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a b s t r a c t

Research process automation–the reliable, efficient, and reproducible execution of linked sets of

actions on scientific instruments, computers, data stores, and other resources–has emerged as an

essential element of modern science. We report here on new services within the Globus research

data management platform that enable the specification of diverse research processes as reusable sets

of actions, flows, and the execution of such flows in heterogeneous research environments. To support

flows with broad spatial extent (e.g., from scientific instrument to remote data center) and temporal

extent (from seconds to weeks), these Globus automation services feature: (1) cloud hosting for reliable

execution of even long-lived flows despite sporadic failures; (2) a simple specification and extensible

asynchronous action provider API, for defining and executing a wide variety of actions and flows

involving heterogeneous resources; (3) an event-driven execution model for automating execution of

flows in response to arbitrary events; and (4) a rich security model enabling authorization delegation

mechanisms for secure execution of long-running actions across distributed resources. These services

permit researchers to outsource and automate the management of a broad range of research tasks to

a reliable, scalable, and secure cloud platform. We present use cases for Globus automation services,

describe their design and implementation, present microbenchmark studies, and review experiences

applying the services in a range of applications.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Consider a materials design application that, over days or
weeks, is to perform experimental measurements, computational
simulations, and data archiving operations at multiple experi-
mental facilities, computers, and data repositories [1,2]. Or, a
long-running synchrotron light source experiment that contin-
uously collects data while periodically retraining, on a remote
supercomputer, the AI model used to filter results [3], and re-
deploying retrained models to the experiment site. Such com-
plex, heterogeneous, long-running, and distributed applications
are becoming increasingly common as a result of advances in
instrumentation, simulation, and AI methods [4].

Analysis of such applications reveals a mix of structures and
requirements that do not map particularly well to any existing
automation technology. Like business processes [5,6], they re-
quire a user friendly notation, human inputs, and the reliable and
secure event-driven execution of sequences of actions, repeatedly
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and autonomously over extended periods; however, they also
must manipulate large datasets and engage specialized resources.
Like scientific workflows, they often manipulate large datasets
and employ high-performance computing (HPC) and concurrency
for rapid execution; however, they must also engage with the
physical world. Like machine learning (ML) workflows, they often
must manage dynamically updating data and models [7]; how-
ever, they must also engage specialized scientific datasets and
resources, and deal with long time scales.

We describe here an automation approach that integrates and
extends several existing technologies to meet what we see as
five key requirements of these applications: (1) Reliable execu-
tion of long-running flows without local workflow system deploy-
ments. Leveraging public cloud capabilities and our experiences
building and operating Globus transfer services [8], we employ
cloud-hosted, replicated services to ensure that flows and their
constituent actions execute reliably without user intervention.
Simple, reusable specification of the actions to be performed to meet
an application goal. We adapt the Amazon States Language [9] as a
declarative notation for specifying what we call flows, sequences
of diverse actions used to meet application needs. Event-driven,
reactive execution model. Leveraging the rich literature on pub-sub
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Fig. 1. The architecture described in this paper for secure and reliable execution of long-lived, widely distributed research processes. Automation services manage

the execution of user-specified flows. In so doing, they make requests to action providers, which in turn initiate and manage actions on resources.

systems, we incorporate event capture, filtering, and processing

methods to permit data-driven flow triggering and execution.

Easy integration of new action types. Inspired by the extensible

Web services architecture, we allow users to incorporate new

action types simply by providing a service that implements a

RESTful action provider interface. Secure execution of long-running

actions on distributed resources. Leveraging recent developments

in authentication and authorization for distributed systems, we

adopt mechanisms provided by the OAuth-based Globus Auth

system [10] for delegation and token renewal.

To permit application and evaluation by a diverse community

of scientists, we have implemented this new approach as a set

of Globus automation services (see Fig. 1). These services make it

easy to define, for example, a trigger such that the generation of

new data at an instrument causes a flow to run, that then engages,

in turn, actions that transfer data to a remote computer, analyze

data, update registries, and email results. The action providers

that process these actions implement a consistent, asynchronous

REST API, facilitating the integration of new activities.

These Globus automation services, like other aspects of the

Globus platform [11], are implemented as platform-as-a-service,

i.e., as persistent, cloud-hosted services that are accessible to

any authorized user and can be composed to realize different

behaviors. This cloud-hosted approach enables broad delivery of

research process automation capabilities without requiring that

users download and install software, and provides economies of

scale that reduce the costs of distributing software.

A diverse community of scientists have been using Globus

automation services since 2020 to develop applications that span

a wide range of temporal and spatial extents, from the small and

local (100 s tasks on one computer) to the large and distributed

(106 s tasks on computers in distinct authorization domains),

and that encompass diverse numbers, frequencies, and types of

actions [3,12–18].

In the remainder of this paper, we present motivating use

cases for research process automation, describe Globus automa-

tion services and their implementation, present microbenchmark

studies of implementation efficiency, and review experiences and

lessons learned from early adopters.

2. Research process automation

As research processes in science and engineering become in-

creasingly data-, compute-, and collaboration-intensive, there is

a likewise increasing need for scalable, reliable, and secure in-

frastructure to enable their automation. This infrastructure must

be able to capture multi-step research processes that may span

diverse resources (e.g., from instruments to computers; from

data centers to the edge) and institutions, and encompass low-

latency steering feedback, long-running experiments, and even

multi-month data embargoes.

2.1. Use cases

We present four use cases in which we have found research

process automation to be highly useful. From these and other

related use cases we distill a set of requirements that motivate

the design of Globus automation services. We describe some of

these use cases in more detail elsewhere [12].

2.1.1. Real-time data analysis

Instruments such as scanning electron microscopes, synchro-

tron light source beamlines, and robotic laboratories can gen-

erate large amounts of data that must be analyzed, reviewed,

catalogued, and shared in a timely manner. When analysis re-

quirements exceed storage or processing capabilities co-located

with an apparatus, research process automation is needed to

move and process data on more powerful, available, or suitable

resources, while navigating security at those resources.

For example, in serial synchrotron crystallography (SSX) ex-

periments at Argonne National Laboratory’s Advanced Photon

Source (APS), a bright synchrotron beam is used to collect diffrac-

tion data from many crystals, at rates of 10 000 s of images per

hour [19]. Experiments typically generate approximately 40 000

1475 × 1255 16-bit pixel images per sample, with tens of sam-

ples processed during a beamtime. The experiment is typically

configured to generate data at 10 Hz (37 MB/s), although much

higher rates are possible and will soon become commonplace.

Images are processed as they are produced, first by the Diffraction

Integration for Advanced Light Sources (DIALS) package [20] to
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identify at most one hit per image and then, after a number of

hits have been identified, with the post-refinement and merging

(PRIME) package [21] to solve the crystal structure.

The SSX processing can be represented as two flows. The

first uses seven steps to process each raw image: (1) Transfer

image data from the APS to a high-performance computing (HPC)

facility; (2) Perform DIALS Stills processing on each raw image;

(3) Extract metadata from files regarding hits; (4) Generate vi-

sualizations showing the sample and hit location; (5) Transfer

metadata and visualizations for publication; (6) Ingest results,

metadata, and visualizations to an SSX Search catalog; and (7)

Transfer the results back to the APS.

After a number of hits, a second flow is run to solve the crystal

structure: (1) Perform PRIME analysis to solve the structure; and

(2) Copy the structure back to the APS.

Similar needs for real-time analysis flows arise in other

synchrotron light source experimental modalities (e.g., tomog-

raphy [22,23], X-ray photon correlation spectroscopy [24], pty-

chography [13,25], high energy diffraction microscopy [26]) and

in many other experimental sciences, from cryogenic electron

microscopy [27] to multi-messenger astronomy [28].

2.1.2. Machine learning training and inference

ML methods are used increasingly in science for rapid anal-

ysis, often near a data source such as for real-time experiment

steering. ML models are often refined over time, with model

performance improved progressively by training with new and

more diverse data as an experiment proceeds.

Here we consider an application of ML methods in high en-

ergy diffraction microscopy, a non-destructive technique that

combines imaging and crystallography algorithms to characterize

polycrystalline materials microstructure in three dimensions (3D)

and under various in-situ conditions [26,29]. The technique maps

grains in a polycrystalline aggregate by considering diffraction

patterns as a function of rotation angle from a synchrotron beam.

To accelerate the process of identifying ‘‘spots’’ for each

microstructure granule, researchers have developed a neural net-

work approximator to identify peak shapes in observed intensi-

ties in area detector data. The model is trained with experimental

data analyzed with the MIDAS software package [30]. Training

on a HPC system generates a model that is then deployed on

a lightweight device at the instrument for real-time diffraction

peak analysis—to enable, for example, experiment steering and

anomaly detection. This flow involves four steps: (1) Transfer data

from experiment to compute facility; (2) Process data with MIDAS

analysis software; (3) Use many raw/processed data pairs to train

a machine learning model using HPC resources and accelerators;

and (4) Transfer the trained model to the edge for inference.

2.1.3. Data publication

Cataloging of data in a registry that can be searched both

programmatically and via a web interface is essential to making

data findable, accessible, interoperable, and reusable (FAIR). The

publication processes used to populate registries typically require

the orchestration of numerous steps over varying time-scales

including waiting for human input.

For example, data publication in to the Materials Data Facility

(MDF) [31] encompasses initial data upload followed by qual-

ity control, metadata extraction, curator approval, and metadata

indexing in to a catalog. MDF relies on a cloud-hosted search

index to catalog dataset metadata, and a large storage system for

storing the datasets. As the publication flow proceeds, some steps

must be performed with credentials for the user publishing the

data (e.g., moving data to which only the user has access) while

others require administrator or system credentials (e.g., assigning

an identifier owned by the system). Similar sequences of actions

arise when publishing machine learning models in the Data and
Learning Hub for science [32,33], bioinformatics datasets in the
Common Fund Data Ecosystem [34], and other datasets at the
Argonne Leadership Computing Facility’s (ALCF) Community Data
Co-op (ACDC) [35].

In the MDF case, the publication flow proceeds as follows.
Users start the flow via a web-based portal. The flow then pro-
ceeds to: (1) Allocate storage for the user to upload data (shared
only with the submitter); (2) Transfer the data from the user’s
source location to the allocated storage; (3) Request the submitter
to input metadata via a web form; (4) Apply automated metadata
extraction methods to derive metadata from common formats;
(5) Request that a curator either approve data and metadata
or return them to the submitter for modification; (6) Assign a
persistent identifier (a DOI from DataCite); (7) Index metadata in
a search index; and (8) Set final access permissions on data based
on system polices and user specification.

In each of these described cases, while the invocation and
management of the various steps could be performed manually,
or implemented in a custom script, a managed automation service
allows such process flows to be automated at scale and with
monitoring and guaranteed progress (i.e., resistance to failure at
the location running the script) over an extended time frame.

2.1.4. Analysis as a service
Modern scientific simulation, analysis, and learning methods

are transforming entire science disciplines; however, they are
also broadening the gap between those with access to large-scale
and specialized computing resources and those without. Thus,
researchers and computing facilities are developing systems that
democratize access to cutting-edge computational capabilities
via accessible, scalable, and easy-to-use interfaces. Implementing
such services requires a number of steps including data upload,
model execution, and notification of results.

One example is AlphaFold [36], a deep learning system that
predicts protein structures. AlphaFold is computationally expen-
sive, requiring GPUs to process sequences in a timely manner.
Researchers at ALCF have developed a service that enables exe-
cution of AlphaFold on demand. Its implementation requires the
staged orchestration of several steps. A user employs a web form
to request inference on an uploaded dataset. Subsequent steps
then: (1) Create a writable path on a shared storage system for
the user to upload their data; (2) Stage the data to an available
compute cluster; (3) Execute AlphaFold on the uploaded data;
(4) Transfer results to a publicly accessible HTTPS server; and (5)
Email the user notifying them that the computation is complete.

2.2. Requirements

Based on these use cases, we identified the following require-
ments common to research automation scenarios.

• Diverse actions: Flows may include computational (e.g.,
analysis, data movement, metadata extraction, persistent
identifier minting, indexing, model training), physical (e.g.,
initiating an experiment), and human (e.g., providing meta-
data, data curation) actions.

• Secure delegation: Flows may span administrative domains
and institutions. Fine-grained and delegatable authorization
is required to ensure that actions are performed only when
and where authorized.

• Automated: It is often desirable that flows be started with-
out human intervention, for example when data are ac-
quired from an instrument.

• Programmable: Flows require control logic, such as con-
ditionals to modify behavior based on action results and
errors.

395



R. Chard, J. Pruyne, K. McKee et al. Future Generation Computer Systems 142 (2023) 393–409

• Reusable: It is important to permit specification, sharing,

and reuse of flow ‘‘recipes’’, so that a flow can be invoked

many times, potentially by many people, including those not

involved in creating or authoring the flow.

• Interrogable: Users must be able to review execution of

a flow to understand what, where, and why actions were

performed, whether the flow completed successfully, and

under what conditions the flow was invoked.

• Intuitive: Flows may be defined and invoked by a range of

users (e.g., scientists, students) who require intuitive inter-

faces for defining, invoking, and managing flows.

• Span time scales: Research processes, and individual ac-

tions, may execute over varying time scales, from second to

months. There is also a need to manage both synchronous

and asynchronous actions.

• Robust and available: The platform must enable users to

outsource flow management without repeated interactions,

and to author flows that can compensate for failed actions.

3. Globus automation services

The Globus platform [11] comprises an integrated set of

services that together provide a consistent view (from an API

perspective) of diverse identity and access management (IAM)

methods and data and compute resources:

• IAM services (Auth [10], Groups [37]) for single sign-on,

management of identities and credentials, and delegation.

• Data services (Transfer [38], HTTPS, Share [8]) for access to,

and managed movement of, data.

• Metadata management (Search [39], Identifiers [40]) for

indexing and generating persistent references to data.

• Compute services (funcX [41,42], OAuthSSH [43]) for invo-

cation and management of computational tasks.

Here we describe four new Globus automation services–

Flows, Triggers, Queues, and Timers–that extend the scope of the

Globus platform. Their purpose is to simplify the definition, de-

ployment, invocation, and management of robust, secure, long-lived,

multi-functional research automation flows.

Fig. 1 illustrates important elements of these services. A flow

is organized as a sequence of states that are processed in se-

quence, with support for conditional execution. A state can be

implemented via an action provider, of which we show several

in the figure (Transfer, Compute, Search, Query, etc.) or by built-

in methods (e.g., Choice). Action providers often interact with

persistent services to perform a requested action: in the figure,

those services are data transfer, computation, user query, and

publication.

Flows may be invoked manually or automatically as the result

of triggers or timers. Triggers process events, which may be gen-

erated remotely and passed via reliable message queues. Timers

allow for periodic scheduling of flows.

Actions: Any activity with some notion of completion can be

made accessible as an action. For example, an action may transfer

data between two locations, request human review of a sample,

or actuate a robot to place a sample in a microscope. Actions

are typically asynchronous, in that a request to start an action

returns not a result but an identifier that can be subsequently

used to check for success (or failure) and to access any results

(or error messages). An action may require input arguments

(e.g., source and destination for a data transfer; sample to be

reviewed and identity of reviewer; robot movement parameters)

to complete its task, and may return purpose-specific information

(e.g., transfer progress; review result; robot status).

Globus automation services represent actions as web services

that implement the action provider API, which defines methods for

asynchronous invocation and status monitoring. Globus provides
several action providers implementing this API, including data
transfer, remote computation, human feedback via a web form,
notification via email, and minting of persistent identifiers [44].
The action provider API is open and designed to be implemented
by external services; developers can easily create new action
providers, either by extending an existing service implementation
or by wrapping existing functionality behind the action provider
API.

Flows: A flow defines a sequence of action invocations and
other processing steps (e.g., manipulation of flow run Context)
and control logic (e.g., Choice, Wait, Fail). Flows are defined in
a declarative manner by specifying individual actions, control
logic, and conditions upon which the flow should proceed or halt.
Once published, a flow may be invoked one or many times, by
the author or by others authorized to invoke the flow. Flows
themselves are also action providers and thus can be included in
other flows.

Flows maintain a run Context throughout their execution
which is accessible to and modifiable by actions. The Context
allows the flow and its actions to modify behavior based on the
results of previous actions. For example, a transfer action can set
a filename for subsequent use by an analysis action.

Events and queues: Globus automation services support the
automated invocation of flows in response to a variety of events.
As with actions, we take a broad view of potentially interesting
events that may encompass, for example, events generated by
actions or flows, file systems or instruments, or humans (e.g., via
email or web pages).

Given the wide range of events that we may wish to have
spur actions, and the fact that these events may occur in different
places at different times, we require an extensible, yet common
abstraction that decouples event generation from action execu-
tion. This decoupling includes both time and location, but also
identity: the source of the event and the consumer of the event
may have different Globus identities. For this purpose, we adopt
a queue-based model as an intermediary between events and
actions on those events. Users define specific Globus automation
service queues and may deploy remote event generators (e.g., on
local filesystem) to send events to these queues.

Triggers: As event generation and consumption are loosely
coupled, we want to be able to filter event streams to focus on
events of interest. Globus automation services use triggers as an
event-independent way of responding to events with specified
characteristics. A trigger defines an event source, a predicate on
the content of events, and the action(s) to perform when the
predicate is satisfied. (At the time of writing, the Triggers service
is a prototype.)

Timers are provided by Globus automation services to enable
actions to be invoked periodically, at specified intervals.

4. Using globus automation services

We describe here how users interact with Globus automation
services, to provide context for the implementation descriptions
that follow.

4.1. Interfaces and tools

Globus automation services support three client interfaces for
interacting with the services: a Python SDK, which implements a
client class for programmatic invocations; a command line inter-
face (CLI), for interactive or scripting use; and, for general use, a
web application to run and manage flows. The web application
facilitates not only running flows but also detecting, diagnosing,
and correcting errors that may occur when a flow is executing, as
shown in Fig. 2.
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Fig. 2. We use a simple publication flow to illustrate how the Globus web interface enables tracking of flow progress and diagnosing of errors by (a) listing recent

runs, (b) inspecting a summary of a run, and (c) listing actions involved in that run (shown with most recent first). Other displays, not shown here, allow for

examination of flow definitions, input schema, and actions in failed runs.

4.2. Working with flows

Globus automation services allow users to author, publish,

discover, invoke, and manage flows.

Authorized users can author a flow by creating (1) a definition,

which specifies the set of states comprising the flow; (2) an input

schema, specifying constraints on input data to a flow run; (3)

permissions governing visibility, use (i.e., ability to run) and man-

agement of a flow and; (4) metadata, including a title, description,

and searchable keywords.

Having authored a flow, the user can publish it to the Flows

service. The service validates the flow definition and input
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schema, and deploys the flow (i.e., makes it available for exe-

cution) and returns a unique flow id. Flows serves as an action

provider factory, creating a new API path (flows/<flow_id>)
supporting the action provider API for operations on the flow.

Thus, any authorized person (or program) can then employ the

action provider API (see Section 5.2), with the constructed API

path, to introspect or invoke the flow. One such use of the API

may be the Flows service itself allowing a ‘‘parent‘‘ flow to specify

a different, ‘‘child’’, flow as an action state.

Any authorized user can then search or browse to discover

flow(s) with desired characteristics. Having identified a suitable

flow, a user may invoke it to create what we call a run, supplying

values to be populated into the run’s Context and which must

satisfy the input schema. Once a run is created, a user can man-

age it: monitor its status, terminate it prior to completion, and/or

retrieve either results upon successful completion or error reports

upon failure.

Each step after authoring can be performed via the CLI or the

SDK. The web application can be used for all operations except

authoring and publishing.

4.2.1. Flow definition

We use a declarative notation to author flow definitions. This

language extends the Amazon States Language (ASL) [9] used to

define Amazon Step Functions [45] state machines in the AWS

cloud. The flow definition’s JSON format is verbose, so we focus

here on describing primary features rather than syntax.

A flow definition specifies, first of all, a set of state definitions

plus the start state. For example, the following code fragment de-

scribes a flow with five states (Transfer, Validate, Check, Publish,

Failure) that is to start in the Transfer state.

{ "StartAt ": "Transfer ",
"States " : {

{ "Transfer " :
{ "Type ": "Action ", ...,

"Next ": "Validate " }},
{ "Validate " :

{ "Type ": "Action ", ...,
"Next ": "Check " }},

{ "Check " :
{ "Type ": "Choice ", ...,

<"Failure " or "Publish ">}},
{ "Publish " :

{ "Type ": "Action ", ...,
"End ": true}},

{ "Failure ":
{ "Type ": "Fail " }, ... }}

}

Flows supports five distinct types of state: four taken es-

sentially unchanged from ASL (Choice, Pass, Fail, Wait), plus an

Action state, used to invoke an action provider. The Transfer,

Validate, and Publish states used in the example to perform data

transfer, data validation, and data publication actions have type

Action, while Check, which is used to check the result of Validate

to see whether the input data should be published, has type

Choice. Finally, the Failure state is of type Fail, which causes the

run to terminate and to register as an abnormal exit.

Each state type requires additional information. For example,

an Action will always specify a URL for the associated action

provider and will typically also provide information about in-

put and output values and a timeout value. These are seen in

the following skeleton for the Validate action, which uses the

funcX [41,42] action provider to run a function validate. The
skeleton specifies parameters (including the input data: the pay-

load) passed as a tasks parameter and the output result returned

at Valid. The prefix $. on these values signals that they should

be treated as JSONPath references into the run Context. The

WaitTime indicates that the instance should wait no longer than

7200 s (two hours) for the action to complete, after which it

should treat the action as a failed state.

"Validate ": {
"Type ": "Action ",
"ActionUrl ": "https://automate.funcx.org/ ",
"Parameters ": {

"tasks ": [
{

"endpoint.$ ": "$.endpoint_compute ",
"function.$ ": "$.validate_function_id ",
"payload.$ ": "$.payload "

}
]

},
"ResultPath ": "$.Valid ",
"WaitTime ": 7200,
"Next ": "Check "

}

The ability to catch and respond appropriately to failures is

essential to any process automation system. Flows, like the ASL

that it extends, allows the author to specify alternate control

flow upon failure, such as in the following which, if added to the

Validate state definition above would cause the flow to transition

to the Failure state upon failure with error information returned

into the run Context under the key ValidFailureInfo.

"ExceptionOnActionFailure ": true,
"Catch ": [{

"ErrorEquals ":
[ "ActionFailedException " ],
"ResultPath ": "$.ValidFailureInfo ",
"Next ": "Failure "

}]

As we discuss in more detail in Section 5.1, Globus automa-

tion services permit fine-grain control over the identity used to

perform different actions. By default, actions are run as the run

creator (the user who invoked the flow), but flow authors can

also specify alternatives. For example, adding the following to the

Validate state definition specifies that the action should run as

ComputeProvider:

"RunAs ": "ComputeProvider "

When the flow is invoked, this role is mapped to the identity

under which the validation computation should occur, and cre-

dentials (in the form of Globus Auth generated OAuth tokens) for

that identity are provided when invoking the flow. This pattern

is useful for end-user facing services that use Globus automation

services behind a portal or other interface (such as the use case

described in Section 2.1.3) in which some flow states need to ac-

cess resources, like datasets, for which an end user needs to grant

permission, while other action states require other credentials

(e.g., system credentials to provision resources). It is also useful

in the case of service-owned resources such as an HPC system, for

which a distinct identity (e.g., that of a group account) is required.

4.2.2. Flow execution model

Each run of a flow has associated with it a Context, which

takes the form of a JSON document. This Context is initialized

with the input values provided when the flow is invoked. Each

state in a flow may read or write values to/from this Context,

with the location within the Context specified using JSONPath

syntax. Upon completion of a flow, whether successful or not, the

final Context is returned to the user (or to other flows, triggers or

timers which may have invoked the flow).
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Fig. 3. Browser-based input form generated from a flow’s input schema. This

example reflects the required input of a simple flow that uses the Validate

action shown above, requiring the user to specify a payload, funcX endpoint id,

function id, optional tags, and an optional label for the run.

4.2.3. Flow input schema

Each flow must include a schema, defined in JSON Schema [46]

syntax, for validating input when running the flow. Validation via

the schema prior to running a flow makes run-time failure due

to improper input less likely. The input schema is also useful for

building user interfaces and clients for starting runs. For example,

the web application uses the input schema to dynamically render

a form (see Fig. 3) to guide a user in providing required flow input.

4.3. Access control

All use of Globus automation services is subject to authoriza-

tion, which requires authentication and may also be subject to

group membership or other access control requirements.

Role-based access control is used to mediate who can perform

actions on flows and runs. Permissions may be granted to an

individual user identity, a group, or an application identity in the

Globus ecosystem. The following roles are supported on a flow:

• Visible To: May discover and display, but not run, the flow.

The special value public can be used to indicate that a flow

is visible without authentication and thus may be viewed by

any user.

• Runnable By: May invoke the flow. The special value all

authenticated users indicates that any user who presents

valid credentials may run the flow.

• Administered By: May update the flow, including changes

to the definition, schema, and descriptive metadata.

• Owner: The identity of the user who initially published the

flow. Only the Owner may remove the flow. This value may

be re-assigned by an administrator, for example, to account

for an owner leaving the organization that maintains a flow.

Permissions associated with roles are cumulative: for example,

an identity in Runnable By is inherently also in Visible To.

To facilitate management of runs, two additional roles are

supported: Monitor with permissions to view a run including its

initial input, its progress and its final result, and Manager to view

(cumulative with the Monitor role) and cancel a run.

4.4. Defining triggers and timers

Triggers and timers provide two mechanisms for event-driven

flow execution. Users may define and deploy a trigger or timer

to automatically invoke a flow when an event condition is met or

on a schedule.

A trigger definition specifies: (1) a queue identifier for the

persistent queue from which events are to be received; (2) a

predicate, expressed as a filter on event parameters with Boolean

result, under which a flow should be invoked; (3) the flow (or

action) to be invoked if the predicate is satisfied; and (4) a JSON

template of the body that will be passed to the flow (or action)

when run.

A timer definition specifies: (1) a schedule (i.e., start time,

interval) for invoking a flow (or action); (2) the flow (or action) to

be invoked; (3) a JSON template of the body that will be passed

to the flow (or action) when run. [A timer may be viewed as a

specialized form of trigger.]

4.5. Defining queues

Queues is a managed service that allows users to provision

queues on demand. Queues may be created via the SDK and CLI.

Users can specify configuration options, such as message timeout

duration and access roles. Once provisioned, authorized users

may publish arbitrary events (as a JSON payload) to the queue

using the SDK and CLI. Events can therefore be generated from

external services, scripts, and file system monitoring software, for

example. Events can be consumed from a queue using the SDK or

CLI, or with a Trigger.

4.6. Example actions

We evaluate the following seven action providers in Section 6.

A complete list of available action providers is provided in the

documentation [44].

• Echo: Returns its input string, and is primarily used for

testing and demonstration.

• Transfer: List directories, manage permissions, delete data,

transfer data between remote systems.

• Search: Add/delete entries to/from a search index.

• Email: Send a templated email with specified sender, re-

ceiver(s), subject, and body. Templates allow values from the

flow run Context to be included in the body of the email.

• User Selection: An interactive action that enables users

to provide feedback via a list of options or customized

interface; user selection(s) are returned to the flow.

• DataCite Mint: Obtain a DataCite DOI to assign to a web-

accessible object. The action provider uses the DataCite JSON

API and allows users to preconfigure it with the appropriate

namespace and DataCite basic auth credentials. Invocation

of the action passes through JSON metadata to be associated

with the DOI.

• funcX: Request execution of a registered Python function

on a remote computer. Users specify the funcX endpoint

ID and function ID as well as any input arguments. The

action provider wraps calls to the funcX [41,42] function as

a service (FaaS) platform.
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Fig. 4. Globus automation services architecture (above) and a simple flow (below). (1) A file creation event at a microscope is sent to Queues. (2) A registered trigger

identifies the event and invokes a flow via Flows. The flow invokes three actions, in sequence, each added to the action queue in turn: (3) transfer data from the

microscope to an analysis computer, (4) run analysis program to extract features, and (5) prompt the user to approve or reject extracted features. The Timers service

(upper right) can also trigger flow invocation.

5. Implementation

Based on the model presented above we implement four dis-

tinct automation services: Flows to create, share, run, monitor,

and manage flows; Queues to reliably store and deliver events;

Triggers to consume events from queues, apply predicates, and

invoke flows; and Timers to register periodic events. We define

the action provider API and implement a set of action providers.

Fig. 4 shows the main components of the platform.

5.1. Authentication and authorization

Globus automation services allow users, and agents acting

on their behalf, to launch flows that then perform actions on

remote services, potentially over extended time periods. End-to-

end authentication and authorization of flows and actions are

thus fundamental requirements. Each request made by a flow

to a remote service must provide the credential(s) [in the form

of OAuth tokens] that the remote service requires to permit the

request. As the user who launches the flow will not necessarily be

available (or have the patience) to provide each such token at that

time that it is needed, methods are needed for caching tokens.

These methods must also protect tokens against illicit access and

use; circumscribe the purpose(s) for which they can be used;

and support their renewal, if needed, in the case of long-lived

activities.

We rely on the OpenID and OAuth 2 [47]-compliant Globus

Auth platform [10] to meet these requirements. Each Globus

automation service, action provider, and flow (collectively, ‘‘ser-

vice’’) is registered with Globus Auth as a resource server and

assigned a universally unique identifier (UUID). Each such service

can, in turn, register OAuth 2 scopes representing its operations,

each named by a uniform resource locator (URL) that users can

employ when granting applications and services consent to in-

voke the associated operation on their behalf. A scope URL has

the form <PREFIX>/<UUID>/<OP>, where:

• <PREFIX> is https://auth.globus.org/scopes/, indicating that

the scope was generated by Globus Auth (as opposed to

other OAuth-2 services);

• <UUID> is the registering service’s UUID in Globus Auth

(e.g., eec9b274-0c81-4334-bdc2-54e90e689b9a for the

Flows service); and

• <OP> names an operation on the service (e.g., publish and

manage in the case of the Flows service; run, update, and
delete in the case of a flow).

Note that each flow created by the Flows service is itself a service,

registered with Globus Auth and having its own UUID, and with

its own unique scopes named via the same concatenation of

<PREFIX>, its flow UUID, and operation.

The scope mechanism is central to Globus automation ser-

vices. It is used to encode fine-grained user consents to authorize

clients to invoke specific flows, and to ensure that flows invoke

only defined actions. The Triggers and Timers services use the

same model to invoke other services, such as Flows, on behalf of

their users. These fine-grained consents and Globus Auth autho-

rization capabilities together allow Globus automation services to

implement a least privilege security model.

The integration of Globus Auth mechanisms with Globus au-

tomation services proceeds as follows. Each Globus automation

service API request must contain an access token in the HTTP

request ‘‘Authorization’’ header. Upon receipt of a request, the

service uses the standard OAuth introspect operation to com-

municate with Globus Auth to validate the token and retrieve

authentication information, including the caller’s identity. The

information can then be used to authorize operations against

policy associated with a flow, as described in Section 4.3. As

shown in Fig. 5, the services may also interact with Globus Auth

to retrieve access tokens required to invoke other downstream

services (e.g., actions defined in a flow). Following the standard

OAuth-2 protocols, when invoking a service’s operation as rep-

resented by a scope, a client first requests an access token from

Globus Auth. If the client is acting on behalf of a user, the user

must grant consent to allow the client to access a specific set

of scopes on the service, and any downstream services that the

service may need to access. The downstream services perform the

same token introspection to retrieve authentication information,

and enforce applicable authorization policy.

5.2. Action providers

Action providers are the foundation for all work performed

by Globus automation services, whether by flows, triggers, or

timers. Each implements a common interface for introspecting an

action provider’s capabilities, requesting execution of an action,

and monitoring and managing action progress:

• GET <action_url>/: Introspect the action provider for

descriptive and administrative information, the required

Globus Auth scope for invocation, and schema for the ac-

tion’s input. This operation may be permitted without any

authentication, so that the scope can be discovered without

otherwise authenticating or possessing access tokens.
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Fig. 5. Distributed authorization as implemented in Globus automation services. The shaded region in the center encompasses the cloud-hosted Globus services: here,

Flows, Auth, and funcX services. (1) A user, having previously authenticated, requests Flows to run a flow comprising the action ‘‘run F() at node A’’, providing the

necessary token. (2) Flows obtains an access token from Auth to make a request to funcX. (3) Flows requests funcX to run F() on A. (3) FuncX obtains a dependent

token to run F() on A. (5) funcX requests the funcX agent associated with node A to run F(). (6) F() runs. The key on the right illustrates the different tokens used.

• POST <action_url>/run: Invoke an action described by a

supplied input document that matches the schema returned

from introspecting the action. The request contains a client-

generated request_idwhich is used by the action provider

to de-duplicate repeated requests. This operation returns

a document containing an identifier for the new run (the

action_id used in subsequent requests), the state of the

action (ACTIVE, indicating still running; SUCCEEDED; or

FAILED), and action-specific details on the state or result

of the run.

• GET <action_url>/<action_id>/status: Retrieve, for

the run with the provided action_id value, a document

with the same form as that returned from the run operation.

• POST <action_url>/<action_id>/cancel: Request

cancellation of a run in the ACTIVE state. Cancellation is

considered advisory only: it may stop the run immediately,

cause the run to end sooner than normal, or have no effect.

In all cases, a document is returned with the same form as

that returned from the run operation structure, to report

the (potentially updated) status of the run.

• POST <action_url>/<action_id>/release: If run has

completed (i.e., state is SUCCEEDED or FAILED), remove its

context from the action provider. (Action providers typically

otherwise retain state for 30 days.) The same action status

information is returned as for the other operations, but upon

completion, any subsequent references to the action_id
will be unrecognized by the action provider.

The Flows service implements this API for each flow at the URL

https://flows.globus.org/flows/<flow_uuid>. Thus, anywhere that

a Globus automation service may invoke an action provider, as an

action within a flow or via the Triggers or Timers services, it can

also invoke a flow.

To enable users to create and operate new action providers,

either for their own use or to share with others, we provide a

Python library that defines classes for the common Globus Auth

and action provider data types and operations [48]. This library

further provides helpers for setting up the required REST API en-

try points for common Python web development environments.

We use this development kit in developing the action providers

enumerated in Section 4.6.

5.3. The flows service

Our Flows service implementation has two main components:

(1) A horizontally scalable front-end service that implements

the REST API for publication, invocation, monitoring, and other

lifecycle operations of a flow; and (2) a back-end polling process

that initiates and monitors the progress of actions by using the

Action Provider interface described above. In addition to these

components, we make extensive use of AWS services to provide

the scale, reliability, and availability required by a large user

community with critical use cases.

The structure of the service, including its front end and back

end, and its use of AWS services, is shown in Fig. 6. The front end

implements all client facing REST APIs for life-cycle management

of flows and runs. We deploy the front end in Docker containers

using the AWS Elastic Container Service (ECS) for automatic scale-

up and scale-down based on demand. The front end stores state in

a replicated Postgres AWS Relational Data Service (RDS) database

cluster, and shares authentication state with the back end via

an AWS DynamoDB table. The other Globus automation services

described here, Queues, Triggers and Timers, make similar use

of AWS for hosting a scalable API front end, database services

for persistence, and in the case of Triggers and Timers additional

back-end processes for monitoring actions they initiate.

Flow runs are passed to another AWS service, AWS Step Func-

tions (ASF), which in turn invokes the Flows back end via an

AWS Simple Queuing Service (SQS) message paired with an AWS

Lambda function that implements the Flows back end. By per-

forming all execution and monitoring of flow runs and their

action steps outside the front end, we ensure that flows will

continue to make progress even if the front end is down and that

this execution environment will scale should many runs be in

flight simultaneously.

5.3.1. Flow deployment

The most complex elements of the Flows service are those

concerned with the deployment and execution of flow runs. De-

ployment of a flow requires interaction with two platform ser-

vices, Globus Auth and AWS Step Functions (ASF).

As described in Section 5.1, the Flows service registers each

newly deployed flow with Globus Auth as a separate service,

and further registers new scopes for the operations used to run

or manage the flow. Prior to registering each scope, the service

examines the flow definition to identify all action providers that

it may use, and makes each of the action provider’s scopes depen-

dent on the scopes for this flow. Thus, when a user runs the flow,

they will be informed of the action providers they are allowing

to be invoked on their behalf and with their identity during the

flow’s run.

The interactions with ASF involve deploying a new ‘‘state

machine’’ (the ASF equivalent of a flow) for each flow. This state

machine is a transformed version of the input flow received by

the service. The transformation involves two components: (1)

generating ASF ‘‘Task’’ states for each Action in the flow and;

(2) altering references to the flow’s run-time state to protect

service-specific data stored at run-time.

ASF Task states are used to perform activities, and they may be

used to invoke a wide variety of AWS resource types. The Flows

service creates Task states which pass the information related

to an Action step onto an AWS SQS queue for which a Lambda
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Fig. 6. The Flows service front end is deployed in Docker containers, managed by AWS ECS. A variety of other AWS services, shown as grey-scale icons with the

service name underneath, are employed for persistence, flow execution, and reliable scaling of interactions with remote Action Providers. The text above each AWS

service indicates its function.

function is configured as a receiver. The queued messages include

the URL for the desired Action Provider, the name of the scope

used to invoke the action, parameters to the action invocation,

timeout and error-handling options.

The Flows service stores additional information for its own

use, such as identifiers for the flow, run, and invoking user in

the state of the ASF state machine execution context. To protect

this internal information from the user, all initial user input and

references to run-time state are stored in the context under a key

$.UserState. Thus, all references within all states of the flow

definition are updated with this prefix so they will be read and

written to this sub-key of the flow’s run-time state.

5.3.2. Processing flow runs

When a user invokes a flow, the user’s identity is confirmed

via Globus Auth, and authorization is granted if that identity

satisfies the ‘‘Runnable By’’ policy configured for the flow. Tokens

identifying the invoking user for all dependent scopes established

when the flow was deployed are retrieved from Globus Auth. This

process is repeated for any additional roles used in the flow. Once

retrieved, tokens are placed into the DynamoDB database for

use when interacting with action providers on the user’s behalf

during the run. ASF is then invoked to start the run with the

user’s input, as well as additional information described above are

placed into the into state of the run Context. From this point on,

the flow run proceeds without interaction with the Flows service

front end. Thus, should the front end be off-line, all runs can

nevertheless proceed correctly.

The transformed flow that is deployed to ASF causes each

action step in the flow run to invoke the back-end Lambda

function used to interact with the appropriate Action Provider.

The Lambda function uses the action provider URL and access

tokens from the token database to invoke the action provider.

It passes the action’s message body as arguments to the action

provider and receives an action_id in response. Subsequent in-

vocations of the Lambda function use the action_id to retrieve

the status of the invocation, determine its completion or failure

(including enforcing a timeout), call action provider release to

free resources, and return the invocation’s result to ASF. When a

poll of the action returns an incomplete state, the polling period

is updated and the message is returned to the queue with an

updated polling period. Specifically, an initial period is set in the

invocation message body. That period is then doubled each time

the status is checked up to a maximum of 600 s. Thus single

action queue is used to process both initial and polling requests

for an action invocation, with the queue itself providing the delay

between polls.

5.4. The queues service

The Queues service supports the creation and use of queues,

which Globus automation services use for reliable and secure

delivery of messages from senders to receivers—specifically, from

event generators to triggers. It allows for asynchronous commu-

nication: events can be added to a queue, and will be stored, even

if no active receiver is currently associated with the queue, or if

the receiver is temporarily incapable of receiving and processing

messages at a rate matching that of the queue’s sender(s). It also

ensures in-order message delivery.

The Queues service is implemented as a thin layer over Ama-

zon SQS, with each user-created queue realized as an SQS queue.

The Queues service augments SQS by integrating it with the

Globus Auth identity and access model. The Queues REST API de-

fines methods for creating, modifying, and deleting queues—and,

once a queue is created, for adding, receiving, and acknowledg-

ing receipt of messages to/from that queue. Three roles associ-

ated with each queue control who can modify policies or delete

the queue (Administrator role), send a message onto the queue

(Sender), and retrieve a message from the queue (Receiver).

The Queues service implementation uses message receipts to

provide at-least-once message delivery semantics: Each message

received from a queue includes a unique message identifier, and

only after that identifier is returned to the queue in a subsequent

acknowledgment API call can the message be removed from

queue storage. If no acknowledgment is received after a certain

period, the message may be re-delivered. In addition, message

identifiers are used to ensure exactly once invocation semantics:

Each time that the trigger service invokes an action, it uses the

queues service message identity as the request identifier, and as

described in Section 4.6 action providers will discard requests

with duplicate request ids.

5.5. The triggers service

The Triggers service enables configuration and execution of

triggers, which are used for event-based invocation of a flow or

action. The creation of a trigger is a two-step process. First, the

user interacts with the Triggers service to configure a new trigger.

In doing so, the user provides the identifier for a previously

created queue, the URL for the action provider (which may be

a flow) to be invoked by the trigger when an event occurs, a

predicate used to identify events that should cause the action to

be invoked, and a transformation to be applied to each triggering

event’s properties to create the input for the resulting action.

Second, the user then requests that the Triggers service enable

the newly created trigger. In so doing, the user provides an access

token with dependent scopes for the Queues receive message and
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for running the action, so as to grant the Triggers service authority
to read from the queue and to invoke the action. A user may
also disable a trigger, which places it in an idle state in which
no events from the queue will be processed.

While a trigger is enabled, the Triggers service periodically
polls the queue. Polling is performed in the service’s back-end
by a pool of workers that select enabled triggers from a priority
queue that encodes the time until the next poll should occur. A
trigger is placed back onto the queue after polling, increasing the
polling interval when no messages are available and decreasing
the interval when messages are received.

For each message received, the trigger’s predicate is evaluated
to determine if a match occurs. The predicate is a Boolean ex-
pression written in a Python-like syntax that may evaluate any
properties of the incoming message. For example, if the message
represents a file creation event, the predicate may check that the
filename ends with a particular suffix, such as ‘‘.tiff’’. Messages
that do not satisfy the predicate are discarded.

Those messages that satisfy the predicate will cause the trig-
ger’s configured action to be invoked. The input to the action is
formed from the properties of the incoming message. The various
parameters are specified using the same Python-like syntax as the
predicate and can evaluate properties of the incoming message.
For example, if a filesystem update event message contains a
list of new files called simply files, but an action needs an
input parameter number_of_files the transformation could be
written as number_of_files = len(files). Once the input is
formed, the action is invoked using the access token acquired
when the trigger was enabled. The run’s identifier (action_id)
is added to a queue so that the same polling process can be
performed to monitor the progress of each run. When the run
completes, its results are cached in the trigger’s configuration so
that recent results and statistics related to the trigger’s usage may
be retrieved by the user.

5.6. The timers service

The Timers service has a similar purpose and a similar internal
structure to the Triggers service. Whereas Triggers invokes ac-
tions in response to events, Timers invokes actions at regular time
intervals. The configuration of a timer includes: (1) the identifier
for an action (which may be a flow) to be invoked; (2) start time
for action invocation; (3) a time interval in seconds; (4) either a
count of the number of times to invoke the action or an end time;
and (5) input arguments for the action. The Globus Auth scope for
creating a timer is dependent on the action or flow scopes; thus,
the Timers service retrieves an access token when the timer is
configured, and uses it to invoke the action.

Internally, the Timers service is implemented similarly to the
Triggers service: when a timer is established, its start time is
inserted into a priority queue sorted by timestamps for next
execution time. A single back-end dispatcher process wakes pe-
riodically and pops any element(s) from the queue whose next
time is less than the current time. For each timer thus identified,
it posts an invocation request onto a separate work queue, com-
putes the timer’s next execution time using the defined interval,
and places it back onto the work queue as long as it will not
have expired based on the count or stop time parameter. A set
of worker processes listen on the work queue, and for each timer
received, use the action parameters and the access token required
to invoke the action. As queues are maintained with persistent
storage, timers are not lost if the Timers service is down: once the
service restarts, it will recover any missed timers and schedule
the required actions. Timers are currently only available in the
Globus platform and web application to perform periodic data
transfers; however, the architecture and implementation support
the invocation of any action.

Fig. 7. Flows service performance when processing requests to run a simple

flow. X-axis: Number of concurrent clients making requests. Left y-axis: Request

response time, plotted both for individual requests (green cross for success, red

for failure) and as box plots for lower and upper quartiles, with whiskers to

1.5× the interquartile range. Right y-axis: Requests per second.

6. Evaluation

We first investigate the performance of Flows and the la-

tency and overhead involved in executing individual flows. Then,

we consider the performance of the action providers. Finally

we review use and adoption of Globus automation services in

production settings.

6.1. Flow throughput and latency

To examine the throughput of the Flows service and its ability

to serve many users concurrently, we performed load tests in

which an isolated instance of the service, deployed on a single ECS

container with a CPU value of 2048 (equivalent to two vCPUs),

4 GB of memory, and eight worker threads, served requests from

varying numbers of clients. The clients were deployed on a login

node of Argonne’s Theta computer with an Intel Haswell E5-

2698 v3 CPU with 256 GB of DDR4 memory. We then performed

experiments in which each of N concurrent clients, for N =

1, 2, . . . , 128, repeatedly invoked a simple flow comprising a

single Pass state (essentially a no-op) and waited for the response.

We measured both the time from invocation to response for each

request (latency), and the average number of requests processed

per second (throughput).

We see in Fig. 7 that the Flows service in the measured

configuration can serve roughly 25 flow invocations per second

when under load, with failures appearing with more than 64

concurrent requests. The number of requests per second plateaus

once eight concurrent clients are used, as the many clients begin

to saturate the eight available worker threads. Failures occur

under high load because each of the service’s worker threads

is busy communicating with the ASF service, meaning the load

balancer is unable to pass the request to the service. Such failures

can be avoided by dynamically scaling the number of instances

deployed by Flows. We note that the production Flows deploy-

ment employs a minimum of four containers and can scale further

horizontally, based on load.

In a second set of experiments, we ran a flow consisting of

a single action that sleeps for a specified period of time and

measure the overheads associated with flow execution, which we

define as flow completion time minus the action sleep time. Fig. 8

shows that no-op flows (sleep time of 0 s) incur, on average,

2.88 s overhead. This cost is due primarily to the exponential

backoff policy used by the Flows service when polling for task
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Fig. 8. Overhead incurred by a single-step flow with a sleep action of a specified

duration (x-axis). The left y-axis and red box plots show the overhead in seconds,

with upper and lower quartiles. The right y-axis and blue markers show mean

% overhead.

completion: Each task is first polled after 2 s and, each time that

the task is found still to be active, the polling interval is doubled,

up to a maximum of 600 s. The remainder of the overhead is due

to the polling request being queued for processing by a Lambda

function and the cost of communicating with the remote action

provider. The figure also shows that flow overheads as a fraction

of total flow time decline as flow runtimes increase, to an average

of 1.2% for 1024 s flows.

6.2. Action providers

Understanding action provider performance is crucial to de-

veloping efficient flows and choosing timeout values. Thus, we

performed experiments to measure round trip latencies for vari-

ous actions. In each case, the requested action involves a simple

task: e.g., transfer a four-byte file, run a no-op function, and index

a trivial record into a search catalog. Thus, the measured costs,

shown in Fig. 9, are largely overhead associated with negotiating

access to the corresponding service. We do not evaluate here

costs that scale with, for example, the size of the data being

transferred or published.

We see in Fig. 9 that simple tasks, such as Echo, are completed

relatively rapidly, albeit with a ∼1 s floor on response time. More

demanding actions, such as funcX and data transfer, take longer.

Analysis suggests that these higher costs are due to administra-

tive overheads. Authentication accounts for around 200–400 ms

of a typical request. In the case of funcX, a majority of the time

is spent instantiating a secure client to interact with the funcX

service—a cost that is amortized if multiple functions are bundled

in one request.

The relatively high action execution times seen in these ex-

periments preclude certain applications of Globus automation

services. However, we have been pleasantly surprised by how

many research automation applications can function effectively

under these parameters. The reduction of various overheads, for

example by caching credentials and proxy clients, will be a focus

of future work.

6.3. Production flows

Globus automation services are increasingly being used to

run production workloads and are indeed becoming an integral

part of many research data lifecycles. One facility that lever-

ages the platform is Argonne’s Advanced Photon Source (APS), a

synchrotron light source facility that houses 68 beamlines in 32

Fig. 9. Round-trip latencies observed for various action providers, each executed

at least 100 times. For Transfer and Search, we separate out results for different

action options.

Fig. 10. Number of flow invocations over time from five APS experiments. The

numbers vary due to facility and experimental schedules. The decline in the

latest quarter is due to APS preparing for an extended shutdown for upgrade.

Table 1

Times, in seconds, to process the steps of 415 flow runs used to analyze and

publish datasets from an APS experiment.

Action Min Max Mean Std

Transfer 4.11 522.66 47.61 95.95

Pre-publish 3.50 44.19 7.01 5.71

Analyze 7.54 2881.93 326.17 487.01

Visualize 20.03 549.50 116.71 98.30

Extract 6.65 52.51 10.94 5.53

Publish 3.64 34.54 7.44 4.88

sectors used by more than 5000 scientists a year. Since prototype

Globus automation services were first made available in 2020Q1,

adoption has grown from a few experiments to thousands of

flows that are used routinely to analyze and catalog experimental

data. This adoption is shown in Fig. 10, which summarizes usage

of the services across five APS beamlines.

We review 415 production flow runs performed between De-

cember 9th and 15th, 2021, in support of the experimental sci-

ence use case of Section 2.1. All runs involved the same flow,

which comprise a total of six steps (see Table 1) used to retrieve

and analyze an experimental dataset, generate images, and pub-

lish results to a search catalog. Each individual run was triggered

by the creation of a new dataset at the experimental facility.

In total, the 415 runs processed over 500 GB of X-ray imagery

and consumed over 1500 supercomputer node hours. The dataset

generation rate at the instrument, and therefore the rate at which

the flow was invoked, ranged from 0.1 to 0.0001 Hz, depending

on the collection technique in use and beamline operational

procedures. Table 1 characterizes the times taken by the six
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states over the 415 runs. The large variations are due to: (1)

changes in data collection technique over the course of the ex-

periment, which resulted in data sizes that varied by two orders

of magnitude, and thus varied transfer and analysis times; and

(2) resource contention at times of peak collection rate, which

led to both transfer and execution tasks being queued by either

the transfer service or the HPC scheduler. Nevertheless, every

dataset collected during this period was successfully processed

and published to the search catalog.

7. Experiences and lessons learned

From when Globus automation services were first released in

beta in 2021, to August 2022, 84 unique users have defined 4737

flows and 167 users ran 247 643 flows, of which 225 162 either

ran to completion successfully or are active at time of writing,

20 189 failed (typically due to timeouts, as noted earlier), and

1971 were canceled. A further 321 flows are ‘‘inactive’’, meaning

that they have stalled for various reasons (e.g., expiry of creden-

tials required to transfer data). There are now 14 separate action

providers. The Timers service has been used by 813 users to

create 3642 timers that have cumulatively fired 1 777 271 times;

338 timers from 188 users were active at the time of writing.

The Triggers and Queues services are prototypes and are not yet

widely accessible.

As Globus automation services have evolved from prototype

to production, we have worked with various groups to define

and deploy flows. Early adopters were primarily from the four

use cases outlined in Section 2, and in particular in instrument

science, where most flows authored to date follow a pattern in

which preliminary data processing is performed near the instru-

ment, data are then moved to a compute cluster, further analysis

is performed on that cluster, and results are returned to scientists,

either directly or via a web-based catalog. We note the following

characteristics of these early uses:

• Flow diversity: Even in situations in which the high-level

process appears similar, implemented flows must be

adapted to specific use cases. For example, the instrument

use cases have similar processes, yet each flow has different

actions and configurations.

• User diversity: Globus automation service users range from

software developers to scientists with limited programming

experience. The various Globus automation services inter-

faces satisfy the requirement for different ways of working

with the platform, but further abstractions are needed to

reduce barriers for non-expert users. As such, we are ac-

tively working on both a Python toolkit [12] and graphical

interface to compose flows.

• Throughput over latency: Our current applications have not

needed sub-second responses; rather, users are concerned

with high throughput, and thus with being able to process

many flows in parallel, as well as with reliability.

• Authorization bottlenecks: The authorization steps required

for flows to access resources in different administrative do-

mains can be a source of complexity. Our approach provides

a structured way of managing authorizations, but does not

overcome the need for periodic refresh of consents and

credentials—a task that can become tiresome, particularly

when different user identities must be employed on differ-

ent resources. In some settings, group-based access controls

can be a solution.

• Provenance: Researchers often want to review flow execu-

tions, understand under what conditions a flow was run,

explore why a flow failed, and review performance and

other metadata regarding individual actions.

• Flows are logically grouped: Many use cases execute multiple

flows as part of a single unit of work, such as a particular

experiment or data publication task. Users want to think

about and manage such a collection of flows as a unit, with

the ability to drill down into the details of individual flows

where necessary. To this end we have implemented tags to

filter collections of runs and simplify discovery. Providing

additional grouping, discovery and filtering capabilities is an

area for future work.

• Action provider API implementation is a significant undertak-

ing: Our approach of implementing action providers as stan-

dalone services and as wrappers around existing services

using Lambda functions has required custom optimizations

in terms of token caching, horizontal scaling, and resource

configurations. Higher-level abstractions are needed to make

it easier and faster to develop new action providers.

The Globus automation services approach to automation is

not currently intended for: (1) computational workflows involving

many tasks, for which specialized workflow tools (Section 8) exist;

(2) high-volume flows, such as responding to every change in a

file system (Globus automation services are designed to process

millions, not billions, of flows per day, and rate limiting is used to

prevent denial of service attacks on the services); and (3) work-

flows where high performance or millisecond-scale latency matters:

for example, for complex event processing on data streams from

real-time sources.

8. Related work

Hundreds of workflow systems have been created to orches-

trate sequences of steps [49], with goals of automating computa-

tional campaigns, making efficient use of parallel or distributed

systems, and representing complex processes [50–55]. Several

authors have attempted to organize and categorize the many

workflow systems [56–58]. We considered various of these exist-

ing systems before deciding to build upon ASF. We briefly review

different workflow approaches.

Workflow task models: Workflow systems are used broadly

to coordinate different types of activity, such as local programs,

jobs submitted to parallel computers or clouds, calls to web

services, and human activities. Task-based systems, such as Parsl

[54], Pegasus [52], and Swift [59] execute computational tasks,

either by invoking program functions or by making calls to lo-

cally executable programs and scripts. Service-based systems,

such as Taverna [60], Netflix Conductor [6], and ASF, are de-

signed to invoke web services, for example via Web service

protocols [61]: what is sometimes referred to as microservice

orchestration [62]. Some systems, such as HyWare [63], track

automated and human-based tasks.

Workflow representations: Workflows may be represented

declaratively or imperatively. In declarative systems, a structured

notation (e.g., a simple textual notation in DAGman

[64], a JSON- or YAML-based notation in the Common Workflow

Language [65], and an XML-based notation in Pegasus) is used

to specify the actions to be performed and their relationships;

an interpreter or compiler then translates this specification into

runtime operations. In imperative systems, a workflow is imple-

mented by an executable program coded with extensions to an

existing language (e.g., Parsl extends Python) or an independent

domain-specific language (e.g., Swift). We adopt a declarative

representation in this work (specifically, an extended version

of ASL) due to the convenience of a representation that can be

generated by libraries, graphical user interfaces, or compilers.

Workflow deployment models: Most workflow systems are

designed to be run by a single user in order to execute that
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user’s workflows. Some systems (e.g., Galaxy [51], Taverna) can

be deployed in a multi-user model via which groups of users may

define, share, and manage workflows . However, in most cases

these workflow systems are deployed on a single computer by

those who use them. Hosted workflow systems, such as those

offered by cloud providers and the public Galaxy instance, allow

users to define and execute workflows without installing and

managing workflow systems locally. However, these systems are

typically bound to the cloud platform or cluster on which they are

deployed. We build upon this model to provide a hosted service

via which users can outsource the execution of workflows to a

trusted and reliable third party.

Business process automation: Business process automation

systems seek to represent enterprise information processes in

executable forms, for example via the Business Process Execution

Language (BPEL) [5], which allows for the linking of web services

and human processes. These systems were not designed for re-

search process automation and there is only limited experience

with their use in science [66–68].

Cloud services: Cloud providers are delivering many inno-

vations in automation, for example, for development operations

(DevOps), combining different cloud services, and data-oriented

workflows. These services often focus on higher-level automation

goals by chaining existing cloud services; increasingly, they aim

to lower barriers to use. Thus, for example, AWS provides both a

full-featured Simple Workflow Service (SWF) [69] and a simpler

Step Functions (SFN) service [45]. Software development services,

such as GitHub Actions [70] and Amazon’s CodePipeline [71],

provide automation tools for continuous integration and contin-

uous deployment processes. These tools enable users to combine

actions into pipelines that perform DevOps tasks in response to

code events.

Event-based models: The use of queues in Globus automation

services to link event producers and consumers reprises the pub-

/sub model often used in distributed systems [72] and sometimes

in scientific workflows [73–75]. EPICS [76] and ROS [77] use this

model to control experimental and robotic systems, respectively.

The integrated Rule-Oriented Data System (iRODS) [78] enables

specification of data-related processes. Trigger-action program-

ming [79] seeks to create user-friendly interfaces for creating

automations. If-This-Then-That (IFTTT) [80] allows users to select

events and actions via a graphical interface, for example to turn

on lights at specific times or control a thermostat based on

proximity. These concepts have also been applied to scientific

data [81].

Remote computing interfaces: Many customized solutions

have been developing for linking scientific instruments with

HPC, for example in biomedicine [82], environmental science [83,

84], and disaster response [85,86]; using HPC to analyze large

data [87]; and providing on-demand access to HPC [88,89]. Such

applications have motivated the development of specialized in-

terfaces for remote job submission [90,91] and for managing

workloads across systems [92–95]. The LBNL superfacility project

has studied requirements for linking instruments with HPC [96]

and proposed an OAuth-based API [97] that is similar to our

action provider interface. DataFed [98] federates various scientific

data stores.

Researchers investigating methods for autonomous scientific

discovery [1,99–103] have developed innovative approaches de-

scribing discovery protocols, but have not yet addressed the

systems issues encompassed by Globus automation services.

9. Conclusions

The work reported here has been motivated by investigations

of how best to automate currently manual research processes.

We developed Globus automation services to address these spe-

cialized requirements, enabling users to define, publish, share,

and invoke flows composed of various external actions. We de-

veloped a declarative flow representation building upon ASL; an

asynchronous action provider API to enable integration of various

actions; and a robust and scalable set of services to manage the

secure invocation and execution of flows. We integrate a flexible

authorization model via which flows, Globus automation services,

and actions are registered as independent OAuth 2 resources,

such that users may delegate authorization to these components

to manage the secure invocation of flows that span a wide range

of temporal and spatial extents.

Further, having identified reliability and scalability as critical

requirements for research process automation, we architected

Globus automation services to be cloud-hosted, exploiting re-

liable and scalable cloud services wherever possible. We find

that these services can scale to support many concurrent clients.

Experiments show that our 14 initial action providers exhibit

moderate latencies that have proven satisfactory for initial use

cases. Our experiences applying Globus automation services in

several domains has shown that they indeed satisfy diverse re-

quirements of varied research automation use cases. Usage has

grown rapidly in a short period of time.

In future work we aim to expand Globus automation services

capabilities by integrating a broader set of actions. To this end,

we are exploring methods for transforming various invocation

request patterns dynamically and automatically so as to support

existing APIs without requiring modification. We are also explor-

ing methods to decrease action invocation overheads in order to

enable lower-latency response times to events and support real-

time flow execution. To improve the flow development process

we are actively working on both Pythonic and graphical user

interfaces to compose flows. Continued evaluation of both the

platform and user experiences will surely suggest other directions

for both research and development.
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