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ABSTRACT

Thanks in part to rapid advances in next-generation sequencing
technologies, recent phylogenomic studies have demonstrated the
pivotal role that non-tree-like evolution plays in many parts of
the Tree of Life - the evolutionary history of all life on Earth. As
such, the Tree of Life is not necessarily a tree at all, but is better
described by more general graph structures such as a phylogenetic
network. Another key ingredient in these advances consists of the
computational methods needed for reconstructing phylogenetic
networks from large-scale genomic sequence data. But virtually
all of these methods either require multiple sequence alignments
(MSAs) as input or utilize gene trees or other inputs that are com-
puted using MSAs. All of the input MSAs and gene trees must be
estimated on empirical data. The methods themselves do not di-
rectly account for upstream estimation error, and, apart from prior
studies of phylogenetic tree reconstruction and anecdotal evidence,
little is understood about the impact of estimated MSA and gene
tree error on downstream species network reconstruction.

We therefore undertake a performance study to quantify the
impact of MSA error and gene tree error on state-of-the-art phylo-
genetic network inference methods. Our study utilizes synthetic
benchmarking data as well as genomic sequence data from mosquito
and yeast. We find that upstream MSA and gene tree estimation
error can have first-order effects on the accuracy of downstream
network reconstruction and, to a lesser extent, its computational
runtime. The effects become more pronounced on more challenging
datasets with greater evolutionary divergence and more sampled
taxa. Our findings highlight an important need for computational
methods development: namely, scalable methods are needed to
account for estimated MSA and gene tree error when reconstruct-
ing phylogenetic networks using unaligned biomolecular sequence
data.
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1 INTRODUCTION

Among the many advances enabled by next-generation genomic
sequencing and large-scale genomic data are new discoveries con-
cerning the prevalence of gene flow in the Tree of Life [1, 17, 22]. A
corollary question immediately follows: to what extent is the Tree
of Life not really a tree, but rather a more general graph structure
known as a phylogenetic network [14]?

In addition to data, advances in computational methodologies are
needed to resolve these major questions. New algorithms have been
developed for reconstructing phylogenetic networks from genomic
sequence data [14, 25]. The methods broadly fall into two classes: (1)
statistical methods, and (2) parsimony-based methods. The former
class of methods requires an explicit evolutionary model such as the
multi-species network coalescent (MSNC) model [41, 44]; methods
to perform statistical optimization under these models include max-
imum likelihood methods [36, 40, 42], maximum pseudo-likelihood
methods [35, 43], and Bayesian methods [2, 39, 45]. The latter class
of methods includes the method of Yu et al. [44]. We focus on sta-
tistical methods in our study since they been shown to be generally
more accurate than the latter class, where a reasonable parametric
model is available for statistical inference and learning [11].

But advances in phylogenetic network estimation alone are insuf-
ficient. Many widely-used phylogenetic network estimation meth-
ods and methodological pipelines either directly or indirectly utilize
a multiple sequence alignment (MSA) as a fixed input [25]. For
example, summary-based species phylogeny estimation methods
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require a set of gene trees as input, and gene trees are typically
estimated using a “two-phase” method: for each gene, unaligned
sequence data are first aligned into an MSA, and then gene tree
reconstruction is performed using the MSA as input. Upstream
estimates are fixed in downstream phylogenetic estimation using
multi-locus inputs, which effectively makes an implicit assumption
about estimated MSA and estimated gene tree accuracy. (Through-
out our study and the rest of this manuscript, “locus” refers to a
gene unless otherwise noted.)

This assumption has long been known to be an over-simplification
for phylogenetic tree reconstruction, and numerous studies have
demonstrated the major impact of MSA quality on downstream
phylogenetic tree estimation accuracy [20, 21, 28]. Since phyloge-
netic networks generalize trees, a similar conclusion seems natural
for phylogenetic network estimation. But there remains a need for
direct investigation to explicitly test this hypothesis.

On the other hand, anecdotal evidence does exist. An illustrative
example can be found in Hagelberg et al. [8]’s phylogenetic analysis
of human mitochondrial DNA (mtDNA) sequence data sampled
from across the western Pacific. The outcome of their study was
the putative discovery of genetic recombination in human mtDNA.
Such a finding would provide a ground-breaking counterexample
against the conventional wisdom that human mtDNA is matrilin-
eally inherited, and would imply that the evolutionary history of
human mtDNA takes the form of an ancestral recombination graph
(ARG) rather than a tree. But it turned out that their phylogenetic
analyses utilized an estimated MSA but did not account for align-
ment error: a single mis-alignment resulted in artificially elevated
divergence at a key site and was interpreted as a rare mutation [9].
The resulting artifact led the authors to support a non-tree-like
evolutionary hypothesis invoking genetic recombination due to
paternal mtDNA leakage. Subsequent to the study’s publication, the
authors identified the MSA error and took the commendable action
of issuing a major correction to their publication and rescinding
their finding.

The example provides an important cautionary tale. What else
could we be missing in phylogenetic and phylogenomic studies of
gene flow and other claimed findings of non-tree-like biomolecular
sequence evolution?

2 MATERIALS AND METHODS

To begin to resolve these questions, we conducted a performance
study to investigate the impact of MSA accuracy and gene tree
accuracy on state-of-the-art summary-based phylogenetic network
estimation methods.

Simulated datasets. Our simulation study utilized single-reticulation
model networks with either 4 or 8 in-group taxa. Model networks
were obtained using the basic procedure from the study of Hejase
and Liu [11]. First, a random tree with n € {4, 8} taxa and height hg
was sampled under a random birth-death process using r8s version
1.8.1 [33]. The branch lengths were then rescaled by a factor hﬁo )
that the model phylogeny had height h. Next, a single reticulation
was added using the following procedure: (1) a reticulation event
time t5; was chosen uniformly at random from the interval [0.01, %],
two extant populations at time tj; were randomly selected, and a
reticulation edge with random orientation was added to connect
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the corresponding pair of tree edges. Finally, an outgroup taxon was
added to the resulting model network with GMRCA at time 2.0h.
(See Supplementary Figure S1 in Appendix for several examples of
model networks from our simulation study.)

For each model network, ms [13] was used to conduct sim-
ulations under the multi-species coalescent and isolation-with-
migration (MSC+IM) model. As in the study of Hejase and Liu [11],
a reticulation with time t); was modeled using a unidirectional
migration event from time t); — 0.01 to tp + 0.01 with migration
rate 5.0. Each MSC+IM simulation sampled 1000 local coalescent
histories and gene trees.

INDELible version 1.03 [6] was used to simulate sequence evo-
lution along each local gene tree. Local coalescent history times
measured in coalescent units were converted into gene tree branch
lengths measured in expected numbers of substitutions using equa-
tion 3.1 in [10] and scaled mutation rate 6. Gene tree branch lengths
were then deviated away from ultrametricity under the model of
[26] with deviation factor ¢ = 2.0, resulting in non-ultrametric gene
trees. Sequence evolution was simulated under a finite-sites model
of nucleotide substitutions, insertions, and deletions. The General
Time-Reversible (GTR) model was used for the former. GTR model
parameter values were based on empirical nematode Tree of Life
(NemAToL) estimates from the study of Liu et al. [21], where base
frequencies |71, nc, 14, 7G| Were set to [0.3115, 0.1913, 0.3004,
0.1967] and substitution rates [rrc, rTA, 'TG>TCA> 'CG»TAG] Were

setto [1.2620, 0.1401,0.2878,0.3577,0.3083, 1.0]. The insertion/deletion

model utilized the medium gap length distribution from the study
of Liu et al. [21], where the probability distribution [p1, p2, ...] that
specifies the probability p; of a gap with length i was set to [0.2012,
0.1600, 0.1280, 0.1024, 0.0819, 0.0655, 0.0524, 0.0419, 0.0336, 0.0268,
0.0215, 0.0172, 0.0137, 0.0110, 0.0088, 0.0070, 0.0056, 0.0045, 0.0036,
0.0029, 0.0023, 0.0018, 0.0015, 0.0012, 0.0009, 0.0008, 0.0006, 0.0005,
0.0004, 0.0003, 0.0002]. Mutation rates and insertion/deletion rates
were chosen to span a range of sequence divergence observed in
non-intronic and intronic loci, similar to the traditional phyloge-
netic marker-based benchmarking datasets in the Comparative RNA
Website database [4] and the simulation study of Liu et al. [21]. As
another point of reference, our intermediate model conditions have
observed sequence divergence that is in line with subsets of the
avian Tree of Life WGS dataset from the study of Jarvis et al. [15].
The sequence length at the root was set to 1 kb.

To obtain experimental replication, the simulation procedure was
repeated to obtain 20 replicate datasets per model condition. Table
1 lists model condition parameter values and summary statistics
for true MSAs.

Methods and performance measures used in simulation study. Our
study focused on statistical methods for phylogenetic network re-
construction. As is the case with many of the most popular phylo-
genetic methods, the phylogenetic methods in our study are used as
one stage of a methodological pipeline. MSA estimation and gene
tree estimation are typically performed as upstream pipeline stages.

We focused on summary-based network inference under the
MSNC model as implemented in the PhyloNet software package
[36, 40], which has been shown to be among the most accurate and
popular approaches for this problem [11]. Similar to widely-used
“two-phase” methods in traditional phylogenetics that first estimate
an MSA from biomolecular sequence data and then estimate a
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phylogenetic tree from the inferred MSA, summary-based inference
methods take the form of a methodological pipeline: (1) unaligned
biomolecular sequence data for each locus is aligned into an MSA,
(2) a gene tree is inferred using the input MSA for each locus, and
(3) a species network is inferred using the set of inferred rooted
gene trees, which act as “summaries” of biomolecular sequence
data from the sampled loci.

In our simulation study, MSAs in the first pipeline stage consisted
of either the true alignment generated by INDELible or an estimated
alignment. We used either MAFFT [16], FSA [3], Clustal Omega [34],
or ClustalW [18] for MSA estimation; these MSA methods have
been shown to be among the leading methods in terms of alignment
accuracy, downstream tree inference accuracy, and/or popularity
[16, 19, 21]. (See Appendix for supplementary experiments with
two additional MSA methods.) Default settings were used for the
MAFFT L-INS-i algorithm as implemented in MAFFT version 7.450,
Clustal Omega version 1.2.4, ClustalW version 2.1, and FSA version
1.15.9. Table 2 lists summary statistics for the estimated MSAs.

Gene trees in the second pipeline stage consisted of either the
true gene trees or inferred gene trees that were obtained using the
following procedure: on either the true MSA or an estimated MSA,
we ran FastTree version 2.1.11 [29] with default settings to perform
maximum likelihood estimation of an unrooted gene tree under
the GTR+T" model of nucleotide substitution [5, 27, 31]. To obtain
rooted gene trees for input into the last pipeline stage, estimated
gene trees in the second-to-last pipeline stage were rooted using
outgroup rooting. The leaf edge to the outgroup taxon was then
pruned from each rooted gene tree, since outgroups were used
solely for rooting gene trees.

Finally, for each set of rooted gene trees — either true gene
trees, or estimated gene trees that were inferred from true align-
ments or estimated alignments — PhyloNet [36, 40] was used to
perform summary-based network inference under one of two dif-
ferent MSNC-based optimization criteria: model likelihood given
gene tree topologies as input [43], or model pseudo-likelihood given
gene tree topologies as input [43]. We refer the two summary-based
inference methods as MLE and MPL, respectively; both were run
using default settings and version 3.8.2 of the PhyloNet software
package.

We evaluated method performance based on estimated MSA
error with respect to the true MSA and topological error of an
inferred phylogeny with respect to model phylogeny. We assessed
both type I and type II error of estimated MSAs: the SP-FP pro-
portion is the fraction of nucleotide-nucleotide homologies that
appear in an estimated MSA but not the true MSA, and the SP-FN
proportion is the fraction of nucleotide-nucleotide homologies that
appear in the true MSA but not an estimated MSA, respectively.
Topological error of gene trees was assessed using the Robinson-
Foulds distance [30], which is the proportion of bipartitions that
are present in an estimated tree but not the true tree or vice versa.
Topological error of species networks was assessed using Nakhleh’s
[24] equivalence-based calculation which is a metric on the set of
reduced phylogenetic networks. The calculation reflects the num-
ber of rooted subnetworks that appear in one network but not the
other or vice versa.

Empirical datasets and methods. Our empirical study utilized
genomic sequence datasets from two previous studies [32, 38]. Both
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studies included species for which non-tree-like evolution has been
hypothesized.

The first dataset came from Fontaine et al. [7]’s study of adaptive
introgression in mosquitoes and was later re-analyzed by Wen et
al. [38]. The dataset samples a total of 7 species (including one
out-group taxon) and 3019 genomic loci. The in-group taxa are
Anopheles gambiae, A. coluzzii, A. arabiensis, A. quadriannulatus, A.
merus, and A. melas, which we abbreviate as G, C, A, Q, R, and L,
respectively; A. christyi serves as the out-group taxon. The number
of taxa and their evolutionary divergence are generally within the
scope of the simulation study, although the number of loci is greater
by a factor of ~3.

The second dataset came from the study of Salichos and Rokas
[32]. The dataset includes genomic sequence data for 23 yeast
species and 4435 loci in total. Species network analyses of a larger
dataset - both in terms of number of taxa and sampled loci — comple-
ment the other experiments in our performance study and provide
additional guidance on the impact of dataset scale on our study
findings.

For both datasets, species networks were reconstructed using
summary-based phylogenomic inference as in the simulation study.
First, a multiple sequence alignment was estimated for each locus
using ClustalW version 2.1, MAFFT version 7.222, or FSA version
1.15.9. Next, we used FastTree version 2.1.11 to infer an unrooted
gene tree for each multiple sequence alignment under the GTR+T
model of nucleotide substitution. Unrooted gene trees were then
outgroup rooted, after which the outgroup taxon was pruned by
deleting its pendant leaf edge. Finally, given the rooted gene trees
as input, a species network with r reticulations was inferred using
MPL optimization as implemented in PhyloNet version 3.6.0, where
r € [0,4].

Data availability and computational resources used for experi-
ments. The software and datasets used in our study are available
at https://gitlab.msu.edu/liulab/impact-of-msa-quality-on-network-
inference.public. The study software and datasets are provided
under permissive copyleft open licenses.

Detailed software commands are provided in the Supplemen-
tary Appendix. All computational experiments were performed
on the MSU High Performance Computing Center, with hardware
consisting of Intel Xeon CPUs running at 2.4 or 2.5 GHz.

3 RESULTS

Estimation accuracy of summary-based phylogenetic methods.
Summary statistics calculated on the estimated MSAs are shown in
Table 2. Estimated MSA error, topological error of estimated gene
trees, and topological error of MLE-estimated species networks are
shown in Figures 1, 2, and 3 respectively.

In general, summary-based MLE analyses returned highest accu-
racy when provided true trees as input, followed by FastTree run
on true MSAs, and then FastTree run on estimated MSAs — where
the latter were ranked in order of increasing topological error as
follows: MLE(FastTree(ClustalOmega)), MLE(FastTree(MAFFT)),
MLE(FastTree(ClustalW), and MLE(FastTree(FSA)). The relative
method comparisons are as expected since the first two pipelines
utilize ground truth and therefore represent theoretical baselines.
The MLE-based method comparisons were consistent across dataset
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Table 1: Simulation study: model parameters and true multi-
ple sequence alignment (MSA) statistics. The 4-taxon model
conditions are named 4.A through 4.E in order of gener-
ally increasing evolutionary divergence; the 8-taxon model
conditions are named 8.A through 8.E similarly. Additional
model condition parameters include the insertion/deletion
rate and the model phylogeny height (see Methods sec-
tion for details). Average normalized Hamming distance
(“ANHD”), the percentage of true MSA cells that consist
of indels (“Gappiness”), and the number of true MSA sites
(“Length”) are reported as an average for each model condi-
tion (n = 20).

Insertion/ Model
Model deletion phylogeny

condition rate height

4.A 0.12 0.3

4B 0.08 0.5

4.C 0.06 0.7

4D 0.04 1.0

4E 0.03 1.4

8.A 0.06 0.5

8B 0.05 0.6

8.C 0.03 1.0

8.D 0.02 1.7

8.E 0.013 2.4

Model True MSA
condition ANHD Gappiness Length

4.A 0.373 0.312 1458.6
4B 0.432 0.334 1505.7
4.C 0.470 0.343 1529.9
4D 0.510 0.333 1505.5
4E 0.545 0.344 1530.8
8.A 0.338 0.324 1487.2
8.B 0.360 0.325 1487.3
8.C 0.422 0.325 1487.6
8.D 0.477 0.353 1552.8
8.E 0.515 0.333 1506.8

sizes. On four-taxon model conditions, the MLE-based methods
— MLE(TrueGeneTrees), MLE(FastTree(TrueAln)), MLE(FastTree(
ClustalOmega)), MLE(FastTree(MAFFT)), MLE(FastTree(ClustalW)),
and MLE(FastTree(FSA)) - returned average network errors (as mea-
sured using Nakhleh’s reduction-based metric) of 1.71, 2.38, 3.05,
3.13, 3.56, and 4.24, respectively. On eight-taxon model conditions,
higher absolute network estimation error was observed overall
and average network errors of these methods was 3.27, 3.61, 3.71,
4.34,4.50, and 6.13, respectively. Some per-model-condition variabil-
ity was observed within these overall trends, which we attribute
to stochasticity of the simulation study experiments. The study
findings were somewhat sensitive to random reticulations, which
experimental replication helps to mitigate. For each method, estima-
tion error increased in a fairly consistent manner as evolutionary
divergence increased in the 4-taxon simulation experiments, and a
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similar phenomenon was observed in the 8-taxon simulation exper-
iments. The observation applied to MSA estimation (Figure 1), gene
tree estimation (Figure 2), and species network estimation (Figure
3). However, the rate of increase in estimation error as evolutionary
divergence increased was not the same across all methods. Some
increased faster (e.g., FSA-based phylogenetic analyses), and others
more slowly.

Overall, MSA error, gene tree error, and MLE network estima-
tion error were qualitatively correlated across model conditions
and methods. While the quality of input MSAs and gene trees —
ranging from ground truth to relatively accurate estimates to rela-
tively inaccurate estimates — tended to be reflected in topological
error of downstream network estimation, a few minor exceptions
were noted. On two of the least divergent model conditions in our
study, FastTree analyses of some estimated MSAs return gene tree
accuracy comparable to FastTree on true MSAs; these were the
only model conditions where downstream MLE network inference
using these estimated gene trees returned comparable accuracy to
network inference using true gene trees as input. Another interest-
ing anomaly concerned Clustal Omega MSAs. Clustal Omega was
among the least accurate MSA methods in terms of alignment error
as measured using SPFN and SPFN; FastTree(ClustalOmega) simi-
larly returned less accurate gene trees compared to other gene tree
estimation methods. And yet downstream MLE network estimation
using FastTree(ClustalOmega)-estimated gene trees as input was
often the most accurate among analyses using estimated gene trees.
The finding is surprising since Clustal Omega was developed for
MSA estimation (and gene tree estimation, to a lesser extent) but
not for species network estimation. We hypothesize that Clustal
Omega MSA estimation may be biased in a manner that is suited
to the specific experimental settings in our study.

Figure 4 reports topological error of MPL-estimated networks.
Overall, MPL analyses returned higher topological error compared
to MLE analyses on a given model condition and set of inputs (i.e.,
MSAs and gene trees). This is as expected since MPL utilizes a
pseudolikelihood criterion that is an approximation to MLE’s full
model likelihood criterion, and pseudolikelihoods were designed
to tradeoff accuracy for speed during optimization [35, 43]. The
finding is also consistent with prior performance studies [11]. The
comparison among different MPL-based analyses returned smaller
differences in topological error, as compared to MLE-based analyses.
We attribute this finding to the higher overall topological error re-
turned by MPL-based analysis compared to an otherwise equivalent
MLE-based analysis. As overall estimation error approaches satu-
ration, the impact of upstream factors (e.g., input MSA error and
input gene tree error) likely becomes more difficult to distinguish
from downstream network estimation error.

Runtime and memory usage of summary-based phylogenetic meth-
ods. MSA and gene tree quality also had secondary impacts on
species network estimation runtime. Figures 5 and 6 show runtime
results for MLE- and MPL-based analyses, respectively. FSA-based
MSA estimation and downstream gene tree and species network
estimation using FSA were least accurate compared to other MSA
estimation methods; runtime of FSA-based analyses was also slow-
est, and increased evolutionary divergence had the most dramatic
impact on FSA-based analysis runtime — ballooning by as much
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Figure 1: Simulation study: estimated MSA error. The MSA methods in our study consisted of MAFFT, Clustal Omega, ClustalW,
and FSA. We assessed MSA estimation error based on type I and type II error: the former was assessed based on SP-FP propor-
tion (“SPFP”), which is the proportion of nucleotide-nucleotide homologies that appear in the estimated alignment but not
the true alignment, and the latter was assessed based on SP-FN proportion (“SPFN”), which is the proportion of nucleotide-
nucleotide homologies that appear in the true alignment but not the estimated alignment. Average SPFN and SPFP are shown

for each MSA method on each model condition (n = 20).

as multiple factors on the two most divergent 8-taxon model con-
ditions in our study. The runtime increase is likely due to FSA’s
tendency to under-align input sequences, resulting in artificially
high gappiness (and artificially low ANHD), and increased MSA
length (i.e., number of MSA sites) inflates runtime. All other meth-
ods exhibited smaller increases in runtime as evolutionary diver-
gence increased across model conditions. The impact of MSA error
and gene tree error on network estimation runtime was also less
pronounced for MSA methods other than FSA, with stronger differ-
entiation between methods as evolutionary divergence increased
(especially on more divergent 8-taxon model conditions). As ex-
pected, MPL-based analyses were faster than MLE analyses, with
runtime difference of roughly an order of magnitude. Peak main
memory usage was less than 600 MiB in most cases — well within
the scope of modern PCs and other computing infrastructure. Rela-
tive differences in main memory usage were smaller than runtime
comparisons as well.

3.1 Empirical Study

Mosquito dataset. We compared the topologies of estimated net-
works using different MSAs (including reference and estimated

MSAs) and gene trees (Table 3). Single-reticulation phylogenetic net-
work estimation using FastTree(ClustalW)-, FastTree(ClustalOmega)-
, and FastTree(FSA)-estimated gene trees were topologically identi-
cal to estimation using reference MSAs and FastTree. In contrast,
network analyses using FastTree(MAFFT)-estimated gene trees re-
turned different topologies compared to analyses of the reference
and other estimated MSAs. A similar outcome was observed for
two-reticulation estimated networks, with one change: network
estimation using FastTree(FSA)-estimated gene trees now returned
different topologies compared to all other methods.

As network hypotheses become more complex (i.e., more reticu-
lations were allowed in output networks), topological differences
between the different methods increased as well. Estimation of 3-
and 4-reticulation networks returned different topologies regard-
less of whether reference or estimated MSAs were used as input to
gene tree estimation and species network estimation. No clear trend
was observed in terms of MSA and gene tree estimation methods:
estimated network topologies differed regardless of the methods
under comparison. We note an important difference between the
empirical study and simulation study: the reference MSAs used in
the former are not the same as the true MSAs used in the latter,
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Figure 2: Simulation study: topological error of gene trees estimated using different MSAs. Topological error was assessed based
on the normalized Robinson-Foulds distance between an estimated gene tree and the true gene tree. Gene trees were estimated
using MLE analysis of five different input MSAs: (1) FastTree analysis of the true MSA (“FastTree(TrueAln)”), (2) FastTree
analysis of a Clustal Omega-estimated MSA (“FastTree(ClustalOmega)”), (3) FastTree analysis of a ClustalW-estimated MSA
(“FastTree(ClustalW)”), (4) FastTree analysis of a MAFFT-estimated MSA (“FastTree(MAFFT)”), or (5) FastTree analysis of an
FSA-estimated MSA (“FastTree(FSA)”). Averages and standard error bars are shown for each method and model condition in
the simulation study (n = 20).
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Figure 3: Simulation study: the impact of estimated MSA and gene tree error on topological error returned by MLE-based
species network estimation. MLE was run on six different inputs: (1) true gene trees (“MLE(TrueGeneTrees)”), (2) gene trees
estimated by FastTree analyses of true MSAs (“MLE(FastTree(TrueAln))”), (3) gene trees estimated by FastTree analyses of
Clustal Omega-estimated MSAs (“MLE(FastTree(ClustalOmega))”), (4) gene trees estimated by FastTree analyses of ClustalW-
estimated MSAs (“MLE(FastTree(ClustalW))”), (5) gene trees estimated by FastTree analyses of MAFFT-estimated MSAs
(“MLE(FastTree(MAFFT))”), or (6) gene trees estimated by FastTree analyses of FSA-estimated MSAs (“MLE(FastTree(FSA))”).
Topological error was measured using Nakhleh [24]’s equivalence-based network metric. Averages and standard error bars
are shown for each method and model condition in the simulation study (n = 20).

4 DISCUSSION

Our study demonstrated that MSA estimation error and gene
tree estimation error can increase topological error of downstream
species network estimation, and this effect becomes more pro-
nounced as evolutionary divergence increases. We hypothesize
that this finding is due in part to the tendency of MSA estimation
methods to over-align, resulting in artificially elevated site diver-
gence. The latter then contributes spurious signal for topologically
incongruent gene trees and more divergent alleles originating via

since reference MSAs were estimated in part using computational
approaches.

Yeast dataset. Similar outcomes were observed on the yeast
dataset, with the exception that reference MSAs were not available.
Topological differences were lowest for single-reticulation network
estimations, and increased as network hypotheses became more
complex in terms of the number of reticulations. Again, no clear
trends were observed based on topological differences between a
pair of estimates using different input MSAs and gene trees.
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Figure 4: Simulation study: the impact of estimated MSA and gene tree error on topological error returned by MPL-based
species network estimation. Figure description and layout are otherwise identical to Figure 3.
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Figure 5: Simulation study: computational runtime require-
ments of MLE-based species network inference methods. Re-
sults on 4-taxon and 8-taxon model conditions are shown in
top and bottom panels, respectively. Figure legend and lay-
out are otherwise identical to Figure 3. Averages and stan-
dard error bars are shown for each method and model con-
dition in the simulation study (n = 20).

gene flow/reticulations during subsequent species network recon-
struction. This findings mirrors Hagelberg et al. [8]’s correction,
writ large. The simulation study experiments involving MAFFT-,
Clustal Omega-, and ClustalW-estimated MSAs are largely con-
sistent with this hypothesis. These methods estimated MSAs with
consistently lower gappiness and higher ANHD as compared to true
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Figure 6: Simulation study: computational runtime require-
ments of MPL-based species network inference methods.
Figure legend and layout are otherwise identical to Figure
5.

alignments. FSA had an opposite bias: it tended to return much gap-
pier estimated MSAs compared with the other two MSA methods,
resulting in typically lower site divergence. Under the finite-sites
substitution models used for gene tree MLE in our study (and much
of traditional phylogenetics), indels are treated either as missing
data or an additional base. We note that phylogenetic tree MLE is
not statistically consistent under substitution models where indels
are treated as missing data or an additional base [37]. We suspect
that this particular case of model mis-specification has the effect of
underestimating substitution events, with corresponding impacts
on downstream gene tree and species network inference error.
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Table 2: Simulation study: estimated multiple sequence
alignment (MSA) summary statistics. The model conditions
are the same as in Table 1. Average normalized Hamming
distance (“ANHD”), the percentage of estimated MSA cells
that consist of indels (“Gappiness”), and the number of es-
timated MSA sites (“Length”) are reported as an average for
each model condition and MSA estimation method. (n = 20).

Model MAFFT
condition ANHD Gappiness Length
4.A 0.399 0.213 1274.2
4B 0.464 0.217 1279.5
4.C 0.504 0.222 1287.6
4D 0.537 0.226 1295.1
4E 0.566 0.241 1321.1
8.A 0.373 0.234 1308.9
8.B 0.397 0.233 1306.1
8.C 0.465 0.238 1315.6
8.D 0.527 0.273 1380.8
8.E 0.554 0.291 1418.8
Model Clustal Omega
condition ANHD Gappiness Length
4.A 0.488 0.147 1174.7
4B 0.533 0.147 1173.8
4.C 0.560 0.146 1172.2
4D 0.582 0.143 1167.7
4E 0.605 0.144 1169.9
8.A 0.462 0.161 1193.6
8.B 0.479 0.159 1190.9
8.C 0.529 0.155 1185.5
8.D 0.584 0.160 1191.9
8.E 0.608 0.159 1190.9
Model ClustalW
condition ANHD Gappiness Length
4.A 0.414 0.139 1163.6
4B 0.477 0.128 1148.2
4.C 0.516 0.119 1136.4
4D 0.549 0.108 1122.3
4E 0.580 0.100 1112.4
8.A 0.397 0.161 1194.1
8.B 0.420 0.156 1185.5
8.C 0.492 0.137 1159.4
8.D 0.563 0.121 1138.6
8.E 0.596 0.107 1120.4
Model FSA
condition ANHD Gappiness Length
4.A 0.426 0.364 1598.6
4B 0.493 0.512 2101.4
4.C 0.508 0.586 2481.9
4D 0.509 0.633 2805.4
4E 0.502 0.673 3147.5
8.A 0.364 0.458 1891.4
8.B 0.376 0.515 2109.9
8.C 0.391 0.634 2859.0
8.D 0.374 0.730 3941.5

8.E 0.356 0.769 4581.6

Gao et al.

Table 3: Empirical study: topological comparison of dif-
ferent MLE-based species network estimation methods on
the mosquito dataset. The MSAs consisted of either refer-
ence MSAs from the original study of Fontaine et al. [7] or
MSAs estimated using ClustalW, MAFFT, or FSA. Gene trees
were estimated on MSAs using FastTree, and the resulting
gene trees were used as input to MLE. The method abbre-
viations “M(F(Clo))”, “M(F(Clu))”, “M(F(MAF))”, “M(F(FSA))”,
and “M(F(Ref))” refer to MLE analyses of gene trees esti-
mated using FastTree analyses of Clustal Omega, ClustalW,
MAFFT, FSA, and reference MSAs, respectively. We also com-
pared estimation of species networks with differing com-
plexity, where MLE was used to estimate a species network
with at most 1, 2, 3, or 4 reticulations. Topological distances
between a pair of estimated networks were measured using
Nakhleh [24]’s equivalence-based network metric. Only up-
per triangular entries in the pairwise distance matrix are
shown.

1 reticulation
M(F(Clo)) M(F(Clu)) M(F(MAF)) M(F(FSA))  M(F(Ref))
0 6

M(F(Clo)) - 0 0
M(F(Clu)) - 6 0 0
M(F(MAF)) - 6 6
M(E(FSA)) - 0
M(F(Ref)) -
2 reticulations
M(F(Clo)) M(F(Clu)) M(F(MAF)) M(F(FSA)) M(F(Ref))
M(F((Clo)) - 0 4 7 0
M(F((Clu)) - 4 7 0
M(F((MAF)) - 7 4
M(F((FSA)) - 7
M(F((Ref) -
3 reticulations
M(F(Clo)) M(F(Clu)) M(F(MAF)) M(F(FSA)) M(F(Ref))
M(F((Clo)) B 3 10 10 10
M(F((Clu)) - 10 10 10
M(F((MAF)) - 10 4
M(F((FSA)) - 9
M(F((Ref)) -
4 reticulations
M(F(Clo)) M(F(Clu)) M(F(MAF)) M(F(FSA))  M(F(Ref))
M(F((Clo)) N 11 12 13 11
M(F((Clu)) - 11 11 11
M(F((MAF)) - 14 12
M(F((FSA)) - 11
M(F((Ref)) -

Our experiments revealed another important practical point:
MSA accuracy also had a secondary impact on the computational
requirements of statistical phylogenetic network reconstruction.
On more divergent model conditions, we observed an increase
in species network estimation runtimes, especially those involv-
ing less accurate MSAs and gene trees. We attribute this finding
to greater topological discordance among the inputs provided to
summary-based species network inference. In reality, the dataset
sizes and divergences in our study are modest compared to recent
phylogenomic studies, where analyses of many dozens of genomic
sequences or more are increasingly commonplace. The observed
runtime and main memory requirements of the estimation meth-
ods under study were commensurate with small dataset scales:
consistently less than 6 minutes and 1 GiB. But the trend towards
increasing runtime as dataset scales grew suggest that MSA error
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Table 4: Empirical study: topological comparison of differ-
ent MLE-based species network estimation methods on the
yeast dataset. MSAs were estimated using ClustalW, MAFFT,
or FSA. Gene trees were estimated using FastTree, and
species networks were estimated using MLE. The method ab-
breviations “M(F(Clu))”, “M(F(MAF))”, and “M(F(FSA))”, refer
to MLE analyses of gene trees estimated using FastTree anal-
yses of ClustalW, MAFFT, and FSA MSAs, respectively. Table

description and layout are otherwise identical to Table 3.

1 reticulation

M(F(Clu)) M(F(MAF)) M(F(FSA))
M(F(Clu)) - 5 8
M(F(MAF)) - 4
M(F(FSA)) -
2 reticulations
M(F(Clu)) M(F(MAF))  M(F(FSA))
M(F(Clu)) - 13 15
M(F(MAF)) - 15
M(E(FSA)) -
3 reticulations
M(F(Clu)) M(F(MAF)) M(F(FSA))
M(F(Clu)) - 15 20
M(F(MAF)) - 22
M(F(FSA)) -
4 reticulations
M(F(Clu)) M(F(MAF)) M(F(FSA))
M(F(Clu)) - 16 18
M(F(MAF)) - 21
M(F(FSA)) -

and gene tree error will have non-negligible effects on species net-
work estimation runtime on WGS datasets that are much larger
and/or more divergent than those considered in our study. And we
note that in no realistic scenario involving empirical data should
we expect to have access to MSA quality approaching ground truth.
The resulting scalability challenge represents a road-block to wide
uptake of statistical network inference by the systematics research
community.

Here, the scalability issue prevented us from exploring larger
dataset sizes, which are now becoming commonplace in today’s
post-genomic era. Nevertheless, our results suggest that the impact
of MSA accuracy and gene tree accuracy will become even more
pronounced as the scope of modern phylogenomic and phylogenetic
studies grows in terms of number of taxa, number of sampled
genomes, and evolutionary divergence. The scalability study of
[11] provides a theoretical baseline: in experiments with 10-taxon
datasets, MLE analyses using ground truth inputs (i.e., true MSAs
and true gene trees) required more than a week of computational
runtime and returned greater topological error than experiments
on smaller datasets. Our findings suggest that MSA estimation
error and gene tree estimation error will only amplify the impact
of dataset scale on species network estimation error and runtime
requirements.

Our study also underscores the need to move beyond perfor-
mance studies of summary-based phylogenetic inference methods
where experimental inputs primarily consist of true gene trees
and/or true MSAs. Rather, future studies and algorithmic develop-
ment efforts need to focus on the exact opposite setting: experi-
ments where inputs do not include ground truth and consist only
of estimated reconstructions for all upstream analysis tasks. We
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note that gene tree estimation errors in our study are actually fairly
low. We observed average topological error of around 5-25% for
the most accurate method on each model condition, which is well
within the range seen in prior performance studies of gene tree
estimation methods [20, 21, 23].

5 CONCLUSIONS

Our simulation study clearly demonstrated the impact of MSA
estimation error and gene tree estimation error on downstream
phylogenetic network inference and learning. The impact on both
topological accuracy and computational runtime became more pro-
nounced as evolutionary divergence increased. Topological com-
parisons in our empirical study were consistent with these findings,
and were also influenced by network hypothesis complexity. Our
findings point to the need to account for MSA error and gene tree
error in phylogenetic network analyses, as well as the need to create
new computational methodologies for scalable joint estimation of
MSAs, gene trees, and a species network. In particular, mis-aligned
MSA sites with artificially elevated site divergence can present
spurious signal of gene tree incongruence and non-tree-like evo-
lution, and species phylogeny reconstructions based on sequence
homology information must factor in underlying uncertainty in
upstream estimation tasks.

We conclude with comments on future work. New methods are
needed for reconstructing MSAs, gene trees, and a species net-
work from unaligned sequence inputs, but a formidable challenge
remains: namely, scalability on ever larger and more divergent ge-
nomic datasets. Current network estimation methods are already
computationally intensive relative to phylogenetic tree estimation
methods. And yet, algorithmic enhancements to improve computa-
tional efficiency must not compromise the ability to extract suffi-
cient phylogenetic signal from noisy data. One solution is to utilize
phylogenetic divide-and-conquer to boost both estimation accu-
racy and computational efficiency. For example, FastNet [12], our
previously developed phylogenetic divide-and-conquer framework,
can be readily adapted to this task.
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1 Supplementary Materials and Methods

Figure S1 shows example visualizations of model species networks with 4 and 8 taxa from our simulation
study.

L 1o
(@) 4 3 1 2 0 7 3 2 58 5 4 1
Fig. S1. Examples of model networks in our simulation study. (a) A 4-taxon model network from the first
replicate of the 4.A model condition is shown. Branch lengths in coalescent units are visualized to scale. (b) An
8-taxon model network from the first replicate of the 8. A model condition is shown similarly.

Software commands used in our performance study are listed below.
1) The following r8s [9] script was used to simulate random birth-death model trees:

begin rates;

simulate diversemodel=bdback seed=<random seed> nreps=20 ntaxa=<n> T=0;
describe tree=0 plot=chrono_description;

end;

2) MSC+IM simulations were run using the following ms [5] command:

ms <n> 1000
-T -I <n> <s_1, s_2, ... s_n>
-ej <t_D> <i_D> <j_D> ...
-em <t_1> <i> <j> 5.0
-em <t_2> <i> <j> 0

The command options are as follows. The -T option is used to output sampled local gene trees. The
-I <n> <s_1 s_2 ... s_n> option specifies n structured populations corresponding to n sampled taxa
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where the ith taxon is represented by a single allele from the ith structured population by setting s; = 1.
In our simulations, we sampled one allele per taxon. Each -ej <t_0> <i_0> <j_0> option encodes
an ancestral divergence event at time time ¢y that resulted in descendant populations ig and jy. The
-—em <t_1> <i> <j> 5.0 -em <t_2> <i> <j> 0 options specify a unidirectional migration event from
population i to j that spans the time interval from ¢; to to.

INDELible [3] version 1.03 was run using the following command and configuration file:

./indelible

Parameters are defined in control.txt.
Example control.txt file:

[TYPE] NUCLEOTIDE 1
[MODEL] GTRexample
[submodel] GTR 1.26195738509

0.140055369456

0.287783034615

0.35766826674

0.308267431018

// GTR: a=TtoC, b=TtoA,

// c=TtoG, d=CtoA, e=CtoG, f=AtoG=1
[statefreq] 0.311475 0.191363 0.300414 0.196748

// pi_T=0.1, pi_C=0.2, pi_A=0.3, pi_G=0.4
[indelmodel] USER medium_gap.txt
[indelrate] <indelRate>
[TREE] treel
<geneTree>
[treedepth] <treeDepth>
[PARTITIONS] pGTR [treel GTRexample 1000]
// tree 1, model GTRexample, root length of 1000

[SETTINGS]
[output] FASTA // FASTA, NEXUS, PHYLIP or PHYLIPT
[EVOLVE]
pGTR 1 GTRout

MAFFT [6] version 7.222 was run using the following command:

mafft <seqFile> > <estiAlnFile>

Clustal Omega [10] version 1.2.4 was run using the following command:

clustalo -i <seqFile> -0 <estiAlnFile> --outfmt=fasta"

Clustalw [7] version 2.1 was run using the following command:

clustalw2 -INFILE=<seqFile> -ALIGN -TYPE=dna -outfile=<estiAlnFile> -output=FASTA
FSA [1] version 1.15.9 was run using the following command

fsa <seqFile> > <estiAlnFile>

PhyloNet [11, 12] version 3.6.0 was run using the following command and configuration file:

java -jar PhyloNet_3.6.0.jar <nexFile> > <resultFile>

Example nexfile
#NEXUS
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BEGIN TREES;

<rootedGeneTrees>

END;

BEGIN PHYLONET;

InferNetwork_ML (all) 1 -bl; #MLE-length
InferNetwork_ML (all) 1; #MLE
InferNetwork_MPL (all) 1; #MPL
InferNetwork_MP (all) 1; #MP

END;

9) FastTree [8] version 2.1.11 was run using the following command:

FastTree -nt -nosupport -gtr < <estiAlnFile> > <infGeneTreeFile>

2 Supplementary Results

PhyloNet [11, 12] can also perform summary-based network inference under MDC criterion using parsimony-
based method. We refer it as MDC in the following. Figure S2 shows the MDC results using true gene trees and
estimated gene trees inferred from true MSAs and estimated MSAs. Compared with inference performance
under MLE and MPL criteria, MDC analysis for all 8-taxon model conditions returned higher topological
error. For 4-taxon model conditions, some of them returned higher, lower or comparable topological error.
Different from the inference results of MLE and MDC, for each model condition, MDC using all different gene
trees inferred from estimated MSAs returned comparable topological error and costed comparable running
time, since the simple optimization criterion.
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Fig. S2. Simulation study: the impact of estimated MSA and gene tree error on topological error
returned by downstream MDC species network estimation. Figure description and layout are otherwise
identical to Figure 2. Averages and standard error bars are shown for each model condition in the simulation study
(n = 20).

We also investigated two other MSA methods that utilize a different approach compared to the other MSA
methods in our performance study: MUSCLE [2] and POA [4]. Table S1 and S4 show summary statistics
and MSA error for MUSCLE- and POA-estimated MSAs. Figure S5 shows topological error of MLE gene
trees estimated on MUSCLE- and POA-estimated alignments. As with the other MSA methods under study,
both the MSA error and topological distance between true and estimated gene trees increase with increasing
species number and evolutionary divergence. As shown in Figure S6, network analyses using FastTree(POA)-
estimated gene trees returned worse topological error compared to species network estimation using true
MSAs and all other estimated MSAs, with a single exception: on model conditions 8.C and 8.D, species
network analyses using FastTree(FSA)-estimated gene trees returned the worst topological error, followed by
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Fig. S3. Simulation study: computational runtime requirements of MDC summary-based species net-
work inference methods. Figure legend and layout are identical to Figure 2. Averages and standard error bars are
shown for each model condition in the simulation study (n = 20).

the FastTree(POA)-based analyses. Species network analyses using FastTree(MUSCLE)-estimated gene trees
returned better topological error than FastTree(POA)-based species network estimation, but had comparable
or typically worse error compared to the other species network methods under study.

Table S1. Simulation study: summary statistics for MUSCLE- and POA-estimated MSAs. See Table
1 in the main manuscript for a complete description of model conditions and summary statistics. Average ANHD,
gappiness, and MSA length are reported as an average for each model condition and MSA estimation method (n = 20).

Model MUSCLE POA
condition ANHD Gappiness Length ANHD Gappiness Length
4.A 0.398 0.197 1249.5 0.391 0.172 1210.2
4.B 0.460 0.204 1257.6 0.452 0.171 1207.5
4.C 0.497 0.209 1267.6 0.485 0.171 1207.1
4.D 0.529 0.212 1272.6 0.511 0.169 1205.1
4.E 0.559 0.223 1289.5 0.531 0.171 1208.2
8.A 0.364 0.239 1319.3 0.388 0.199 1251.6
8.B 0.384 0.240 1320.2 0.411 0.199 1250.1
8.C 0.443 0.252 1342.3 0.475 0.201 1253.3
8.D 0.497 0.286 1407.5 0.527 0.213 1272.1
8.E 0.523 0.298 1433.3 0.545 0.216 1277.6
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Fig. S4. Simulation study: estimated error of MUSCLE- and POA-estimated MSAs. Average SPFN and
SPFP are shown for each MSA method on each model condition (n = 20).
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Fig. S5. Simulation study: topological error of gene trees estimated using MUSCLE- and POA-
estimated MSAs. Topological error was assessed based on the normalized Robinson—Foulds distance between an
estimated gene tree and the true gene tree. Gene trees were estimated using MLE analysis of two different input
MSAs: (1) FastTree analysis of a MUSCLE-estimated MSA (“FastTree(MUSCLE)”), (2) FastTree analysis of a POA-
estimated MSA (“FastTree(POA)”), Averages and standard error bars are shown for each method and model condition
in the simulation study (n = 20).
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Fig. S6. Simulation study: the impact of MUSCLE- and POA-estimated MSA and gene tree error on
topological error returned by MLE-based species network estimation. MLE was run on two different inputs:
(1) gene trees estimated by FastTree analyses of MUSCLE-estimated MSAs (“MLE(FastTree(MUSCLE))”), (2) gene
trees estimated by FastTree analyses of POA-estimated MSAs (“MLE(FastTree(POA))”). Averages and standard error
bars are shown for each model condition in the simulation study (n = 20).
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