to that claim in sec-
tion H.3 of the online appendix. In general, the partial bail-in must rescue
additional banks to create incentives for banks to contribute but may not
rescue some banks that are included in the bailout.

VII. Equilibrium Welfare Losses and
Network Structure

In this section, we analyze the dependency of equilibrium welfare losses
on the structure of the interbank network, using data from the 2018 stress
test of the EBA. After eliminating banks with zero reported interbank
claims, we are left with 36 banks in the data set. We elaborate in section I
of the online appendix how we calibrate our model to the data. To high-
light more prominently the impact of the network structure on welfare,
we assume that buyers of liquidated assets are fully efficient for this calibra-
tion exercise. This corresponds to setting y = 0 or, equivalently, assuming
that all outside assets are held as cash.

Detailed information on bilateral exposures is not publicly available.
To compare the relative performance of different network structures,
we fit a sparse and a dense network structure 7, and w4, respectively, to
the data from the EBA stress test. We then analyze the credibility of
the regulator’s threat and the equilibrium welfare losses as a function
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of the network structure w, = pm, + (1 — p)m, for p € [0, 1].** We gener-
ate the dense network 4 with the maximum-entropy method developed
by Upper and Worms (2004), which distributes interbank liabilities as
evenly as possible. We generate the sparse network , using an iterated
greedy algorithm, for which details are provided in section I of the online
appendix.*” We then apply a shock to the assets of HSBC, Barclays, and
Deutsche Bank with a shock size equal to their cash holdings, thereby wip-
ing out the value of their non-interbank assets.

Figure 5A shows the impact of the network structure on welfare losses
under different resolution plans. As the network becomes sparser, liabil-
ities among banks are more concentrated. This makes contagious de-
faults in the absence of intervention more likely and the corresponding
welfare losses Wy change discontinuously where this happens. For the
chosen size of shocks, the threat is credible in all networks, since WL is
smaller than welfare losses W, in the complete bailout. This allows the co-
ordination of a complete equilibrium bail-in as described in theorem 4.8,
with welfare losses equal to W;. Contributions to the equilibrium bail-in
are illustrated in figure 5B, where it is evident that they increase as the
network becomes sparser because free-riding incentives are reduced.
The three main creditors of the shocked banks would suffer large losses
without intervention and can, therefore, be incentivized to make large
contributions. This leads to a continuous decrease in equilibrium welfare
losses as the network gets sparser until we observe contagious defaults: be-
cause of the no-free-riding constraint, welfare losses in a bail-in can differ
from Wy by at most the contribution of any participating bank. There-
fore, discontinuous changes in Wy are reflected also in the equilibrium
welfare losses W with complete rescues. Nevertheless, W; in the sparsest
network is 21.3% lower than that in the densest network, despite the fact
that without intervention they would be 17.9% higher.

For the chosen shock sizes, there are no contagiously defaulting banks
in the densest network. This illustrates that even if the regulator’s threat

* Craig and von Peter (2014) show that the German interbank network has a core-
periphery structure: while the 45 large core banks act as intermediaries and have many
counterparties, the periphery banks trade only with core banks but not with each other.
The participating banks in the EBA stress test are 36 of the largest banks in Europe, which
are all considered core banks. Therefore, we do not aim to estimate a core-periphery net-
work to this data set but rather analyze the impact of a range of network structures of differ-
ent sparsity on credibility and equilibrium welfare losses for the subnetwork of core banks.

' The resulting network 7, has 1,260 edges—i.e., each of the 36 banks is connected to
every other bank—and a normalized Gini index of 0.4556. The network 7, has 71 edges,
with a normalized Gini index of 0.9981. See Hurley and Rickard (2009) for a definition
of the Gini index. The Gini index is a measure of sparsity, which we normalize to account
for the fact that diagonal entries in any relative liability matrix are 0. The normalized Gini
index is 0 for the symmetric complete network and 1 for a ring network.
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Fi1c. 5.—A, Welfare losses under various resolution plans as a function of the network
m, = pm, + (1 — p)m as p increases from 0 to 1. B, Cumulative size of contributions by
banks to the optimal complete bail-in. The contributed amount of a single bank corre-
sponds to the distance between two consecutive lines. Welfare losses and welfare impacts
of banks’ contributions are shown relative to the welfare losses W; in the complete bailout.

is more credible in a dense network, equilibrium welfare losses are typi-
cally still decreasing in the sparsity of the network because of the reduced
free-riding incentives. For larger shock sizes or a less capitalized financial
system, we would observe that the credibility improves as the network be-
comes sparser because dense connections amplify the shock, leading to a
decrease in credibility by lemma 4.4.

Finally, figure 5A illustrates the findings of section VI, in which we con-
sider interventions that may target only a subset of banks. For the chosen
shock sizes, the regulator rescues only the contagiously defaulting banks
in the optimal bailout. This leads to welfare losses Wp*, which coincide
with Wy when there are no contagiously defaulting banks. In the equilib-
rium partial bail-in, however, it is optimal to rescue every bank because
contributions from the private sector can be solicited for the rescue of
fundamentally defaulting banks. This is consistent with the predictions
of lemmas 6.2 and 6.5. Welfare losses W, in the equilibrium bail-in with
partial rescues are 41.3% lower than those in the complete network struc-
ture. In this calibrated model, there are 7,140 ways of applying idiosyn-
cratic shocks to three banks in a network of 36 banks. Taking the average
over all combinations of shocks, equilibrium welfare losses in the sparsest
network are lower than those in the densest network by 12.5% for complete
rescues and by 23.1% for partial rescues. These results highlight the impor-
tance of the network structure and suggest that structural policies aiming at
making the financial network sparser may significantly raise welfare.

VIII. Concluding Remarks

Various initiatives have been undertaken by central governments and
monetary authorities, especially after the global financial crisis, to expand
resolution plans and tools. Our paper makes a first step toward a systematic
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analysis of the incentives that govern alternative resolution plans. At the
heart of our analysis is the credibility of the regulator’s no-intervention
(or partial rescue) threat, given the desire of each bank to free-ride on
the government’s contributions. Selective bail-ins may be preferable to
complete bailouts, and our analysis provides rational arguments for which
banks should be targeted.

The threat not to intervene fails to be credible for a given shock size if
and only if the shock is heavily amplified through inefficient asset liqui-
dation, bankruptcy costs, and linkages between densely connected banks
in distress. The impact of the interbank network structure on the credi-
bility is captured by a measure we call the total throughput of defaulting
banks, which reflects the rate at which losses spill over to solvent members
of the economy. Conditional on the banks’ levels of solvency, the total
throughput depends entirely on the network structure, giving us a metric
to rank the desirability of different network structures. In our model of
endogenous intervention, sparse networks become relatively more desir-
able because the threat remains credible for larger shock sizes and free-
riding incentives are reduced. For intermediate shock sizes, these effects
dominate the diversification benefits of dense networks. Our analysis thus
reverses the presumptions concerning the relative desirability of sparse ver-
sus dense networks.

In our model, the regulator and the banks have complete information
about the underlying financial system, which greatly simplifies the nego-
tiation process. In future research, it would be interesting to study the sit-
uation in which the regulator and/or the banks have only partial infor-
mation about the financial system. Then, banks may have an incentive
to reject subsidies in order to signal financial strength. Consequently,
banks must be incentivized not only to participate in a bail-in but also
to provide truthful information about their interbank linkages.

Our results have obvious implications for the design of regulations that
affect the network structure and pave the way for future research on en-
dogenous network formation. In such a model, banks anticipate how their
ex ante risk-taking behavior and their choice of counterparties affect the
credibility of future rescue plans as well as their expected gains from those
rescues. This adds an important dimension to the moral hazard literature:
through their interbank linkages, banks can also control the likelihood of
a public bailout as well as the structure of the prevailing bail-in. Our pre-
liminary results in this direction suggest that it is beneficial for banks to
borrow only from a few other banks, so that contagion effects in case of
the bank’s default are highly concentrated. Then, free-riding incentives
among creditors are smaller, making a rescue more appealing to the reg-
ulator. Accounting for endogenous network formation will lead to a com-
prehensive framework for the welfare analysis of various policies, combin-
ing the bailout and bail-in strategies analyzed here with policies directed
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at affecting the network structure ex ante, including exposure limits, im-
posing taxes on exposures beyond a certain limit, or setting limits on in-
termediation volume.

Appendix A
Welfare Burning

In this appendix, we define the minimal amount x¢(«) of welfare burning needed
to eliminate free-riding incentives from an individually incentive-compatible bail-in
with contributing banks in C.

LemMMA A.l.  As in definition 4.2, let z(«) = aln(a), let z* be its inverse on
the interval [1/e,1], and set g,(x) = g(z '(z(«) + yx)) — g(«). Note that the
function g, is invertible for a> oq. For a set of banks C, let xi(«) =
(W& — Wp + glow) — glor) + Nieerip ¥ — gu(bi(a) — &))" for any bank i€ C.
Moreover, let X¢(«) denote the unique nonnegative solution x to

- = S (W~ Wk glan) (@) $A S B -2 (20
ieC Jeents

if it exists, and let xc(«) = 0 otherwise. Define xc(a) = Xc(a) V maxexi(a). In
any bail-in (b, s) with equilibrium response 1 = (1, ..., 1), set of contributing
banks C = {i|b' > 0}, and induced asset recovery rate « = @(b, s, 1), the amount
of welfare burned is bounded below by x¢(); that is,

)\E(si — 50 oy )\E — b’ > xe(a). (27)

1&C ieC

For the no-free-riding incentives to hold, the rejection by any bank must have
an impact on welfare in excess of Wi — WA (b, s, 1). It follows from equation (15)
that the impact on welfare has two components: contributions up to b affect wel-
fare directly by an amount Ab, whereas contributions that exceed b by an amount x
require asset liquidation and affect welfare through the trade-off g,(x). A contri-
bution of size &' + x' by bank i thus has a total impact on welfare of N’ + g, (x').
Among individually incentive-compatible contributions, the welfare impact by
bank i is maximized when 7 contributes bi(«). If the maximal welfare impact is
smaller than Wi — Wi (b, s, 1), the remaining value xi (o) = Wi — Wi(b, s, 1) —
N — g.(bi(a) — &) has to be burned; see figure Al for an illustration. Burning
an amount equal to max. x¢(a) thus deters free-riding by all banks when each
bank liquidates the maximal incentive-compatible amount. However, asking each
bank to contribute b;(a) may require asset liquidation in excess of —In(a)/y,
which would depress the asset recovery rate below o, by equation (1). In that case,
the regulator has to ask for lower contributions 4" + x’ from banks that require
aggregate liquidation of only 2;x' = —In(a)/y and burn additional welfare to bal-
ance the reduced welfare impact of the contributing banks. The lowest amount of
welfare burned in that case is X¢(«); see figure A2 for an illustration. The proof of
lemma A.1 is in appendix C.
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Fic. Al.—Comparison of welfare losses W, and W, of a bailin (b, s) with contribution

b (a) by bank i € C, with and without burning x¢ () units of welfare.
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Fic. A2.—Illustration of Xc(«) for C = {il, b, h} Note that x* = 0 because the welfare
impact of 7’s contribution is large enough to deter free-riding without asset liquidation.

Appendix B
Proofs of Results in Sections II and III
B1.  Existence and Monotonicity of Clearing Equilibria

This appendix provides the proofs of section III, asserting existence and mono-
tonicity of clearing equilibria, together with Pareto dominance of the greatest
clearing equilibrium. We begin with the following auxiliary result, which pro-
vides us with an alternative expression for welfare losses.

LeEMMA B.1.  For any clearing equilibrium (p, £, ), the following identity holds:

n

Wp, lo) =D (" + e —w = Viplia) + X (1+N8(pa). (28)

i=1 ieD(p.l,ex)

The proof follows from equations (3) and (4) and the fact that =,(7x)" = Z,x!
for any vector x by row stochasticity of w. Since the equity value of any bank is
monotonically increasing in the clearing equilibrium, a direct consequence of
lemma B.1 is that welfare losses are monotonically decreasing in the clearing
equilibrium. For the sake of reference, we state this property as a lemma.

Lemma B.2.  Any bank ’s value of equity V/(p, ¢(p, ), ) is nondecreasing
and welfare losses WA (p, £ (p, @), o) are nonincreasing in « and p/ for any j.

Proof. By definition in equation (2), /(p, o) is nondecreasing in p and a.
Since bank #’s value in equation (4) is equal to V/(p, l, o) = (mp + ¢+ e — (1 —
a)l(p,a) — w — L)1y, it is nondecreasing in p. Because the weak deriva-
tive of —(1 — a)l(p, @) is nonnegative by the product rule, Vi(p, ¢, ) is also
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nondecreasing in «. Monotonicity of V(p, ¢, o) implies that the first term in
equation (28) is nonincreasing in (p, «). The second term in equation (28) is
nonincreasing in (p, o) by definition of §(p, o) in equation (5). QED

Proof of lemma 3.2—Let L = [0, ¢'] x ... x [0, ¢"] denote the set of possible lig-
uidation decisions by the banks. Fix a vector p of interbank repayments and de-
fine the operator @, : £ — L by setting @} (x) := {'(a(x), p) for i = 1, ..., n, where
a(x) and £(e, p) are defined in equations (1) and (2), respectively. By construc-
tion, a pair (¢, ) is a solution to equations (1) and (2) if and only if it is of the
form (x, a(x)) for a fixed point x of ®,. Since both « and ¢’ are nonincreasing,
®, is nondecreasing. Therefore, Tarski’s fixed-point theorem implies that the
set of @,’s fixed points forms a complete lattice. In particular, there exists a fixed
point ¥ such that ¥' < x' for any other fixed point x of ®, and each i. Let {, = X
and o, = «(¢,). By construction, (¢,, o) satisfies equations (1) and (2), and for
any other solution (/, &), we have & = exp(—y2/-0') < exp(—y2110}) = ;. QED

Before proving the existence of clearing equilibria, we show the following
comparison result for fixed points that will be used many times throughout our
analysis.

Lemma B.3.  Let fand gbe two nondecreasing functions mapping a compact
set X' into itself. Let X, (X,) and x, (¥,) denote the greatest (least) fixed points of
fand g respectively, that exist by Tarski’s fixed-point theorem. If f(%,) > g(%,),
then % > x,. If f(%,) < g(X,), then X, > X

Proof. Let %, = [(x,) define the nfold application of [ to X, Since
f(x,) = g(x,) = %, and fis nondecreasing, it follows that (%,),-, is nondecreasing
in each component. Because of compactness, (%,),., converges to some fixed
point x,, of /. Therefore, x, < x. < X;, because ¥, is the greatest fixed point of f.
The analogous argument shows that X, > lim, ../ (¥,) > X,. QED

Proof of lemma 3.1.—Let P = [0, L'] x ... x [0, L"] denote the set of all repay-
ment vectors. Observe first that in any clearing equilibrium of the form (p, ¢,
a,), in which (¢,, ;) is given by lemma 3.2, the vector of repayments p is a fixed
point of the operator ®: P — P, defined by

L if ¢ + ape’ + (mp) = L'+ o,

'(p) = : . (29)
(B(c + e+ wp) — w’) otherwise.

We proceed to show that @ is monotone. It follows directly from equation (2)
that, for any i, £'(«, p) is nonincreasing in p’ for any j. Using the definition of
®, given in the proof of lemma 3.2, we deduce that @, 1 (¢,) < Dj(¢,) for any
p’ > p’. Therefore, lemma B.3 shows that £j;, ,, < ¢, and hence o, > . This
shows that p~ «, is nondecreasing, and hence so is ®'. Tarski’s fixed-point the-
orem thus implies the existence of a fixed point p with p > p for any fixed point
p. Monotonicity of the maps p = «, and p +~ £, shows that any clearing equilibrium
of the form (p, ¢,, ;) for some p is dominated by (p, £, @) for & = a; and £ = £;.
Maximality of ({,, ;) in lemma 3.2 and monotonicity in equation (3) show that
(p, £, @) also dominates any other clearing equilibrium. Monotonicity of the
banks’ equity value and welfare losses now follows from lemma B.2. QED
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B2. Bailouts

This appendix shows that welfare-maximizing bailouts are of the form given in
lemma 4.2. We begin this appendix with the following auxiliary lemma, whose
elementary proof is omitted.

LEmMMA B.4.  For any vy > 0, the function g(a) = ((1 + N)a — 1) In(a)/y de-
fined in lemma 4.1 is strictly convex. Moreover, its global minimizer o;,q is de-
creasing in \, and it lies in (max(1/(1 + N\), 1/e), 1).

Proof of lemma 4.1—Let s denote a vector of subsidies of a complete bailout
with s’ < s for every bank i Since every bank is rescued when subsidies s are
awarded, the definition of s, implies that ¢/ = (1/a(s))(sj — s') for any bank 4.
It follows from equation (1) that

=

a(s) = exp(—%E G- ) (30)

i=1

Q |

Solving equation (30) for 2;s' and substituting into equation (7) shows equa-
tion (9). QED

Proof of lemma 4.2.—Let sdenote a vector of subsidies that maximize welfare in a
complete bailout. Because a minimal subsidy of s; is needed to support the clear-
ing payment vector L, it follows that s' > s'(«, ¢) for every bank  Since any subsi-
dies beyond s, have infinitesimal welfare impact —\, it follows that s' < s for every
bank i. Therefore, ¢' = (1/ay)(s; — s') for any bank i, which implies

op = exp(— li(sf’, - s’)). (31)

P =1

Bylemma 4.1, welfare in the complete bailout depends on the awarded subsidies
only through g(ap). Since gis differentiable, it follows from lemma B.4 that ap is
either a boundary point or equal to o;,q. Monotonicity of equation (31) in the
awarded subsidies implies o lies between recovery rates o and 1 that are attained
by subsidies s; and s, respectively. Since g(aina) < 0 = g(1), it follows from mono-
tonicity in equation (31) that op = max(aind, a,‘). Inverting equation (31) for
2,8 yields equation (10). QED

B3.  Incentives and Bail-In Selection

In this appendix, we provide the proof of lemma 4.5 and formalize the discus-
sion in section IV.D of how the regulator can select among multiple accepting
equilibria. We begin with the following auxiliary result, formalizing that a bank
is better off rejecting a bail-in proposal if its participation is not needed for the
regulator to proceed with the bail-in. It will be convenient to denote by
Vi(b, s, a) = Vi(p(b, s, a),l(b, s, a),a(b, s, a)) bank #’s value of equity in the bail-
in (b, 5, @). Similarly, let Vi(s) = V(p(s), £(s), @(s)) denote bank #’s value of equity
in the bailout with subsidies s.

LemMma B.5.  Fix a feasible bail-in proposal (b, s) with ' > 0 for some bank i.
For any response a ‘, we have V/(b, s, (0,a™")) > Vi(b,s, (1, a”")) for any bank j,
with strict inequality if j = 7.
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Proof:  The two financial systems resulting from (4, s, (0, a™’)) and (4, s, (1, a™%))
are identical up to the financial commitments by bank i, which are larger by ¥ in
the latter system. The result thus follows from statement 3 in lemma E.3 (in the
online appendix) and monotonicity in lemma B.2. QED

Proof of lemma 4.5.—Fix a feasible proposal (b, s) with accepting equilibrium
response a. We first show the necessity of the stated conditions. To this end,
fix a bank iwith 4" > 0 and suppose toward a contradiction that ¢; = 1 but at least
one of the two conditions is violated. Suppose first that condition 1 is violated.
Then, the regulator proceeds with a bail-in even if bank ¢ rejects the proposal;
hence, subsidies are the same under aand (0, a ). It follows from lemma B.5 that
bank iis strictly better off under (0, ™), contradicting the assumption that ¢is an
equilibrium. Suppose now that condition 1 holds but condition 2 is violated. Then,
a rejection by ¢leads to a default cascade without intervention. Feasibility of (b, s)
implies ' — s’ < n'(ay, (L, 1)), where we abbreviate o = (b, s, (1, «™%)). Thus,
for condition 2 to be violated, we must have

b — s >1C (e, O'(L, ), (32)

where we denote IC/(a, £) = (7(L — pn))’ + (1 — o)l — (1 — )¢’ (IC = incentive
constraint). A straightforward calculation shows that equation (32) is equivalent
to Vi > Vi(b, s, (1, a")); hence, bank i has an incentive to deviate.

For sufficiency, note that condition 2 implies ¢'(L, ;) < ¢i(oy), since asset lig-
uidation is monotonic in bank #s net contribution 4 — s'. This implies
b — 5" < bi(a) <IC(ou, €'(L, o)), as illustrated in figure B1, which is equivalent
to Vi(b,s, (1,a™")) = V. By condition 1, the regulator will choose to not inter-
vene if bank ¢ rejects the bail-in; hence, V4 is s value for rejecting the proposal.
It is thus optimal for bank i to accept the proposal. QED

The next two results formalize the discussion at the end of section IV.D, stating
that in a subgame Pareto-efficient equilibrium, we can focus on bail-in proposals
that can be accepted by every bank.

Lemma B.6. Let (b, s) be a bail-in with accepting equilibrium responses
{a,...,a,}. For any k=1,...,m, there exists a proposal (b,3) with
Wa(b, s, ) = Wi(b,5,1), towhich 1 = (1, ..., 1) is the unique accepting equilib-
rium response.

Proof. Fix a bailin (b, s) with an accepting equilibrium response «,. Let
B = {i| b'1;-1,} denote the set of banks with a positive contribution in (b, s,
;). Define a bail-in (,3) by setting &' = b'ljs and 5 = s for i = 1,..., n. We
will show that 1 = (1, ..., 1) is an accepting equilibrium response to (b, 3). Note
that, by convention, any bank i € B° accepts the proposal; see footnote 14. More-
over, lemma 4.5 shows that the stated conditions 1 and 2 are satisfied in (b, s, ;) for
any ¢ € B, since g,is an accepting equilibrium response. Because each bank makes
the same contribution in (7), 5,1)asin (b, s, @), it follows that&(?), 51) = a(b, s, @),
Wi(b,s,1) = Wi(b, s, &), and Wa(b, s, (0,177)) = Wi(b,s, (0, @ ")) for each i € B.
Therefore, conditions 1 and 2 of lemma 4.5 are satisfied also in (b,3) for any
i € B. It follows from lemma 4.5 that 1 is an accepting equilibrium response to
(3, 3). Uniqueness follows because the regulator will not proceed with the bail-in
if only a proper subset of B accepts the proposal due to condition 1 of lemma 4.5.
QED
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LemMA B.7.  Suppose thata proposal (b, s) admits at least one accepting equi-
librium. Among all continuation equilibria, welfare losses are minimized in an
accepting equilibrium and at least one of the welfare-minimizing accepting equi-
libria is subgame Pareto efficient. Moreover, a rejecting equilibrium is subgame
Pareto efficient if and only if (5, s) is the bailout given by lemma 4.2.

Proof.  Fix a complete bail-in proposal (b, s) with accepting equilibrium re-
sponse a. It follows from lemma 4.5 that the value of any bank with 4" > 0 is at least
as high in aas in a rejecting equilibrium response. Since W4(b, s, a) < Wy < W by
definition of an accepting equilibrium, no rejecting equilibrium can subgame
Pareto-dominate ¢, and a rejecting equilibrium is subgame Pareto efficient only
ifitis equivalentto (b, s, @). Since there are only two possible outcomes in a rejecting
equilibrium (public bailout and no rescue), the complete bail-in proposal (b, 5) has
to coincide with the complete bailout as, by definition, it rescues every bank in the
system.

Let Adenote the set of accepting equilibria that minimize welfare losses. We show
that any ;. € argmax,c.a(b, s, a) is subgame Pareto efficient. Suppose toward a
contradiction that some a Pareto-dominates a,, which requires WA(b, s, a) <
WA (b, s, ). Since rejecting equilibria cannot Pareto-dominate a, it follows that
a € A. Let C and C.. denote the sets of banks with positive contributions in @ and
as, respectively. By condition 1 of lemma 4.5, the regulator rejects the bail-in if
a strict subset of C, accepts the proposal; hence, C\ C, # . Since a(b, s, a) <
a(b, s, a.) by maximality of a.. in A, each bank in C\ C, is strictly worse off in a
than in a, a contradiction. QED

B (o, %)

n(en€)
IGi(a, ¢ %)

ICHa, &)

ti(a) li(a)

Fic. B1.—Relation of /i («), and 4. (o) when incentive constraint IC/(e, £) and budget
constraint n'(e, £') intersect (A) and when they do not (B).

B4.  Credibility and Existence of Subgame Pareto-Lfficient Equilibria

In this appendix, we prove lemma 3.3, which establishes the existence of subgame
Pareto-efficient continuation equilibria after the proposal of any bail-in. In order
to present the proofs as succinctly as possible, we invoke lemma 4.3 to deal with
the case when the threat fails to be credible. The proof of lemma 4.3 does not rely
on lemma 3.3: existence of equilibria when the threat fails to be credible follows
directly from the existence of strictly dominant strategies.

Proof of lemma 4.3—Fix a feasible proposal (b, s) and any response vector a. Be-
cause the threat fails to be credible, the regulator will never respond with “no
intervention.” Since any bank i with ¥ — ' > 0 is strictly worse off in (b, s) than
in a complete rescue without its participation (e.g., bailout or bail-in by residual
consortium) by lemma B.5, rejection is the strictly dominant action for bank 4.
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Thus, an optimal bailout is the only possible equilibrium outcome by lemma 4.2.
QED

Proof of lemma 3.3—1If the threat fails to be credible, lemma 4.3 establishes that
any rejecting equilibrium after any proposal (b, s) is subgame Pareto efficient.
Suppose, therefore, that the threat is credible. Fix a feasible proposal (b, s),
and let 0 denote the vector of unanimous rejections. The credibility of the threat
imposes that Wy < Wi < W4 (b, 5, 0), where we have used that W, are the lowest
possible welfare losses without contributions by banks. The regulator thus chooses
r(b,s,0) = “no intervention.” If no bank in .A(b) has a profitable deviation, then 0
is a rejecting equilibrium response. Suppose, therefore, that some bank i € A(b)
has a profitable deviation, and let a; denote the corresponding action profile. We
will show that a; is an equilibrium response.

For a; to be a profitable deviation for bank ¢, two conditions must hold. First,
it is necessary that r(b, s, ¢;) = “bail-in,” as otherwise, bank ¢’s value of equity
would be equal to Vi both when i accepts and when irejects the proposal. Second,
we must have that V'(b, s, a;) > V{. The latter condition is equivalent to condi-
tion 2 of lemma 4.5 for bank i. Since, by construction, (0, ¢; ') is the vector of
unanimous rejections, it follows that VK (b, s, (0, a;*)) = VA(b, s, 0) > Wy, that is,
condition 1 of lemma 4.5 is satisfied for bank 7 as well.

To conclude that g; is an accepting equilibrium response, it is sufficient
to show that condition 1 of lemma 4.5 is violated for any bank j # i. Indeed,
since (0, afi) = @ and r(b, s, a;) = “bail-in,” it follows that Wi(b, s, (0, af’)) =
Wi(b, s, a;) < Wk, thereby concluding the proof. QED

We conclude this appendix by proving that the regulator’s threat is credible if
and only if the amplification of the shock through the network is below the
threshold given in lemma 4.4.

Proof of lemma 4.4—Observe first that (L'+ w' — ¢ — ¢ — (zL))" =
(si — )" = s — min(e', 5;). It follows from equation (28) and the definitions
of S and Sy that welfare losses without intervention equal

WN = SN - &) + Emin(el, 56) + )\ E Sl(l?lxy,olN).
i=1 €Dl o)
Lemma 4.2 shows that Wy = NS, + g(ap) + Nicp(nna® (Px, an). Solving the in-
equality W§ — W, < 0 for Sy — & using the above expressions for Wy and W, we
obtain equation (11). QED

Appendix C
Proof of Theorem 4.8

We start by showing that without loss of generality, we can restrict our attention to
bail-ins, in which each bank either makes a contribution or receives a subsidy.
Moreover, because the regulator can anticipate the banks’ responses, we may also
restrict our attention to unanimous accepting equilibria.

Lemma C.1. Foranybail-in (), s) with accepting equilibrium response «, there
exists a proposal (b, 5) with accepting equilibrium response 1 such that 53’ = 0
and W} = (13, 5,1) = Wi(b, s, a).
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Proof.  Fix a bail-in proposal (b, s) with accepting equilibrium response a. The
existence of such aimplies, via lemma B.7, either that (b, s) is the public bailout
of lemma 4.2 or that the threat is credible. In the former case, the statement
holds trivially; hence, suppose that the threat is credible. Denote by C = {b' —
s'>0,a = 1} the set of banks that make a positive net contribution. Define the
proposal (b,3) by setting b = (b'1,-1; — )" and 5 = (s — b'l;,—yy)", and set
@ = (1,..,1). It follows straight from the construction of (b,3) that 51—, —
§' = b'l{,-1; — &' for any bank & hence, each bank’s net contribution remains un-
changed. This implies that clearing equilibria coincide both in (5,5, @) and (b, s, @)
and in (i), 5,(0,a ) and (b, s, (0, a”’) forany i € C. Itfollows from equation (7) that
VK(Z, 5,a) = Wi(b, s, a) and VK(Z), 5,(0,a7") = Wi(b,s,(0,a™")) foranyi e C. Since
a is an accepting equilibrium response to (b, s), lemma 4.5 implies that for every
bank i € C,

V-3 =0 -5 < n Wy(i)j(b, s, a) — p,’\) + (1 — o)l
— (1 - a(b,s, a)l'(L,a(b, s, a)).

Because the clearing equilibria under (Z, 5, a) and (b, s, a) coincide, this shows
that condition 2 of lemma 4.5 is satisfied in (b, 3, @). In particular, @ is an accepting
equilibrium response to (b, 5). QED

Because every bank is rescued in a complete feasible bail-in, the shortfall of
each bank ¢ before liquidation is at most ¢. The liquidated amount by any bank
i is thus inversely proportional to the asset recovery rate. This imposes a lower
bound on the asset recovery rate of 1/e = exp(—1).

Lemma C.2. Let (b, s) be a complete feasible bail-in proposal. In any response
a, each bank iliquidates (b, s, a) = (1/a)(L' + w' + b1,y — ¢ — s' — (wL)")"
and a(b, s, a) > 1/e.

Proof.  Since (b, s) is a complete rescue, lemma 3.2 implies that (a(b, s, a),
£(b, s, a)) is the solution to equations (1) and (2) for p = L with the largest asset
recovery rate. By feasibility,

L'+ v + bil{arzl} —d =5 — (L) < a(b,s,1)e < a(b,s,a)e’.

This shows that £'(b, s, a) is indeed of the desired form. Therefore, a(b, s, a) is a
fixed point of the function f,, in lemma E.2 (in the online appendix) for y = 0
and x = 2L, (L' + w' + biliyeyy — ¢ — s — (wL)")". Since a(b,s, a) is the
greatest fixed point of fon (0, 1], lemma E.2 implies that a(b, s, ) > 1/e. QED

As aresult of lemma C.1, we may restrict attention to bail-in proposals (0, s), in
which b's’ = 0 for every bank . Then, liquidation and welfare losses take a simple
form, as stated in lemma 4.6.

Proof of lemma 4.6.—Fix a bail-in (b, s) with an accepting equilibrium response a
such that b's’ = 0 for every bank i. Denote o = a(b, s, a) for the sake of brevity.
Lemma C.2 shows that each bank i liquidates an amount ¢'(b, s, a) = (1/a)
(si — by + b'1;,-1, — s')". Using that 4's’ = 0 by assumption, that bjs) = 0 by def-
inition, and the elementary identity min(x,y) = x — (x — y)", it follows that

7(b,s,a) = é (sg, — min(s', ) + (4 — min(¥, ba))l{u,zl}) (33)
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Equation (1) implies that liquidation losses in the bail-in are equal to —(1 —

a)In(a)/y. It follows from equations (1) and (33) and min(s’, 5}) = s — (s' — )"

that net subsidies in the bail-in amount to

aln(a)
o

z(s” - bil{a,zl}) = E(sf) + (s = s))" — min(¥', b:;)l{a,:l}) +
i=1 i=1

The result now follows from equation (7), lemmas 4.1 and 4.2, and the specific

form of g QED

Lemma 4.7 states that among all individually incentive-compatible bail-ins
with contributing banks in C that induce asset recovery rate «, welfare is maxi-
mized for bail-ins with contributions 7’(c, £) by banks ¢ € C for any vector £ of as-
set liquidation that induces asset recovery rate o.

Proof of lemma 4. 7—Fix a complete feasible bail-in proposal (b, s) with accepting
equilibrium response a. By lemma C.1, we may assume that b's’ = 0 and @' = 1
for each bank . Since (b, s) is a complete rescue, it follows that s > s(«, ¢), where
we abbreviate oo = a(b, s, 1). Condition 2 of lemma 4.5 and feasibility imply that
b < bi(a) for each i € C. Define the bail-in (,3) by setting ' = max(¥', b') for
each bank ¢ € C and § = min(s’, 5)) for each bank i & C. We first show that

min (', b)) = b'. (34)

If o' = (7(L — ) + (1 — an)by, then b < bi(a) = b' < b, and hence equa-
tion (84) follows. If ' = bj instead, then min (%, &) = b = b’ holds as well. Be-
cause subsidies beyond s, and contributions below 4" do not prevent or require
liquidation, it follows that @(b, 5, 1) = a. Therefore, lemma 4.6 implies that subsidies
beyond s and contributions below &' are welfare decreasing; that is, Wi(b, s, 1) =
Wi (b,5,1). Applying lemma 4.6 to the proposal (b, 5) and equation (34) yields

Wi(b,5,1) = MR(5,5,1) = W — glap) + gla) = ND0'. (85)
ieC
This shows the first statement. The final statement follows by observing that the
inequality in equation (35) holds with equality precisely if o' < & for each bank
i€ Cand s’ < ) for each bank i & C. QED

Next, we show that x¢(«) in lemma A.1 is well defined and that any incentive-
compatible bail-in with contributing banks in C and asset recovery rate o burns at
least x¢(a) units of welfare.

Proof of lemma A.1—Fix oo > ainq. We start by showing that equation (26) has a
unique nonnegative solution if one exists. Lemma B.4 shows that gis increasing
and hence invertible on the interval [o;,q, ©). Let g~' denote the inverse on [,
), and define the function &(x) = g~ '(x + g(a)) for x > 0. Itis easy to check that
a(x) > aand g '(x) = (1/y)(z(a(x)) — z(a)) for any x > 0. Moreover, for x > 0,
we get &(x) > a; hence, the formula for the inverse of the derivative implies that

N 1 1
= = >
Y e @) g6
where we have used that &(x) > o > o4,q. Since &(x) > ainq > 1/€ and zis increasing
on [1/e, o), it follows from the chain rule that (g;!)'(x) = (1/y)z (&(x))& (x) > 0.
Let f{x) denote the righthand side of equation (26). Since g, ! is strictly increasing,
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[ is strictly decreasing where it is positive. Thus, there exists a unique nonnega-
tive solution if f(0) > —aIn(a)/vy, and there exists no nonnegative solution
otherwise. The fact that xc(«) is a lower bound for welfare burning in an accept-
ing bail-in (b, s) with contributing banks C and o = &(b, s, 1) now follows from
lemma C.3 below.

Lemmas 4.6 and 4.7 together imply that any bail-in satisfying conditions (i)—
(iv) in definition 4.2, if accepted, induces welfare losses

We(a) = W — glae) + g(a) = AZb' + xe().

ieC

The following lemma establishes that this is a lower bound for welfare losses that
can be attained by a bail-in with contributing banks C that induces asset recovery
rate o.

Lemma C.3.  Let (b, s) be a complete feasible bail-in proposal with accepting
equilibrium response a. Let C == {i | b'1(,-;; > 0}, and denote o = &(b, s, a) for
the sake of brevity. Then, W, = (b, s, a) > We(ar), and the inequality binds if and
only if (b, s) € E(C, «).

Proof.  Let (b, s) be a complete feasible bail-in proposal with accepting equi-
librium response a. By lemma C.1, we may assume without loss of generality that
b's' = 0and a' = 1 for every bank i. It follows, in the same way as in the proof of
lemma 4.7, that & < bi(a) for each i € C and s’ > s; for each i & C. Therefore,
conditions 1 and 2 of definition 4.2 are satisfied.

Define the bail-in proposal (b, 5) by setting b = max(¥', b') for each i € C and
5 = min(s', s)) foreach i & C.Letusdenote x = A2, (s' — 5))" + ASie(d' — )"
It follows, as in the proof of lemma 4.7, that &(i), 5,1) = a. Together with equa-
tion (34) and lemma 4.7, this yields

Wi(b,s,1) = M(Z, 51) +x =W — glap) + glo) — )\EQ' + x.

ieC

To show the first statement, it thus remains to show that x > xc(«).

For any bank i € C, let a_; denote the response vector in which every bank but
bank i accepts the proposal, and set a—; = &(b, s, a_;). By lemma 4.6, welfare
losses in this response are equal to

Wb, s, a ;) = Wi(b,s, 1) — g(a) + g(a;) + Nmin(&', b))

= W — glop) + gla;) = N3V + Amin(8', &) + x.
jec
Solving this equation for x, applying condition 1 of lemma 4.5, and using the fact
that equation (34) implies min (', b}) < ', we obtain a lower bound for x given
by
x> Wa = W + glor) — gla) + NS 0. (36)
jeC\{i}

Equation (33) implies that for any accepting equilibrium response a,

1

Zj(b,s,a) Zm

((Sg — sj)+ + (bf — bg)Jrl{,‘r:l}). (37)
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Since s; = 0 for j € C and b/ = 0 for j & C, it follows from equation (1) that

=S W) S -

Y jeC\{i} jeC Y

_aIn(a) _aln(a)

- =) (38

Recall that z™! denotes the inverse of z(a) = aIn(a) on [1/e, ©). Multiplying equa-
tion (38) by —y and applying g - z™!, we obtain g(a_;) — g(a) = g.((b' = 4)").In
conjunction with equation (36), this yields

X = Wo = W + glaw) — gla) + X 3 0 — gu(bi(a) — ), (39)
jeC \{i}

where we have used that g, is increasing. Note that g(a—;) — g(a) = g.((b' —

5)") = 0. Therefore, solving equation (36) for g(a-,) — g(a), taking the maxi-
mum with 0, and applying g;' yields

(b =) =g’ ((WN - W + glow) — gla) + NS &/ — X) ) (40)

jeC\{i}

Summing equation (40) over all i € Cyields

>t ((Wv = W+ glow) = glo) TN 3 ¥ — x) ) (41)

jeC\{i}
aln(a)

< SO -n) < - .

ieC Y

where we have used equation (38) in the second inequality. Since xc(o) is the
smallest value x’ > 0 that satisfies equation (39) for all 7 € C and equation (41),
it follows that xc(a) < x. This shows that Wi(b, s, a) > We(a).

This lower bound holds with equality if and only if x = xc(c), that is, condi-
tion (iv) in definition 4.2 is satisfied. Summing equation (37) over all banks
shows that condition (iii) holds as well. Finally, condition 1 of lemma 4.5 for
i € C implies that condition (v) holds. This concludes the proof. QED

Lemma C.3 shows that welfare losses Wg(o) are attained only by bail-ins in
E(C, ). The following lemma shows that the converse is true as well if « > 1/e,
which is satisfied by all Pareto-efficient clearing equilibria; see lemma E.2 (in
the online appendix).

Lemma C4. ForanyCand a > 1/e, any (b, s) € E(C, ) is a complete feasible
bail-in proposal with W;(b,s,1) = Wz(o) such that 1 = (1,...,1) is an accepting
equilibrium response if We(a) < WA.

Proof:  Fix (b, s) € E(C, «). It follows, along the same lines as in the proof of
lemma F.1 (in the online appendix), that (b, s) is a complete feasible bail-in
with @(b, s, 1) = a. Condition (i) in definition 4.2 implies that condition 2 in
lemma 4.5 is satisfied for every bank ¢ € C in the response vector 1. It follows from
lemma 4.6 and condition (iv) in definition 4.2 that Wy(b,s,1) = We(o). Condi-
tion (v) in definition 4.2 thus implies that condition 1 of lemma 4.5 is satisfied
for every bank i € C. Therefore, an application of lemma 4.5 shows that 1 is an
accepting equilibrium response if W;(a) < WA. QED
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Lemma C.5 shows that the equilibrium bail-in contributors are the banks with
the largest exposure to contagion effects.

Lemma C.5. For any bail-in proposal (4, s), let £(, s) denote the induced vec-
tor of liquidation decisions when every bank accepts the proposal. For any vector
¢, let C(¢) be defined as in theorem 4.8. Suppose that there exists C such that in
any subgame Pareto-efficient equilibrium, a bail-in from Z(C, «) is implemented.
Then C = C(¢(b, s)) for any (b, s) € E(C, «).

Proof. LetCbe such thatin any subgame Pareto-efficient equilibrium, a bail-in
from E(C, ) is implemented. Fix (b, s) € E(C, o), and abbreviate ¢ = {(b, s). Sup-
pose toward a contradiction that there exists a pair of banks (7, ) € C° x Csuch
that 9* (a, £) > (o, £). Let C = C U {iy} \{jo} and define a bail-in (b, 5) by setting
b = 7" (e, ), 3 = 0, b =0,and 5" = 0, as well as b' = b' and 5 = s for any
other bank i & {jo} U {io}.

We first show that (b, 5) is a complete, feasible bail-in proposal. By definition
of ¢, the shortfall of any bank ¢ in the bailin (b, s) is of’. Let ¢ :=
(L' +w + b — ¢ —5 — (xL)")" denote the shortfall of bank i in bailin (b, 3).
Since b’ = b and 5 = s for every i & {4, j},itfollows thato’ = af’ for every such
bank i. Since j, makes a positive net contribution 4" — s/ to the bail-in (b, s) by
condition 1 of lemma 4.5, it follows that " < (L' + w’ + b — ¢h — s —
(wL)Y")" = al*, with strict inequality if # > 0. The definition of 7(e, £) in equa-
tion (18) implies that 5" < (¢* + af* + (wL)" — w* — L")", and hence 5" < al”
also for bank 4,. We conclude that ' < af’ < ¢’ for every bank 7 hence, (i), 5)isa
complete feasible bail-in proposal.

Since the total shortfall is smaller in (Z, 5) than in (b, s), it follows that
& = a(b,5,1) > a. Observe further that 7°(a, £) > n/*(a, £) > b* > 0 implies that
s*(a, £) = 0 and hence s = 0 = 5. It also implies that b* > b", which yields

S l-ayg., 1-ay i
Wa(b,5,1) = Wa(b,s, 1) + = o'~ Sl = Nb" — ") < WA(b, 5, 1),
i=1

i=1 @

where we have used that 6' < o' for every bank i, that x~(1 — x)/x is positive
and decreasing, and that & > «. Because 1 is an accepting equilibrium response
for (b, 5), this shows that W (b,5,1) < V.

For any i € C, let a_; denote the response vector by the banks where every
bank but i accepts the proposal. Observe that Vi(0,5, a_,) = Wi(b, s, a_;) > Wx
by condition 1 of lemma 4.5. For any i € C \{io}, leta, = &(7), 5,a-;) and a; =
a(b, s, a-;), and observe that

_ &71‘, ln(&,,-) o ln(a,,-)

+ =35 — Sl

Y Y i i (42)
=" +3d —al"+0) <0
Equation (42) implies that &-; > ;. Moreover, since the difference in shortfall
is the same as the difference in shortfalls between (,5, 1) and (b, s, 1), it follows
from concavity of x» —xIn(x) thata_; — a—; <& — aandhencea_; — & < a_; —
a. Convexity of x ~(1 — x)/x thus yields

l—-a 1-a, l—-a 1-oa
— < — .

a a; o o ;
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Together with the fact that o > ¢’ for every bank j, this implies

B 1 — o 1l —ay ;
Wb sia)— W(hia,) =— Sl ——— XI55

i i O—i T (43)
Wa(b,s,1) — Wi(b,53,1).

IA

Define now a vector of subsidies s > 5 that burns additional welfare precisely
equal to

X = nl}e%x(VK(b, Sy a_;) — W}(?}, 3, a,,v)).

Condition 1 of lemma 4.5 for bail-in (b, s) yields Vi4(b, 5, a,Q > Wi(b, s, a,i) > WA,
showing that condition 1 of lemma 4.5 is also satisfied in (0, 3). Since (5,3, 1) =
& > o, it follows that condition 2 of lemma 4.5 is also satisfied in (b, 5) for every
bank ¢ Finally, it follows from equation (43) that

Wa(h,5,1) = Wa(h,5,1) +x < Wi(b,s, 1) < Vk. (44)

This shows thata = (1, ..., 1) is an accepting equilibrium response for (, 5). Con-
dition 2 of lemma 4.5 and lemma B.7 imply that it is the unique subgame Pareto
efficient continuation equilibrium. Since the regulator has no profitable deviations
from (b, s) by assumption, equation (44) implies that (b, 3) is part of a subgame
Pareto-efficient equilibrium as well. This contradicts the assumption that contri-
butions have to come from banks in C. Therefore, we conclude C = C(¢). QED

Proof of theorem 4.8—If the threat fails to be credible, then it follows from
lemma 4.3 that the regulator will implement an optimal public bailout, as given
in lemma 4.2.

Suppose, therefore, that the threat s credible. For any set of banks C, lemma D.1
(in the online appendix) characterizes the minimum asset recovery rate o, that can
be sustained in a complete bail-in with contributing banks in C. Let A(C) denote the
set of recovery rates a € [a, 1] that minimize W, (). Since W, is continuous, A(C) is
nonempty. Lemma F5 (in the online appendix) implies that there exists at least
one set C for which mine,e) We(er) < Wy. For any such set C and any o € A(C),
lemma C.4 implies that any proposal (b, s) € Z(C, o) admits an accepting equilib-
rium response (1, ..., 1) that attains welfare losses W(o). Moreover, no bail-in with
contributing banks in C can attain lower welfare losses, by lemma C.3. Condition 1
in lemma 4.5 implies that (1,..., 1) is the unique accepting equilibrium response,
hence also the unique subgame Pareto-efficient equilibrium, by lemma B.7. Thus,
the regulator must propose a bail-in (b, s) € Z(C., «) for a € A(C.) and contribut-
ing banks C,. that minimizes welfare losses. We show in theorem D.2 (in the online
appendix) that only bail-ins from Z(C.., «(Cs)) for a(Cs) = max A(C,) are sub-
game Pareto efficient and that C, is generically unique. Finally, lemma C.5 shows
that C,. = C(€(b, 5)) for any (b, s) € E(Cy, ax) if Cy is unique. QED
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