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Abstract

In many different species, it has been observed that nucleotide com-

positions are not identical on the genic and even genomic scale. This

observation contradicts a commonly held assumption in most maximum

likelihood based phylogenetic estimation methods - that the process gov-

erning DNA evolution is identical across lineages. We show that when

DNA evolution is nonhomogeneous, topological estimation and continuous

parameter estimation are impacted both by alignment quality and model

misspecification due to the homogeneity-across-lineages assumption.

1 Introduction

Nucleotide composition biases can be found in the genomes of a variety of or-
ganisms, such as grasses [?], insects [?], and birds [?]. Knowing when and where
these compositional biases arise in the evolutionary history of these organisms
is of interest since G+C bias is hypothesized to have significance in biological
processes. Computational methods can be applied to more widely available
genomic data to provide a better idea of this history. Molecular phylogenet-
ics is used to reconstruct evolutionary relationships between organisms using
biomolecular sequence data such as DNA.

Maximum likelihood based phylogenetic estimation uses a stochastic model
of sequence evolution to evaluate the probability of a tree topology given the
observed sequence data. A common simplifying assumption is that the base
composition and relative substitution rates are identical throughout the tree.
However, the observation that nucleotide composition can vary across lineages
demonstrates that these assumptions do not hold in biological data. Nonhomo-
geneous substitution models relax this assumption and allow for base composi-
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tion and relative substitution rates to vary across the phylogeny, and have been
implemented before in nhPhyML [?] and PAML [?].

Alignment error has been shown to impact downstream phylogenetic infer-
ence and estimation [?]. However, how alignment quality impacts estimation
when sequence evolution is nonhomogeneous is not well studied. While it is
likely that alignment quality will have an impact on estimation in this more
complicated model, the question of what does this mean for empirical data re-
mains. For example, how are estimates of base composition and substitution
rates when using nonhomogeneous substitution models for maximum likelihood
estimation? Furthermore, do more sophisticated models of DNA evolution ac-
counting for nonhomogeneity improve estimates?

2 Materials and Methods

The objective of this study is to characterize the effect of alignment quality and
model misspecification in the problem of phylogenetic estimation when evolution
is nonhomogeneous and nonstationary.

Data Availability Statement Data and scripts used are available at https:
//gitlab.msu.edu/liulab/nonhomogeneous-substitution-model-study-data-scripts.

2.1 Methods for MSA and phylogenetic estimation

Preliminaries. Let T = (V,E) be a rooted tree with labeled leaves X ⊂ V
and root ρ ∈ V . Each edge e = (u, v) ∈ E where u, v ∈ V has a length d(e).
An edge (u, v) is a leaf edge if either u or v is a leaf, otherwise it is an internal
edge. Deleting an edge e from a tree T gives two subtrees T1 = (V1, E1) and
T2 = (V2, E2). The vertex sets V1 and V2 are disjoint, and V1 ∪ V2 = V . The
same can be said for their respective leaf sets, so {X1, X2} is a bipartition of
X. Let this be denoted as b(e) = {X1, X2}.

Multiple sequence alignment. There are a variety of multiple sequence
alignment methods available. For this study, we selected a range of commonly
used methods. We aligned simulated and empirical datasets using MAFFT [?]
version 7.475, MUSCLE [?] version 5.0.1428, Clustal Omega [?] version 1.2.4,
Clustal W [?] version 2.1, and FSA version [?] 1.15.9. Each method was run
using their respective default settings.

Phylogenetic estimation. We use the general time reversible (GTR) model
for phylogenetic estimation. The GTR model specifies that there are sepa-
rate base frequencies πT , πC , πA, πG which sum to 1, as well as rate parameters
a, b, c, d, e, f . We use the same conventions as used by ?. That is to say, a
corresponds to T ↔ C, b corresponds to T ↔ A, c to T ↔ G, d to C ↔ A, e
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to C ↔ G, and f to G ↔ A. f is fixed to 1 and the remaining rate parameters
are relative to f . The rate matrix Q is as follows:

Q =









· aπC bπA cπG

aπT · dπA eπG

bπT dπc · fπG

cπT eπc fπA ·









With the diagonals set to Qii = −
∑

i 6=j Qij . The transition probability matrix
is given by P (t) = exp(−Qt) and is used to calculate likelihoods for a phy-
logenetic tree. Typically in phylogenetic estimation using Markov models of
substitution, the rate matrix is assumed to be constant over the whole tree. We
refer to models under this assumption as homogeneous, or having no shifts.

However, nucleotide composition biases have been observed in biological
data. To account for rate and composition differences across lineages, each
edge e has an associated set of parameters θ(e) that define the rate matrix for
that edge. We use a GTR model for the branch models. The traditional homo-
geneous model is the case where θ(e) is fixed, i.e. θ(ei) = θ(ej) for all ei, ej ∈ E.
For heterogeneous models, we considered two different classes: which we refer to
as single-shift and all-shift. For all-shift, θ(e) is independent for each edge. For
single-shift, there are exactly two sets of parameters, θshift and θbackground and
some restrictions on which edges they apply to. There is a shift edge, eshift ∈ E,
and all edges descending from it all have θ(e) = θshift. Any remaining edges are
θbackground. We will also refer to homogeneous models as no-shift interchange-
ably. In nonhomogeneous models, rooting can impact likelihood values since
these models are not time-reversible, so rooted trees are used.

RAxML [?] version 8.2.12 was used to perform maximum likelihood esti-
mation under a homogeneous GTR model. PAML [?] version 4.9j was used
to perform maximum likelihood estimation under fixed tree topologies using a
branch model. Since PAML does not support tree search under nonhomoge-
neous models, we wrote a wrapper script to perform local tree topology search,
using PAML to evaluate the log likelihood of a topology.

Single-shift search. While a fully nonhomogeneous branch model can ac-
count for very general nucleotide substitution processes, it is highly parameter-
ized. Also, it approaches the no common mechanism model, which is known
to be statistically inconsistent [?]. In single-shift, there are exactly two sepa-
rate sets of substitution model parameters estimated, and instead is search for
a placement of the different rate matrix on the phylogeny. We use a brute-
force approach of local search to determine which assignment of the shift model
maximizes likelihood.

Performance assessments. We use Robinson-Foulds distance [?] to assess
topological difference between trees. Let S(T ) = {b(e)|e ∈ E̊, e is an internal edge}.
The Robinson-Foulds distance between two unrooted trees T and T ′ is the sym-
metric difference of S(T ) and S(T ′). A way to extend RF distance to rooted
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trees is to consider the bipartition representation for labeled nodes (i.e. X∪{ρ}).
So for the two subtrees T1, T2 induced by deleting an edge e ∈ E, if ρ ∈ V1 then
the edge representation becomes b′(e) = {X1∪{ρ}, X2} and vice versa if ρ ∈ V2.
For identifying root placement, we say two trees T and T ′ have identical roots,
ρ and ρ′ respectively, if the leaf sets of the subtrees induced by deleting the
respective root nodes are identical.

We take the L1 norm of the relative errors for substitution model parameters
to assess model parameter estimation performance in the simulation study. For

the base frequencies, this would be
∑

i∈ACGT

∣

∣

∣

πi−π̂i

πi

∣

∣

∣
.

To assess how well the shift subtree is being predicted in the single-shift
model, we use the size of the maximum agreement subtree (MAST) between
the true and estimated shift subtrees. The MAST problem is to find a subtree
given a set of trees T with the largest subset of leaves that also agrees with all
the trees in T .

For evaluating alignment quality, we use sum-of-pairs false positive and false
negative rates, denoted SP-FP and SP-FN respectively. SP-FP is calculated as
the proportion of homologies in the estimated alignment and not in the true
alignment. SP-FN is the same, but the other way around.

2.2 Simulation study

Model tree generation. Model trees were sampled using INDELible [?] un-
der a birth-death process. Non-ultrametricity was introduced using a procedure
described in ? with deviation factor c = 2.

1. Generate a rooted model tree using INDELible with the default settings

2. For every branch:

2.1 Choose x ∼ U(− ln(2), ln(2))

2.2 Scale the branch length by exp(x)

3. Let L be the maximum root-to-tip distance for the tree and H be the
desired height.

4. Scale each branch length by H/L

5. Select a subtree to evolve under the shifted substitution model containing
as close to half of the leaves.

Table 1: GTR model parameters used for evolving sequences in the simulation
study.

Parameter T C A G C↔T A↔T G↔T A↔C C↔G A↔G
Shift 0.216 0.237 0.317 0.230 5.847 3.186 1.214 3.437 1.307 1.0
Background 0.183 0.226 0.058 0.534 1.505 0.367 0.141 0.412 0.094 1.0
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Simulating sequence evolution. Model conditions were the same as those
used in ? to include a range of sequence divergence in the simulation study. IN-
DELible was used to generate sequences under a GTR-based branch model using
the phylogenies generated as described earlier. ? found GC content variation in
the avian phylogeny. The GTR model parameters were empirically estimated
using single-copy orthologs from ? for the subset of species (Calypte anna, Al-
ligator mississippiensis, Melopsittacus undulatus, Corvus brachyrhynchos, and
Manacus vitellinus) included in ?’s study. To estimate these parameters, we
aligned the single-copy orthologs using MAFFT with the default settings. Then,
we used a single-shift model to estimate parameters on each individual aligned
sequence. Then, we looked at the two sets of substitution rates estimated, and
observed that the ratio between them was bimodal. The first peak ranged from
a 1- to 10-fold difference, and the second ranged from a 10000- to 100000-fold
difference. We chose GTR model parameters based on the estimated parameters
in the first mode.

2.3 Empirical study

Grass dataset. The distribution of GC content in monocots is bimodal [?],
which is not the case for other plants. This pattern is notably strong in rice.
We applied nonhomogeneous substitution model based phylogenetic tree esti-
mation to a set of 8 taxa: Oryza sativa japonica [?], Sorghum bicolor [?], Carex
cristatella, Carex scoparia, Juncus effusus, Juncus inflexus [?], Ananas comosus
[?], and Musa balbisiana [?]. We identified 1900 single-copy orthologs using
orthofinder [?] with the default settings. We aligned the sequences individually
using MAFFT, MUSCLE, Clustal Omega, Clustal W, and FSA with the default
settings. We performed phylogenetic estimation under a single-shift model for
every individual gene. We also concatenated the aligned gene sequences and
ran the same analysis.

3 Results

3.1 Simulation study

Impact of alignment accuracy. In both topology estimation and substi-
tution model parameter estimation, the true alignments perform the best, as
would be expected. Across all methods and levels of sequence divergence, topo-
logical inference using estimated alignments yields significantly more error. In
figure ??, we see a correlation between topological error and alignment accuracy
in more divergent model conditions. We also see this trend is maintained in the
20-taxa model conditions.

Impact of model misspecification. Nonstationary nucleotide composition
and nonhomogeneous substitution rates can reflect an evolutionary adaptation.
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Table 2: Model conditions and summary statistics for ground truth and esti-
mated alignments.

Model
condition

#
Taxa

Tree
height

Indel
probability

Length ANHD Gappiness Alignment SP-FP SP-FN
Estimated
length

Estimated
NHD

Estimated
gappiness

10.A 10 0.47 0.13 2123.8 0.306 0.528

MAFFT 0.572 0.512 1478.6 0.389 0.326
MUSCLE 0.579 0.508 1518.5 0.413 0.342

CLUSTALW 0.746 0.683 1191.4 0.466 0.165
CLUSTALO 0.734 0.682 1247.1 0.484 0.202

FSA 0.217 0.645 3609.3 0.280 0.715

10.B 10 0.7 0.1 2315.8 0.364 0.564

MAFFT 0.683 0.629 1477.1 0.435 0.321
MUSCLE 0.667 0.602 1570.1 0.449 0.361

CLUSTALW 0.786 0.724 1186.0 0.496 0.155
CLUSTALO 0.781 0.732 1248.7 0.504 0.198

FSA 0.236 0.603 4471.2 0.319 0.770

10.C 10 1.2 0.06 2313.2 0.465 0.566

MAFFT 0.752 0.711 1484.5 0.484 0.328
MUSCLE 0.729 0.679 1573.1 0.499 0.364

CLUSTALW 0.822 0.768 1170.6 0.537 0.148
CLUSTALO 0.823 0.780 1237.6 0.541 0.194

FSA 0.272 0.783 4992.4 0.377 0.795

10.D 10 2 0.031 2202.8 0.553 0.538

MAFFT 0.828 0.807 1461.8 0.528 0.310
MUSCLE 0.794 0.766 1561.9 0.542 0.353

CLUSTALW 0.865 0.830 1143.0 0.573 0.119
CLUSTALO 0.858 0.831 1222.9 0.565 0.177

FSA 0.384 0.864 5729.6 0.420 0.820

10.E 10 4.4 0.013 2063.0 0.649 0.510

MAFFT 0.879 0.871 1529.2 0.569 0.342
MUSCLE 0.846 0.831 1590.5 0.589 0.366

CLUSTALW 0.897 0.872 1146.5 0.614 0.124
CLUSTALO 0.884 0.865 1234.0 0.602 0.187

FSA 0.497 0.912 6196.2 0.477 0.836

20.A 20 0.47 0.13 2410.3 0.301 0.581

MAFFT 0.420 0.388 1643.7 0.368 0.390
MUSCLE 0.404 0.351 1790.2 0.380 0.439

CLUSTALW 0.654 0.612 1278.6 0.449 0.216
CLUSTALO 0.654 0.625 1306.3 0.471 0.233

FSA 0.129 0.536 4394.5 0.289 0.763

20.B 20 0.7 0.1 2585.1 0.374 0.606

MAFFT 0.554 0.526 1670.7 0.433 0.394
MUSCLE 0.521 0.470 1863.0 0.445 0.456

CLUSTALW 0.753 0.713 1261.2 0.509 0.198
CLUSTALO 0.738 0.708 1318.2 0.518 0.232

FSA 0.144 0.681 5959.0 0.349 0.819

20.C 20 1.2 0.06 2895.8 0.484 0.649

MAFFT 0.771 0.752 1683.0 0.516 0.400
MUSCLE 0.720 0.684 1907.7 0.530 0.470

CLUSTALW 0.856 0.822 1227.8 0.573 0.178
CLUSTALO 0.848 0.821 1303.2 0.570 0.226

FSA 0.215 0.838 8231.8 0.429 0.874

20.D 20 2 0.031 2696.2 0.581 0.622

MAFFT 0.863 0.860 1691.4 0.569 0.403
MUSCLE 0.815 0.800 1890.0 0.585 0.466

CLUSTALW 0.897 0.876 1181.6 0.615 0.148
CLUSTALO 0.890 0.875 1287.4 0.602 0.218

FSA 0.328 0.908 10177.9 0.486 0.899

20.E 20 4.4 0.013 2723.6 0.667 0.629

MAFFT 0.939 0.940 1804.3 0.608 0.444
MUSCLE 0.904 0.898 1979.5 0.630 0.493

CLUSTALW 0.946 0.933 1162.8 0.652 0.140
CLUSTALO 0.938 0.928 1283.8 0.637 0.221

FSA 0.432 0.942 11566.5 0.525 0.913

Estimates for base frequencies and substitution rates can be used to character-
ize such adaptations. For substitution model parameter estimation, using the
single-shift model yields the closest parameter estimates across all alignment
types. In figure ?? we can see that for topological estimation, depending on
the alignment and level of divergence, the single-shift model performs as well
as, but usually better than the underspecified model used with RAxML. The
overspecified model performs about as well as well as the homogeneous model
until the 20E model condition.

3.2 Empirical study

Grass dataset For the concatenated analysis, the estimated topology was
identical for all alignment types except ClustalW. Furthermore, the placement
of the shift was identical for all alignment types except ClustalW. The estimated
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studied and they are more divergent. Though in most cases this seems to sug-
gest that the most general overparameterization doesn’t provide a significant
improvement in topological estimation over model misspecification.

A generalization of single-shift branch model, which we’ll call k-shift, can be
described with the aim to achieve the simplest explanation. This model would
make the tradeoff of having less continuous parameter estimation in exchange
for having a larger search space to explore, but signals of strong shifts might be
useful for narrowing this search space.

Limitations This study looks at a very specific case where exactly one change
has occurred in the phylogeny. We demonstrate that even in this simplified case,
all aspects of phylogenetic estimation are impacted by both alignment quality
and model misspecification. In this scenario, we assumed that there were exactly
two sets of substitution model parameters, and that one of those sets applied
to all the descending edges from a starting edge. As it is, the search space of
branch model assignments for each tree topology is O(n) where n is the number
of taxa. Natural extensions would be to allow for more sets of substitution model
parameters as well as less restrictions on what assignment of these models to the
branches are considered. These relaxations drastically increase the size of the
search space for model assignments to the tree topology, as well as the number
of continuous parameters to optimize for with the former. Because of this, this
study did not look at how a k-shift model would perform in the case that there
were potentially more sets of substitution model parameters.

A k-shift model is a natural extension, but would pose several challenges for
estimation on empirical data as well. Furthermore, these would also limit our
ability to look at realistic model conditions. One issue is in the availability of
empirical data with novel observations of multiple compositional shifts to gather
estimates from. Most studies only make note of two categories, usually high
GC and low GC. Another arises from how quickly the search space increases, as
finding multiple significant changes in internal branches would necessitate more
taxa to study.

5 Conclusions

In both the simulation and empirical studies, we looked at how both alignment
accuracy and model misspecification had an impact on downstream phylogenetic
inference and estimation. In our simulation study, we looked at a scenario
where there’s exactly one change in the substitution model that occurs in the
simulated tree, and that it occurs such that all descending edges also evolve with
that model. We showed that even in this simple case, MSA quality affected all
aspects of downstream phylogenetic estimation using a nonhomogeneous model,
from tree topology to continuous parameter estimation. Furthermore, we found
using a nonhomogeneous substitution model for maximum likelihood estimation
yielded closer to ground truth results than using a homogeneous substitution
model.
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In our empirical study, we observed an impact in tree topology estimation
when using a nonhomogeneous model versus a homogeneous substitution model,
supporting that the homogeneity-across-lineages assumption can affect estima-
tion even when dealing with large concatenated alignments. Furthermore, we
found that estimates using different alignments had a fair amount of disagree-
ment between their estimated gene tree topologies, and estimated continuous
parameters were even more sensitive to the alignment method used.
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Supplementary Online Materials

1 Supplementary Methods

Software commands used. INDELible [Fletcher and Yang, 2009] version
1.03 was run using the following settings to simulate model tree evolution

[TYPE] NUCLEOTIDE 1

[MODEL] mymodel

[submodel] JC

[TREE] mytree

[rooted] <# taxa>

[PARTITIONS] mypartition [mytree mymodel 1]

[EVOLVE] mypartition <# replicates> output

The trees are rescaled to have nonultrametric branch lengths and the follow-
ing control settings to simulate sequence evolution:

[TYPE] NUCLEOTIDE 1

[SETTINGS]

[output] PHYLIP

[MODEL] background

[submodel] GTR <CT> <AT> <GT> <AC> <CG>

[statefreq] <T> <C> <A> <G>

[indelmodel] USER <path to indel distribution>

[indelrate] <indel rate>

[MODEL] shift

[submodel] GTR <CT> <AT> <GT> <AC> <CG>

[statefreq] <T> <C> <A> <G>

[indelmodel] USER <path to indel distribution>

[indelrate] <indel rate>

[TREE] mytree <tree>

[treedepth] <specified tree height>

[BRANCHES] mymodel <tree with model placements defined>

[PARTITIONS] mypartition [mytree mymodel <sequence length>]

[EVOLVE] mypartition 1 sequence

The following command was used to perform MSA estimation with MAFFT
[Katoh and Standley, 2013] version 7.475

mafft <input sequence> <output alignment>

1



MUSCLE [Edgar, 2004] version 5.0.1428 was run with the following:
muscle -align <input sequence> -output <output alignment>

Clustal Omega [Sievers et al., 2011] version 1.2.4 was run with the following
clustalo -i <input sequence> -t DNA --threads 1 ><output alignment>

ClustalW [Larkin et al., 2007] version 2.1 was run with the following
clustalw2 <input sequence> -type=DNA -outfile=<output alignment>

FSA [Sievers et al., 2011] version 1.15.9 was run with the following
fsa <input sequence --maxram 8192 ><output alignment>

For single-shift search, PAML [Yang, 2007] was run with the following control
file:

seqfile = <sequence_path>

treefile = <tree path>

outfile = <result output path>

noisy = 3

verbose = 3

runmode = 0

model = 7 * GTR model

Mgene = 0

ndata = 1

nhomo = 5

fix_kappa = 2

clock = 0

fix_alpha = 1

alpha = 0.

getSE = 0

RateAncestor = 0

cleandata = 0

method = 0

fix_blength = 0

The control file for the all-shift model is identical, except:

nhomo = 3

fix_kappa = 0

RAxML [Stamatakis, 2014] was run with the following command:
raxml -s <msa path> -n <name> -m GTRCAT -V -p <random number>

Grass dataset processing. To obtain single copy orthologs for the grass
dataset, we ran orthofinder using the following command:

orthofinder -f <path containing sequence files>

2 Supplementary Results and Discussion.

Simulation study runtime and memory usage. Memory usage for the
nonhomogeneous substitution model did not exceed 1 GB.
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