The Annals of Statistics

2022, Vol. 50, No. 4, 2231-2255
https://doi.org/10.1214/22-A0S2185

© Institute of Mathematical Statistics, 2022

LEARNING MIXTURES OF PERMUTATIONS: GROUPS OF PAIRWISE
COMPARISONS AND COMBINATORIAL METHOD OF MOMENTS

BY CHENG MAO!2 AND YIHONG WUZP

LSchool of Mathematics, Georgia Institute of Technology, ®cheng.mao@math.gatech.edu
2Department of Statistics and Data Science, Yale University, byihong. wu@yale.edu

In applications such as rank aggregation, mixture models for permu-
tations are frequently used when the population exhibits heterogeneity. In
this work, we study the widely used Mallows mixture model. In the high-
dimensional setting, we propose a polynomial-time algorithm that learns a
Mallows mixture of permutations on n elements with the optimal sample
complexity that is proportional to log n, improving upon previous results that
scale polynomially with n. In the high-noise regime, we characterize the op-
timal dependency of the sample complexity on the noise parameter. Both ob-
jectives are accomplished by first studying demixing permutations under a
noiseless query model using groups of pairwise comparisons, which can be
viewed as moments of the mixing distribution, and then extending these re-
sults to the noisy Mallows model by simulating the noiseless oracle.

1. Introduction. Rank aggregation is the task that aims to combine different rankings
on the same set of alternatives, to obtain a central ranking that best represents the population.
The problem of rank aggregation has been studied in social choice theory since Jean-Charles
de Borda [3] and Marquis de Condorcet [10] in the 18th century. More recently, due to the
ubiquity of preference data, rank aggregation has found applications in a variety of areas,
including web search, classification and recommender systems [2, 14, 15, 22, 24].

In these practical applications, the population of interest is often heterogeneous in the sense
that different subpopulations have divided preferences over the alternatives. For example,
multiple groups of people may have different preferences for movies or electoral candidates
[17, 29]. In such a scenario, rather than seeking a single central ranking, it is preferable to
find a mixture of rankings to represent the preferences of the population [1, 7, 11, 18, 21, 23,
33, 37].

1.1. Mallows mixture and related work. In this work, we adopt a statistical approach to
the problem of heterogeneous rank aggregation. Let S, denote the set of permutations on
[n] 2 {1,...,n}. A ranking of n alternatives is described by a permutation 7 € S,,. We refer
to n as the size of a permutation. Furthermore, we model the preference of the population by
a distribution on the set of permutations S,. Suppose that N independent permutations are
generated from the distribution, each of which represents an observed ranking.

In this paper, we focus on the Mallows model M (z, ¢) on S,,, with central permutation & €
S, and noise parameter ¢ € (0, 1) [27]. In the Mallows model, the probability of generating
a permutation o € S, is equal to

b
Z(¢)

¢dKT (7,0)

El

Received September 2020; revised February 2022.

MSC2020 subject classifications. Primary 62F07, 62H30; secondary 68P10.

Key words and phrases. Mixture of permutations, Mallows model, rank aggregation, group of pairwise com-
parisons, method of moments.

2231

2232 C. MAO AND Y. WU

where Z(¢) is a normalization factor (see (10)) and dkrt (7, o) denotes the Kendall tau dis-
tance between permutations 7 and o, defined by

() der(m,0) = Y Um@) <7m(j). o) > o ())}.
i,j€ln]
There have been decades of work studying theoretical properties and efficient learning algo-
rithms for the Mallows model and its generalizations [4-6, 8, 12, 16, 20, 25, 31].
To model a heterogeneous population, we consider the Mallows mixture

k
2) ME Y wiM (i, §)
i=1

with k components, where the ith component has central permutation 7; € S,;, noise param-
eter ¢ € (0, 1), and weight w; > y for some y > 0. We assume for simplicity that the noise
parameter ¢ is known and common for all components of the mixture. In general, differ-
ent components may have different, unknown noise parameters ¢; € (0, 1), which we briefly
discuss in Section 5. Let us remark that, the number of components k in a mixture of per-
mutations is typically a small quantity, so we let k be a fixed constant throughout this work.
On the other hand, the size n of the permutations is typically large because it represents the
number of alternatives.

The Mallows mixture has also received considerable attention in recent years [1, 9, 11, 23,
26, 30]. More specifically, Chierichetti et al. [9] established the identifiability of the Mallows
mixture given sufficiently many permutations generated from M under mild conditions. The
first polynomial-time algorithm to learn the Mallows mixture with two components was pro-
posed by Awasthi et al. [1], who particularly showed that the central permutations can be
recovered exactly with high probability, when the sample size N exceeds poly(n, m, %).
In the case of the Mallows k-mixture for any fixed constant k, Liu and Moitra [23] introduced
a polynomial-time algorithm with sample complexity poly(n, ﬁ %) that exactly recovers

the central permutations with high probability.

1.2. Major contributions. The first main result of this work concerns the sample com-
plexity of learning Mallows mixture when the size of the permutation is large.

THEOREM 1.1 (Informal statement of Corollary 3.5). There is a polynomial-time algo-
rithm with the following property. Fix any 0 < § < 0.1. Given poly(ﬁ, %) -log s i.i.d. ob-
servations from the Mallows k-mixture (2), the algorithm exactly recovers the set of central
permutations {my, ..., wg} with probability at least 1 — §.

In the above statement, poly(ﬁ, %) denotes a polynomial in ﬁ and % whose degree

depends on k; see Corollary 3.5 for the explicit expression of this polynomial. Most impor-
tantly, this polynomial does not depend on the size n of the permutations, and the sample
complexity bound only depends on n logarithmically. This logarithmic dependency on n is a
significant improvement over the previous polynomial dependency and is in fact optimal (see
the remark after Corollary 3.5).

Complementing Theorem 1.1, the next result makes precise the optimal dependency of the
sample complexity on the noise level ﬁ when the size of the permutation is fixed.

THEOREM 1.2 (Informal statement of Corollary 4.2). Consider the equally weighted
Mallows k-mixture (that is, (2) with wy = --- = wg = 1/k) in the high-noise regime where
¢ is close to 1. For fixed n and k, the optimal sample complexity for recovering the central
permutations is of the order (ﬁ)2L10g2 ki+2,

LEARNING MIXTURES OF PERMUTATIONS 2233

1.3. Logarithmic sample complexity and groups of pairwise comparisons. To motivate
our main methodology based on pairwise comparisons, we briefly discuss why the sample
complexity for learning the central permutation 7 in the single-component Mallows model
M (7, ¢) scales as logn. Mallows showed in his original paper [27] that, for indices i, j € [n]
such that 7 (i) < 7 (j),

() —na@+1 7)) —n@)

1—¢
| —¢mD—7O+ [pr()—7(T :

1
2 4

Porm@.pylo (@) <o (i)} = >
In other words, the probability that a random permutation o from M (r, ¢) agrees with &
on {i, j} is at least 1/2 plus the positive constant %. Therefore by Hoeffding’s inequality,
given N i.i.d. random permutations from M (7, ¢), a simple majority vote recovers 1{m (i) <
7 (j)} correctly with probability at least 1 — e=<(1=8N for 3 constant ¢ > 0. As a result, if
N > (Cl‘:g))r; for a constant C > 0, by a union bound, we readily obtain 1{m (i) < 7 (j)} for all
distinct i, j € [n] with high probability, from which any comparison sort algorithm (such as
Quicksort or Heapsort) can be used to recover the central permutation .

Crucially, the size n of the permutations does not affect the sample complexity of learning
each pairwise comparison 1{r (i) < 7 (j)}. Instead, n enters the overall sample complexity
only through a union bound of exponentially small probabilities, so that the dependency on n
is logarithmic. In fact, this high-level strategy generalizes to the case of learning the Mallows
k-mixture. However, the caveat is that pairwise comparisons alone are no longer sufficient for
identifying a mixture of permutations; as such, we need to consider groups of pairwise com-
parisons. This framework of demixing permutations using groups of pairwise comparisons is
rigorously developed in Section 2 under a noiseless oracle model, which is of independent in-
terest. Later in Section 3, we extend these results to the noisy case by simulating the noiseless
oracle using logarithmically many observations drawn from the Mallows mixture model.

1.4. Method of moments and comparison with Gaussian mixtures. In the high-noise
regime where ¢ — 1, the sample complexity (ﬁ)zuog2 kI+2 for learning the Mallows k-
mixture is achieved by a method of moments of combinatorial flavor, which we now explain
informally. For a distribution on the set S, of permutations, it is not obvious how to define an
appropriate notion of moments. We show in Section 2.2 that, in fact, it is natural to view the
set of all groups of m pairwise comparisons as the mth-order moment of the mixing distri-
bution Zle w; 85, associated with the Mallows mixture M = Zle w; M (i, ¢). Moreover,
the exponent of ﬁ in the optimal sample complexity is precisely determined by the maxi-
mum number of moments two distinct mixtures can match. Namely, there exist two distinct
k-mixtures with the same first |log, k| moments, but any k-mixture can be identified from
the first |log, k] 4+ 1 moments, giving rise to the optimal sample complexity (ﬁ)ﬂ_logz ki+2,
From this perspective, learning a Mallows mixture from groups of pairwise comparisons can
be viewed as a combinatorial method of moments.

Furthermore, we draw a comparison between the Mallows mixture and the better-studied
Gaussian mixture [34]. Specifically, consider the k-component n-dimensional Gaussian lo-
cation mixture Zle w; N (w;, I,), where n and k are both fixed constants. It is known [13,
19, 32, 35] that the sharp sample complexity of learning the mixing distribution Zle w; 8y,
up to an error ¢ in the Wasserstein Wy-distance is of the order £*=2_ which can be achieved
by a version of the method of moments. In contrast to the exponential growth of the sample
complexity in the Gaussian mixture model, for Mallows mixtures the optimal sample com-
plexity scales polynomially with the number of components, thanks to the discrete nature of
permutations.

2234 C. MAO AND Y. WU

1.5. Relation to Zagier’s work on group determinant. It is worth mentioning that the
identifiability of the Mallows mixture model is related to a result of Zagier in mathematical
physics [36]. In [36], Theorem 2, Zagier computed the determinant of the matrix A(¢) €
R™*"" indexed by permutations in S, and defined by

(3) A@)r,q & pHTT).,

This is an instance of the group determinant associated with the symmetric group S,; see
Section A.8 for details. In particular, Zagier showed that

4) det(A(¢)) #0 forall ¢ € (0, 1).

Note that, up to the normalization factor 1/Z(¢), the row of A(¢) indexed by 7 is precisely
the probability mass function (PMF) of the Mallows model M (r, ¢). Moreover, the rows of
A(¢) are linearly independent since the determinant of A(¢) is nonzero. Therefore, if two
Mallows mixtures Zle w; M (;, ¢) and Zf-‘: | w;M (1], ¢) are identical, then the two sets of
central permutations must coincide and so do the corresponding weights. Therefore, Zagier’s
result implies the identifiability of the Mallows mixture.

However, in the finite-sample setting, as noted by Liu and Moitra [23], the direct quantita-
tive implication of [36] is very weak, as it only guarantees a sample complexity that is expo-
nential in n for learning the mixture. While the sample complexity is reduced to a polynomial
in n in [23], in this paper we take a step further to achieve the optimal logarithmic sample
complexity. As in [23], we also use Zagier’s result as a building block; see Lemma A.2.

Furthermore, we remark that another group determinant (defined in (A.22) which is a
variant of the one studied in [36], Section 3) appears naturally in one of our technical proofs.
See Section A.8 for details.

1.6. Organization. The remainder of the paper is organized as follows. In Section 2, we
define groups of pairwise comparisons and interpret them as moments of a mixture. More-
over, we study learning a mixture of permutations from groups of pairwise comparisons under
a generic, noiseless model. Extending these results to the noisy case, in Section 3, we consider
the Mallows mixture and present an algorithm that achieves the sample complexity logarith-
mic in the size of the permutations. In Section 4, we study the sample complexity of learning
the Mallows mixture in the high-noise regime. Section 5 discusses potential extensions of our
results and proof techniques. The proofs are presented in Section 6 and in the Supplementary
Material [28].

1.7. Notation. Let[n]2{1,...,n} and N={1,2,...}. Let TV(P, Q) stand for the total
variation distance between two probability distributions P and Q.

Let S, denote the set of permutations on [r]. When presenting concrete instances of per-
mutations, we use the notation

=@, 77NQ), ... 7)),

so that when 7 is understood as a ranking, 7~ 1) is the element that is ranked in the ith
place by m. For example, (3, 2,4, 1) denotes the permutation & with 7(3) =1, 7(2) = 2,
m(4)=3and 7 (1) =4.

For a permutation 7 € &, and a subset J C [n], we use the notation 7z (J) Lin(j):jeld).
We let r|; denote the restriction of = on J, which is an injection from J to [n]. Moreover,
let 7 ||; denote the bijection from J to [|J|] induced by 7|;. That is, if o is the increasing
bijection from 7 (J) to [|J|], then 7|y =0 o 7|;.

For example, consider 7 = (3,2,4,6,1,5) and J ={1,4,5}. Then 7|;(1) =5, 7|;(4) =
3and w|y;(5) =6, while ||;(1) =2, m||;(4) =1 and 7||;(5) = 3. We also write ||; =

LEARNING MIXTURES OF PERMUTATIONS 2235

(4,1,5), which can be easily obtained from the notation = = (3,2,4,6, 1, 5) by retaining
only the elements of J.

Note that || ; can be viewed as a total order on J. Moreover, by identifying the elements
of J with 1,...,|J]| in the ascending order, we can identify bijections from J to [|J|] with
permutations in S};|. Hence, 7 || ; can be equivalently understood as a permutation in S} 7. We
may therefore refer to 7 ||; informally as a permutation or a relative order on J. Moreover,
for nested sets J C J' C [n], we clearly have (|| ;)| =7|l;.

2. Demixing permutations with groups of pairwise comparisons. In this section, we
set up a general approach to learning mixtures of permutations: We first formalize the notions
of groups of pairwise comparisons and comparison moments, and then characterize when a
mixture of permutations can be learned from groups of pairwise comparisons in a generic
noiseless model.

2.1. Groups of pairwise comparisons. Let M denote a distribution on S,. In this work,
we are interested in the situation where M is a certain model for a mixture of permutations.
To motivate the method of learning the mixture M from groups of pairwise comparisons, let
us first consider some simple examples:

e If M is the Dirac delta measure 8, for a fixed permutation 7 € S,,, we are tasked with
identifying the single permutation 7. Let us consider the pairwise comparison oracle:
Given any pair of distinct indices (i, j) € [n]?, the oracle returns whether i is placed before
j by m, that is, 1{m (i) < w(j)}. Based on this oracle, any comparison sorting algorithm
(e.g., quicksort) can be deployed to identify 7.

e For a general distribution M, the pairwise comparison oracle naturally extends to the fol-
lowing: Given any pair of distinct indices (i, j) € [1n]?, the oracle returns the distribution
of 1{m (i) < m(j)} where m ~ M.

However, as pointed out by Awasthi et al. [1], even for the noiseless 2-mixture M =
%(8,,1 + 85,), the pairwise comparison oracle is not sufficient for identifying M. For exam-
ple, if the permutations 71 and m, are reversals of each other, then for any pair of distinct
indices (i, j), the output of the pairwise comparison oracle is always Bernoulli(%), which
is uninformative.

e Now that comparing one pair of indices at a time does not guarantee identifiability, how
about comparing two pairs simultaneously? This motivates the following oracle that returns
a group of two pairwise comparisons: Given pairs of distinct indices (i1, ji1), (i2, j2) € [n]?,
the oracle returns the distribution of

(i) <7 ()} N
(]l{n(i2)<n(j2)}> where m ~ M.

To illustrate why groups of two pairwise comparisons are sufficient for identifying a mix-
ture of two permutations, we consider a mixture M = %(5711 + &x,) where the two permu-
tations satisfy w1 (1) < m1(2) and m>(1) > m2(2). When we make a query on the group of
pairs (1,2), (i, j) for any distinct indices i, j € [4], the oracle returns the mixture of two
delta measures at

1 0
(agmr =men) ™ (st 2 miin))
respectively. Therefore, using the pair (1, 2) as a signature for the two permutations in the
mixture, we can demix the pairwise comparisons 1{m (i) < 7((j)} and 1{m2 (i) < m2(j)}
for every pair of indices (i, j), from which 7| and 7> can be recovered.
It turns out that this argument can be made rigorous and extended to the case of a general
k-mixtures (Theorem 2.6).

2236 C. MAO AND Y. WU

Given these considerations, we are ready to formally define a group of pairwise compar-
isons.

DEFINITION 2.1 (Group of m pairwise comparisons, the strong oracle). Consider a dis-
tribution M on S, and a random permutation 7w ~ M. For m € N, let Z be the tuple of m pairs
of distinct indices (i1, j1), ..., (im, jm) € [n]z. Upon a query on Z, the strong oracle of group
of m pairwise comparisons returns the distribution of the random vector (7, Z) in {0, 1},
whose rth coordinate is defined by

5) X @Dy 21w (r) <7 (jp)} forr e [ml.

We emphasize that in the tuple Z of pairs of distinct indices, i, and j, are required to be
distinct for each r € [m], but we allow the scenarios where i; =iy or i; = j», for example.
Moreover, throughout this work, the queries we consider are adaptive: Our algorithms make
queries to the oracle in a sequential fashion, where a given query is allowed to depend on the
outcomes of previous ones.

In addition, we introduce a weaker oracle of group of pairwise comparisons. This defi-
nition is motivated by interpreting a “mixture” as a set of permutations in S,, rather than a
distribution.

DEFINITION 2.2 (Group of m pairwise comparisons, the weak oracle). Consider a set
{m1, ..., mk} of k permutations in S,,. For m € N, let Z be a tuple of m pairs of distinct indices
in [n]. Upon a query on Z, the weak oracle of group of m pairwise comparisons returns the
set of binary vectors {x (r;, Z) : i € [k]}, where x (r;, Z) is defined by (5).

If M is a distribution on S, supported on {my, ..., mr}, then the set {x(w;,Z) : i € [k]}
returned by Definition 2.2 is simply the support of the random vector x (v, Z) returned by
Definition 2.1. In this sense, the oracle in Definition 2.2 is weaker. If | supp(M)| = k, then
the strong and the weak oracle are equivalent; otherwise the weak oracle is strictly less in-
formative. In the special case of k = 2, they are always equivalent. We emphasize that the
weak oracle only returns { (7;,Z) : i € [k]} as a collection of (possibly less than k) distinct,
unlabeled elements—it does not specify what each y (7;,Z) is. This weaker notion will be
useful later when we study noisy mixtures of permutations.

Besides groups of pairwise comparisons, it is also natural to consider £-wise comparisons,
whose strong and weak versions are defined as follows. Recall the notation || ; for relative
order as defined Section 1.7.

DEFINITION 2.3 (£-wise comparison, the strong oracle). Consider a distribution M on S,
and a random permutation 7 ~ M. For £ € N, let J be a subset of [n] of cardinality |J| = £.
Upon a query on J, the strong oracle of £-wise comparison returns the distribution of the
relative order 7 || ;.

DEFINITION 2.4 (£-wise comparison, the weak oracle). Consider a set {my, ..., %} of k
permutations in S,. For £ € N, let J be a subset of [n] of cardinality |J| = £. Upon a query
on J, the weak oracle of £-wise comparison returns the set of relative orders {m; ||y : i € [k]}.

For ¢ = 2, the oracle of ¢-wise comparison simply reduces to the pairwise comparison
oracle. Moreover, for £ = 2m, the (strong or weak) oracle of £-wise comparison is stronger
than the corresponding oracle of group of m pairwise comparisons. This is because for any
tuple Z of m pairs of indices in [n], we can choose J C [n] with |J| = £ = 2m that contains
all indices appearing in Z. Then, for any permutation 7r;, we can obtain the binary vector
x (7;, T) from the relative order ;|| ;.

LEARNING MIXTURES OF PERMUTATIONS 2237

2.2. Comparison moments. We now interpret groups of pairwise comparisons in Defini-
tion 2.1 as moments of the random permutation . Toward this end, we adopt the following
notation throughout this paper. For any (random) permutation 7 in S, and a pair of distinct
indices (i, j) € [n]?, we define

(6) X7 2 1{n@) <z (H}.
In this work, we frequently identify the permutation 7 with the array X" ={XT },7& j- There

is certainly redundancy in X7 as we lift 7 € S, to X7 € {0, l}” ~". For example X7 it
X’JT =1, andle”J =1 and X”k = 1, then we must have X7 =1L

In Definition 2.1, consider the oracle that returns the d1str1but10n of x (;r,Z) in the form of
its PMF:

fran @) £P{x(w,T)=v} foreachv e {0, 1}".

For example, at the all-ones vector 1,, € {0, 1}",

fx(n,I)(lm) = E[]l{X(JT,I) = 1m}] = E|:l_[jl{ﬂ(ir) <7 (jr) :| |:1_[Xz, Jr:|

r=1

which is an mth moment of X”. This motivates the following definition.

DEFINITION 2.5 (Comparison moment). Consider a distribution M on &S,,. For a random
permutation & ~ M, let X7 be defined by (6). For m € N, let Z denote the tuple of m pairs
of distinct indices (i1, j1), ..., (im, jm) € [n]?. The comparison moment of 7 with index Z is
the vector m(,7Z) € RZ", defined by

m
r 1- r
(7 m(n,I)véE[]_[(r)=xr)] for v € {0, 1}™.

r=1

Note that the comparison moment defined above is of order at most m in the usual sense,
as
— XT . ifv, =1
8 X) (1— X7) =i =
() (Iy, Jr) (Iy, jr) X}Tr’ir lf vy = O
Moreover, by (5), (6) and (7), we see that the PMF of the random vector x (i, Z) is precisely
the comparison moment m(z, Z) as

fr.n@) =E[1{x (7, I)=v}]= E|:H Il{XZ’jr = v,}:|

r=1

m

:E[n(po)r(=X7 jr)lv’] =m(w, I),.
r=1

As a result, the group of pairwise comparisons on Z can be equivalently defined as the ora-

cle that returns the comparison moment m(swr, Z). Learning a mixture of permutations from

groups of pairwise comparisons can therefore be viewed a combinatorial method of moments.

2.3. Efficient learning in a generic model. With the above definitions formulated, we
are ready to study demixing permutations with groups of pairwise comparisons or £-wise
comparisons. In this section, we consider the following generic noiseless model for a mixture
of k permutations:

k
A
M= Zwiém,
i=1

2238 C. MAO AND Y. WU

where 71, ..., are permutations in S, and wy, ..., wg are positive weights that sum to
one.

It is clear that the more pairs we compare in a group, the more information we obtain.
In other words, the larger m is, the stronger the oracle in Definition 2.1 becomes. Similarly,
the larger ¢ is, the stronger the oracle in Definition 2.3 becomes. Is there a polynomial-time
algorithm that learns the k-mixture M from a polynomial number of groups of m pairwise
comparisons for any large n, where m only depends on k but not on n? Furthermore, for a
fixed k, what is the weakest oracle we can assume, that is, what is the smallest m, so that
such an algorithm exists? The analogous questions can also be asked for the oracle of £-
wise comparison. As the main result of this section, the following theorem answers these
questions.

THEOREM 2.6. Let k be a positive integer, and define

9) mj; £ [log, k] + 1.

(a) For any mixture M = Zf'{:l w; 8z, of permutations in S,, there is a polynomial-time
algorithm that recovers M from groups of mj; pairwise comparisons, with at most 1 + %(n —
2)(n + 1) adaptive queries to the strong oracle in Definition 2.1.

(b) Conversely, for n > 2m7 and £ < 2mj — 1, there exist distinct mixtures M = % Zf: 107
and M' = % Zf-‘zl 8! of permutations in Sy, which cannot be distinguished even if all (y) €-
wise comparisons are queried from the strong oracle in Definition 2.3.

As we have noted, if £ > 2m, then the oracle of £-wise comparison is stronger than the
oracle of group of m pairwise comparisons. Therefore, the above theorem implies: (1) The
oracle of group of m pairwise comparisons is sufficient for identifying the & mixture if and
only if m > mj; (2) The oracle of £-wise comparison is sufficient for identifying the k mixture
if and only if £ > 2mj.

In addition to the above theorem which studies the permutation demixing problem assum-
ing the strong oracles, we also have the following result that assumes the weak oracle given
by Definition 2.2. Recall that here we view the mixture as a set of permutations rather than a
distribution.

THEOREM 2.7. There is an O (k*n?)-time algorithm (see Algorithm 6 in Section 6.3) that
learns a set {m1, ..., wy} of permutations in S, from groups of k + 1 pairwise comparisons,
with at most 1 + %(n —2)(n — 1) adaptive queries to the weak oracle in Definition 2.2.

Unlike Theorem 2.6 where the smallest number m of pairs compared in a query is precisely
my, Theorem 2.7 only shows that m is at most k + 1 and we do not have a matching lower
bound. Nevertheless, the crucial observation is that m again only depends on k, the number
of components, but not on 7, the size of the permutations.

The algorithms for Theorems 2.6(a) and 2.7 are similar in nature and are both general-
izations of Insertion Sort. The latter, called Insertion Demixing, is detailed in Algorithm 6.
Furthermore, note that the query complexity for both algorithms is O (kn?). This is not op-
timal in general: When k = 1 (single component), the problem reduces to comparison sort
and the optimal query complexity is O(nlogn), which is achieved by Heapsort, for exam-
ple. However, Insertion Sort has query complexity O (n?), and because our algorithms are
generalizations of Insertion Sort to the mixture setting, the query complexity with respect
to n cannot be improved. It is an interesting open problem to determine the optimal query
complexity for the mixture models.

LEARNING MIXTURES OF PERMUTATIONS 2239

In addition to interest in their own right, the above results have laid the foundation for
studying the Mallows mixture in the next two sections. On the one hand, Theorem 2.7 pro-
vides a “meta-algorithm” for learning the central permutations, so it suffices to simulate the
weak oracle using sample from the Mallows mixture, which we do in Section 3. On the other
hand, Theorem 2.6 sheds light on the fundamental limit of learning mixtures of permutations,
which we further explore in Section 4 for the Mallows mixture in the high-noise regime.

3. Mallows mixture in high-dimensional regime. Moving from the noiseless to the
noisy case, we now turn to the popular Mallows mixture model. Denote the Kendall tau
distance between two permutations 7w, 0 € S, by dkr(7r, o) as defined in (1). For a central
permutation 7 € S, and a noise parameter ¢ € (0, 1), the Mallows model denoted by M (T, ¢)
is the distribution on S,, with PMF

dgr(o,m)

(10) M) (0) = T@ for o € S, where Z(¢) £ Z ¢dKT("’id).
€S,

Note that ¢ determines the noise level of the Mallows model. As ¢ — 0, M (i, ¢) converges
to the noiseless model, a delta measure at 7r. On the other hand, as ¢ — 1, M (7, ¢) converges
to the noisiest model, the uniform distribution on S,,. In fact, it is also common [4, 20, 31]
to parametrize the noise level by 8 = 1/log(1/¢) so that ¢ = e¢~!/8_ Particularly, we have
B~ ﬁ —>o0as ¢ — 1.

In this work, we consider a mixture M of k Mallows models M (1, ¢), ..., M (g, @)
with a common noise parameter ¢ € (0, 1) and respective weights wy, ..., wg > 0 such that
Zle w; = 1. In other words, M is the distribution on S,, with PMF

k ¢dKT(U)

Im(o) = Zwl Z@) foro € S,.
We also write M (r;) = M (7r;, ¢) and
k
M=Zw,~M(7r,~)

i=1
for brevity. Note that if ¢ = 0, then M reduces to the noiseless model Zf:l w; 85, considered
in Section 2.
Furthermore, suppose that we are given N i.i.d. observations oy, ..., oy from the mix-
ture M. Let

MN é 80‘,‘

-

1
N

i=1

denote the empirical distribution with PMF

N
fry (o) = % Y 1{oi =0} foro€S,.
i=1
Assuming that the number of components k and the noise parameter ¢ are known, we aim
to exactly recover the set of central permutations {1, ..., ¢} in the mixture. We assume
the knowledge of ¢ for technical convenience. In principle, this assumption can be removed,
which we discuss in Section 5.
In this section, we consider the “high-dimensional” setting where the size n of the permu-
tations is large, and establish the logarithmic dependency of the sample complexity on n. As

2240 C. MAO AND Y. WU

Algorithm 1
learn relative orders

Algorithm 2 Algorithm 5
simulate the oracle find a discriminative tuple
Algorithm 6

demix noiseless permutations

Algorithm 3
identify central permutations

N

Algorithm 4
estimate weights

F1G. 1. Dependency graph of the algorithms.

hinted earlier, our strategy is to use Algorithm 6 (from Theorem 2.7 for the noiseless case)
as a “meta-algorithm” to recover the central permutations of the Mallows mixture. To this
end, we need to simulate the weak oracle in Definition 2.2 using noisy observations from the
Mallows mixture (which is done by Algorithm 2 below). Furthermore, recall that the weak
oracle of £-wise comparison in Definition 2.4 is stronger than the weak oracle of group of
m pairwise comparisons in Definition 2.2, provided that £ > 2m. Therefore, a main goal of
this section is to introduce a subroutine (Algorithm 1) which simulates the weak oracle in
Definition 2.4 using logarithmically many observations from the Mallows mixture.

Figure 1 illustrates the dependency among various algorithms in this paper. Specifically,
Algorithm 1 learns a set of relative orders on a small set of indices given noisy samples
from the Mallows mixture. Algorithm 2 then uses it to simulate the key oracle of groups of
pairwise comparisons. This oracle is repeatedly called by Algorithm 6, a recursion, which is
the demixing algorithm for the noiseless case. Algorithm 3 is the main algorithm that learns
the central permutations for the Mallows mixture based on noisy observations. Given these
exactly recovered central permutations, Algorithm 4 then estimates their respective weights
in the mixture. Algorithm 5 is a simple subroutine that is used in both Algorithms 6 and 4.

3.1. Marginalization of Mallows mixture. Given i.i.d. observations oy, ..., oy from the
Mallows mixture M = Zle w; M (;r;) and a subset J C [n], the goal of Algorithm 1, denoted
by SubOrder, is to learn the set of relative orders w1 || s, ..., 7k || 7. We recall that the relative
order ;|| y is the bijection from J to [|J|] induced by 7;|;; we are not aiming at recovering
;| itself.

Toward this end, we consider the marginalization of the Mallows mixture, as well as the
observations, as follows. For any distribution M on S, and a set of indices J C [n], we let
M| denote the marginal distribution of o|; where o ~ M. That is, the PMF of M]|; is
given by

(11) Impy () =Popmloly = p}

LEARNING MIXTURES OF PERMUTATIONS 2241

for every injection p : J — [n]. Moreover, given N i.i.d. observations oy, ..., oy from M,
the empirical version of (11) is given by

1 N
(12) Favts (0) = 5 > 1{omls =p}.
m=1

Note that although our goal is to learn the relative order ;|| ; : J — [|J|] for i € [k], not
the actual values of 7r;(j) for j € J, the marginalization is with respect to the restriction on
J only, and does maintain the values of o (j) for j € J. This is crucial to establishing the
following identifiability result for marginalized Mallows mixtures.

PROPOSITION 3.1. Consider the Mallows mixtures M = Zf»‘zl wiM(m;) and M' =
Zi’c:1 w;M(x}) on S, with a common noise parameter ¢ € (0,1). Let us define y =
min; ex(w; A wl’.) > 0. Fix a set of indices J C [n] and let ¢ 217 Suppose that the two
sets of central permutations {m1|s, ..., wkl|ls} and {n{ Nss-en,s ﬂlillj} are not equal (as sets).
Then we have

VM|, M'|}) = n(k, €, ¢, y),

where

y >(3N+1 (1 ¢ (40 42k 02
)

(13) k.6, y) 2 (@

Crucially, the above lower bound is dimension-free, that is, it does not depend on n. This is
one of the two key ingredients (the other being the concentration inequality in Proposition 3.3
below) that enable us to achieve a sample complexity that ultimately depends logarithmically
on n. The proof of Proposition 3.1 leverages the notion of block structure introduced by Liu
and Moitra [23]; see Section A.2 for details.

In addition, we observe a useful property of marginalized Mallows models.

LEMMA 3.2. For any subset J C [n], if the central permutations 7,7’ € S, satisfy
|y = 7’|y, then the marginalized Mallows models M (7, ¢)|; and M (x’, ¢)|; coincide for
all € (0, 1).

PROOF. Let t € S, be a relabeling of indices 1,...,n such that 7’ = 7 o 7. Since
|y =n'|y, wehave t(j) = j forevery j € J.Itfollows that (6 o1)|; = 0|, forany o € S,,.
Moreover, it holds that dgt(o o T, 7") = dk1(0 o T, T 0 T) = dk7(0, 7r) by the right invariance
of the Kendall-tau distance. In view of the definition of the Mallows model and marginaliza-
tion on J, we reach the conclusion. [

Proposition 3.1 and Lemma 3.2 together motivate the subroutine introduced in the sequel.

3.2. The subroutine. We are ready to define the subroutine formally. The first step is to
define a set of polynomially many candidate models. Let S, ; denote the set of injections p :
J — [n], which has cardinality at most nt where ¢ = |J|. For each p € 5, j, fix an arbitrary
permutation 77, in S, such that 7,|; = p. Let L be a positive integer to be determined later.
For ¢ € (0,1) and y € (0, 1/k], we define a set of Mallows mixtures by discretizing the
weights

M= M0k, P,y,J, L)
(14)

d k
¥
= ZZIM(npi’Qﬁ):Pi €Sy ,ri€ll],r ZVLaZ”i =L}.
=1 i=1

2242 C. MAO AND Y. WU

Algorithm 1 SubOrder
Input: oy,...,0§ €S,,keN,¢pe(0,1),y €(0,1/k], N eN, and J C [n]
Output: a set R of relative orders on J

1: £ < |J|

2: n<n(k,2,¢,y) asdefined in (13)

3: L < [3k/n]

4 M <~ M, k,p,y,J, L) as defined in (14)

50 Myly < % leq\le 36l > compute the marginalized empirical distribution as in (12)
6: R« O

7. for M/ = Y5 M (. ¢) € 4 do

8: generate N’ i.i.d. random permutations o7, ..., oy, from M’
9 Mipls < 5 L1 8,
10: ifTV(M§V/|J,MN|J)§)7/2 then
11: R < {mylly i elkl}
12: end if
13: end for
14: return R

Note that the weights r; /L sum to 1 and each weight is at least y. Since there are at most
L choices for each weight and at most |S, ;| < n® choices for each pi, we have || <
LFnkt,

In view of the total variation lower bound in Proposition 3.1, it is natural to consider the
minimum-distance estimator that selects the Mallows mixture model in .# whose marginal
is closest in total variation to that of the empirical distribution M y; however, without an
explicit formula for the marginalized distribution M'|; for M’ € . it is difficult to directly
compute the total variation. Fortunately, we can efficiently sample from M’|; and thus ap-
proximate the marginalized distribution sufficiently well in polynomial time. This motivates
Algorithm 1.

Let us remark that sampling from the Mallows model is computationally efficient with
the help of the Repeated Insertion Model of Doignon, Peke€, and Regenwetter [12] (see also
Section 2.2.3 of [26]). In short, to sample from M (id, ¢), it suffices to start from the empty
ranking and repeatedly insert index i = 1, ..., n into the current ranking at position j <i
with probability ¢~/ /(1 + ¢ + - -- 4+ ¢'~1). This sampling procedure can be easily done in
O (n?) time. Furthermore, as an anonymous reviewer pointed out, the time complexity of each
insertion step can be improved to O(logn) by considering a stochastic transition rule on a
binary tree with the possible rank positions as the leaves, where the transition probabilities on
each edge can be computed explicitly so that the probabilities of outputting each leaf agrees
with the values specified above. As a result, sampling from the Mallows model can be done
in O(nlogn) time.

Consequently, in Algorithm 1, the computation of My, |; takes O (N'nlogn) time (where
N’ will be taken to be logarithmic in n). Moreover, since My/|; and M?V/I J are distri-
butions with at most N and N’ atoms respectively, computing TV(M/y,[;, Mn|;) takes
time less than O (N N'n). Furthermore, as we have seen, there are at most L¥n*¢ candidate
models where L = [3k/n]. We conclude that Algorithm 1 runs in O((%)'CNN’nHJrl logn)
time.

To analyze Algorithm 1, we first state a concentration inequality for the marginalized em-
pirical distribution for the Mallows mixture.

LEARNING MIXTURES OF PERMUTATIONS 2243

PROPOSITION 3.3. For J C [n], let M|j and My be the marginalized Mallows mix-
ture and the marginalized empirical distribution defined by (11) and (12), respectively. For
any s € (0, 1),

3 2
(1) P{TV(MIy, Mylp) > 5} < exp(—N %) +202kg)" e"p(‘N (2/:—61)24)’

N N 1 8¢
where £ = |J| and g =1 + 1~z log 5755

Similar to the total variation lower bound in Proposition 3.1, the above concentration in-
equality is also dimension-free (independent of »n). This is possible because although M| is
a distribution on @ (n) elements, its “effective support size” is independent of n thanks to a
basic property of the Mallows model (Lemma A.1). Propositions 3.1 and 3.3 together enable
us to establish the following theoretical guarantee for Algorithm 1.

THEOREM 3.4. Suppose that we are given i.i.d. observations oy, ...,on from the Mal-
lows mixture M = Zle w; M (;t;) on S, with a noise parameter ¢ € (0, 1). Fix a set of
indices J C [n] and let £ £ |J|. Fix a positive constant y < min;¢[x) w; and a probability of
error § € (0,0.1). Let

1-¢

If the sample size satisfies N > ¢(k,C,¢,y) - log% and we choose an integer N' >
¢(k,L,¢,y)-logs, then Algorithm 1 returns the set of relative orders {m;||; : i € [k]} with
probability at least 1 —§ in O((%)kNN/nkHI logn) time, where n =n(k, £, ¢, y) is defined
in (13).

+1) ’
(16) ak,w,y)éewe)fﬂ(k)(“) (¢)3(4@) e
Y

3.3. Exact recovery of the central permutations. Consider a set of indices J C [n] and a
tuple Z of pairs of distinct indices (i1, j1), ..., (im, jm) € J 2 For any permutation 7 € S, we
have 1{7|;(,) < 7|l (jr)} = 1{n (@) < w(j)} for r € [m] by the definition of the relative
order m||;. Since Algorithm 1 returns the set of relative orders {m;||; : i € [k]} with high
probability, in particular, we can obtain the set of binary vectors {x (w;,Z) : i € [k]}, where
x (i, Z) is defined by (5). This step is formulated as Algorithm 2.

Recall that the set {x(m;,Z) : i € [k]} is precisely what we assume the weak oracle in
Definition 2.2 returns. Therefore, this oracle is available with high probability for the Mallows
mixture provided that the sample size N is sufficiently large. Consequently, Algorithm 6
(recall Theorem 2.7) can be used as a meta-algorithm to recover the central permutations
{m; : i € [k]} in the Mallows mixture. We formulate this main algorithm as Algorithm 3.
Corollary 3.5 then provides theoretical guarantees for Algorithm 3.

Algorithm 2 SimulateOracle
Input: o1,...,o0n €Sy, k€N, ¢ €(0,1), y € (0,1/k], N' € N, and a tuple Z of pairs of
distinct indices (i1, j2), ..., (im, jm) € [n]*
Output: aset V of vectors in {0, 1}
1: J < the set of all indices that appear in the tuple 7
2: SR < the set of relative orders on J returned by SubOrder (Algorithm 1) with inputs
ol,...,0N, k,¢,y,N',and J
3: V< {v' : T € R}, where v* € {0, 1} is defined by v} £ 1{z(i,) < 7(j,)} for r € [m]
4: return V

2244 C. MAO AND Y. WU

Algorithm 3 DemixMallows
Input: o1,...,o08 €Sy, keN, ¢ €(0,1),y €(0,1/k],and § € (0,0.1)

Output: a set S of permutations in S,
n2k+3

1. N« ¢(k,2k+2,¢,y)-log <—, where ¢ is defined in (16)
2: G <« the set of permutations in S, returned by InsertionDemixing (Algorithm 6)

with the oracle given by SimulateOracle (Algorithm 2) with inputs o1, ..., oy, k,
¢,y,and N’
3: return S
COROLLARY 3.5. Suppose that we are given i.i.d. observations oy, ...,on from the

Mallows mixture M = Zle w; M (rt;) on S, with a known noise parameter ¢ € (0, 1). Fix
a positive constant y < min;c(x) w; and a probability of error § € (0, 0.1). If the sample size
satisfies N > ¢(k, 2k +2, ¢, y) - log "= where ¢ is defined in (16), then with probability
at least 1 — 8, Algorithm 3 successfully returns the set of central permutations {my, ..., m}
with time complexity O(NnZ(k2+k+2)(y(f—f¢))(2k)2k+g log %).

PROOF. It suffices to show that Algorithm 1 indeed simulates the oracle in Definition 2.2
with high probability, so that Algorithm 6 returns the set of permutations {m1, ..., mx} as
guaranteed by Theorem 2.7. More precisely, we need to prove that Algorithm 2 returns the
set of binary vectors {x (7r;, Z) : i € [k]} for every tuple Z of k + 1 pairs of distinct indices in
[n] with probability at least 1 — §&.

Recall that J is defined to be the set {i1, ji, ..., im, jm} if Z consists of the pairs (i, ji1),
vy (im, jm). As we have noted at the beginning of this subsection, it then holds that
WY llsG) <7wlly(r)} = Umx(Gr) < 7 (jy)} for any m € S,; and r € [m]. Therefore, Algo-
rithm 2 returns the set of binary vectors {x (7;, Z) : i € [k]} whenever Algorithm 1 returns the
set of relative orders {m; |7 : i € [k]}.

Moreover, Algorithm 6 requires the tuple 7 to consist of k41 pairs of indices. Hence J has
cardinality at most 2k + 2. Since there are less than n2k+2 possible subsets J of [n] that have
cardinality at most 2k 4 2, we can replace the error probability § in Theorem 3.4 by 8n~2—2
and take a union bound to guarantee that Algorithm 1 returns {r;||; : i € [k]} for all such J
with probability at least 1 — §. This then guarantees the success of Algorithm 2 in simulating
the oracle. (Note that although Algorithm 6 only makes at most 1 + %(n —2)(n — 1) queries
to the oracle of Definition 2.2 (see Theorem 2.7), we still need to take the union bound over
all possible subsets of [n] that have cardinality at most 2k + 2 because the queries are made
adaptively.)

Finally, for the time complexity, recall that Algorithms 6 runs in O (k*n?) time and
requires O (kn?) queries (Theorem 2.7). For each query, Algorithm 2 simulates the or-
acle and the bottleneck of time complexity lies in Algorithm 1. We take £ < 2k + 2
in Algorithm 1, giving a time complexity 0((%)" NN'n2+2+1 160 17) according to
Theorem 3.4 where n = n(k,2k + 2, ¢, y). Therefore, the overall time complexity is
O(an(k2+k+2)(y(f—f@)(2k)2k+9 log%) by plugging in the definitions of 1, N’, and ¢ and
then simplifying the formula. [

Note that the factor N in the time complexity can be easily incorporated into the other
factors, because we can just use a logarithmic number of samples in the algorithm and ignore
the rest, which will not hurt the theoretical guarantee on recovering the central permutations.

We remark that the logarithmic dependency of the sample complexity N on the size n of
the permutations is optimal, even in the case k = 1 where we aim to learn a single central

LEARNING MIXTURES OF PERMUTATIONS 2245

permutation in the Mallows model. More precisely, the proof of Lemma 10 of [5] established
the following information-theoretic lower bound: Given N random observations from the
Mallows model M (rr, 1/2) on S,,, if N < clogn for a sufficiently small constant ¢ > 0, then
any algorithm fails to exactly recover the central permutation 7 with a constant probability.

3.4. Learning the weights. Once the central permutations in the Mallows mixture are
recovered exactly according to Corollary 3.5, their corresponding weights can be learned as
well. To see the identifiability of the weights, we first establish a total variation bound for two
Mallows mixtures with the same set of central permutations but different weights.

PROPOSITION 3.6. Consider the Mallows mixtures M = Zle w; M (t;) and M’ =
f:l wl’-M (i) on S, with a common noise parameter ¢ € (0,1). Suppose that & £
max;e[x] |w; — wlf| > 0. Let J be a subset of [n] such that w;||; # 7|y for any distinct

i, j €[k). Define £ = |J| and define n(k/2, £, ¢, 1) as in (13). Then we have
TVIMIy, M'Iy) =& -n(k/2, £, 9, 1).

Based on the above total variation lower bound, Algorithm 4 provides a method for esti-
mating the weights in the Mallows mixture.

Similar to Algorithm 1, it is not hard to see that Algorithm 4 runs in polynomial time: First,
a call to Algorithm 5 takes O (k3n?) time by Lemma 6.2. Then we need to search through
the set R(L) of at most LF ~ k* N*/? candidate models, yielding a total time complexity
O (k" N*/2N N'nlogn) for comparing all the empirical models. Therefore, the overall time
complexity is O (k*n? 4 KX+ N*/2+25 (log N)(logn)) in view of the definition of N'.

The following theorem bounds the entrywise error for w returned by Algorithm 4 and
concludes this section.

THEOREM 3.7. Suppose that we are given N i.i.d. observations sampled from the Mal-
lows mixture M = Zle w; M (7;) on S, with distinct central permutations my, ..., Ty and
a known noise parameter ¢ € (0, 1). Fix a positive constant y < min;c[x)w; and a prob-
ability of error § € (0,0.1). Let {7y, ..., g} be the set of permutations returned by Algo-
rithm 3. Furthermore, let W € [0, 11¢ be the vector of weights returned by Algorithm 4. If

Algorithm 4 EstimateWeights
Input: oy,...,08 €Sy, ¢ €(0,1), y € (0, 1/k], and distinct permutations 7y, ..., x € Sy
Output: a vector of weights w € [0, 1]¥
7 < the tuple returned by FindTuple (Algorithm 5) with inputs 7y, ..., Tk
J <« the set of all indices that appear in the tuple 7
Mpyly < % Yom—18omls
L < [kN'/?
N’ < [kNlog N1
R(L) < {relllt:r=yL, Y ri=L1)
for r e R(L) do
M (r) < Xy M. ¢)
generate N’ i.i.d. random permutations o7, ..., o'y, from the Mallows mixture M’ (r)
My D1y <= 57 Xt 801,
. end for
S W < %argmin,eR(L) TVMy ()7, Mp1y)
: return w

WA RN

_ = e =
W = O

2246 C. MAO AND Y. WU

N>¢k,2k+2,¢,y) - log 2"28“2 where ¢ is defined in (16), then the following holds with
probability at least 1 — §: Up to a relabeling, for every i € [k], it holds that 7t; = 7; and

. (10 N)E-l—l
iy — wy| = (e (k2= 2., 1) - log(4/8) .

The time complexity of the entire algorithm is O(an(k2+k+2)(

K1 NK2+2p(log N) (logn)).

k 2% 2k+9 1
St logg +

4. Mallows mixture in high-noise regime. We turn to study the sample complexity
for learning the Mallows mixture in the high-noise regime. For simplicity, we focus on the
equally-weighted case. For a Mallows model on &, with noise parameter ¢ € (0, 1), we let
£ 2 1 — ¢ and consider the high-noise regime where 7 is fixed and ¢ — 0, as which the
Mallows model converges to the uniform distribution on S,,. We are interested in how the
sample complexity scales with 1/¢.

More formally, let ., denote the collection of k-mixtures of Mallows models on S, with
equal weights and a common noise parameter ¢ € (0, 1), that is,

1 k
(17) M= Mi(n, k, p) = EZM(ni,cp):m,...,nkeSn .
i=1

Some results in this section can be generalized to mixtures with different weights. How-
ever, we focus on the case of equally weighted mixtures to ease the notation, which already
includes all the main ideas. The following result characterizes the total variation distance
between two Mallows mixtures in the high-noise regime up to constant factors.

THEOREM 4.1. For mj = [log, k] + 1 as defined in (9), the following statements hold
ase=1—¢ — 0:

(a) Suppose that k < 255. For any distinct Mallows mixtures M and M’ in #y, we have
TVIM, M) = Q (™).

(b) On the other hand, for n > 2m, there exist distinct Mallows mixtures M and M in
M, for which TV(M, M') = O (™).

The hidden constants in Q2 (-) and O (-) above may depend on n and k.

The key to proving the above theorem is to view groups of pairwise comparisons as mo-
ments and relate them to the total variation distance between two Mallows mixtures. After
establishing this link, the upper and lower bounds follow naturally from the two parts of
Theorem 2.6, respectively.

Note that there is a condition k£ < 255 in part (a) of the above theorem. This is purely a
technical assumption used in one step of the proof. We conjecture that the same result holds
without this restriction on the number of components k in the mixture. See Section A.8 for
details.

Theorem 4.1 characterizes the precise exponent of ¢ in the total variation distance between
two Mallows mixtures. From this, we easily obtain matching upper and lower bounds of order
1/ 2" on the optimal sample complexity for learning a Mallows k-mixture in the high-noise
regime.

COROLLARY 4.2. Suppose that for a Mallows mixture M € My, we are given i.i.d.
observations oy, ...,on ~ M, and let Ppq denote the associated probability measure. We
let ¢ 2 1 — ¢ and consider the setting where n is fixed and € — 0. For my = |log, k| + 1 as
defined in (9), the following statements hold:

LEARNING MIXTURES OF PERMUTATIONS 2247

(a) Suppose that k <255, and that k and ¢ are known. Let My denote the empirical dis-

tribution of o1, ..., on with PMF faq,(0) = % ZlN:1 1{o; = o} for each o € S,,. Consider
the minimum total variation distance estimator
(18) M £ argmin TV(M', My).

M’ ey

If N > Clog(%)/ezmz for a sufficiently large constant C = C(n, k) > 0 and any § € (0, 1),
then we have

Jmax, Pp{M # M} <4.

(b) On the other hand, if n > 2m}; and N < c/szmz for a sufficiently small constant ¢ =
c(n, k) > 0, then we have

' Py M 1
linArAne%* MM # M} > 1/8,

where the estimator M of the mixture is measurable with respect to the observations
01,...,0N.

The computational complexity of the minimum total variation distance estimator M is
polynomial in the sample size N, which itself depends polynomially on 1/¢. Therefore, the
estimator is polynomial-time in the high-noise regime where 7 is fixed and 1/¢ grows. On the
other hand, the computational cost depends exponentially on r, as it involves an exhaustive
search over the class ./, in (17), whose cardinality grows as (n!)*. Finding a statistically
optimal estimator that is polynomial-time in 7 is an interesting open question.

Before ending this section, we remark that Liu and Moitra [23] proved an algorithmic
lower bound for learning the Mallows mixture based on a local query model they proposed.
In their model, upon receiving a query over a pair of sets {ji, ..., jm}, {it,...,im} C [1], the
oracle returns the probability

up to an additive error 7 > 0. The cost of each query is defined to be 1/72, and the total
cost of an algorithm is the sum of its query costs. For k = 2"~ so that m = log, k + 1, they
presented two Mallows mixtures M and M’ with a common noise parameter ¢ = 1 — /k/n
that cannot be distinguished if T < (zn—k)m/ 2. As aresult, the query complexity for identifying

Mis at least (5p)" = (ﬁ(}_(p))zm.

This local query complexity is defined in a different way from the sample complexity

that we study. However, note that their lower bound (7 (;_¢))2m is very similar to our

lower bound of order (é)z’” = (ﬁ)zm in Corollary 4.2(b); in particular, the exponent
2m = 2(log, k + 1) is exactly the same in both bounds. This is because, ultimately, both
lower bounds are proved by matching the combinatorial moments of two distinct mixtures
of permutations. Compared to the particular instance considered by Liu and Moitra, we have
formalized the combinatorial method of moments more generally and established matching
upper and lower bounds on the sample complexity.

5. Discussion. In this work, we proposed a methodology to learn a mixture of permuta-
tions based on groups of pairwise comparisons. We first set up the framework using a generic
noiseless model for a mixture of permutations. Then, we studied the Mallows mixture model,
and introduced a polynomial-time algorithm for learning the central permutations with a sam-
ple complexity logarithmic in the size of the permutations. Finally, we studied the sample
complexity for learning the Mallows mixture in a high-noise regime.

2248 C. MAO AND Y. WU

For the algorithms in this work, we assumed the knowledge of the noise parameter ¢.
This is indeed restrictive, but we conjecture that our main result on the logarithmic sample
complexity in Section 3 continues to hold without this assumption. Specifically, the value
of ¢ is needed in the definition of the class of mixtures (14), which is used in Algorithm 1.
In the case where ¢ is unknown, we can augment the class of models (14) by allowing ¢
to take values in a fine grid in (0, 1). In view of the continuity of the model in ¢ and good
concentration properties of the model, we believe the same sample complexity can be proved
without the knowledge of ¢. We choose not to introduce this technical complication which
does not add much to our general methodology.

Moreover, in general, a Mallows k-mixture model allows its components to have different
noise parameters ¢1, ..., ¢x. While the results in Section 4 depend strictly on the assumption
of a common noise parameter ¢, it is possible to adapt part of our approach in Section 3 to
the heterogeneous setting. However, there is a fundamental obstacle which our current proof
techniques cannot resolve. Namely, the success of Algorithm 1 relies on Proposition 3.1,
which is a dimension-free lower bound on the total variation distance between two marginal-
ized Mallows mixtures whose central permutations do not yield the same set of relative or-
ders on J. The current proof of this lower bound (see Lemma A.7, which is a more general
version of Proposition 3.1) leverages a block structure that makes up J and is ultimately
based on Lemma A.2, an identifiability result for each block in the block structure. However,
Lemma A.2 does not generalize to the setting where we have different noise parameters ¢;.
For example, in the case where n = 2 and k = 2, identifiability no longer holds due to the ex-
tra degrees of freedom given by ¢ and ¢>. We do not know how to get around this difficulty
and defer a potential solution to future work.

Last but not least, our general approach of learning a mixture of permutations from groups
of pairwise comparisons has potential applications beyond the Mallows mixture model. It
would be interesting to apply the framework proposed in Section 2.3 to other models for
mixtures of permutations, such as the Plackett-Luce model [37] and variations of the Mallows
model [11].

6. Proofs. We now prove our results of Section 2. Additional proofs for Sections 3 and
4 are presented in the Supplementary Material [28].

6.1. Proof of Theorem 2.6(a). Throughout the proof, we write m = m;; £ |log, k] + 1 as
in (9). We start with a lemma which is the source of the logarithmic dependency of m on k.

LEMMA 6.1. Consider a set ¥ of k distinct permutations in S,, where n > 2. There
exists m* € ¥ and a tuple T of £ pairs of distinct indices (i1, j1), . .., (i¢, je) € [n)?, such that
¢ < |logy k] and x(7*, 1) # x (7, Z) for all m € T\ {n*}, where x (,TI) is defined by (5).
In addition, this tuple T can be found in polynomial time.

PROOF. Let us start with g = X and apply the following bisection argument iteratively.
Given a nonempty set X,_1 of distinct permutations where r > 1, it is easy to find a pair of
indices i,, j- € [n] such that both of the following sets are nonempty:

(19) Shr={reS_1:nG)>n@)} and = ={reX,_:7G) <7}

Since T U X = X,_, either =7 or X has size at most |Z,_1|/2. We call it I, so that
¥, C Xy—1and | X,| < |X,—1|/2. This procedure is iterated until we have | X, | = 1.
For any r > 1, we have | X, | < k/2" by construction. In particular,

|ZLlog2kJ| =< k/leogsz <2

LEARNING MIXTURES OF PERMUTATIONS 2249

Thus, there exists £ < |log, k] such that |X;| = 1. We denote the permutation in X; by 7*.
Note that by (19) and the definition of X,, we have 1{o (i;) < 0 (j;)} # L{n({,) < 7 (j,)}
forany o € ¥, and 7 € X, \ X,. Since the sets X,’s are nested, it holds that 1{7*(i,) <
7 (j)} #Z Yr (i) < w(j)} for any m € Z,_1 \ X, where r € [£]. As a result, if we define
T2 (>, J1)s ..., (g, je)), then x (m*,T) # x (s, T) for any m € 3¢ \ {mr*}. It is clear that 7
can be found in polynomial time, so the proof is complete. [J

We now prove Theorem 2.6(a). Recall that our goal is to recover the k-mixture M =
Zle w;dy; of permutations in S, from groups of m pairwise comparisons of the form
x (7,) defined in (5) where m ~ M. For this, we do an induction on n > 2, as the case
n =1 is vacuous.

Base case. For n =2 and any k > 1, we can simply take Z to be the tuple of m copies of
(1,2). The oracle of Definition 2.1 then returns the distribution of x (;r, Z), from which we
immediately read off the distribution of 1{w (1) < 7 (2)} and thus the distribution of 7.

Induction hypothesis. As the induction hypothesis, we assume that the statement of Theo-
rem 2.6(a) holds for n — 1 where n > 3. Consider a mixture ZIS‘:] Wy 0y, of permutations in
S, which we aim to learn. Then each 74|[,—1] is a permutation in S,,—1, and by definition
(5), we have x (75 |l(n—1], Z) = x (75, L) for any tuple Z of pairs of indices in [n — 1]. Hence,
the induction hypothesis implies that we can obtain the mixture Y"¥_ w8y, llin_1;- TO TECOVET
the mixture Zle wgdy, of permutations on [n] from those on [n — 1], our task is to insert
the index » into each permutation on [— 1] at the correct position.

Induction step. Toward this end, let us apply Lemma 6.1 to the distinct elements of the set
{m1lln=11, - - - » Tk lln—17} of permutations in S,_. Thus, there exists s* € [k] and a tuple Z of
£ pairs of distinct indices in [n — 1], such that £ < |log, k] and x (7rs, L) # x (7+, L) for all
s € [k]\ S* where we define

S* & s e [k]: w5 |pn—1] = 7+ =17} -

Next, for any index r € [n — 1], we choose an m-tuple Z, consisting of all pairs of indices in
7 and also the pair (r, n). Such a tuple Z, can be chosen because ¢ < |log, k] =m — 1. Then
we query the group of m pairwise comparisons on Z, (Definition 2.1) to obtain the distribution
ZIS‘ZI Ws8y (x,,7,) for each r € [n — 1]. Recall that the definitions of Z and S* guarantee that
x (s, I) = x (g, T) if and only if s € S*. Since Z, includes all pairs of indices in Z, we
can distinguish those components of Zf=1 Wy (x,,7,) supported at x (g, Z,) with s € S*
from those with s € [k] \ S*. Therefore, we obtain the measure) ¢+ ws8y (x,,7,) for any
reln—1J.

Moreover, since (r, n) € Z,, from the measure) ¢« Wydy (x,.7,), WE can easily compute
the function f(r) £ [{D e+ ws : W (r) < we(n)}| where r € [n — 1]. In addition, we set
() £ |S*|. The measure Y ses+ Wby, can be recovered from the sequence of numbers
{f (r)}f;ll as follows. By definition, the permutations 7 ||(,—1] for s € S* are all the same, so
by re-indexing 1, ...,n — 1, we can assume that they are all equal to the identity permutation
(1,2,...,n — 1) to ease the notation. Then f(r) is simply the total weight of permutations
7 that place n after r, so particularly the sequence { f (r)}f;é is nonincreasing. Moreover,
f(r) — f(r +1)is equal to the total weight of the permutations in the mixture) ¢+ W8z,
satisfying ms(n) = r + 1. Therefore, we can recover the measure) ¢+ w8, from the se-
quence {f(r)}1Z].

Finally, once we have learned the measure) ¢+ wdy,, the task becomes recover-
ing the measure ZS¢ s+ Wsdy, from the measure Zm s+ Wsdx, |l[n—17, which can be done

2250 C. MAO AND Y. WU

by repeating the above procedure. Indeed, when querying a group of pairwise compar-
isons Zle W8y (n,,7,)» WE can easily subtract the components with s € S* to obtain
ngé s* W58y (n,,7,)- Therefore, the above procedure can be iterated to eventually yield the

entire mixture Zle w6y, . This completes the induction.

Time and sample complexity. To finish the proof, note that every step in this algorithmic
construction is clearly polynomial-time. For the total number of groups of pairwise compar-
isons, recall that in the base case n = 2, we need one query, and in the induction step from
n — 1 to n, we learn at least one component of the mixture from n — 1 queries. In summary,
the total number of queries needed is at most 1 4 & Z;’;zl =14+ %(n —2)(n+1).

6.2. Proof of Theorem 2.6(b). Throughout the proof, we write m = m; 2 |log, k] + 1 as
in (9) and fix £ < 2m — 1. Intuitively, it is harder to identify a k-mixture of permutations in S,
for larger n and larger k. Indeed, let us justify that we can assume without loss of generality
that n = 2m and k = 2"~ !:

e Suppose that we can prove the statement of part (b) for n = 2m, that is, we have two
mixtures % Zf‘zl 8z, and % Zf-‘zl 8+ of permutations in Sy, that cannot be identified using
£-wise comparisons. For any n > 2m, we may extend each of the above permutation to a
permutation in S, by defining 75(j) = 7/(j) = j for all s € [k] and 2m < j < n. Then
£-wise comparisons still cannot distinguish the two mixtures, because indices larger than
2m are completely uninformative. As a result, we may assume n = 2m without loss of
generality.

e Suppose that we can establish the desired result for k-mixtures. Then for any k' > k, if we
define 7y = 7] = id for all k < s < k', then the mixtures ;- Zf;l 8z and Zf;l 8 still
cannot be distinguished using groups of £-wise comparisons. Hence the statement of the
theorem also holds for k" in replace of k. For any fixed m € N, the smallest k such that
[log, k] + 1 =m is equal to 2"=1 Therefore, we may assume that k = 2”"~! without loss
of generality.

With these simplifications, for a fixed m € N, we now construct two sets X and X, of
permutations in Sy, such that || = |X3| = 2!, and such that groups of £-wise com-
parisons cannot distinguish the two mixtures ¢ >, ex, 07 and % > rex, Oz For each vector
v € {0, 1}, we define a permutation m, € S, by

mQi—1=2j—1, m,Q2j)=2j ifv;=0

(20) : . : . .
m,(2j—1)=2j, my(2j)=2j—-1 ifv;=1

for all j € [m].

Moreover, we define
T & {my:vef{0, 1}, vl isodd}) and ¥, = {my,:ve{0, 1}, |v] is even).

It is clear that both ¥| and ¥, have cardinality om—1
Next, consider an arbitrary set of indices J C [2m] with |J| = 2m — 1. We claim that

(21) {olly v € {0, 1}, vy is odd} = {7y |l; : v € {0, 1}, ||v]|1 is even}.

To prove this claim, let j; denote the only element of [r] \ J. If j; is odd, we let j» = ji + 1;
otherwise, we let j, = j; — 1. For any v € {0, 1}"* with odd ||v||;, we define v’ € {0, 1} by
vi =1 —w; for i = [ji/2] and v; = v; for i # [j1/2]. Since v’ differs from v in only one
coordinate, ||v'||; must be even. As a result, we have m, € ¥ and 7,y € ;. This clearly
gives a bijection between the sets X and X,. Furthermore, by definition (20), 7, and
only differ on the pair (ji, j2). Since J does not contain jj, we must have | ; = my|lJ.
Consequently, equation (21) holds, so that any £-wise comparison (Definition 2.3) returns
the same distribution for the two mixtures % > ey, 6 and % > rex, 6. This completes the
proof.

LEARNING MIXTURES OF PERMUTATIONS 2251

Algorithm 5 FindTuple

Input: distinct permutations 1, ..., 7 in Sy
Output: a tuple Z of pairs of indices in [#]
1: T <[] > [] denotes the empty tuple

2: for j =2to k do
3: if there exists i € [j — 1] for which x (7;, Z) = x(rj,Z) then
> by convention, x (w1,[1) = x (72, []

4 find r, s € [n] such that ; (r) < 7;(s) and 7w (r) > 7 (s)

5 L <IZ, (9] > that is, append (r,s) to T
6: end if

7: end for

8: return Z

6.3. Proof of Theorem 2.7. We first establish a lemma which guarantees the success of
Algorithm 5 which finds a discriminative tuple for any given set of permutations.

LEMMA 6.2. Let my,..., 7 be k distinct permutations in S,. Algorithm 5 finds in
O (k3n?) time a tuple T of € pairs of distinct indices in [n] such that £ < k — 1 and
x (i, 1) # x(;, 1) for any distinct i, j € [k].

PROOF. First, it is clear that Algorithm 5 returns a tuple Z of £ < k — 1 pairs of indices.
It suffices to inductively show that, at step j of the loop in the algorithm where j =2, ..., k,
we have x (7;, T) # x (mt;s, I) for any distinct i,i" € [j].

For j = 2, because m; and 7, are assumed to be distinct, we can find indices r, s € [n]
such that 1 (r) < m2(s) and m2(r) > m2(s). Therefore, if we let Z consist of the single pair
(r,8), then x (1, T) # x (72, 1).

Next, at the beginning of step j of the loop where 3 < j <k, we have x (w;,Z) # x (m;7, L)
for any distinct i,i" € [j — 1] by the induction hypothesis. If x (;,Z) # x (7, T) for all
i € [j — 1], then we are done with the induction. Otherwise, there exists exactly onei € [j — 1]
such that x (;,Z) = x(m;,Z). Since m; and 7; are assumed to be distinct, we can find
indices r, s € [n] such that 7; (r) < 7;(s) and 7w (r) > 7;(s). As aresult, once we append the
pair (r, s) to the tuple Z, it then holds that x (7;,) # x(;,Z). We now have x (m;, 1) #
x (77, T) for any distinct i, i” € [j], finishing the induction.

Finally, the time complexity of the algorithm is O (k*n?) because it searches through j =
2,...,kandi=1,...,j — 1; for a pair (i, j), binary vectors of length at most k — 1 are
compared; and finding a pair (r, s) takes time on?». O

We now prove Theorem 2.7 for n > 2 as the case n = 1 is trivial. This proof is structurally
similar to Theorem 2.6(a), but the key step in the induction is different. We note an intricacy
throughout this proof: When queried with the tuple Z, the oracle in Definition 2.2 returns the
set {x(m;,I) :i € [k]} where x (r;,Z) is defined by (5). This set (as opposed to an ordered
tuple or multiset) is represented by its distinct elements without labels, so it is possible that it
contains less than k distinct elements and we do not know their multiplicities.

Note that Algorithm 6 is recursive with respect to n; correspondingly, we prove Theo-
rem 2.7 by induction on n > 2.

Base case (lines 1-9 of Algorithm 6). For n = 2, as in Algorithm 6, we simply take Z to be
the tuple of k + 1 copies of (1, 2). Then every entry of x (m;,Z) is equal to 1{m; (1) < 7; (2)}.
The oracle returns the set {x (;r;, Z) : i € [k]}, from which we immediately read off the set
{1{m; (1) < m;(2)}:i € [k]} and thus the set {7r; : i € [k]} as detailed in the algorithm.

2252 C. MAO AND Y. WU

Algorithm 6 InsertionDemixing
Input: n, k, and {x(;,Z) : i € [k]} for tuples Z of k 4 1 pairs of distinct indices in [n]
queried in the algorithm
Output: a set G, of permutations in S,
1. if n =2 then
2: T < the tuple of k + 1 copies of (1,2)
> all entries of x (i, I) are equal to 1{m; (1) < m; (2)}

3 if {x(m;,2);:i € [k]} = {1} then

4 Sy < {(1,2)}

5 else if {x (7;,Z); : i € [k]} = {0} then

6: Gy <~ {(2, 1)}

7 else > {x(m;, D)y :i € [k]} ={0, 1}

8 Sy < {(1,2), (2, 1}

9 end if

10: else >n>3

11: &,—1 < the subset of S, returned by InsertionDemixing run with inputs
n—1,k,and {x (m;,Z) :i € [k]} for tuples Z of k 4 1 pairs of indices in [n — 1]

12: let oy, ..., o € S,—1 denote the elements of &,

13: if K > |6,_>| then

14: T < the tuple returned by FindTuple (Algorithm 5) with inputs o1, ..., oy’

15: end if

16: G, <« g
17: for j =1tok’ do

18: forr =2ton—1do

19: I «IZ,..., (O'j_l (r—1),n), (n, Gj_l ()] © here ... means some arbitrary
pairs of indices we append to I for concreteness so that I, consists of exactly k + 1 pairs

20: call the oracle in Definition 2.2 to obtain the set {x (7;, Z,) : i € [k]}

21 Xj(r) < {x(mi,Zy) i elk], x(7i, L) = x (0, 1)}

22: if there is v € X (r) such that vy = vi41 = 1 then

23: &y <6, U{0;7'(D,....o; = Dono (1), 05 (n— 1))

24: end if

25: end for

26: if there is v € X;(2) such that vy = 0 then

27: Sy <&, U{(n, 07 (D),,07 (n = 1))

28: end if

29: if there is v € X (n — 1) such that vi41 =0 then

30: Sy <&, U] (1),....07 (n = 1),m))

31: end if

32: end for

33: end if

34: return G,

Induction hypothesis (lines 10—12 of Algorithm 6). Fix n > 3 and assume that the conclusion
of the theorem holds for n — 1. Consider a mixture of permutations 1, ..., 7x € S, which
we aim to learn. Then each 7;||(,—1] where i € [k] is a permutation in S,—_;. By definition
(5), we have x (;ll{n—-1],Z) = x (7;, I) for any tuple Z of pairs of indices in [n — 1]. Hence,
the induction hypothesis implies that the algorithm returns the set of permutations &, | =
{7illpn—1y 7 € [k]}.

LEARNING MIXTURES OF PERMUTATIONS 2253

Let us denote the distinct elements of &, by o1, ..., o € S,—1, where k’ < k. To obtain

the set {m; : i € [k]} of permutations on [n] from those on [rn — 1], our task is to insert the
index n into o at the correct position for each j € [k']. Note that |{7;||[n—17 : i € [k]}| < |{7; :
i € [k]}| and we may need to obtain more than one permutation in S, from each o; where
Jjelk].
Induction step (lines 14-32 of Algorithm 6). Run Algorithm 5 with inputs oy, ..., op.
Lemma 6.2 guarantees that we obtain an £¢-tuple Z of pairs of distinct indices in [n — 1]
such that £ <k’ — 1 and x (0;,7) # x (o, T) for any distinct i, j € [k']. This guarantees that
7illin—11 =0 if and only if x (7;,Z) = x(0;,Z) fori € [k] and j € [K].

We now fix j € [k'] (line 17) and aim to recover those m; such that 7;|[,—1] = 0;. To
simplify the notation in the sequel, we assume that o is equal to the identity permutation on
[n — 1], denoted by (1,2, ...,n — 1). Algorithm 6 is stated in full generality, and the proof
of its validity is essentially the same. With the assumption 7;||[,—1; = (1,2,...,n — 1), to
recover 7;, it suffices to determine where n should be inserted into (1,2, ...,n — 1).

Note that k +1 >k’ 4+ 1> £ + 2. Hence, for each r =2,...,n — 1, we can define an
(k + 1)-tuple Z, (line 19) containing all the ¢ pairs of indices in Z and the pairs (r — 1, n)
and (n, r). In the case that k + 1 > ¢ 4 2, the remaining kK — ¢ — 1 pairs of indices in Z, can
be defined arbitrarily for concreteness—we will not use the comparison information on those
pairs. Then, we query the group of pairwise comparisons on Z, according to Definition 2.2
to obtain the set {x (7;, Z,) : i € [k]}.

Since Z, includes all pairs of indices in Z, we can compute

Xj(r) & {x (i, I, i e k], x (i, T) = x (0. D} C {x (i, T,) :i € [K]}.
Note that 7;||[,—1) = o; if and only if x (;,Z) = x(0;,Z). By the definition of X;(r), for
each fixed r =2, ...,n — 1, we have that 7;||[,—1; = o if and only if x (7;,Z,) € X;(r) for
i € [k]. In particular, when we take v € X;(r) in the algorithm, v = x (7r;, Z,) for some 7;
such that 7; -1 = 0j.

It remains to recover 7r; for which 7;||[,—1] = o from the collection of sets {X; (r)}f;zl.
First, fix r and recall that the pairs (r — 1, n) and (n, r) are both in Z,. If

m={,....,r—1,n,r...,n—1)
for some i € [k], then 7;||[,—1] = 0} and the set X ;(r) must contain a vector v = x (7, Z;)
whose entries vy = 1{m;(r — 1) < m;(n)} and vgy; = L{m;(n) < mw;(r)} are both equal
to 1. Conversely, if X;(r) contains some vector v with vy = vgy1 = 1, then we know that
7i|ljn—1] = 0 and r; must be equal to (1,...,r —1,n,r,...,n—1). As aresult, we success-
fully recover this 7r; (line 23).
This argument clearly works for 7; equal to (n,1,...,n —1)or (1,...,n — 1, n) as well,

in the respective cases (lines 26-31):

o r=2and vy = x(m;,) =Um; (1) <7;(n)} =0;
o r=n—1land vy = x (7@, L- k1 =1L{mi(n) <mi(n — 1)} =0.

Therefore, we are able to recover all distinct 7; such that 7; ||[,—1; = o fori € [k].
Finally, repeating the above procedure for each j € [k'] yields the set {r; : i € [k]}.

Time and sample complexity. In each recursion of Algorithm 6, the bottleneck of time com-
plexity is a call to Algorithm 5 (line 14) which takes O (k*n?) time, but this step only needs
to be run at most k times. Moreover, the step of inserting n to the current mixture takes less
than O (k*n) time (lines 17—32). As a result, the overall time complexity is O (k*n?).

For the total number of groups of pairwise comparisons, recall that in the base case n = 2,
we need one query, and in the induction step from n — 1 to n, we learn at least one component
of the mixture from n — 2 queries. In summary, the total number of queries needed is at most
1+kY! 3G -2 =1+50-2)(n - D).

2254 C. MAO AND Y. WU

Acknowledgements. The authors thank the anonymous reviewers for their helpful com-
ments.

Funding. C.M. was supported in part by the NSF Grant DMS-2053333. Y.W. was sup-
ported in part by the NSF Grant CCF-1900507, the NSF CAREER award CCF-1651588, and
an Alfred Sloan fellowship.

SUPPLEMENTARY MATERIAL

Supplement to ‘“Learning mixtures of permutations: Groups of pairwise comparisons
and combinatorial method of moments” (DOI: 10.1214/22-A0S2185SUPP; .pdf). We pro-
vide additional technical proofs of our results in this supplement.

REFERENCES

[1] AwASTHI, P., BLUM, A., SHEFFET, O. and VIJAYARAGHAVAN, A. (2014). Learning mixtures of ranking
models. In Advances in Neural Information Processing Systems 2609-2617.

[2] BALTRUNAS, L., MAKCINSKAS, T. and Riccl, F. (2010). Group recommendations with rank aggregation
and collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems
119-126.

[3] BORDA, J. C. (1781). Mémoire sur les élections au scrutin. Histoire de I’Academie Royale des Sciences
Pour.

[4] BRAVERMAN, M. and MOSSEL, E. (2009). Sorting from noisy information. Preprint. Available at
arXiv:0910.1191.

[S] BUSA-FEKETE, R., FOTAKIS, D., SZORENYI, B. and ZAMPETAKIS, M. (2019). Optimal learning of Mal-
lows block model. In Proceedings of the Thirty-Second Conference on Learning Theory (A. Beygelz-
imer and D. Hsu, eds.) 99 529-532.

[6] BUSA-FEKETE, R., HUOLLERMEIER, E. and SZORENYI, B. (2014). Preference-based rank elicitation us-
ing statistical models: The case of Mallows. In Proceedings of the 31st International Conference on
Machine Learning 32 11-1071. JMLR.org.

[7] BUSSE, L. M., ORBANZ, P. and BUHMANN, J. M. (2007). Cluster analysis of heterogeneous rank data. In
Proceedings of the 24th International Conference on Machine Learning 113-120. ACM, New York.

[8] CARAGIANNIS, I., PROCACCIA, A. D. and SHAH, N. (2013). When do noisy votes reveal the truth? In
Proceedings of the Fourteenth ACM Conference on Electronic Commerce 143-160.

[9] CHIERICHETTI, F., DASGUPTA, A., KUMAR, R. and LATTANZI, S. (2015). On learning mixture models
for permutations. In ITCS’15—Proceedings of the 6th Innovations in Theoretical Computer Science
85-92. ACM, New York. MR3418998

[10] CONDORCET, M. J. (1785). Essai sur L’application de L’analyse a la Probabilité des Décisions Rendues a
la Pluralité des Voix.

[11] DE, A., O’DONNELL, R. and SERVEDIO, R. (2018). Learning sparse mixtures of rankings from noisy
information. Preprint. Available at arXiv:1811.01216.

[12] DOIGNON, J.-P., PEKEC, A. and REGENWETTER, M. (2004). The repeated insertion model for rank-
ings: Missing link between two subset choice models. Psychometrika 69 33-54. MR2272438
https://doi.org/10.1007/BF02295838

[13] Doss, N., Wu, Y., YANG, P. and ZHOU, H. H. (2020). Optimal estimation of high-dimensional Gaussian
mixtures. Preprint. Available at arXiv:2002.05818.

[14] DWORK, C., KUMAR, R., NAOR, M. and SIVAKUMAR, D. (2001). Rank aggregation methods for the web.
In Proceedings of the 10th International Conference on World Wide Web 613-622.

[15] FAGIN, R., KUMAR, R. and SIVAKUMAR, D. (2003). Efficient similarity search and classification via rank
aggregation. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data 301-312.

[16] FLIGNER, M. A. and VERDUCCI, J. S. (1986). Distance based ranking models. J. Roy. Statist. Soc. Ser. B
48 359-369. MR0876847

[17] GORMLEY, I. C. and MURPHY, T. B. (2008). Exploring voting blocs within the Irish electorate: A mix-
ture modeling approach. J. Amer. Statist. Assoc. 103 1014—1027. MR2528824 https://doi.org/10.1198/
016214507000001049

[18] GORMLEY, I. C. and MURPHY, T. B. (2008). A mixture of experts model for rank data with applications in
election studies. Ann. Appl. Stat. 2 1452-1477. MR2655667 https://doi.org/10.1214/08- AOAS178

(19]
[20]
(21]
(22]

(23]

[24]
[25]
(26]
[27]
(28]
[29]
(30]

(31]

(32]

(33]
(34]
(35]
[36]

(371

LEARNING MIXTURES OF PERMUTATIONS 2255

HEINRICH, P. and KAHN, J. (2018). Strong identifiability and optimal minimax rates for finite mixture
estimation. Ann. Statist. 46 2844-2870. MR3851757 https://doi.org/10.1214/17-AOS1641

IRUROZKI, E., CALVO, B. and LOZANO, J. A. (2019). Mallows and generalized Mallows model for match-
ings. Bernoulli 25 1160-1188. MR3920369 https://doi.org/10.3150/17-bej1017

JORDAN, M. I. and JACOBS, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural
Comput. 6 181-214.

KORBA, A., CLEMENCON, S. and SIBONY, E. (2017). A learning theory of ranking aggregation. In Artifi-
cial Intelligence and Statistics 1001-1010.

Liu, A. X. and MOITRA, A. (2018). Efficiently learning mixtures of Mallows models. In 59th Annual IEEE
Symposium on Foundations of Computer Science—FOCS 2018 627-638. IEEE Computer Soc., Los
Alamitos, CA. MR3899628 https://doi.org/10.1109/FOCS.2018.00066

Liu, Y.-T., L1u, T.-Y., QIN, T., MA, Z.-M. and L1, H. (2007). Supervised rank aggregation. In Proceed-
ings of the 16th International Conference on World Wide Web 481-490.

Lu, T. and BOUTILIER, C. (2011). Learning Mallows models with pairwise preferences. In Proceedings of
the 28th International Conference on International Conference on Machine Learning 145-152.

Lu, T. and BOUTILIER, C. (2014). Effective sampling and learning for Mallows models with pairwise-
preference data. J. Mach. Learn. Res. 15 3783-3829. MR3317212

MaLLows, C. L. (1957). Non-null ranking models. 1. Biometrika 44 114-130. MRO0087267
https://doi.org/10.1093/biomet/44.1-2.114

Mao, C. and WU, Y. (2022). Supplement to “Learning mixtures of permutations: Groups of pairwise com-
parisons and combinatorial method of moments.” https://doi.org/10.1214/22- AOS2185SUPP

MARDEN, J. L. (1995). Analyzing and Modeling Rank Data. Monographs on Statistics and Applied Proba-
bility 64. CRC Press, London. MR1346107

MEILA, M. and CHEN, H. (2010). Dirichlet process mixtures of generalized Mallows models. In Proceed-
ings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence 358-367.

MEILA, M., PHADNIS, K., PATTERSON, A. and BILMES, J. (2007). Consensus ranking under the expo-
nential model. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence
285-294.

MOITRA, A. and VALIANT, G. (2010). Settling the polynomial learnability of mixtures of Gaussians. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010 93-102. IEEE
Computer Soc., Los Alamitos, CA. MR3024779

MURPHY, T. B. and MARTIN, D. (2003). Mixtures of distance-based models for ranking data. Comput.
Statist. Data Anal. 41 645-655. MR1973732 https://doi.org/10.1016/S0167-9473(02)00165-2

PEARSON, K. (1894). Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A
185 71-110.

WU, Y. and YANG, P. (2020). Optimal estimation of Gaussian mixtures via denoised method of moments.
Ann. Statist. 48 1981-2007. MR4134783 https://doi.org/10.1214/19-A0OS1873

ZAGIER, D. (1992). Realizability of a model in infinite statistics. Comm. Math. Phys. 147 199-210.
MR1171767

ZHAO, Z., PIECH, P. and X1A, L. (2016). Learning mixtures of Plackett—-Luce models. In International
Conference on Machine Learning 2906-2914.

	Introduction
	Mallows mixture and related work
	Major contributions
	Logarithmic sample complexity and groups of pairwise comparisons
	Method of moments and comparison with Gaussian mixtures
	Relation to Zagier's work on group determinant
	Organization
	Notation

	Demixing permutations with groups of pairwise comparisons
	Groups of pairwise comparisons
	Comparison moments
	Efﬁcient learning in a generic model

	Mallows mixture in high-dimensional regime
	Marginalization of Mallows mixture
	The subroutine
	Exact recovery of the central permutations
	Learning the weights

	Mallows mixture in high-noise regime
	Discussion
	Proofs
	Proof of Theorem 2.6(a)
	Base case
	Induction hypothesis
	Induction step
	Time and sample complexity

	Proof of Theorem 2.6(b)
	Proof of Theorem 2.7
	Base case (lines 1-9 of Algorithm 6)
	Induction hypothesis (lines 10-12 of Algorithm 6)
	Induction step (lines 14-32 of Algorithm 6)
	Time and sample complexity

	Acknowledgements
	Funding
	Supplementary Material
	References

