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Abstract: The ability to monitor mental effort during a task using a wearable sensor may improve
productivity for both work and study. The use of the electrodermal activity (EDA) signal for tracking
mental effort is an emerging area of research. Through analysis of over 92 h of data collected with
the Empatica E4 on a single participant across 91 different activities, we report on the efficacy of
using EDA features getting at signal intensity, signal dispersion, and peak intensity for prediction
of the participant’s self-reported mental effort. We implemented the logistic regression algorithm
as an interpretable machine learning approach and found that features related to signal intensity
and peak intensity were most useful for the prediction of whether the participant was in a self-
reported high mental effort state; increased signal and peak intensity were indicative of high mental
effort. When cross-validated by activity moderate predictive efficacy was achieved (AUC = 0.63,
F1 = 0.63, precision = 0.64, recall = 0.63) which was significantly stronger than using the model bias
alone. Predicting mental effort using physiological data is a complex problem, and our findings
add to research from other contexts showing that EDA may be a promising physiological indicator
to use for sensor-based self-monitoring of mental effort throughout the day. Integration of other
physiological features related to heart rate, respiration, and circulation may be necessary to obtain
more accurate predictions.
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1. Introduction

One’s ability to self-regulate their own learning may be pivotal to their long-term
academic and professional success, as well as for meeting their own informal learning
goals. It is not surprising then that the study of self-regulated learning has been on-going
for more than two decades [1,2]. Researchers have conducted a variety of studies around
self-regulation in an effort to better understand the construct, and more recently researchers
have been investigating its intersection with technology [3].

One rapidly evolving technology is wearable sensors. These have transformed from
relatively invasive devices used in healthcare or research settings to now being an integral
part of popular consumer devices, such as smartwatches. In the past few years, researchers
have begun synthesizing the literature around the use of wearable sensors in educational
settings, with a focus on the impacts on learning [4] and their use in learning analytics [5].

As an interdisciplinary team of educational researchers and computer scientists, we
are focused on the intersection of self-regulation, learning analytics, and wearable sensors,
with the end goal of being able to develop a system that helps students regulate their own
learning process based on feedback from a wrist-worn device. To date, research around the
use of wearable sensors for predicting learning-relevant outcomes has produced promising
results. For example, researchers have found success using multi-modal physiological
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measures to differentiate between different activities and predict mental focus [6], as well
as predicting perceived learning [7].

While research around the use of wearable sensor data in relation to helping students
self-regulate their learning is promising, it is also clearly in its infancy as there are many
research problems to be solved. For example, it is not clear what type of physiological
data are most helpful for predicting any particular outcome, regardless of whether it is a
cognitive outcome (like learning) or a perceptive outcome (like perceived mental effort).
Furthermore, there are also ongoing questions as to how to process physiological data
from wearable sensors, which types of data are most appropriate for predicting different
outcomes, and even what algorithms should be used to accurately classify and predict
different types of outcomes.

Given these outstanding broad and persisting questions, in this study we take a
deep, exploratory dive into one particular type of data, electrodermal activity (EDA),
and its relationship with perceived mental effort, a well-established educational construct
associated with cognitive load theory [8,9]. Specifically, in this study we examine what
types of EDA features are most useful for predicting perceived cognitive load.

2. Literature Review
2.1. Cognitive Load Theory

Prominent in the educational literature is cognitive load theory, which describes
how we allocate working memory resources to different cognitive tasks. Specifically,
cognitive load can be expended on tasks that are intrinsic to the learning task (i.e., intrinsic
cognitive load), including the construction of mental models (i.e., germane cognitive load),
or cognitive load can be expended on processing design elements that are not necessary for
learning the material, but rather are present due to less than optimal instructional design
decisions (i.e., extraneous cognitive load) [8–10].

Studies centered on cognitive load theory can take many forms. A study could involve
manipulating an individual design variable that is expected to influence either extraneous
load or intrinsic load, and then examining learning outcomes to infer causality. Alterna-
tively, in some studies researchers manipulate similar variables but measure cognitive load
through self-reports [11], secondary tasks [12], or physiological measures [13].

Despite the prominence of cognitive load theory in the literature, it is not without
critique, and measuring cognitive load in a psychometrically sound way may not be a
straightforward task. One such critique is that measuring self-reported cognitive load
is quite challenging, and differentiating the three types of cognitive load via self-report
may not be possible [14]. That said, there are scales that have some validity evidence that
differentiate the types of load, but some questions still exist as to if they are measuring
the construct or indicators of the construct [15]. In addition, there are other self-report
measures for constructs which are proxy to cognitive load, such as mental effort. Measures
of mental effort often act as an indicator of overall cognitive load [16], as opposed to the
individual types of cognitive load. One concern with these types of measurements, outside
of not being able to differentiate the types of cognitive load, is the question of what is
considered too much cognitive load [17].

Since there is currently no ground truth for cognitive load outside of self-reports,
they are still a very common, if not the most common, measurement of cognitive load.
This is despite the fact that the learner must either interrupt their task to complete the
self-report or complete the self-report after the task is completed. However, these issues
surrounding self-reported cognitive load have, in part, caused researchers to pursue other
avenues of cognitive load measurement, such as secondary tasks or physiological measures.
These efforts are noteworthy, but there are situations in which completing secondary
tasks may distract from the learning task [18], and there is still a limited body of research
around physiological measures that can be measured non-intrusively. Recently, however,
researchers have found success using wrist-worn sensors to measure physiological signals
to predict mental effort [19]. Further, researchers recently argued that EDA may be a strong
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physiological measure to use as an indicator of cognitive load [20]. In the next section,
we examine how EDA has been used to measure cognitive load and conceptually related
measures of mental effort and mental workload.

2.2. The Use of EDA to Measure Mental Effort

While the term mental effort is often associated with cognitive load theory, in other
areas of the literature it is common to encounter the term mental workload. These terms
describe similar constructs [6] and in fields outside of education, mental workload is often
measured through physiological means [21] since the autonomic nervous system responds
to changes in mental workload, and these changes happen without the individual knowing
the changes are occurring [22]. In relation to grain size of measurement, it is important to
note that these measures are viewed as an index of workload [23], and perhaps should not
be viewed as the exact amount of workload or mental effort.

That said, research in the area is relatively scarce. A recent systematic review found
only seven studies that used measures related to the skin in regard to studies of mental
workload [21]. Some studies in this area, however, have shown promising results. For
example, one study found that galvanic skin response (GSR) could indicate differences
between different levels of cognitive load in a traffic control management task [24], and
a different study found that GSR could predict mental workload changes with 75% accu-
racy [25]. While few studies have investigated education-related constructs directly, some
individual studies have found promising results. For example, one study used math and
reading tasks and found that GSR differentiated between different task difficulties when
scores were normalized across participants [26], a further study found similar results [27],
and another noted that “EDA seems to be related to mental effort [28] (p. 57).”

2.3. The Present Study

Existing research has shown a promising connection between EDA and the prediction
of cognitive load-related outcomes such as mental effort or mental workload. However,
these studies have used a variety of types of data and algorithms to analyze their data. In
fact, researchers have argued that there was not yet a specific machine learning algorithm
that has consistently performed well to analyze physiological data in relation to mental
effort [19]. Agarwal and colleagues [19] highlighted the efficacy of deep-learning methods
as an approach to analyzing raw measures in near real-time; however, we further argue
that the question of which algorithm to use may be premature, as there is not consensus on
which types of data are most useful. At this stage, what is needed are in-depth, exploratory
studies examining different features of different types of physiological data in order to
understand which are most useful for prediction. Based on prior work that has shown
promising results with EDA and predicting cognitive load-related outcomes, and given
cognitive load theory’s long history and prominence in the literature, in this study we
explore different types of EDA features in relation to measures of mental effort to build an
understanding of what types of EDA features are most useful for predicting mental effort.

3. Methods
3.1. Experimental Design and Data Collection

Toward better understanding how the EDA signal can be used to predict mental
effort, and the efficacy of the signal in generalizing predictions across different activities
within an individual, we utilized a dataset on a single participant from previous work [19]
which employed a single-participant study design [29]. Longitudinal single-participant
study designs have several advantages which make them desirable for understanding how
sensors perform in the real world outside of the laboratory. First, focusing on a particular
case facilitates context-specific generalizability which allows for more direct application to
similar cases than a traditional cross-sectional design which focuses on collecting limited
information across a large number of participants [30]. Toward our goal of understanding
the efficacy of EDA for predicting mental effort over a semester in a real-world educational
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setting, it makes sense to collect in-depth data from a single participant who is engaged
with high fidelity in the college experience. In sum, our purpose is not to generalize across
different types of participants, but rather to understand in detail how the sensor works over
an extended time frame for a single participant which will facilitate informed hypotheses in
research on participants with similar profiles [30]. Case study methods have been applied in
research on activity monitoring with non-wearable sensors [31] but more work using these
methods is needed to better understand how wearable sensors work to help us measure
mental processes in real life.

The participant in this study was a 19-year-old Caucasian female college student, and
data were collected in the context of coursework and daily activities related to the pursuit of
a Medical Lab Sciences degree at a research-intensive university in the Midwestern United
States. Specifically, data were collected in the context of 91 activities related to the four
courses she was taking during the Fall 2020 semester, Cell Biology, Music, Genetics, and
Organic Chemistry, and activities she undertook outside of the classroom, which we termed
“Everyday Activities”. These ranged from leisure activities such as scrolling social media
and watching television to activities of daily living such as cooking and eating, to more
cognitively intensive activities such as tutoring and reading. The data collection period
lasted over 3 months (from 1 September 2020 to 3 December 2020) during the course of
the Fall 2020 academic semester. The activities ranged in duration between 804 and 7869 s,
with an average of 3651 s (SD = 1496 s). Across the 91 activities, a total of 332,246 s of EDA
data were logged at a 1 Hz sampling rate.

The Empatica E4 was used to obtain the EDA data during each activity. The E4
wristband was turned on at the start of each activity and was kept on throughout the
entire duration of the activity. Visual inspection of the data indicated false EDA readings
attributed to stabilization of the device could be removed by deleting the first 10 s of data
from each activity. The participant’s self-reported mental effort rating after each activity
was based on Paas’ mental effort 1–9 ordinal scale [16], with 1 being very very low mental
effort and 9 being very very high mental effort which we aimed to bin into “high” and
“low” mental effort. We binned the data into “high” and “low” based on a histogram of
reports which shows a clear break in the participant’s reports between high and low mental
effort (Figure 1).
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Based on the histogram, we found bimodality in the distribution between regions of
low and high mental effort. Based on this distribution, we considered ratings of 1–4 as
indicative of “low mental effort” and ratings of 5–9 as indicative of “high mental effort” for
subsequent analyses.

3.2. Extraction and Explanation of the EDA Features

The EDA features were extracted from the 91 activities using Stata 13 and the MAT-
LAB package Ledalab which is available online (http://www.ledalab.de, accessed on
16 July 2022). Ledalab was used for continuous decomposition analysis (CDA), which is
a method for extracting phasic information from the underlying EDA signal across the
91 activities [32].

The skin response can be considered as the sum of two components: the phasic com-
ponent (also called the Skin Conductance Response sp(t)), as well as the tonic component
(also called the Skin Conductance Level st(t)). The phasic component further comprises
the standard linear convolution of the sudomotor SNS innervation (dp(t)) and the response
triggered by the driver (r(t)) [33].

s(t) = sp(t) + st(t) = dp(t) ∗ r(t) + st(t)

This level of decomposition allows us to explore the Skin Conductance Response (SCR)
and Skin Conductance Level (SCL) features independently, which allows us to extract com-
ponents that are less likely to be dependent on other factors such as skin temperature [34].
This method of decomposition yielded two CDA-specific features: amplitude sum and skin
conductance response, which are measures of peak intensity, and two global features, EDA
global mean and global max deflection, which are measures of signal and peak intensity,
respectively (Table 1).

We calculated additional features using Stata 13 based on the z-standardized tonic EDA
signal. In order to convert raw measures to z-standardized measures, we calculated the
participant’s grand mean and standard deviation across all 91 activities and standardized
each EDA measure with respect to those values [35]. Within each activity, we calculated
the mean and median z-score as measures of signal intensity. In addition, we calculated
the standard deviation, interquartile range, and coefficient of variation as measures of
relative signal dispersion within each activity. Skewness, kurtosis, and 99th percentile
values were used as additional measures of peak intensity within each activity. In sum, we
ended up with three measures of signal intensity (EDA z-score mean and median, EDA
global mean), three measures of signal dispersion (standard deviation, interquartile range,
and coefficient of variation), and six measures of peak intensity (skewness, kurtosis, 99th
percentile, amplitude sum, global max deflection, and skin conductance response), for a
total of twelve features which were evaluated for prediction of mental effort.

Table 1. Features extracted from the EDA signal.

Feature Type Explanation

EDA z-score mean Signal intensity The mean of EDA z-scores for the activity. Indicative of the average
EDA response relative to the average across all activities.

EDA Global Mean Signal intensity Mean skin conductance value of the EDA response within the activity.

EDA Median Signal intensity
The median (50th percentile) of the EDA z-scores for the activity. A
non-parametric measure of the average EDA response relative to the
grand average across all activities.

EDA z-score standard deviation Signal dispersion The standard deviation of EDA z-scores for the activity. A measure of
the average spread of EDA measures around the mean.

http://www.ledalab.de
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Table 1. Cont.

Feature Type Explanation

EDA z-score interquartile range Signal dispersion The interquartile range of the EDA measures. Higher values indicate
more spread toward the center of the distribution.

EDA z-score coefficient of variation Signal dispersion
The coefficient of variation of the z-scores for the activity. Calculated
as the standard deviation divided by the mean, a higher measure
implies more dispersion of the EDA signal around the mean.

EDA kurtosis Peak intensity
The kurtosis of the EDA distribution for the activity. More positive
values indicate thinner tails of the distribution, which indicate
greater unimodality.

EDA skewness Peak intensity
The skewness of the EDA distribution for the activity. More positive
values indicate outlying data in the positive direction, which is
indicative of peak activity.

EDA z-score 99th percentile Peak intensity The 99th percentile of the EDA measures for the activity. Higher
values indicate higher EDA peak responses.

EDA Amplitude Sum Peak intensity Sum of galvanic skin response (GSR) amplitudes for significant GSR’s
which are reconvolved from corresponding peaks.

EDA Global Max Deflection Peak intensity Maximum positive deflection/impulse of EDA response within
the activity.

EDA Skin Conductance Response Peak intensity Average phasic driver within the activity. The phasic driver
component exhibits a zero baseline and distinct peaks.

3.3. Evaluation of Importance and Significance of Features

Given our interest in interpretable machine learning, we utilized the logistic regression
model within both inferential and machine learning frameworks. The first step in this
process was to use the features in Table 1 to build a model for discrimination between
high and low mental effort which yielded predictions that are significantly stronger than
simply using the most commonly reported mental effort state (mode = high mental effort,
see Figure 1). In machine learning applications, this is sometimes referred to as model
bias. The 95% confidence level was used to test the extent to which the model performed
better than using the model bias alone outside of chance. Assuming such a model could be
constructed, we then proceeded to evaluate classification performance using the logistic
regression model. Since the interest was in the efficacy of EDA features calculated from past
activities to predict future activities, we used activity-fold cross-validation as a training-
testing framework. With this procedure, one activity was excluded from the data for
testing and the model trained on data from the other activities was tested on data from
the hold-out activity. This was repeated across all 91 activities. Area under the receiver
operator characteristic (ROC) curve (AUC), precision, recall, and F1 score were used as
metrics of classifier performance.

4. Results
4.1. Building the Logistic Regression Model

All twelve of the features in Table 1 were entered into the model, which resulted
in a non-significant model (χ2 (12) = 16.5, p = 0.17). Hence, in order to reduce model
complexity sufficiently to obtain a model with a significant chi-square value, we needed to
remove five non-significant features: standard deviation (p = 0.30), 50th percentile (p = 0.79),
interquartile range (p = 0.26), amplitude sum (p = 0.83), and coefficient of variation (p = 0.75).
Removing these had no significant effect on model fit (χ2 (5) = 1.72, p = 0.89). This left a
model with seven features: mean z-score, skewness, kurtosis, 99th percentile, global max
deflection, global mean, and SCR. This model predicted mental focus significantly better
than the intercept at the 95% confidence level (χ2 (7) = 14.8, p = 0.039). To further improve
prediction using these existing features, we attempted to add 2-way interactions of these
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variables to the model in a forward stepwise fashion using the likelihood ratio test at the
95% confidence level. Using this procedure, one two-way interaction, skewness by 99th
percentile, improved model fit (likelihood ratio χ2 (1) = 4.6, p = 0.031). After adding this to
the model, we obtained a final 8-feature model which predicted focus significantly better
than the intercept at the 95% confidence level (χ2 (8) = 19.4, p = 0.013) (Table 2).

Table 2. Parameter estimates, odds ratios (OR) and corresponding hypothesis tests in order of variable
importance. p-values are calculated with respect to H0: B = 0, OR = 1.

Feature B SE Wald χ2 (df = 1) p-Value OR

EDAGlobalMaxDeflection 55.46 23.01 5.81 0.016 1.22 × 1024

EDAzMean −4.50 1.95 5.34 0.021 0.011
EDAzp99 2.20 0.96 5.28 0.022 8.99
EDAskewness −1.57 0.70 5.00 0.025 0.208
EDAskewness ×
EDAzp99 −0.67 0.34 3.76 0.052 0.513

EDAGlobalMean 22.09 11.40 3.76 0.053 3.93 × 109

EDAkurtosis 0.31 0.19 2.72 0.099 1.36
EDASCR 0.65 0.45 2.10 0.148 1.93
Intercept −9.96 4.15 5.75 0.016

4.2. Analysis of Relationships between the EDA Features and Mental Effort

Table 2 indicates that the most important features for discriminating between high
and low mental effort address signal intensity and peak intensity. With respect to signal
intensity, the mean of the EDA z-scores appears to have a negative relationship with high
mental effort (OR = 0.011, χ2 (1) = 5.34, p = 0.021); on the other hand, the EDA global mean
(OR = 3.93 × 109, χ2 (1) = 3.76, p = 0.053) has a positive effect size which is significant
at the 90% confidence level. This dichotomy may be due to the difference in how these
are calculated; the former as a difference between the participant’s average level across
the activity duration, and the latter as an average level due to EDA responses during the
activity [32]. With respect to peak intensity, global max deflection has a strong positive
relationship with mental effort (OR = 1.22 × 1024, χ2 (1) = 5.81, p = 0.016) as does the 99th
percentile of the EDA z-scores (OR = 8.99, χ2 (1) = 5.28, p = 0.022). This demonstrates
a strong relationship between peak intensity and mental effort. However, we find that
skewness tempers this effect; once the 99th percentile value is accounted for, we find that
more positive skewness (i.e., a bulk of lower values with strong positive outliers) tends
to lower the effect (OR = 0.513, χ2 (1) = 3.76, p = 0.052 for the interaction and OR = 0.208,
χ2 (1) = 5.00, p = 0.025 for the effect of skewness as the main effect). This interaction
between the 99th percentile and skewness is potentially important as it distinguishes
between EDA peak and EDA storm activity (which constitutes multiple peaks in rapid
sequence). Specifically, a high 99th percentile value and lower skewness indicate a larger
number of high values within the distribution; on the other hand, the same 99th percentile
with higher skewness indicates phasic activity where most of the measures are still tending
toward the lower end of the distribution. Finally, the least important variables appeared to
be kurtosis (OR = 1.36, χ2 (1) = 2.72, p = 0.099 and SCR (OR = 1.93, χ2 (1) = 2.10, p = 0.15),
which both had positive effect sizes. Kurtosis was significant at the 90% confidence level,
indicating some tendency for greater density or unimodality of EDA values during high
mental effort activities.

4.3. Efficacy of the EDA Features for Classification of Mental Effort

When cross-validated by activity, predictive efficacy was moderate (AUC = 0.63,
F1 = 0.63, precision = 0.64, recall = 0.63), but still yielded predictions which were signif-
icantly stronger than using the model bias alone (AUC = 0, F1 = 0.46, precision = 0.37,
recall = 0.60). Analysis of the receiver operator characteristic (ROC) curve shows that a
classification cutoff of 0.53 optimizes both sensitivity (0.66) and specificity (0.67). How-
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ever, toward generating a useful sensor-based prediction for mental effort, it is important
to consider whether we want a sensitive model which is able to identify instances high
mental effort accurately, or whether we want a more specific model which more accurately
identifies instances of low mental effort. A sensitive model could be obtained by adjusting
the classification cutoff to 0.44. Such a model would successfully identify 70% of the high
mental effort states while correctly identifying 50% of the low mental effort states, meaning
that it would tend to generate false alarms. On the other hand, a specific model could be
obtained by adjusting the classification cutoff to 0.57. This model would correctly identify
72% of the low mental effort states while correctly identifying 50% of the high mental effort
states, meaning that it would miss about half of a user’s high mental effort activities but
would generate far fewer false alarms. Toward having a device that is non-distracting
and useful in day-to-day activities which is also able to log temporal changes in mental
effort over the long term, we argue that a more specific classification framework would
be preferred which would minimize false alarms while also successfully logging many
instances where high mental effort was achieved.

5. Discussion

The use of wearable sensors has been developing rapidly over the past decade. While
current devices focus primarily on physical exercise, fitness, and sleep quality, current
research has demonstrated that useful predictions for constructs related to cognitive load,
such as mental workload and mental effort, are within reach. In this study, we focus on
the efficacy of using features derived from a user’s EDA signal for generating predictions
of mental effort which generalize across different activities for a single participant over a
semester-long time period. This gives an approximation of how a device trained on a single
participant’s EDA readings would work for prediction of mental effort for that participant’s
activities in the future; but it is likely that this participant’s model would not generalize
directly to other users. With this being said, these data corroborate other research [19,24–27]
suggesting that increases in EDA are indicative of higher levels of mental effort. In this
sense, these general observations regarding the effect of signal intensity and peak intensity
could inform the implementation of an informative prior model within a mental effort
tracking device so that the device could be trained and optimized for generating useful
predictions with a new user more quickly. In addition, our data show that features related
to signal and peak intensity are most efficacious toward generating useful predictions for
mental effort which suggests that future research should focus on these.

Although classification efficacy for mental effort using the features derived from this
participant’s EDA signal is modest, we argue that a device with modest classification
efficacy (i.e., AUC in the 0.6–0.7 range) can be useful if: (1) the classification algorithm is
optimized to favor high specificity (i.e., result in fewer false alarms even at the cost of false
negatives), and (2) the device is used over a long time period which would elucidate trends
over time that could help create causal models that can determine the factors indicating a
state of high mental effort in an individual. These two criteria deserve further explanation.
We argue that from the perspective of a college student who is regularly engaged in
activities requiring high levels of mental effort, a device that more accurately predicts low
mental effort activities would be most useful in that it would generate few false alarms
while still picking up a portion of the participant’s actual high mental effort activities
throughout the day. Although this would limit efforts to provide an accurate single-day
estimate of time on the task at high mental effort, it would nonetheless be quite informative
for understanding trends in mental effort over an extended period of time provided that
the sensitivity and specificity of the device stay constant over time. For example, if a
student wanted to track their mental effort during the week of their final exams, the device
would likely underestimate the actual number of high mental effort activities; however, it
should be able to detect an increase in the number of high mental effort activities relative to
previous weeks. This would also be useful in a classroom setting if the instructors were
informed if a student achieved high mental effort, with the higher specificity resulting in
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more conservative but trustworthy information. We also argue that, as mentioned earlier,
the individual nature of the mental effort patterns indicates that even with a smaller sample
size, we can determine high mental effort in the participants and possibly increasing the
sample size need not improve the accuracy of the models.

Toward generating a realistic picture of how EDA is likely to perform for detection of
mental effort in a real-world setting, a strength of this study design is that it focused on an
uncontrolled setting over a significant time duration. It is well-known that many things can
affect a person’s EDA readings that are unrelated to mental efforts such as stress or changes
in mental health [36,37], medication use, caffeine intake, and changes in temperature and
humidity [38]. The extended study of a participant in their natural environment allows
these circumstances to be factored into the classification error; in this sense, we expect
larger errors in a study like this than we would expect in educational studies focusing on a
research lab setting, or even a specific classroom setting. Within our between-activity cross-
validation procedure, our reports of classifier performance have strong internal validity for
this participant, and we argue that these are likely to be representative of other participants
with similar backgrounds and goals.

In summary, the EDA features used in this study may be useful for predicting relative
change, but stronger classification is needed before we are able to make accurate predictions
for actual time on task. To the end of further improving prediction, one approach may
be to try additional types of EDA features. In this study, we focus on features from the
tonic and phasic signals resulting from the CDA approach. However, other decomposition
approaches such as Discrete Decomposition Analysis (DDA) will yield different features.
There is currently little agreement as to the best EDA features to utilize, making use of
the EDA signal as much an art as a science at this point in time. However, findings from
multiple studies [19,24–27] have generated a consensus that engagement in tasks requiring
higher mental effort can be detected through increases in both the tonic and phasic parts
of the signal. It makes sense, then, that although the specific features used may vary by
study, those which get at signal and peak intensity will likely provide useful information
regarding a user’s mental effort. It also makes sense that the more unique features we can
use to get at signal and peak intensity, the better the resulting predictions will be. Another
potential avenue to explore is the use of a higher-frequency EDA signal. Since EDA is a
slow signal (i.e., changes in the phasic component of the EDA signal occur on the order
of seconds and changes in the tonic component occur on the order of minutes) and the
activities evaluated with this participant were over an hour in duration on average, a 1 Hz
frequency signal provided a sufficient number of measures during each activity to provide
reliable estimates of the distributional features of user’s skin conductance level and skin
conductance responses during the activity. However, a higher frequency EDA signal, such
as 50–100 Hz, may be needed to detect minute-by-minute transitions in mental effort.

Future experimental work on the efficacy of using the EDA signal for the prediction
of mental effort can be discussed in light of the limitations of our current study design. A
single-user context helps us understand how a mental effort sensor can be trained on a
single participant and gives insight into the EDA features which may be most useful for
mental effort classification in a longitudinal context [30]. Although we expect the findings
from this case to generalize to other university students in terms of the types of EDA features
that are most useful for mental effort classification and the classifier performance that might
be obtained over a single-semester training duration, we would expect this participant’s
model to perform poorly on a new participant given that both tonic EDA and galvanic
skin response is highly variable from one participant to the next due to physiological
diversity and the range of unique environmental factors to which different individuals
are exposed [35]. Toward gaining a stronger understanding of individual differences, a
useful next step would be to extend a study like this to a multiple case study design which
focuses on similarities and differences in the models among different cases [30]. Through
the process of purposeful participant selection, students engaged in different programs of
study, which bring with them different types of learning environments and activities, could
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be compared. Comparison between a small number of cases could be accomplished through
descriptive comparisons of the directionality and magnitude of the EDA features with
mental effort and the strength of the classifiers using a between-activity cross-validation
framework similar to this study.

A larger-scale multiple case study with many participants could support the use
of longitudinal mixed effects models where baseline values and trends are treated as
between-participant random effects which would enable the inspection of the random
effects covariance matrix or use of intraclass correlation coefficients to shed light on the
extent of between-participant variability in model intercepts and trends [39]. Whether the
researcher chooses to model each participant separately or use a mixed effects approach to
modeling the participants together while accounting for individual differences in intercepts
and trends, we expect to find the highest variability in the participant baseline or intercept
values and comparatively lower (but significant) variability in the magnitude of the rela-
tionship between the EDA features and self-reported mental effort. Specifically, we would
expect features related to EDA signal and peak intensity to be positively related to mental
effort, but also expect that the magnitude of these relationships would vary across different
participants. Although the specific models would likely vary from one participant to the
next within the above constraints, we see no reason to believe that useful classifications for
mental effort could not be achieved for a new participant providing that adequate training
data exist to account for that participant’s unique EDA responses. Our data indicate the effi-
cacy of using 91 activities over the course of a semester, but future studies could experiment
with shorter or more extensive durations. In any case, we recommend that future studies
retain the naturalistic focus of the current study; in other words, concentrating on uses
within a student’s natural environment [40] instead of using controlled laboratory settings
which will tend to overestimate the performance we are likely to see in the real world.

6. Conclusions

In this study, we demonstrate the usefulness of EDA features related to signal and
peak intensity for generating predictions for low vs. high mental effort that generalize
across 91 activities undertaken by a university student pursuing undergraduate coursework
over the course of a semester. We argue that the features used in this study can provide a
useful framework for a wearable device to generate inferences for change in mental effort
over time provided that the modeling framework prioritizes specificity. However, stronger
classification performance would be necessary before such a device could provide accurate
estimates for the actual time at high mental effort on a day-to-day basis. We further argue
that the model presented in this study could be useful as a prior model (i.e., one that is
built favoring a particular set of models a priori as opposed to building a model with an
assumption of a uniform prior distribution of possible models) which would expedite the
training (although still require it) of such a device on a new participant given multiple
studies that have found a positive relationship between mental effort and signal and peak
intensity. With this being said, both skin conductance level and skin conductance responses
can be highly variable from one individual to another, and so there is likely to be a relatively
modest upper limit on the extent to which we are able to generalize predictions across
individuals using the EDA signal exclusively. Given that devices such as the Empatica E4
provide other types of physiological data such as heart rate and skin temperature which
have been shown to be related to mental effort [6,19], and that there are devices such as
the BioPac sensor which, while more invasive than a wrist-worn wearable, would give
access to the higher-frequency EDA data that would be needed to predict higher-frequency
transitions in mental effort, the current findings may provide a promising cornerstone for
future research and development in this area.
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