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Abstract
This paper deals with the problem of graph matching or network alignment for Erdős–
Rényi graphs, which can be viewed as a noisy average-case version of the graph
isomorphism problem. Let G and G ′ be G(n, p) Erdős–Rényi graphs marginally,
identified with their adjacency matrices. Assume that G and G ′ are correlated such
that E[Gi jG ′

i j ] = p(1 − α). For a permutation π representing a latent matching
between the vertices of G and G ′, denote by Gπ the graph obtained from permuting
the vertices of G by π . Observing Gπ and G ′, we aim to recover the matching π .
In this work, we show that for every ε ∈ (0, 1], there is n0 > 0 depending on ε and
absolute constants α0, R > 0 with the following property. Let n ≥ n0, (1+ ε) log n ≤
np ≤ n

1
R log log n , and 0 < α < min(α0, ε/4). There is a polynomial-time algorithm F

such that P{F(Gπ ,G ′) = π} = 1− o(1). This is the first polynomial-time algorithm
that recovers the exact matching between vertices of correlated Erdős–Rényi graphs
with constant correlationwith high probability. The algorithm is based on comparison
of partition trees associated with the graph vertices.
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1.1 The correlated Erdős–Rényi graph model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Prior work and our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Algorithms and theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Partition trees and vertex signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Almost exact matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Exact matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Further related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Overview of the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Introduction

Theproblemofgraphmatching (also knownasgraphalignment ornetwork alignment)
refers to finding a mapping between vertices of two given graphs in order to maximize
alignment of their edges. If the twographs are isomorphic, the problem is the celebrated
graph isomorphism problem, for which no polynomial-time algorithm is known in the
worst case (see [1] and references therein). In general, the noisy graph matching
problem can be formulated as the quadratic assignment problem, which is NP-hard to
solve or approximate (see surveys [3, 23]).

While in the worst case the problem appears intractable, an optimal matching of
certain random graphs can be realized in polynomial time. In particular, the graph
isomorphism problem for Erdős–Rényi graphs above the connectivity threshold can
be solved in polynomial time with high probability [4, 5, 9]. More recently, numer-
ous results have been obtained in the literature for matching a pair of correlated
Erdős–Rényi graphs [2, 6–8, 10, 11, 13–15, 17, 18, 20–22, 24, 26, 27]. At the same
time, conditions for existence of a polynomial-time algorithm for recovering the latent
matching between the two graphs are far from being fully understood. In this work,
we make further progress along this line of research by proposing a polynomial-time
algorithmwhich produces an exactmatching between a pair of correlated Erdős–Rényi
graphs with constant correlation, which is the first result of this kind in the literature.
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Exact matching of random graphs with constant correlation

1.1 The correlated Erdos–Rényi graphmodel

Weconsider the correlated Erdős–Rényi graphmodel [22] in this work. Fix p ∈ (0, 1),
α ∈ [0, 1 − p], and a positive integer n. Let G0 be a G(n,

p
1−α

) Erdős–Rényi graph,
which is called the parent graph. Conditional on the parent graph G0, a subgraph G is
obtained by removing every edge of G0 independently with probability α; moreover,
another subgraph G ′ of G0 is obtained in the same way (conditionally) independently
ofG. ThenG andG ′ are marginally bothG(n, p) graphs, and for every pair of distinct
vertices i and j in [n] := {1, 2, . . . , n},

P
{
i is adjacent to j in G | i is adjacent to j in G ′} = 1 − α.

Note that α indicates the noise level in the model, while 1 − α can be viewed as the
correlation between the two graphs. Given a permutation π : [n] → [n], letGπ denote
the graph obtained from permuting the vertices ofG by π . In other words, i is adjacent
to j in G if and only if π(i) is adjacent to π( j) in Gπ . The permutation π is unknown
and represents the latent matching between the vertices of the two graphs. Observing
the graphs Gπ and G ′, we aim to recover the matching π exactly.

1.2 Prior work and our contributions

We use the standard asymptotic notation O(·), o(·), and �(·) for a growing n; we
also use Õ(·) to hide a polylogarithmic factor in n. Moreover, we use C,C ′, c, c′,
possibly with subscripts, to denote universal positive constants that may change at
each appearance.

Let us focus our discussion on the exact recovery of the latent matching π . First, it
is without loss of generality to assume that the average degree of each graph exceeds
the so-called connectivity threshold. To be more precise, if np ≤ (1 − ε) log n, a
G(n, p) graph will almost surely contain isolated vertices, so exact recovery of the
matching is impossible in this case. We therefore assume that the average degree
satisfies np ≥ (1 + ε) log n for an arbitrarily small absolute constant ε > 0. Then a
G(n, p) graph is known to be connected almost surely as n grows.

For the correlated Erdős–Rényi graph model, the optimal information-theoretic
threshold for exact recovery of π is known [26]. For example, in the regime p

1−α
=

o(1), exact matching is possible if np(1−α) ≥ (1+ ε′) log n for any constant ε′ > 0.
In particular, if np = (1 + ε) log n for a small constant ε > 0, then this threshold
requires α to be slightly smaller than ε. In the dense case where np is much larger than
log n, the information-theoretic threshold even allows α to be close to 1. However, this
optimal condition is achieved by the maximum likelihood estimator which employs
an exhaustive search over the set of permutations and is therefore computationally
infeasible. Several recent works developed quasi-polynomial and polynomial time
algorithms for exact recovery of π under stronger conditions. A selection of prior
results along with ours are listed in Table 1.

As shown in Table 1, before this work, no polynomial-time algorithm is known to
achieve exact recovery if the noise parameter α is a small constant nor if the average
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Table 1 Conditions for exact matching

Condition Time complexity

[26] np(1 − α) ≥ (1 + ε′) log n if p
1−α

= o(1) Exponential

[2] np ≥ no(1), 1 − α ≥ (log n)−o(1) nO(log n)

[11] np ≥ (log n)C , α ≤ (log n)−C Õ(n3 p2 + n2.5)

C log n ≤ np ≤ e(log log n)C , α ≤ (log log n)−C

[12] np ≥ (log n)C , α ≤ (log n)−C O(n3)

[20] np ≥ (log n)C , α ≤ (log log n)−C Õ(n2)

This work (1 + ε) log n ≤ np ≤ n
1

C log log n , α ≤ min(const, ε/4) n2+o(1)

degree np is close to the connectivity threshold log n. Our work achieves both condi-
tions and therefore resolves what was seen as a main open problem in this literature.
In particular, if np = (1 + ε) log n for a constant ε > 0, the condition required by
our algorithm differs from the optimal information-theoretic condition by at most a
constant factor.

While our main focus is exact recovery of the latent matching π , part of our strategy
applies to partial recovery of π and is expected to carry over to sparser regimes
where exact matching is impossible; see Theorem A and Sect. 2.2 for details. The
new algorithm we propose is based on exploring large neighborhoods of vertices via
partition trees, a technique that may be of further interest. Moreover, the last step of
our algorithm is to obtain an exact matching from a (potentially adversarial) partial
matching. To this end, we develop a method that tolerates any constant fraction of
wrongly matched pairs in the initial partial matching; see Sects. 2.3 and 7 for details.

1.3 Main results

Everywhere in this paper, when discussing the computational complexity of a func-
tion, we assume that elementary arithmetic operations as well as the square root and
the logarithm, can be computed exactly in time Õ(1). We note that analyzing the
algorithms using the floating point arithmetic, while certainly possible, adds unnec-
essary technical details to the presentation and does not affect the order of the time
complexity.

Our first main result deals with almost exact recovery of the latent permutation.
The algorithm succeeds with probability at least 1 − n−D for an arbitrary constant
D > 0, even when the average degree is logarithmic in n.

Theorem A (Almost exact matching). For any constant D > 0, there exist constants
α0, n0, R, c > 0 depending on D with the following property. Let Gπ and G ′ be the
graphs given by the correlated Erdős–Rényi graph model defined in Sect. 1.1, with
parameters n, p, and α such that

n ≥ n0, α ∈ (0, α0), log n ≤ np(1 − α) ≤ n
1

R log log n .
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Then there is a random function Fal defined on pairs of graphs on [n] and taking
values in the set of permutations on [n], such that

• Fal is independent from the graphs Gπ and G ′,
• Fal has expected time complexity Õ(n2), and
• for any latent permutation π : [n] → [n],

P
{
Fal(G

π ,G ′)(i) �= π(i) for at most n1−c indices i ∈ n
} ≥ 1 − n−D .

The next result establishes existence of a polytime procedure producing an exact
matching with high probability.

Theorem B (Exact matching). For any constant ε ∈ (0, 1], there exists a constant
n0 > 0 depending on ε and absolute constants α0, R > 0 with the following property.
Let Gπ and G ′ be the graphs given by the correlated Erdős–Rényi graphmodel defined
in Sect. 1.1, with parameters n, p, and α such that

n ≥ n0, (1 + ε) log n ≤ np ≤ n
1

R log log n , 0 < α ≤ min(α0, ε/4).

Then there is a random function Fex defined on pairs of graphs on [n] and taking
values in the set of permutations on [n], such that

• Fex is independent from the graphs Gπ and G ′,
• Fex has expected time complexity n2+o(1), and
• for every permutation π : [n] → [n],

P
{
Fex (G

π ,G ′) = π
} ≥ 1 − n−10 − exp(−εpn/10).

The actual computational procedures for Fal and Fex in the above theorems will

be discussed in Sect. 2. Note that the theorems assume np ≤ n
1

R log log n , that is, the
graphs in consideration are sufficiently sparse. This is because the success of our main
algorithm relies on the condition that the neighborhood of radius O(log log n) around

any typical vertex is a tree. In the denser regime where n
1

R log log n � np ≤ O(1),
the problem of matching two Erdős–Rényi graphs with constant correlation remains
open. It is interesting to study whether an extension of the algorithms in this work
or our earlier work [20] can solve the problem. A major difficulty is to handle the
probabilistic dependency across multiple steps of an iterative algorithm in the dense
regime.

1.4 Notation

For any positive integer n, let [n] be the set of integers {1, 2, . . . , n}. Let N denote the
set of positive integers and N0 the set of nonnegative integers. Let ∧ and ∨ denote the
min and the max operator for two real numbers, respectively.

For a graph G with vertex set [n] and i ∈ [n], let degG(i) denote the degree of i in
G. For distinct vertices i, j ∈ [n], let distG(i, j) denote the distance between i and j
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in the graph G. LetNG(i) denote the set of neighbors of i in G. For a subset S ⊂ [n],
let NG(S) := ⋃i∈S NG(i). For r ∈ N, let BG(i, r) and SG(i, r) denote the ball and
the sphere of radius r centered at i in G, respectively. Let G(S) denote the subgraph
of G induced by S ⊂ [n]. In particular, G(BG(i, r)) is the r -neighborhood of i in G.

2 Algorithms and theoretical guarantees

Let n ∈ N and p ∈ (0, 1) be global constants that are known to the algorithms.

2.1 Partition trees and vertex signatures

In order to recover the latent matching π between vertices of the two graphs, we
associate a signature, that is, a 2m–dimensional vector, to every vertex in Gπ and
every vertex in G ′. The signature of vertex i in a given graph � is constructed based
on the partition tree rooted at i , which is, by definition, a complete binary tree T whose
nodes {Tm

s }s∈{−1,1}m at level m form a partition of the sphere S�(i,m). Algorithm 1
gives the precise construction of the partition tree and the signature associated to a
vertex.

Algorithm 1 VertexSignature
Input: a graph � on the vertex set [n], a vertex i ∈ [n], and a depth parameter m ∈ N

Output: a signature vector f ∈ R
2m and a vector of variances v ∈ R

2m

1: T 0
∅

← {i} 
 ∅ denotes the empty tuple

2: for k = 0, . . . ,m − 1 do
3: for s ∈ {−1, 1}k do
4: T k+1

(s,+1) ← {
j ∈ N�(T k

s ) ∩ S�(i, k + 1) : deg�( j) ≥ np
}

5: T k+1
(s,−1) ← {

j ∈ N�(T k
s ) ∩ S�(i, k + 1) : deg�( j) < np

}

6: end for
7: end for
8: define f (i) ∈ R

2m by f (i)s := ∑
j∈N�(Tm

s )∩S�(i,m+1)

(
deg�( j) − 1 − np

)
for

s ∈ {−1, 1}m
9: define v(i) ∈ R

2m by v(i)s := np(1− p)|N�(Tm
s )∩S�(i,m+1)| for s ∈ {−1, 1}m

10: return f (i) and v(i)

Algorithm 1 can be informally described as follows. Given a vertex i , we construct
inductively a binary tree of sets T k

s , k = 0, . . . ,m, s ∈ {−1, 1}k , starting with T 0
∅

:=
{i}. Each set T k

s , s ∈ {−1, 1}k , is a subset of the sphere S�(i, k). For every k < m and
s ∈ {−1, 1}k , T k

s has two children T k+1
(s,−1) and T

k+1
(s,+1), with the union T

k+1
(s,−1) ∪ T k+1

(s,+1)

equal toN�(T k
s )∩S�(i, k+1). Here,wewrite (s,±1) for a binary vector in {−1, 1}k+1

formed by concatenating s and ±1. The set T k+1
(s,−1) is the collection of all vertices in

N�(T k
s )∩S�(i, k+1)with degree strictly less than np, and T k+1

(s,+1) —the vertices with
degrees at least np (note that the input of the algorithm is a realization of a G(n, p)
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T 0
∅
= {i}; T 1

(−1) = {i1, i2}; T 1
(+1) = {i3};

T 2
(−1,−1) = {i12, i21, i22}; T 2

(−1,+1) = {i11}; T 2
(+1,−1) = {i31, i32}; T 2

(+1,+1) = {i33}.

i

i1 i2 i3

i11 i12 i21 i22 i31 i32 i33

· · · · · · · · · · · · · · · ·

Fig. 1 An example of a partition tree of a vertex i of a graph with parameters np = 3.5 and
m = 2. The blue lines denote the edges of the graph. The nodes of the partition tree of i are T 0

∅
=

{i}; T 1
(−1) = {i1, i2}; T 1

(+1) = {i3}; T 2
(−1,−1) = {i12, i21, i22}; T 2

(−1,+1) = {i11}; T 2
(+1,−1) =

{i31, i32}; T 2
(+1,+1) = {i33} (color figure online)

random graph, hence the threshold value). The collection of sets of vertices

T = {T k
s : k = 0, . . . ,m, s ∈ {−1, 1}k}

associated with a given vertex i is referred to as the partition tree rooted at i . It can
be viewed as a data structure encoding statistics of paths of length m starting at i and
classified according to the degrees of the comprised vertices. The key point of our
approach is that the partition trees contain sufficient information for recovering the
latent matching between the correlated graphs. We refer to Fig. 1 for an example of
the partition tree of a vertex in a graph.

With the partition tree constructed, Algorithm 1 then defines the signature f (i) ∈
R
2m of vertex i to be avectorwhose entries are basedondegrees of neighbors of vertices

in the leaves of the partition tree. Finally, the auxiliary vector v(i) ∈ R
2m encodes the

variances of the entries of the signature vector in a G(n, p) random graph, conditional
on a realization of the (m + 1)–neighborhood of i . For matching vertices of Gπ and

G ′, we will use normalized differences of signatures with components fs (i)− f ′
s (i

′)√
vs (i)+v′

s (i
′)
,

where the superscript “ ′ ” denotes that the signature vector and the vector of variances
are for a vertex i ′ in G ′; see Algorithm 2 for details.

Since we will take m = O(log log n) and the average degree of each graph is

assumed toben
1

R log log n for a sufficiently large constant R, the expected time complexity
of computing one signature vector with Algorithm 1 given the adjacency matrix of �

is O(n).

2.2 Almost exact matching

With the signatures constructed, we then match vertex i in Gπ and vertex i ′ in G ′ if
and only if their signatures are sufficiently close. Ideally, the difference between the
signatures of a “correct” pair of vertices, π(i) in Gπ and i in G ′, should be small,
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while the difference between the signatures of a “wrong” pair of vertices, π(i) in Gπ

and i ′ in G ′ for i �= i ′, should be large. Algorithm 2 compares signatures in terms of a
sparsified �2–distance weighted by the associated variances. The results of the vertex
comparisons are stored in an n× n matrix, denoted by B in the algorithm description.

Algorithm 2 SignatureComparison
Input: two graphs � and �′ on the vertex set [n]
Output: a matrix B ∈ {0, 1}n×n

1: m ← �22 log log n�
2: w ← �(log n)5�
3: for i = 1, . . . , n do
4:

(
f (i), v(i)

)← VertexSignature(�, i,m)

5:
(
f ′(i), v′(i)

)← VertexSignature(�′, i,m)

6: end for
7: J ← a uniform random subset of {−1, 1}m of cardinality 2w
8: for i = 1, . . . , n do
9: for i ′ = 1, . . . , n do

10: if
∑

s∈J
( fs (i)− f ′

s (i
′))2

vs (i)+v′
s (i

′) < 2w
(
1 − 1√

log n

)
then

11: Bi,i ′ ← 1
12: else
13: Bi,i ′ ← 0
14: end if
15: end for
16: end for
17: return B

To be more precise, given two vertices i and i ′ in graphs � and �′, with signatures
f (i) and f ′(i ′) and variance vectors v(i) and v′(i ′), respectively, the algorithm com-

putes the sum
∑

s∈J
( fs (i)− f ′

s (i
′))2

vs (i)+v′
s (i

′) , where J is a uniform random subset of {−1, 1}m
of a cardinality polylogarithmic in n. If this sum is smaller than the threshold
|J |(1− 1√

log n

)
, then wematch the vertices i and i ′. Themain difficulty of the signature

comparison is that, under the assumption of constant correlation between the graphs
G and G ′, the signature vectors of vertex i in G and G ′ will be only slightly corre-
lated with a high probability. To distinguish between a correct and a wrong matching,
we need to be able to distinguish between “very slightly correlated” and “essentially
uncorrelated” signature vectors, which is achieved through a rather delicate analysis.
This is the reason why the threshold |J |(1 − 1√

log n

)
is only slightly different from

the value |J | which would be the expected squared �2–distance between two indepen-
dent random vectors in RJ , normalized so that the variance of each component of the
difference is one.

Moreover, taking the sparsified distance over J inAlgorithm2, rather than summing
over all indices s ∈ {−1, 1}m , weakens the dependence across entries of the signature
vectors and allows us to prove strong concentration bounds for

∑
s∈J

( fs (i)− f ′
s (i

′))2
vs (i)+v′

s (i
′) .
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The idea of comparing the sparsified signature vectors is taken from earlier work [20]
by the current authors.

It is not difficult to see that the expected time complexity of Algorithm 2 is of order
Õ(n2), because it amounts to computing and comparing all the signature vectors,
which are of length polylogarithmic in n. Theorem 2.1, which is the main technical
result of the paper, then guarantees that Algorithm 2 distinguishes correct pairs from
wrong pairs for most vertices with high probability. The proof of the theorem is given
at the end of Sect. 6.

Theorem 2.1 (Difference between signatures of typical vertices). For any constant
D > 0, there exist constants α0, n0, R, c > 0 depending on D with the following
property. Let Gπ and G ′ be the two graphs given by the correlated Erdős–Rényi graph
model defined in Sect. 1.1 with underlying matching π : [n] → [n] and parameters
n, p, and α such that

n ≥ n0, α ∈ (0, α0), log n ≤ np(1 − α) ≤ n
1

R log log n .

Let B ∈ {0, 1}n×n be given by Algorithm 2 with Gπ and G ′ as input graphs. Then,
with probability at least 1 − n−D, there exists a subset I ⊂ [n] with |I| ≥ n − n1−c

such that Bπ(i),i = 1 for any i ∈ I, and Bπ(i),i ′ = 0 for any distinct i, i ′ ∈ I.

To pass from a matrix B in the above theorem to a permutation, we apply a simple
procedure, Algorithm 3, which yields an almost exact estimate π̂ of the underlying
matching π . The computational complexity of Algorithm 3 is clearly O(n2). Propo-
sition 2.2 ensures that Algorithm 3 succeeds deterministically.

Algorithm 3 ApproximateMatching

Input: a binary matrix B ∈ {0, 1}n×n

Output: a permutation π̂ : [n] → [n]
1: H ← the bipartite graph whose adjacency matrix is B
2: let V = V ′ = [n] be the two parts of vertices of H
3: while the edge set of H is nonempty do
4: pick an arbitrary edge i ∼ i ′ in H where i ∈ V and i ′ ∈ V ′
5: define π̂(i ′) := i
6: delete the edge i ∼ i ′ from H
7: V ← V \{i}
8: V ′ ← V ′\{i ′}
9: end while
10: if V �= ∅ then
11: define π̂ |V ′ to be an arbitrary bijection from V ′ to V so that π̂ is a permutation

on [n]
12: end if
13: return π̂
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Proposition 2.2 (Matching from comparisons). Fix a permutation π : [n] → [n], a
matrix B ∈ {0, 1}n×n, and a subset I ⊂ [n] with |I| ≥ n − k for a positive integer
k ≤ n/4. Suppose that Bπ(i),i = 1 for any i ∈ I, and Bπ(i),i ′ = 0 for any distinct
i, i ′ ∈ I. Then Algorithm 3 outputs a permutation π̂ : [n] → [n] satisfying

∣∣{i ∈ [n] : π̂(i) �= π(i)
}∣∣ ≤ 4k.

Proof First, it is clear that Algorithm 3 outputs a bijection π̂ : [n] → [n], so π̂ is
well-defined.

Next, we claim that the while loop in Algorithm 3 will be run for at least n − 2k
iterations. To this end, suppose that it has been run for strictly fewer than n − 2k
iterations, after which we have |V | = |V ′| ≥ 2k + 1. Since |I| ≥ n − k, it follows
that |I ∩ V ′| ≥ k + 1. For each i ′ ∈ I ∩ V ′, consider two cases:

• Suppose that π(i ′) ∈ V , that is, π(i ′) has not been deleted. By the assumption on
B, we have Bπ(i ′),i = 1, so the edge π(i ′) ∼ i ′ is still present in the graph H . As
a result, the while loop will be run for at least one more iteration.

• Suppose that π(i ′) has already been deleted in a previous iteration, say, along with
another vertex j ′. Then there is an edge π(i ′) ∼ j ′ in the original bipartite graph,
that is, Bπ(i ′), j ′ = 1. As j ′ �= i ′, by the assumption on B, wemust have j ′ ∈ [n]\I.
Since

∣∣[n]\I∣∣ ≤ k, this case can occur for at most k vertices i ′.

To conclude, because |I ∩ V ′| ≥ k + 1, there is at least one i ′ ∈ I ∩ V ′ that falls into
the first case above. Thus, the while loop will be run for at least one more iteration,
and the claim is proved.

Furthermore, consider an iteration of the while loop in whichwe pick an edge i ∼ i ′
in H for i ∈ V and i ′ ∈ V ′. There are two cases:

• Suppose that both π−1(i) and i ′ are in I. Since Bi,i ′ = 1, by the assumption on
B, we must have π−1(i) = i ′ so that π(i ′) = i = π̂(i ′).

• Suppose that either π−1(i) or i ′ is in [n]\I. After this iteration, i and i ′ are deleted
from the vertex sets. Since

∣∣[n]\I∣∣ ≤ k, this case can occur at most 2k times in
total.

Recall that the while loop will be run for at least n−2k iterations, and among them, at
least n−4k iterations fall into the first case above.Consequently,we haveπ(i ′) = π̂(i ′)
for at least n − 4k vertices i ′ ∈ [n]. ��

Combining Theorem 2.1 and Proposition 2.2 immediately yields the following
result.

Corollary 2.3 (Almost exact matching). In the same setting as in Theorem 2.1, using
the matrix B ∈ {−1, 1}n×n given by Algorithm 2 as the input, we run Algorithm 3 to
produce π̂ : [n] → [n]. Then, with probability at least 1 − n−D, it holds that

∣∣{i ∈ [n] : π̂(i) �= π(i)
}∣∣ ≤ 4n1−c.

Note that Corollary 2.3 implies Theorem A in the introduction.
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2.3 Exact matching

Having obtained an estimate π̂ of the underlying matching π , we now aim to recover
π exactly by refining π̂ . The algorithm we propose is based on iterative refinements
of an initial partial matching by studying intersections of neighborhoods of vertices
in Gπ and G ′. At each step, we obtain a matching with the number of incorrectly
matched pairs of vertices smaller by a constant factor than that number in the previous
step. After a logarithmic number of such iterations, we obtain the exact matching with
high probability. A formal description of the procedure is given in Algorithm 4.

Algorithm 4 RefinedMatching
Input: two graphs � and �′ on [n], a permutation π̂ : [n] → [n], and a parameter

ε > 0
Output: a permutation π̃ : [n] → [n]
1: π0 ← π̂

2: for � = 1, . . . , �log2 n� do
3: for i = 1, . . . , n do
4: if there is a vertex i ′ ∈ [n] such that
5: •

∣∣π−1
�−1

(N�(i)
) ∩ N�′(i ′)

∣∣ ≥ ε2 pn/512

6: •
∣∣π−1

�−1

(N�(i)
) ∩ N�′( j ′)

∣∣ < ε2 pn/512 for all j ′ ∈ [n]\{i ′}
7: •

∣∣π−1
�−1

(N�( j)
) ∩ N�′(i ′)

∣∣ < ε2 pn/512 for all j ∈ [n]\{i}
8: then
9: π�(i ′) ← i
10: end if
11: end for
12: extend π� to a permutation on [n] in an arbitrary way
13: end for
14: π̃ ← π�log2 n�
15: return π̃

The underlying reason for why Algorithm 4 succeeds is a certain expansion prop-
erty of sparse Erdős–Rényi graphs. Note that at each step of Algorithm 4, we assign
π�(i ′) := i whenever i ′ is a vertex in [n] with ∣∣π−1

�−1

(NGπ (i)
) ∩ NG ′(i ′)

∣∣ “large”
and both

∣∣π−1
�−1

(NGπ (i)
) ∩ NG ′( j ′)

∣∣ and
∣∣π−1

�−1

(NGπ ( j)
) ∩ NG ′(i ′)

∣∣ “small” for all
j ′ ∈ [n]\{i ′} and j ∈ [n]\{i}. Accordingly, the partial matchingπ� will be an improve-
ment overπ�−1 unless there aremany (of order roughly |{v ∈ [n] : π�−1(v) �= π(v)}|)
vertices of G or G ′ with a considerable proportion of neighbors wrongly matched
by π�−1. This, however, can be ruled out with a high probability. The basic prin-
ciple can be formulated as follows. If I is any random subset of [n] containing
a vast majority of the vertices of G, then for any positive constant c > 0 the set
{i ∈ [n] : |NG(i) ∩ I c| ≥ cpn} has cardinality at most 1

4 |I c| with high probability;
see Sect. 7 for deails.

Moreover, observe that the expected time complexity of Algorithm 4 is n2+o(1).
The n2 part comes from the loop over i ∈ [n] and the “if” statement which consists in
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searching over i ′ ∈ [n]. All the other computations can be done in no(1) time because
the neighborhoods are of typical size no(1). The following theoremprovides guarantees
on the performance of Algorithm 4.

Theorem 2.4 (Refining a partial matching). For any ε ∈ (0, 1], there exists n0 > 0
and κ ∈ (0, 1) depending on ε with the following property. Let Gπ and G ′ be the
two graphs given by the correlated Erdős–Rényi graph model defined in Sect. 1.1 with
underlying matching π : [n] → [n] and parameters n, p, and α such that

n ≥ n0, (1 + ε) log n ≤ pn ≤
√
n

4 log n
, α ∈ (0, ε/4].

Given a random matching π̂ : [n] → [n] (possibly depending on Gπ and G ′), and
with Gπ , G ′, π̂ as the input, let π̃ : [n] → [n] be the output of Algorithm 4. Then we
have

P
{
π̃ = π} ≥ P

{|{i ∈ [n] : π̂(i) �= π(i)}| ≤ κn
}− exp(−εpn/10).

The following corollary of the above theorems is our final result on exact recovery
of the underlying matching.

Corollary 2.5 (Exact matching). Fix a constant ε ∈ (0, 1]. There exists a constant
n0 > 0 depending on ε and absolute constants α0, R > 0 with the following property.
Let Gπ and G ′ be the two graphs from the correlated Erdős–Rényi graph model
defined in Sect. 1.1 with underlying matching π : [n] → [n] and parameters n, p,
and α satisfying

n ≥ n0, (1 + ε) log n ≤ np ≤ n
1

R log log n , 0 < α < α0 ∧ (ε/4).

Run Algorithm 2 (with Gπ and G ′ as input graphs) to obtain B ∈ {0, 1}n×n, then
run Algorithm 3 to obtain π̂ : [n] → [n], and finally run Algorithm 4 to obtain
π̃ : [n] → [n]. Then we have

P
{
π̃ = π} ≥ 1 − n−10 − exp(−εpn/10).

Proof First, we apply Corollary 2.3 with D = 10 to obtain
∣∣{i ∈ [n] : π̂(i) �=

π(i)
}∣∣ ≤ 4n1−c with probability at least 1−n−10. Then, we choose κ depending on ε

according to Theorem 2.4. If n is sufficiently large depending on ε, then 4n1−c ≤ κn,
so Theorem 2.4 gives the result. ��

Observe that Corollary 2.3 implies Theorem B from the introduction.

2.4 Further related work

The algorithmsproposed above are related to several existingmethods for graphmatch-
ing. First, to achieve exact matching under the stronger condition α ≤ (log n)−C , the

123



Exact matching of random graphs with constant correlation

paper [11] introduced a method based on comparing the degree profiles of vertices,
that is, the empirical distributions of neighbors’ degrees. The condition can be fur-
ther improved to α ≤ (log log n)−C for sparse graphs by exploring neighbors’ degree
profiles. Note that the degree profiles of neighbors of a vertex are determined by the 3-
neighborhood of the vertex. On the other hand, our algorithm uses degree information
in a neighborhood of radius 	(log log n) around each vertex, which is key to match-
ing graphs with constant correlation. Prior to our work, large neighborhood statistics
were used in the paper [21] which studied seeded graph matching — the version of
the problem where a handful of correctly matched pairs of vertices are given to the
algorithm as “seeds”. We remark that, while the idea of leveraging degree statistics in
neighborhoods is not new, our method of exploiting correlation via partition trees is
novel.

The local tree structure in sparse graphs has been used in previous work for partial
matching [15] and correlation detection [16]. It is worth noting that these papers
considered local trees whose nodes are vertices of the observed graphs, while we
consider partition trees whose nodes are sets of vertices. This is crucial to our analysis,
which centers around estimating the overlaps between nodes of partition trees.

Moreover, the procedure of refining a partial matching (Algorithm 4) bears similar-
ity to algorithms in prior works on similar topics [17, 19, 28]. The problems studied
in these works, however, are inherently different from ours. To be more precise, it is
assumed in these papers that the initial partial matching π0 is independent from the
observed graphs, while the initial matching we study can be an estimator computed
from the observed graphs or even adversarially chosen. This adversarial setting has
been studied in [2, 11], but they require a vanishing fraction of wrongly matched pairs
in the initial matching, while our result can tolerate any constant fraction.

Finally, the strategy of matching vertices via comparing signature vectors appeared
in the paper [20] by the current authors. In this previous paper, to exploit correlation
between the two graphs, we started with comparing certain degree quantiles of the
vertices and then refine the matched quantiles of vertices in two steps to obtain the
final matching. The essence of this procedure is different from that in the current
paper, although both eventually lead to weakly correlated signature vectors of length
polylogarithmic in n. Themore “global” strategy of comparing degree quantiles allows
us to match G(n, p) graphs with any average degree np ≥ (log n)C but requires a
smaller noise level α ≤ (log log n)−C . On the other hand, the current work adopts a
more “local” approach of comparing neighborhoods that are typically trees, yielding
a better condition α ≤ const for sparse graphs.

3 Overview of the analysis

Our proof starts with some preparatory observations on the structure of large neigh-
borhoods in sparse Erdős–Rényi Graphs, comprised in Sect. 4. The main goal is to
show that with a high probability and for an appropriate choice of a parameter k, the
k–neighborhoods of a vast majority of vertices are trees having sizes in a prescribed
range, and with a prescribed statistics of nodes with very high or very low degrees.
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The main tools in this section are standard concentration inequalities and standard
properties of the binomial distribution.

The signature comparison is carried out in Sects. 5 and 6. We recall that the depth
parameterm for constructing the signatures is double logarithmic in n. Section 5 starts
with a crucial observation that the classes Tm

s (i,G) and Tm
s (i,G ′) from the partition

trees of i in G and G ′, respectively, typically have intersections which introduce a
detectable correlation of the degree statistics of their neighbors. More specifically,
we show that under an appropriate graphs density assumption, with high probability
almost every vertex i has |Tm

s (i,G)∩Tm
s (i,G ′)| ≥ (np/2)m(1−υ)m , where υ > 0 is

an arbitrarily small constant. The proof is accomplished by induction, by considering
T �
s (i,G) ∩ T �

s (i,G ′) for 0 ≤ � ≤ m (see Proposition 5.1). Note that the size of the
intersection |Tm

s (i,G)∩ Tm
s (i,G ′)| is still vanishing compared to the typical order of

magnitude of |Tm
s (i,G)| and |Tm

s (i,G ′)| (that is, roughly (np/2)m).
Further, in Sect. 5.2 we discuss the sparsification procedure which greatly sim-

plifies the signature comparison. Sparsification is introduced to avoid the situation
when for many pairs of distinct indices s, s′ ∈ {−1, 1}m , the sets Tm

s (i,G) and
Tm
s′ (i,G ′) still have a considerable intersection, which would introduce complex

dependencies between components of the signature vectors of i in G and G ′. While
such an event appears difficult to control directly, by taking a relatively small uni-
form random subset J of indices in {−1, 1}m instead of the entire index set, we
can guarantee that the undesired situation does not occur with high probability.
More precisely, we are able to show that under some additional technical assump-
tions, the sets Rs(i) := NG

(
Tm
s (i,G)

) ∩ NG ′
(
Tm
J\{s}(i,G ′)

) ∩ SG0(i,m + 1) and

R′
s(i) := NG ′

(
Tm
s (i,G ′)

) ∩ NG
(
Tm
J\{s}(i,G)

) ∩ SG0(i,m + 1), with s ∈ J , have
small cardinalities with a high probability. The comparison of signatures of correct
pairs of vertices is then accomplished in Sect. 5.3, with Sect. 5.4 summarizing the
results.

Section 6, where the comparison of signatures of wrong pairs of vertices is carried
out, has the same high-level structure as Sect. 5, although in that case somewhat more
delicate estimates are required to show that the signature vectors of distinct vertices
of G and G ′ are “essentially uncorrelated”.

Construction of an exact matching between vertices of the two graphs from the
approximate matching obtained in Theorem 2.1 and Corollary 2.3, is accomplished
in Sect. 7. The goal of this section is to show that with high probability, Algorithm 4
described in Sect. 2, with the input partial matching given by Corollary 2.3, will
produce the exact matching between Gπ and G ′.

4 Large neighborhoods in an Erdős–Rényi graph

In this section, we consider structural properties of vertex neighborhoods in sparse
Erdős–Rényi graphs. While some of the statements (in particular, regarding the sets
T l
s from Algorithm 1) are method-specific, others, dealing with degree concentration

and existence of cycles, are standard. Nevertheless, we prefer to provide the proofs for
completeness. For the reader’s convenience, we recall Chernoff’s inequality for sums
of Bernoulli random variables:
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Lemma 4.1 (Chernoff’s inequality; see, for example, [25, Section 2.3]). Let b1, . . . , bu
be independent Bernoulli random variables with a parameter q ∈ (0, 1). Then

P

{ u∑

i=1

bi > s

}
≤ exp(−qu)

(
e qu

s

)s
, s > qu,

and

P

{ u∑

i=1

bi < s

}
≤ exp(−qu)

(
e qu

s

)s
, 0 < s < qu.

In particular, for every s ≥ e2qu,

P

{ u∑

i=1

bi > s

}
< exp(−qu) exp(−s),

and for every s ∈ (qu, 2qu],

P

{ u∑

i=1

bi > s

}
< exp

(
− c(s − qu)2

qu

)
,

where c > 0 is a universal constant.

4.1 Cardinality estimates for large neighborhoods and vertex classes

Lemma 4.2 (Sizes of neighborhoods and their intersections). For any D > 1, there is
K > 0 and n0 ∈ N depending only on D such that the following holds. Let G be a
G(n, p) graph with n ≥ n0 and pn ≥ log n. With probability at least 1 − n−D, we
have that

|BG(i, l)| ≤ K (np)l for any i, l ∈ [n]. (1)

On the event that (1) holds, for any m ∈ N and any i, j ∈ [n] such that i �= j and
G(BG(i, 3m)) is a tree, if d := distG(i, j) ≤ 2m, then

|BG(i,m) ∩ BG( j,m)| ≤ K (np)m−�d/2�.

Proof The first part of the lemma is standard: It is not hard to see that |SG(i, l)| is
stochastically dominated by a Binomial(nl , pl) random variable, so the bound follows
from Chernoff’s inequality (third estimate in Lemma 4.1) and a union bound. We omit
the details.

For the second part, assume that (1) holds. Fix distinct i, j ∈ [n] and let d =
distG(i, j) ≤ 2m. Then there exists a path γ from i to j of length d. Fix v ∈ BG(i,m)∩
BG( j,m). Then there is a path from i to v in BG(i,m) which we denote by γi , and
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there is a path from j to v in BG( j,m) which we denote by γ j . Since BG(i,m) ∪
BG( j,m) is contained in BG(i, 3m) which is assumed to be a tree, the paths γ , γi ,
and γ j are unique. Since the union of γ , γi , and γ j is a tree, all of them must pass
through a unique common vertex w. Since the length of γi is at most m, we have
v ∈ BG(w,m − distG(i, w)); similarly, we get v ∈ BG(w,m − distG( j, w)). As
a result, if l := m − max(distG(w, i), distG(w, j)), then v ∈ BG(w, l). Note that
m − d ≤ l ≤ m − �d/2� in particular.

We now count the total number of vertices v ∈ BG(i,m) ∩ BG( j,m) by reversing
the above reasoning: For any fixed w on the path γ , there are at most K (np)l vertices
in BG(w, l); this gives an upper bound on the number of possible v that connects to
w. Letting w vary on the path γ and recalling the definition of l, we easily see that
each l = m − d, . . . ,m − �d/2� corresponds to at most two w. Therefore, the total
number of v can be bounded by

2
m−�d/2�∑

l=m−d

K (np)l ≤ 4K (np)m−�d/2�,

which finishes the proof (up to a change of the constant K ). ��

Lemma 4.3 (Sizes of vertex classes). For any C, D > 1, there exists Q > 0, R > 0,
and n0 ∈ N depending only on C and D such that the following holds. Let G be a
G(n, p) graph with n ≥ n0 and

log n ≤ np ≤ n
1

R log log n (2)

Fix a positive integer m ≤ C log log n. For l ∈ [m], s ∈ {−1, 1}l , and i ∈ [n], let
T l
s (i) denote the class T l

s of vertices constructed in VertexSignature(G, i,m)

(Algorithm 1). Then, with probability at least 1 − n−D, for any i ∈ [n] such that
G(BG(i,m + 1)) is a tree, any l ∈ [m], and any s ∈ {−1, 1}l , we have

|T l
s (i)| ≤ Q

(np
2

)l
.

Proof Fix i ∈ [n] throughout the proof. We omit the subscript G in notations BG , SG ,
etc. for simplicity. For readability, we split the proof into a few parts.

Redefining the classes of vertices Let us define a modified version of the degree of
a vertex and the classes T l

s = T l
s (i) which coincide with the original definitions when

G(B(i,m + 1)) is a tree. Namely, for j ∈ S(i, l), we set

d̂eg( j) := |N ( j) ∩ S(i, l + 1)| + 1. (3)

Define classes T̂ l
s the same way as T l

s but with deg( j) replaced by d̂eg( j); that is,
T̂ 0

∅
= {i}, and for l ∈ N0 and s ∈ {−1, 1}l ,
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T̂ l+1
(s,+1) = { j ∈ N (T̂ l

s ) ∩ S(i, l + 1) : d̂eg( j) ≥ np
}
,

T̂ l+1
(s,−1) = { j ∈ N (T̂ l

s ) ∩ S(i, l + 1) : d̂eg( j) < np
}
.

Note that if G(B(i,m + 1)) is a tree, then deg( j) = d̂eg( j) for any j ∈ B(i,m)\{i},
and thus T̂ l

s = T l
s for any l ≤ m and any s ∈ {−1, 1}l . Therefore, it suffices to bound

the cardinality of T̂ l
s for l ∈ [m].

Setup of the induction For the base case l = 1 of the induction, it is standard to
show that

P

{
|T̂ 1

1 | ≤ Knp
}

≥ P
{
d̂eg(i) ≤ Knp

} ≥ 1 − n−D−1 (4)

for a constant K > 0 depending only on D, since np ≥ log n and n ≥ n0 = n0(D).
The same bound holds for |T̂ 1−1| as well.

Next, we set up the induction from l ∈ [m − 1] to l + 1. Define

Ql := 2K

(
1 + 1

m

)l
, (5)

so Ql ≤ 2eK for all l ∈ [m]. Let s = (s1, . . . sl) be such that sl = 1. The case sl = −1
can be handled in the same way. As the induction hypothesis, we assume that

|T̂ l
s | ≤ Ql(np/2)

l .

The induction step consists in proving that

|T̂ l+1
(s,1)| ≤ Ql+1(np/2)

l+1

with overwhelming probability (which will be explained more precisely below). The
same bound for T̂ l+1

(s,−1) can be established similarly, finishing the induction.
Tomake the high-probability statement in the induction precise, we define an event

El := {d̂eg( j) ≤ Knp ∀ j ∈ B(i, l)
}

(6)

for any l ∈ [m]. Moreover, let Pl and El denote respectively the probability and the
expectation conditional on the subgraph G(B(i, l)). For the induction step, we will
show that conditional on an instance of G(B(i, l)) such that El−1 occurs, we have

Pl

{
|T̂ l+1

(s,1)| ≤ Ql+1

(np
2

)l+1
and El occurs

∣∣∣ |T̂ l
s | ≤ Ql

(np
2

)l} ≥ 1 − n−D−1.

(7)
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Taking a union bound over (4) and (7) for l ∈ [m − 1] and s ∈ {−1, 1}l , we can
remove the conditioning and obtain

P

{
|T̂ l

s | ≤ 2eK
(np
2

)l ∀ l ∈ [m], s ∈ {−1, 1}l
}

≥ 1 −
m∑

l=1

2l · n−D−1 ≥ 1 − n−D.

The induction step, part 1 We will estimate the size of the set N (T̂ l
s ) ∩ S(i, l + 1)

first. Let us condition on an instance of G(B(i, l)) such that El−1 occurs. Further, fix
a set F ⊂ S(i, l) such that 1 ≤ |F | ≤ Ql(np/2)l , and condition on T̂ l

s = F . Then the
random variables d̂eg( j) − 1 are independent across different j : The independence
is ensured by the modified definition (3) of the degree of a vertex as we exclude the
edges connecting different vertices in F .

Moreover, for any j ∈ F , d̂eg( j) − 1 is distributed as a Binomial(n − |B(i, l)|, p)
random variable Z j conditioned on Z j − 1 ≥ np. Since El−1 occurs, we have
|B(i, l)| ≤ 2(Knp)l ≤ n0.1 in view of the conditions l ≤ m ≤ C log log n and
(2). It is not hard to see that P{Z j − 1 > np} > 1/4. Then Chernoff’s inequality
(fourth estimate in Lemma 4.1) yields

Pl

{
d̂eg( j) > np(1 + t)

∣∣∣ T̂ l
s = F

}
= P

{
Z j > np(1 + t) | Z j ≥ np

}

≤ 4P
{
Z j > np(1 + t)

}

≤ 4 exp(−ct2np) (8)

for any t ∈ (0, 1) and a universal constant c > 0. In addition, a bound similar to (8)
for j ∈ S(i, l)\F can also be established, yielding

Pl

{
max

j∈S(i,l)
d̂eg( j) > Knp

∣∣∣ T̂ l
s = F

}
≤ n−D−2

for K > 0 depending only on D. Since we already condition on an instance of
G(B(i, l)) such that El−1 occurs, the above inequality together with the definition of
El in (6) implies that

Pl

{
El occurs

∣∣∣ T̂ l
s = F

}
≥ 1 − n−D−2. (9)

Next, define an indicator

I j := 1

{
d̂eg( j) > np

(
1 + 1

2m

)}
.

Then (8) with t = 1/(2m) shows that I j is a Bernoulli(θ) random variable with
θ < 4 exp(−cnp

m2 ). As |F | ≤ Ql(np/2)l , using the conditional independence of d̂eg( j)
for different j and applying Chernoff’s inequality (first estimate in Lemma 4.1), we
get
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Pl

⎧
⎨

⎩

∑

j∈F
I j ≥ 1

2m

(np
2

)l ∣∣∣ T̂ l
s = F

⎫
⎬

⎭
≤ exp

(
− c′

m3

(np
2

)l+1
)

≤ n−D−2 (10)

for a constant c′ > 0, since m ≤ C log log n, np ≥ log n, and n ≥ n0 = n0(C, D).
If
∑

j∈F I j < 1
2m

( np
2

)l , the event El occurs, and |F | ≤ Ql
( np
2

)l , then

∑

j∈F
d̂eg( j) ≤

∑

j∈F
I j · Knp + |F | · np

(
1 + 1

2m

)

≤ 1

2m

(np
2

)l
Knp + Ql

(np
2

)l
np

(
1 + 1

2m

)

≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1

by the definition of Ql in (5). Combining this with (9) and (10) yields

Pl

{
|N (F) ∩ S(i, l + 1)| ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs

∣∣∣ T̂ l
s = F

}

≥ Pl

⎧
⎨

⎩

∑

j∈F
d̂eg( j) ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs

∣∣∣ T̂ l
s = F

⎫
⎬

⎭

≥ 1 − 2n−D−2

for all F such that |F | ≤ Ql
( np
2

)l . Removing the conditioning on T̂ l
s = F , we derive

that

Pl

{
|N (T̂ l

s ) ∩ S(i, l + 1)| ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs

∣∣∣ |T̂ l
s | ≤ Ql

(np
2

)l}

=
∑

|F |≤Ql(
np
2 )

l

Pl

{
|N (F) ∩ S(i, l + 1)| ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs

∣∣∣ T̂ l
s = F

}

· Pl

{
T̂ l
s = F

∣∣∣ |T̂ l
s | ≤ Ql

(np
2

)l}

≥ 1 − 2n−D−2. (11)

The induction step, part 2 For brevity, denote H = N (T̂ l
s

)∩S(i, l + 1). We further
condition on an instance of G(B(i, l + 1)) such that

|H | ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs,

that is, the high-probability event in (11) occurs. Then the quantities d̂eg( j) − 1 for
j ∈ H are i.i.d. Binomial(n − |B(i, l + 1)|, p) random variables. For j ∈ H , denote
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by Y j the indicator of the event d̂eg( j) ≥ np. Since |B(i, l+1)| ≤ 2(Knp)l+1 ≤ n0.1

by the conditions l ≤ m ≤ C log log n and (2), we have

∣∣∣∣El+1
[
Y j
]− 1

2

∣∣∣∣ =
∣∣∣∣Pl+1

{
d̂eg( j) ≥ np

}− 1

2

∣∣∣∣ ≤
C2n0.1 p√

np
≤ n−0.4

where C2 > 0 is a universal constant. Therefore,

|T̂ l+1
(s,1)| =

∑

j∈H
Y j ≤

∑

j∈H

(
Y j − El+1Y j

)+
(
1

2
+ n−0.4

)
|H |.

Hoeffding’s inequality then yields

Pl+1

{
|T̂ l+1

(s,1)| ≥
(
1

2
+ n−0.4

)
|H | + 1

8m
Ql

(np
2

)l+1
}

≤ Pl+1

⎧
⎨

⎩

∑

j∈H

(
Y j − El+1Y j

) ≥ 1

8m
Ql

(np
2

)l+1

⎫
⎬

⎭

≤ exp

(

− c

|H |
(

1

8m
Ql

(np
2

)l+1
)2)

≤ n−D−2

if m ≤ C log log n and n ≥ n0 = n0(C, D), where we used |H | ≤ 2Ql
(
1 + 3

4m

)

(np/2)l+1. Moreover,

(
1

2
+ n−0.4

)
|H | + 1

8m
Ql

(np
2

)l+1

≤ Ql

(
1 + 7

8m

)(np
2

)l+1 + 1

8m
Ql

(np
2

)l+1

≤ Ql+1

(np
2

)l+1
,

so we obtain

Pl+1

{
|T̂ l+1

(s,1)| ≤ Ql+1

(np
2

)l+1
}

≥ 1 − n−D−2.

It follows from the above inequality and (11) that

Pl

{
|T̂ l+1

(s,1)| ≤ Ql+1

(np
2

)l+1
and El occurs

∣∣∣ |T̂ l
s | ≤ Ql

(np
2

)l}

≥ Pl

{
|T̂ l+1

(s,1)| ≤ Ql+1

(np
2

)l+1 ∣∣∣ |H | ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
,

El occurs, and |T̂ l
s | ≤ Ql

(np
2

)l}
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· Pl

{
|H | ≤ 2Ql

(
1 + 3

4m

)(np
2

)l+1
and El occurs

∣∣∣ |T̂ l
s | ≤ Ql

(np
2

)l}

≥ 1 − n−D−1,

which completes the induction. ��

4.2 One-neighborhoods of typical vertices

Lemma 4.4 (Minimal degree of a typical vertex). For any δ′ > 0 there are n′
0 ∈ N

and c′ > 0 depending on δ′ with the following property. Assume that n > n′
0 and that

r ∈ (0, 1) satisfies rn ≥ log n. Let� be a G(n, r)Erdős–Rényi graph, and let J be any
fixed subset of [n]. Then for any integer k such thatmax(2, |J | exp(−c′rn)) ≤ k ≤ c′n,

P
{
deg�(i) < (1 − δ′)rn for at least k vertices i ∈ J

} ≤ exp(−c′rnk).

Proof For any distinct i, j ∈ [n], let bi j be the indicator of the event {(i, j) is an edge of
�}. Fix for a moment any 2 ≤ k ≤ |J | and k distinct vertices v1, v2, . . . , vk in J . Let
1 ≤ � ≤ k. Conditioned on any realization of random variables (bvi j )i∈[�−1], j �=vi , the
variables (bv�, j ) j �=v1,...,v�

are (conditionally) i.i.d. Bernoulli(r ). Hence, by Chernoff’s
inequality (second estimate in Lemma 4.1),

P

{ ∑

j �=v1,...,v�

bv�, j < (1 − δ′)rn
∣∣ (bvi j )i∈[�−1], j �=vi

}

≤ exp(−(n − �)r)

(
e(n − �)r

(1 − δ′)rn

)(1−δ′)rn

≤ exp(−δ′rn/2)

if � ≤ k ≤ δ′n/2. This implies

P

{ ∑

j �=v1,...,v�

bv�, j < (1 − δ′)rn for all 1 ≤ � ≤ k

}
≤ exp(−kδ′rn/2).

By the above bound and a union bound over all possible subsets of J of cardinality k,
we have

P
{
deg�(i) < (1 − δ′)rn for at least k vertices i ∈ J

} ≤ exp(−kδ′rn/2)

(|J |
k

)

≤ exp(−kδ′rn/4)

if k ≥ e|J | exp(−δ′rn/4). ��

An immediate consequence of the above lemma is the following result.
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Lemma 4.5 (Degrees of typical vertices). For any κ ∈ (0, 1/2), there exists c > 0
and n0 ∈ N depending on κ with the following property. Suppose that n > n0 and
nr ≥ log n. Let � be a G(n, r) Erdős–Rényi graph. Then with probability at least
1 − exp(−crn log n),

∣∣{i ∈ [n] : |N�(i)| ≥ (1 − κ)nr
}∣∣ > n − n1−c. (12)

Proof We apply Lemma 4.4 with J = [n] to obtain the following: There is a constant
c > 0 depending on κ such that for any integer k such that max(2, n exp(−cnr)) ≤
k ≤ cn,

P {|N�(i)| < (1 − κ)nr for at least k vertices i ∈ [n]} ≤ exp(−ckrn).

Taking

k :=
⌈
max (log n, n exp(−cnr))

⌉
≤ n1−c,

we see that |N�(i)| ≥ (1 − κ)nr for more than n − n1−c vertices i ∈ [n] with
probability at least 1 − exp(−crn log n). ��
Lemma 4.6 (Number of common neighbors). For any δ′′ > 0 there are n′′

0 ∈ N and
c′′ > 0 depending on δ′′ with the following property. Assume that n > n′′

0 and that
r ∈ (0, 1/2] satisfies rn ≥ log n. Let � be a G(n, r) Erdős–Rényi graph, and let J be
any fixed subset of [n] such that |J | · rn log n ≤ √

n. Then for every v ∈ J we have

P
{∣∣N�(v) ∩ (N�(J\{v}) ∪ J

)∣∣ ≥ δ′′rn
} ≤ exp(−c′′rn log n).

Proof For any distinct i, j ∈ [n], let bi j denote the indicator of the event
{(i, j) is an edge of �}. For any given vertex i of�, we have, by Chernoff’s inequality
(third estimate in Lemma 4.1),

|N�(i)| ≤ ern log n

with probability at least 1 − exp(−rn) exp(−ern log n), whence the event

E ′ := {|N�(J\{v})| ≤ |J | · ern log n}

has probability at least 1 − exp(−ern log n). Observe that N�(J\{v}) (and so E ′)
is measurable w.r.t. the collection of variables (bi j )i∈J\{v}, j �=i . Conditioned on any
realization of (bi j )i∈J\{v}, j �=i such that E ′ holds, the variables bv j , j ∈ N�(J\{v})\J ,
are (conditionally) i.i.d. Bernoulli(r ). Hence, by Chernoff’s inequality (first estimate
in Lemma 4.1) and the assumption |J | · rn log n ≤ √

n,

P
{∣∣N�(v) ∩ (N�(J\{v})\J)∣∣ ≥ δ′′rn/2 | E ′} ≤

(e|J | · er2n log n
δ′′rn/2

)δ′′rn/2
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≤ exp(−c1rn log n)

for some c1 > 0 depending on δ′′. Finally, we note that, again by Chernoff’s inequality
and the assumption on |J |,

P
{|N�(v) ∩ J | ≥ δ′′rn/2 | E ′} ≤ exp(−c2rn log n)

for some c2 > 0 depending on δ′′, and the result follows. ��
Lemma 4.7 (Neighbors’ degrees in a typical graph). For any κ, λ ∈ (0, 1/2), there
exist c, δ > 0 and n0 ∈ N depending on κ and λ with the following property. Let
n > n0 and rn ≥ log n, and let � be a G(n, r) Erdős–Rényi graph. Further, let J be
a fixed subset of [n] such that

1

2
log n ≤ |J | ≤

√
n

rn log n
. (13)

Then with probability at least 1 − exp(−crn log n),

∣∣{ j ∈ N�(i) : deg�( j) ≥ nr + δ
√
nr
}∣∣ ≥ (1/2 − κ)nr , and (14a)

∣∣{ j ∈ N�(i) : deg�( j) ≤ nr − δ
√
nr
}∣∣ ≥ (1/2 − κ)nr (14b)

for at least |J | − max(λ log n, |J | exp(−crn)) vertices i ∈ J .

Proof Choose δ′ = δ′′ := κ/4, and let c′, c′′ be the corresponding constants from
Lemmas 4.4 and 4.6. Denote by E the event

E := {|N�(v)| ≥ (1 − δ′)rn for at least |J | − max
(
(λ/2) log n,

|J | exp(−c′rn)
)
vertices v ∈ J ,

|N�(v) ∩ (N�(J\{v}) ∪ J )| < δ′′rn for all v ∈ J , and

|N�(J )| ≤ |J | · ern log n}.

In view of Lemmas 4.4 and 4.6, and by applying Chernoff’s inequality (Lemma 4.1)
to estimate the upper tails of |N�(v)| for v ∈ J , it is not difficult to see that the event
E has probability at least

1 − exp(−c′(λ/2) rn log n) − n · exp(−c′′rn log n) − exp(−ern log n)

≥ 1 − exp(−2c1rn log n)

for a constant c1 > 0 depending on κ and λ.
Note that E is measurable with respect to the variables (bi j )i∈J , j �=i , where bi j is

the indicator of the event {(i, j) is an edge of �}. Condition on any realization of the
variables (bi j )i∈J , j �=i such that the event E holds. DenoteUi := N�(i)\(N�(J\{i})∪
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J ) for i ∈ J . Observe that the sets Ui , i ∈ J , are disjoint, and everywhere on E we
have

∣∣{i ∈ J : |Ui | ≥ (1 − κ/2)rn
}∣∣ ≥ |J | − max

(
(λ/2) log n, |J | exp(−c′rn)

)
. (15)

Let δ ∈ (0, 1) be a parameter to be chosen later. Fix i ∈ J and let

Z j :=
∑

k∈[n]\(J∪N�(J ))

b jk, j ∈ Ui .

Then the indicators of the events

{
Z j ≥ nr + δ

√
nr
}
, j ∈ Ui ,

are conditionally i.i.d. given (bv j )v∈J , j �=v . Observe that for every j ∈ Ui , the variable
Z j is conditionally Binomial(n − |J ∪ N�(J )|,r ), and so

nr + δ
√
nr − E[Z j ] ≤ 2δ

√
Var(Z j ) + 3r1/2

√
Var(Z j )

in view of the assumption (13) on |J |. Hence, by the Berry–Esseen theorem (or by a
direct computation), there is a choice of δ, as a function of κ , so that

Z j ≥ nr + δ
√
nr

with conitional probability at least 1/2− κ/4. Thus, applying Hoeffding’s inequality,
for every i such that |Ui | ≥ (1 − κ/2)rn, we have

∣∣{ j ∈ Ui : Z j ≥ nr + δ
√
nr
}∣∣ =

∑

j∈Ui

1
{
Z j ≥ nr + δ

√
nr
} ≥ (1/2 − κ)rn

with conditional probability at least 1 − exp(−c2κ2rn), for some universal constant
c2 > 0.

Finally, the variables

∣∣∣∣

{
j ∈ Ui :

∑

k∈[n]\(J∪N�(J ))

b jk ≥ nr + δ
√
nr

}∣∣∣∣, i ∈ J ,

are conditionally mutually independent given (bv j )v∈J , j �=v . It remains to apply Cher-
noff’s inequality (second estimate in Lemma 4.1) to the sum of the indicators

∑

i∈J : |Ui |≥(1−κ/2)rn

1

{∣∣∣∣

{
j ∈ Ui :

∑

k∈[n]\(J∪N�(J ))

b jk ≥ nr + δ
√
nr

}∣∣∣∣≥(1/2 − κ)rn

}
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to obtain the following: Since the above sum is over at least |J |−max
(
(λ/2) log n, |J |

exp(−c′rn)
)
summands by (15), with probability at least 1 − exp(−c3rn log n),

∣∣∣∣

{
j ∈ Ui :

∑

k∈[n]\(J∪N�(J ))

b jk ≥ nr + δ
√
nr

}∣∣∣∣ ≥ (1/2 − κ)rn

for at least |J | − max
(
(3λ/4) log n, |J | exp(−c3rn)

)
vertices i ∈ J , where c3 > 0

is a constant depending on κ and λ. Then (14a) follows immediately. The condition
(14b) is verified by analogy. ��

We now prove a lemma similar to the above, but with J = [n].
Lemma 4.8 (Neighbors’ degrees of typical vertices). For any κ ∈ (0, 1/2), there exist
c, δ > 0 and n0 ∈ N depending on κ with the following property. Suppose that n > n0
and log n ≤ rn ≤ n1/4. Let � be a G(n, r) Erdős–Rényi graph. Then with probability
at least 1 − exp(−crn log n),

∣∣{ j ∈ N�(i) : deg�( j) ≥ nr + δ
√
nr
}∣∣ ≥ (1/2 − κ)nr , and (16a)

∣∣{ j ∈ N�(i) : deg�( j) ≤ nr − δ
√
nr
}∣∣ ≥ (1/2 − κ)nr . (16b)

for at least n − n1−c vertices i ∈ [n].
Proof Let � := ⌈

rn3/2 log n
⌉
. We partition [n] into � fixed subsets J1, . . . , J� such

that

|Ji | ≤ n/� ≤
√
n

rn log n

for every i ∈ [�]. By Lemma 4.7 and a union bound over J1, . . . , J�, the probability
that

∣∣{ j ∈ N�(i) : deg�( j) ≥ nr + δ
√
nr
}∣∣ < (1/2 − κ)nr (17)

for at most max(log n, |J�| exp(−crn)) vertices i ∈ J� for all � ∈ [�] is at least

1 − � exp(−4crn log n) ≥ 1 − exp(−2crn log n),

where c > 0 depends on κ . On this high-probability event, (17) holds for at most

� · max(log n, |J�| exp(−crn)) ≤ max(2rn3/2 log2 n, n exp(−crn)) ≤ n1−2c

vertices i ∈ [n], since log n ≤ rn ≤ n1/4. This proves (16a). The proof of (16b) is
analogous. ��
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4.3 Tree structure of large neighborhoods

Lemma 4.9 (Counting subsets via probabilistic method). Let n, d, k ∈ N be such that
2k ≤ d ≤ n. Fix an integer M ≥ (2n/d)kd log(en/d). There exists a collection of M
subsets Ai ⊂ [n] with |Ai | = k for each i ∈ [M] such that the following holds. For
every subset B ⊂ [n] with |B| = d, there is i ∈ [M] such that Ai ⊂ B.

Proof Fix a subset B ⊂ [n]with |B| = d. Let A1, . . . , AM be i.i.d. uniformly random
subsets of [n] with |Ai | = k for each i ∈ [M]. Then we have

P{Ai ⊂ B} = d(d − 1) · · · (d − k + 1)

n(n − 1) · · · (n − k + 1)
>
( d

2n

)k

and thus

P {Ai �⊂ B ∀ i ∈ [M]} <

(
1 −

( d

2n

)k)M

< exp

(
− M

( d

2n

)k)
.

A union bound over all subsets B ⊂ [n] with |B| = d yields

P {∃ B ⊂ [n], |B| = d, s.t. Ai �⊂ B ∀ i ∈ [M]} < exp

(
− M

( d

2n

)k) ·
(
n

d

)
≤ 1

if M ≥ (2n/d)kd log(en/d). Taking the complement of the above event completes
the proof. ��
Lemma 4.10 (Tree structure in a typical graph). For n ∈ N and r ∈ (0, 1), let � be
a G(n, r) Erdős–Rényi graph. For any x ∈ N, the probability that there are at least
(5x)3(log n)6(nr)3x vertices of � whose x–neighborhoods are not trees, is bounded
from above by exp(− log2 n).

Proof For an integer k ≥ 2, fix for a moment k distinct vertices v1, . . . , vk ∈ [n],
and consider the event E that the x–neighborhood of each of the vertices is not a tree.
Given any realization of � from E , we shall construct an auxiliary subgraph H of �

iteratively as follows.
At the beginning of the process, H is empty. Since the x–neighborhood of v1

contains a cycle, there is a cycle in this neighborhood which we denote as an ordered
collection of vertices S1 = (S1(u))

z1
u=0, satisfying S1(0) = S1(z1) and 3 ≤ z1 ≤ 2x ,

and a path P1 = (P1(u))
�1
u=0 of length 0 ≤ �1 ≤ x starting at v1 and ending at S1(0),

with P1 ∪ S1 containing only one cycle, that is, S1. We then add the vertex and the
edge sets of P1 ∪ S1 to H .

Next, we consider the vertex v2. One of the following two assertions is then true
for v2:

• Either there is a cycle S2 = (S2(u))
z2
u=0 in � and a path P2 = (P2(u))

�2
u=0 starting

at v2 and ending at S2(0), with the same conditions on lengths and cycle number
as above, and such that the vertex set of P2 ∪ S2 is disjoint from the vertex set of
P1 ∪ S1. In this case, we add P2 ∪ S2 to H .
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• Or, there is a path P2 = (P2(u))
�2
u=0 of length �2 ≤ x , starting at v2 and ending at

some vertex of P1 ∪ S1, such that P1 ∪ S1 ∪ P2 contains only one cycle, S1. We
then add P2 to H .

To summarize the first two steps informally, the subgraph H now consists of either
(1) two connected components, with one component containing a cycle S1 and a path
P1 connecting v1 to a vertex in S1, and the other component containing a cycle S2 and
a path P2 connecting v2 to a vertex in S2; or (2) one connected component, containing
a cycle S1, a path P1 connecting v1 to a vertex in S1, and a path P2 connecting v2 to a
vertex in S1 ∪ P1.

Next, we continue to do the same construction for v3, after which the possibilities
of the subgraph H include the following: (1) three components, S1 ∪ P1, S2 ∪ P2, and
S3 ∪ P3; (2) two components, S1 ∪ P1 ∪ P2 and S3 ∪ P3; (3) two components, S1 ∪ P1
and S2 ∪ P2 ∪ P3; (4) one component, S1 ∪ P1 ∪ P2 ∪ P3.

More rigorously, repeating the process for all v1, . . . , vk , we can guarantee that there
exists an integer 1 ≤ h ≤ k, a partition of [k] into h non-empty subsets T1, . . . , Th ,
cycles S j = (S j (u))

z j
u=0, 1 ≤ j ≤ h, with 3 ≤ z j ≤ 2x , and paths Pi = (Pi (u))

�i
u=0,

1 ≤ i ≤ k, with 0 ≤ �i ≤ x , such that all of the following conditions are satisfied:

• each of T1, . . . , Th consists of consecutive integers, and they form an ordered
partition of [k] (for example, k = 6, h = 3, T1 = {1, 2, 3}, T2 = {4}, and
T3 = {5, 6});

• 3 ≤ z j ≤ 2x for all 1 ≤ j ≤ h, and 0 ≤ �i ≤ x for all 1 ≤ i ≤ k;
• S j (0) = S j (z j ) for each 1 ≤ j ≤ h;
• Pi (0) = vi for all 1 ≤ i ≤ k (i th path starts at vi );
• Pi (�i ) = S j (0) for all 1 ≤ j ≤ h and i = min Tj := min{i ′ : i ′ ∈ Tj } (the path

Pi attaches vertex vi to the cycle S j at S j (0) for i = min Tj );
• Pi (�i ) ∈ ⋃

i ′∈Tj , i ′<i
Pi ′ ∪ S j , for all 1 ≤ j ≤ h and i ∈ Tj\{min Tj } (each vertex

vi ∈ Tj is attached via the path Pi to the union of S j and the paths Pi ′ with i ′ ∈ Tj

and i ′ < i);
• The vertices S j (u), 0 ≤ u < z j , 1 ≤ j ≤ h, and Pi (u), 0 ≤ u < �i , 1 ≤ i ≤ k,
are all distinct;

• All unordered pairs of vertices {S j (u), S j (u + 1)}, 0 ≤ u < z j , 1 ≤ j ≤ h, and
{Pi (u), Pi (u + 1)}, 0 ≤ u < �i , 1 ≤ i ≤ k, are edges of �;

• As a consequence of the above conditions, the subgraphs
⋃

i ′∈Tj
Pi ′ ∪ S j are

disjoint across different 1 ≤ j ≤ h;
• The subgraph H := (⋃h

j=1 S j
) ∪ (⋃k

i=1 Pi
)
contains exactly h cycles and h

connected components (one cycle in each component).
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Thus, the probability of E can be (crudely) estimated from above as

k∑

h=1

∑

T1�···�Th=[k]

∑

z1,...,zh∈{3,...,2x}

∑

�1,...,�k∈{0,...,x}
r z1+···+zh+�1+···+�k nz1+···+zh+�1+···+�k−k(3xk)k ,

where the exponent of r is the number of edges, the exponent of n is the number of
vertices (besides the fixed v1, . . . , vk), and the factor (3xk)k is bounding the number
of possible vertices to which v1, . . . , vk are attached via the paths. To bound the above
sum, we note that

• the number of all possible ordered partitions T1, . . . , Th of [k] is at most
(2k
k

)
by a

standard “stars and bars” argument;
• the sums over z1, . . . , zh and �1, . . . , �k give a factor at most (2x)k(x + 1)k ;
• z1 + · · · + zh + �1 + · · · + �k ≤ 3kx .

Combining the above estimates, we conclude that the probability of E is bounded from
above by

(
2k

k

)
(2x)k(x + 1)k (nr)3kx (3xk)kn−k ≤ (3kx)3k(nr)3kxn−k .

Finally, let T be the collection of all vertices of � whose x–neighborhoods are
not trees. We are interested in bounding P

{|T | ≥ d
}
where d ≥ 2k using the above

bound on the probability of E . By Lemma 4.9, it suffices to take a union bound over⌈
(2n/d)kd log(en/d)

⌉
subsets of cardinality k, yielding

P
{|T | ≥ d

} ≤ (3kx)3k(nr)3kxn−k⌈(2n/d)kd log(en/d)
⌉ ≤ exp(− log2 n)

once we take k = �log2 n� and d ≥ (5x)3(log n)6(nr)3x . ��

4.4 Typical vertices in the parent graph

Recall that the parent graph G0 is a G(n, q) random graph. We consider parameters
n, q, and m ∈ N satisfying

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , m ≤ C log log n,

where n0, R, and C are positive constants.
Let us first define a typical vertex of the parent graphG0. The definition incorporates

all the structural properties of vertex neighborhoods thatwill be important for signature
comparison.

Definition 4.11 We say that a vertex i ∈ [n] of G0 is typical with parameters m ∈ N,
κ > 0, K > 1, and δ > 0, and write i ∈ TypG0

(m, κ, K , δ), if i has the following
properties:

(A1) G0
(BG0(i,m + 1)

)
is a tree.
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(A2) degG0
( j) ≤ Knq for any j ∈ BG0(i,m + 1).

(A3) |SG0(i, l)| > (1 − κ)nq · 3l−1 and |BG0(i, l)| ≤ K (nq)l for all l ∈ [m].
(A4) For any l ∈ {0, . . . ,m}, the following holds. Denote byHD(l) the set of vertices

in the l-sphere whose degrees are relatively high:

HD(l) := { j ∈ SG0(i, l) : degG0
( j) > (1 − κ)nq}.

Then

|SG0(i, l)\HD(l)| ≤ κ

K · 3l |SG0(i, l)|.

(A5) For any l ∈ {0, . . . ,m − 1}, the following holds. For j ∈ SG0(i, l), denote
by V+( j) the set of its neighbors whose degrees are noticeably larger than the
mean:

V+( j) := { j ′ ∈ NG0( j) ∩ SG0(i, l + 1) : degG0
( j ′) > nq + δ

√
nq
}
.

Furthermore, denote byW+(l) the subset of SG0(i, l) for which the sets V+( j)
are large:

W+(l) := { j ∈ SG0(i, l) : |V+( j)| ≥ (1/2 − κ)nq
}
.

Then

|SG0(i, l)\W+(l)| ≤ κ

K · 3l |SG0(i, l)|.

(A6) For any l ∈ {0, . . . ,m − 1}, the following holds. For j ∈ SG0(i, l), denote by
V−( j) the set of its neighbors whose degrees are noticeably smaller than the
mean:

V−( j) := { j ′ ∈ NG0( j) ∩ SG0(i, l + 1) : degG0
( j ′) < nq − δ

√
nq
}
.

Furthermore, let

W−(l) := { j ∈ SG0(i, l) : |V−( j)| ≥ (1/2 − κ)nq
}
.

Then

|SG0(i, l)\W−(l)| ≤ κ

K · 3l |SG0(i, l)|.

The sets HD(l),W+(l),W−(l) depend, of course, on i . However, we do notmention
this dependence explicitly to lighten the notation. The following is the main statement
of the subsection.
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Proposition 4.12 For any κ ∈ (0, 1/2) and C, D > 1, there exist δ, c ∈ (0, 1/2) and
K , R, n0 > 1 depending on κ,C, D such that the following holds. If

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , m ≤ C log log n,

then with high probability, most vertices of a G(n, q) graph G0 are typical with
parameters m, κ , K , and δ:

P

{∣∣TypG0
(m, κ, K , δ)

∣∣ ≥ n − n1−c
}

≥ 1 − n−D.

Proof Consider each condition in Definition 4.11:

1. By Lemma 4.10, with probability at least 1 − exp(− log2 n), there are at most

(5m + 5)3(log n)6(nq)3m+3 ≤ √
n

vertices of G0 whose (m + 1)–neighborhoods are not trees, where the above

inequality holds because m ≤ C log log n and nq ≤ n
1

R log log n for R depending on
C .

2. By Chernoff’s inequality (third estimate in Lemma 4.1) and the condition nq ≥
log n, we in fact have degG0

( j) ≤ Knq for all j ∈ [n] with probability at least
1 − n−D−1, where K depends on D.

3. The upper bound |BG0(i, l)| ≤ K (np)l holds simultaneously for all i ∈ [n] with
probability at least 1 − n−D−1 by (1).
For the lower bound in the case l = 1, the bound (12) in Lemma 4.5 with � = G0
shows that |SG0(i, 1)| = |NG0(i)| ≥ (1 − κ)nq for at least n − n1−c1 vertices
i ∈ [n] with probability at least 1 − n−D−1, where c1 > 0 depends on κ and D.
The lower bound in the case l ∈ {2, . . . ,m} is trivial, because the size ofSG0(i, l) is
of order (nq)l which ismuch larger than nq ·3l−1 for all i ∈ [n]with overwhelming
probability.

4. For l = 0, if i satisfiesCondition (A3), then deg(i) > (1−κ)nq and soSG0(i, 0) =
HD(0) = {i}.
Next, fix l ∈ [m]. We will show that with high probability, any vertex i ∈ [n]
satisfying Conditions (A1) and (A3) also satisfies Condition (A4). Towards this
end, conditionon any realizationof the subgraphG0(BG0(i, l−1)) and all the edges
betweenBG0(i, l−1) and its complement. Let P̃ denote the conditional probability.
Under this conditioning, SG0(i, l) is determined. Let Ĝ := G0

([n]\BG0(i, l −1)
)

and n̂ := n−|BG0(i, l−1)|. Then Ĝ is conditionally aG (̂n, q) graph andSG0(i, l)
is a fixed subset of vertices.
For j ∈ SG0(i, l), let us define

ĤD(l) := { j ∈ SG0(i, l) : degĜ( j) + 1 > (1 − κ)nq}.

123



Exact matching of random graphs with constant correlation

If G0(BG0(i,m + 1)) is a tree, then degĜ( j) + 1 = degG0
( j), and so ĤD(l) =

HD(l). Applying Lemma 4.4 with � = Ĝ and J = SG0(i, l), we obtain

P̃
{∣∣SG0(i, l)\ĤD(l)

∣∣ < k
} ≥ 1 − exp(−c2qn̂k) (18)

for a constant c2 > 0 depending on κ , where max(2, |J | exp(−c2qn̂)) ≤ k ≤ c2n̂.
If i satisfies Condition (A3), then

|BG0(i, l)| ≤ K (nq)m ≤ Kn
C
R ,

since m ≤ C log log n and nq ≤ n
1

R log log n where R depends on C and D. As a
result, 0.9 n ≤ n̂ ≤ n and

|J | exp(−c2qn̂) ≤ Kn
C
R exp(−c2qn̂) ≤ 1,

where the last inequality holds because nq ≥ log n and n ≥ n0 = n0(κ,C, D) if
we choose R = R(C) appropriately. Therefore, we can take k = ⌈ 2(D+2)

c2

⌉
so that

the error probability in (18) is at most n−D−2. Finally, since

k =
⌈2(D + 2)

c2

⌉
<

κ

K · 3l
nq · 3l−1

2
<

κ

K · 3l |SG0(i, l)|

for i satisfying Condition (A3), we obtain from (18) that with probability at least
1 − n−D−1, for any vertex i ∈ [n] satisfying Conditions (A1) and (A3),

|SG0(i, l)\HD(l)| <
κ

K · 3l |SG0(i, l)|.

5. For l = 0, the bound (16a) in Lemma 4.8 with� = G0 shows that with probability
at least 1−n−D−2, we haveSG0(i, 0) = {i} = W+(0) for at least n−n1−c3 vertices
i ∈ [n], where c3 > 0 depends on κ and D. Therefore, Condition (A5) holds for
these vertices.
Next, fix l ∈ [m − 1]. We will show that with high probability, any vertex i ∈ [n]
satisfying Conditions (A1) and (A3) also satisfies Condition (A5). As in the proof
of Condition (A4), we let P̃ denote the probability conditional on any realization
of the subgraph G0(BG0(i, l − 1)) and all the edges between BG0(i, l − 1) and its
complement. Again, let Ĝ := G0

([n]\BG0(i, l − 1)
)
and n̂ := n−|BG0(i, l − 1)|

so that Ĝ is conditionally a G (̂n, q) graph.
For j ∈ SG0(i, l), let

V̂+( j) := { j ′ ∈ NĜ( j) : degĜ( j ′) > nq + δ
√
nq
}

and

Ŵ+(l) := { j ∈ SG0(i, l) : |V̂+( j)| ≥ (1/2 − κ)nq
}
.
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If G0(BG0(i,m)) is a tree, then it is not hard to see that V̂+( j) = V+( j) and
thus Ŵ+(l) = W+(l). To bound |SG0(i, l)\Ŵ+(l)|, we apply Lemma 4.7 with
� = Ĝ, J = SG0(i, l), and λ = κ

4K . Note that by Condition (A3) together with

the conditions log n ≤ nq ≤ n
1

R log log n and m ≤ C log log n, we have

1

2
log n ≤ |SG0(i, l)| ≤

√
n

rn log n
,

so Lemma 4.7 can indeed be applied. Hence, we obtain that with probability at
least 1 − exp(−c4rn log n) ≥ 1 − n−D−2,

|SG0 (i, l)\Ŵ+(l)| ≤ max
( κ

4K
log n, |SG0 (i, l)| exp(−c4rn)

)
≤ κ

K · 3l |SG0 (i, l)|

by Condition (A3) and m ≤ C log log n, where c4, δ > 0 depend on κ and D.
6. This part is analogous to the previous one.

Finally, by a union bound, with probability at least 1−n−D , the number of non-typical
vertices is at most

√
n + n1−c1 + 2 n1−c3 ≤ n1−c for a constant c > 0. The proof is

therefore complete. ��

5 Signatures of correct pairs of vertices

The goal of this section is to show that with probability close to one, for almost every
vertex i , the signatures f (i) and f ′(i) computed in the graphs G and G ′ are close
to each other, in the sense that the sparsified �2–distance of appropriately normalized
signatures is less than a given threshold. The constant correlation between G and
G ′ introduces a very large noise so that the normalized signatures are still “almost
orthogonal”, and a high precision of the estimates is required to distinguish this case
from the case when signatures of different vertices are compared.

5.1 Overlap between neighborhoods of a typical vertex in the child graphs

Let the graphs G0, G, and G ′ be given by the correlated Erdős–Rényi graph model
with parameters n, p, α as defined in Sect. 1.1. That is, G0 is a G(n, q) Erdős–Rényi
graph, where q := p

1−α
. Conditional on G0, the subgraph G is obtained by removing

every edge of G0 independently with probability α, and G ′ is a conditionally i.i.d.
copy of G. Fix m ∈ N. For l ∈ [m], s ∈ {−1, 1}l , and i ∈ [n], let T l

s (i,G) denote
the set T l

s of vertices constructed in VertexSignature(G, i,m) (Algorithm 1);
similarly, let T l

s (i,G
′) and T l

s (i,G0) denote the sets constructed by Algorithm 1when
the input graph is G ′ and G0 respectively. Recall that collections TypG0

(m, κ, K , δ)

of vertices of the parent graph G0 were described in Definition 4.11. In what follows,
P0 denotes the probability conditional on an instance of G0.

Proposition 5.1 For any parameters κ, K , δ, D > 0, there exist α0 ∈ (0, 1) and
n0 > 0 depending only on these parameters such that the following holds for any

123



Exact matching of random graphs with constant correlation

α ∈ (0, α0) and n ≥ n0 satisfying nq ≥ log n. Condition on an instance of the parent
graph G0. Fix m ∈ N. Then with (conditional) probability at least 1− n−D, for every
typical vertex i ∈ TypG0

(m, κ, K , δ) and any s ∈ {−1, 1}m,

|Tm
s (i,G) ∩ Tm

s (i,G ′)| ≥ (np/2)m(1 − 8κ)m .

Proof Fix a typical vertex i ∈ TypG0
(m, κ, K , δ), and let l ∈ {0, . . . ,m − 1}. We

start with proving the following claim showing that with overwhelming probability,
the degrees of all vertices in HD(l) in the child graphs G and G ′ remain relatively
large, where HD(l) is defined in Condition (A4).

Claim 5.2 There existsα0 > 0 depending on κ , K , and D such that for anyα ∈ (0, α0),

P0
{
degG( j) ∧ degG ′( j) > (1 − 2κ)np ∀ j ∈ HD(l)

} ≥ 1 − n−D−1.

To prove the claim, let j ∈ HD(l). Then

P0
{
degG( j) ≤ (1 − 2κ)np

}+ P0
{
degG ′( j) ≤ (1 − 2κ)np

}

≤ P0
{
(1 − α) degG0

( j) − degG( j) > κnp
}

+ P0
{
(1 − α) degG0

( j) − degG ′( j) > κnp
}
.

Note that degG( j) and degG ′( j) are Binomial(degG0
( j), 1 − α) random variables

conditional on G0, where degG0
( j) ≤ Knq by Condition (A2). Hence, the right-hand

side of the inequality above is bounded by 2 exp
( − c κ2np

α

)
for a constant c > 0

depending on K . We can choose α sufficiently small depending on κ , K , and D such
that this error probability is at most n−D−2. The claim follows by taking the union
bound over j ∈ HD(l).

Next, we will show that with overwhelming probability, the sets W+(l) and W−(l)
defined in Conditions (A5) and (A6) respectively remain at least the same size under
a slight change of their definitions. Namely, to take advantage of the independence of
degrees of different vertices, we consider the spheres around i and the neighborhoods
in G0, but evaluate the degrees in G and G ′. Specifically, we prove the following
claim.

Claim 5.3 There exists α0 > 0 depending on κ , K , δ, and D such that for any α ∈
(0, α0), the following holds. For j ∈ SG0(i, l), denote by V G,G ′

+ ( j) the set of its
neighbors in G0 whose degrees in G and G ′ are larger than the mean:

V G,G ′
+ ( j) := { j ′ ∈ NG0( j) ∩ SG0(i, l + 1) : degG( j ′) > np and degG ′( j ′) > np

}
.

Then

P0

{
|VG,G ′

+ ( j)| ≥ (1/2 − 2κ)nq ∀ j ∈ W+(l)
}

≥ 1 − n−D−1.
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To prove this claim, consider a vertex j ∈ W+(l) whereW+(l) is defined in Condi-
tion (A5), and estimate the probability of the event that |VG,G ′

+ ( j)| < (1/2 − 2κ)nq.
Note that since i is typical, these events are independent for different j ∈ W+(l)
conditional on G0. Consider j ′ ∈ V+( j), so that degG0

( j ′) > nq + δ
√
nq . The distri-

bution of the random variable degG( j ′) is conditionally Binomial(degG0
( j ′), 1− α).

Therefore, assuming α ≤ 1/2, by Bernstein’s inequality we have

P0
{
degG( j ′) ≤ nq(1 − α)

} ≤ P0
{
degG0

( j ′) − degG( j ′) ≥ α degG0
( j ′) + (1 − α)δ

√
nq
}

≤ exp

(
− c(1 − α)2δ2nq

α degG0
( j ′) + (1 − α)δ

√
nq

)
,

where c > 0 is a universal constant, and where degG0
( j ′) ≤ Knq by Condition (A2).

Let τ > 0 be a number depending on κ , K , and D which will be chosen soon. Then,
since n is large, we can choose α0 ∈ (0, 1/2] depending on δ, K , and τ (and thus only
on κ , K , δ, and D) such that for any α ∈ (0, α0), the above error probability is less
than τ/2. Similarly, one can show that

P0
{
degG ′( j ′) ≤ nq(1 − α)

} ≤ τ/2,

and so

P0
{
j ′ ∈ V+( j)\VG,G ′

+ ( j)
} = P0

{
degG( j ′) ≤ nq(1 − α)

}

+P0
{
degG ′( j ′) ≤ nq(1 − α)

} ≤ τ.

Note that |V+( j)| ≤ degG0
( j) ≤ Knq, and that the events { j ′ ∈ V+( j)\VG,G ′

+ ( j)}
are independent for different j ′ ∈ V+( j) conditional on G0 for a typical vertex i .
Assuming that τK ≤ κ , we get byChernoff’s inequality (first estimate in Lemma 4.1),

P0
{|V+( j)\VG,G ′

+ ( j)| ≥ κnq
} ≤

(
eτKnq

κnq

)κnq

.

As nq ≥ log n, we can choose τ depending only on κ , K , and D so that the bound
above does not exceed n−D−2. By the union bound,

P0
{∃ j ∈ W+(l) s.t. |VG,G ′

+ ( j)| < (1/2 − 2κ)nq
}

≤ P0
{∃ j ∈ W+(l) s.t. |V+( j)\VG,G ′

+ ( j)| ≥ κnq
} ≤ n−D−1,

finishing the proof of the claim.
Applying the same argument, one can establish a similar claim for the set W−(l).

Claim 5.4 There exists α0 > 0 depending on κ , K , δ, and D such that for any α ∈
(0, α0), the following holds. For j ∈ SG0(i, l), denote by V G,G ′

− ( j) the set of its
neighbors in G0 whose degrees in G and G ′ are smaller than the mean:

V G,G ′
− ( j) = { j ′ ∈ NG0( j) ∩ SG0(i, l + 1) : degG( j ′) < np and degG ′( j ′) < np

}
.
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Then

P0

{
|VG,G ′

− ( j)| ≥ (1/2 − 2κ)nq ∀ j ∈ W−(l)
}

≥ 1 − n−D−1.

Equipped with Claims 5.2, 5.3, and 5.4, we can complete the proof of the proposi-
tion. Let E(i, l) be the event that the following statements hold:

• degG( j) > (1−2κ)np anddegG ′( j) > (1−2κ)np for at least
(
1 − κ

K ·3l
)

|SG0(i, l)|
vertices j ∈ SG0(i, l);

• |VG,G ′
+ ( j)| ≥ (1/2 − 2κ)nq and |VG,G ′

− ( j)| ≥ (1/2 − 2κ)nq for at least(
1 − κ

K ·3l
)

|SG0(i, l)| vertices j ∈ SG0(i, l).

Then the above claims together with Conditions (A4), (A5), and (A6) imply that

P0

{
m−1⋂

l=0

E(i, l)

}

≥ 1 − n−D .

Assuming that the event
⋂m−1

l=0 E(i, l) occurs, we will show that

|T l
s (i,G) ∩ T l

s (i,G
′)| ≥ (1 − 8κ)l(np/2)l (19)

for all l ∈ {0, . . . ,m} and s ∈ {−1, 1}l by induction on l. For l = 0, this inequality
trivially holds. Assume that (19) holds for l ∈ {0, . . . ,m − 1} and s ∈ {−1, 1}l , and
consider, for instance, s′ = (s, 1) ∈ {−1, 1}l+1. The case s′ = (s,−1) ∈ {−1, 1}l+1

is handled the same way.
Let W be the set of all vertices j ∈ T l

s (i,G) ∩ T l
s (i,G

′) such that degG( j) >

(1 − 2κ)np, degG ′( j) > (1 − 2κ)np, and |VG,G ′
+ ( j)| ≥ (1/2 − 2κ)nq. Then

|W | ≥ |T l
s (i,G) ∩ T l

s (i,G
′)| − 2

κ

K · 3l |SG0(i, l)| ≥ (1 − 2κ)|T l
s (i,G) ∩ T l

s (i,G
′)|,

where the last inequality relies on the induction hypothesis (19) and that |SG0(i, l)| ≤
K (nq)l in Condition (A3).

For any j ∈ W , the entire set VG,G ′
+ ( j) is contained in T l+1

(s,1)(i,G) ∩ T l+1
(s,1)(i,G

′).
Since these sets are disjoint for different j ∈ W ,

|T l+1
(s,1)(i,G) ∩ T l+1

(s,1)(i,G
′)| ≥

∑

j∈W
|VG,G ′

+ ( j)| ≥ |W | · (1/2 − 2κ)nq

≥ (1/2 − 4κ)nq |T l
s (i,G) ∩ T l

s (i,G
′)|

≥ (1 − 8κ)l+1(np/2)l+1,

where the last inequality follows from the induction hypothesis. ��
For the rest of this section, we fix a positive integer m and simplify the notation of

classes of vertices by omitting m as follows: For s ∈ {−1, 1}l and i ∈ [n], let Ts(i)
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denote the set Tm
s of vertices constructed by VertexSignature(G, i,m) (Algo-

rithm1); similarly, let T ′
s (i) denote the set constructed byVertexSignature(G ′, i,

m). Moreover, for any subset J ⊂ {−1, 1}m , we define

TJ (i) :=
⋃

s∈J

Ts(i) and T ′
J (i) :=

⋃

s∈J

T ′
s (i).

5.2 Sparsification

For pairs of distinct indices s, s′ ∈ {−1, 1}m , the sets Ts(i) and T ′
s′(i) may have a

considerable intersection, which introduces complex dependencies between compo-
nents of the signature vectors of i in G and G ′. To tackle this issue, we now use
sparsification—taking a small random subset J of indices in {−1, 1}m instead of the
entire index set—to guarantee that the undesired situation does not occur for too many
pairs s, s′ ∈ J with high probability. We first state a lemma from [20].

Lemma 5.5 (Lemma 16 of [20]). Fix a constant S > 0 and an even integer k ∈ N. Let
� and �′ be two finite sets, and let

� =
k⋃

i=1

�i and �′ =
k⋃

i=1

�′
i

be partitions of � and �′ respectively such that |�′
i | ≤ S/k for all i ∈ [k]. Fur-

thermore, let w ∈ {2, 3, . . . , k/2} and let I be a uniform random subset of [k] of
cardinality 2w. Then, for any L ≥ 1 and ρ ∈ (0, 1/4) such that ρw is an integer, we
have

P

{∣∣{i ∈ I : ∃ j ∈ I\{i} s.t. |�i ∩ �′
j | ≥ LS/k2

}∣∣ ≥ 2ρw
}

≤
(
8w3

L

)ρw

.

Proof This is a restatement of Lemma 16 of [20] with γ −1|�′| replaced by S, and L
replaced by L/γ ; the same proof works to give the statement above. Note that in that
lemma, it is assumed in addition that |�′

i | ≥ γ |�′|/k, but this condition is never used
in the proof. ��

The following lemma shows that the intersection between the neighbors of Ts(i)
in G and the neighbors of T ′

s′(i) in G ′ is not too large for most pairs s, s′ ∈ J . More
precisely, in (22), we let Rs(i) denote the intersection between the neighbors of Ts(i)
and the neighbors of T ′

s′(i) for any s′ ∈ J , s′ �= s, and we define R′
s(i) analogously.

The lemma states that there is a subset J̃ (i) ⊂ J that is almost as large as J (note (20)
and that we take 2w = |J | ≥ 2(log n)4 in Lemma 5.11) such that Rs(i) and R′

s(i) are
sufficiently small for all s ∈ J̃ (i). Note the extra factor 1/2m in (21a) for s ∈ J̃ (i)
compared to (21b) for any s ∈ J . This will be crucial to controlling ηs(i) and η′

s(i) in
Lemma 5.7 and subsequent estimates in Lemma 5.11.
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Lemma 5.6 (Sparsification). For constantsC1,C2 > 0, there exists K = K (C1,C2) >

0 with the following property. Let J be a uniform random subset of {−1, 1}m of car-
dinality 2w for an integer w > 2(log n)2. With respect to the randomness of J , the
following holds with probability at least 1 − exp(−(log n)1.5) for any vertex i ∈ [n]:
If

• G0
(BG0(i,m + 1)

)
is a tree,

• degG( j) ∨ degG ′( j) ≤ C1np for all j ∈ BG0(i,m), and
• |Ts(i)| ∨ |T ′

s (i)| ≤ C2
( np
2

)m
for all s ∈ {−1, 1}m,

then there is a subset J̃ (i) ⊂ J such that

|J\ J̃ (i)| < (log n)2, (20)

and

|Rs(i)| ∨ |R′
s(i)| ≤ Kw4 (np)m+1

4m
for all s ∈ J̃ (i), (21a)

|Rs(i)| ∨ |R′
s(i)| ≤ K

(np)m+1

2m
for all s ∈ J , (21b)

where

Rs(i) := NG
(
Ts(i)

) ∩ NG ′
(
T ′
J\{s}(i)

) ∩ SG0(i,m + 1), (22a)

R′
s(i) := NG ′

(
T ′
s (i)
) ∩ NG

(
TJ\{s}(i)

) ∩ SG0(i,m + 1). (22b)

Proof Fix a vertex i such that the three conditions in the lemma hold. Since
G0(BG0(i,m + 1)) is a tree and by definition SG(i,m) = ⋃

s∈{−1,1}m Ts(i) and
SG ′(i,m) =⋃s∈{−1,1}m T ′

s (i), we have partitions

SG(i,m + 1) =
⋃

s∈{−1,1}m

(
NG
(
Ts(i)

) ∩ SG0(i,m + 1)
)
,

SG ′(i,m + 1) =
⋃

s∈{−1,1}m

(
NG ′

(
T ′
s (i)
) ∩ SG0(i,m + 1)

)
.

Using the conditions |Ts(i)| ∨ |T ′
s (i)| ≤ C2

( np
2

)m for all s ∈ {−1, 1}m and degG( j)∨
degG ′( j) ≤ C1np for all j ∈ BG0(i,m), we see that

∣∣∣NG
(
Ts(i)

) ∩ SG0(i,m + 1)
∣∣∣ ∨
∣∣∣NG ′

(
T ′
s (i)
) ∩ SG0(i,m + 1)

∣∣∣ ≤ C1C2
(np)m+1

2m
.

Note that (21b) is a consequence of the above bound.
Moreover, we can apply Lemma 5.5 with � = SG(i,m + 1), �′ = SG ′(i,m + 1),

k = 2m , S = C1C2(np)m+1, L = 8ew3, and ρ = 1
2w (log n)2 to obtain the following:
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With probability at least 1 − exp(−(log n)2/2),

∣∣∣
{
s ∈ J : ∃ t ∈ J\{s} s.t.

∣∣NG
(
Ts(i)

) ∩ NG ′
(
T ′
t (i)
) ∩ SG0(i,m + 1)

∣∣

≥ 8ew3C1C2
(np)m+1

4m

}∣∣∣ <
1

2
(log n)2. (23)

A similar estimate holds if T and T ′ are swapped. Next, define

J̃ (i) :=
{
s ∈ J : |Rs(i)| ∨ |R′

s(i)| ≤ 16ew4C1C2
(np)m+1

4m

}

which is a superset of

{
s ∈ J : ∀ t ∈ J\{s}, ∣∣NG

(
Ts(i)

) ∩ NG′
(
T ′
t (i)
) ∩ SG0 (i,m + 1)

∣∣ ≤ 8ew3C1C2
(np)m+1

4m

}

⋂ {
s ∈ J : ∀ t ∈ J\{s}, ∣∣NG′

(
T ′
s (i)
) ∩ NG

(
Tt (i)

) ∩ SG0 (i,m + 1)
∣∣

≤ 8ew3C1C2
(np)m+1

4m

}
.

As a result of (23) and the counterpart with T and T ′ swapped, we see that (20) holds.
Moreover, (21a) holds by the definition of J̃ (i).

Finally, a union bound over vertices i ∈ [n] completes the proof. ��

5.3 Difference between signatures of a typical pair

Throughout this subsection, we fix a vertex i ∈ [n], a subset J ⊂ {−1, 1}m of car-
dinality 2w for w ∈ N, and a subset J̃ (i) ⊂ J . Moreover, we condition on the
neighborhoods G0(BG0(i,m + 1)), G(BG0(i,m + 1)), and G ′(BG0(i,m + 1)) such
that the following statements hold for fixed constants K , κ > 0:

(B1) G0(BG0(i,m + 1)) is a tree;
(B2) |BG0(i,m + 1)| ≤ n0.1;
(B3) degG( j) ∨ degG ′( j) ≤ Knp for all j ∈ BG0(i,m) for a constant K > 0;
(B4) |Ts(i)| ∨ |T ′

s (i)| ≤ K (np/2)m for all s ∈ {−1, 1}m ;
(B5) (20), (21a), and (21b) hold;
(B6)

∣∣{ j ∈ SG0(i,m) : degG∩G ′( j) ≤ 2
3np(1 − α)

}∣∣ ≤ (nq/3)m , where G ∩ G ′
denotes the graph on [n] whose edge set is the intersection of those of G and
G ′;

(B7) |Ts(i) ∩ T ′
s (i)| ≥ (np/2)m(1 − 8κ)m for all s ∈ {−1, 1}m .

We consider the randomnesswith respect to the remaining possible edges of the graphs;
let P̃ and Ẽ denote the conditional probability and expectation respectively. For any
j ∈ SG0(i,m + 1), it is not hard to see that the random variable degG( j) − 1 is
conditionally Binomial(ñ, p) where

ñ := n − |BG0(i,m + 1)| ≥ n − n0.1,
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and these binomial variables are independent across different j ∈ SG0(i,m + 1).

Lemma 5.7 (Small overlaps). For any D, K > 0, there exists K ′ = K ′(D, K ) > 0
such that the following holds. Define Rs(i) and R′

s(i) as in (22). With (conditional)
probability at least 1 − n−D,

|ηs(i)| ∨ |η′
s(i)| ≤ K ′ (np)m/2+1

2m
w2
√
log n for all s ∈ J̃ (i), (24a)

|ηs(i)| ∨ |η′
s(i)| ≤ K ′ (np)m/2+1

2m/2

√
log n for all s ∈ J , (24b)

where

ηs(i) :=
∑

j∈Rs (i)

(
degG( j) − 1 − np

)
and η′

s(i) :=
∑

j∈R′
s(i)

(
degG ′( j) − 1 − np

)
.

(25)

Proof Recall that the variables degG( j) − 1, j ∈ Rs(i), are conditionally indepen-
dent Binomial(ñ, p) where ñ ≥ n − n0.1. As a result,

∑
j∈Rs (i)

(
degG( j) − 1

) ∼
Binomial(ñ|Rs(i)|, p), and so

|ηs(i)| =
∣∣∣
∑

j∈Rs (i)

(
degG( j) − 1 − np

)∣∣∣

≤ K2
(√

np|Rs(i)| log n + log n
)+ (n − ñ)p |Rs(i)|

≤ K3
√
np(|Rs(i)| + 1) log n

with probability at least 1 − n−D−1 for constants K2, K3 > 0 depending on D. We
then combine the above bound with Condition (B5) to obtain (24a) and (24b). Finally,
a union bound over s ∈ {−1, 1}m completes the proof. ��
Lemma 5.8 (Correlated binomial). Let P̃ and Ẽ denote the conditional probability
and expectation respectively, defined at the beginning of this subsection. Fix a subset
I ⊂ SG0(i,m + 1). Let

A :=
∑

j∈I

(
degG( j) − degG ′( j)

)
and B :=

∑

j∈I

(
degG( j) − 1 − ñ p

)

where ñ = n − |BG0(i,m + 1)|. Then we have

• Ẽ[A] = Ẽ[B] = 0;
• Ẽ[A2] = 2α p ñ|I | and Ẽ[B2] = p(1 − p)ñ|I |;
• P̃{|A| ≥ t} ≤ 2 exp

( −t2/2
Ẽ[A2]+t/3

)
and P̃{|B| ≥ t} ≤ 2 exp

( −t2/2
Ẽ[B2]+t/3

)
for every

t > 0.
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Proof We first consider the variable B. Since
∑

j∈I (degG( j) − 1) is conditionally
Binomial(ñ|I |, p), the mean, variance, and tail bound for B are all standard facts.

Next, consider the variable A. Note that we can write

A =
∑

j∈I

∑

�∈[n]\BG0 (i,m+1)

X j�(Y j� − Y ′
j�),

where X j� ∼ Bernoulli(q) and Y j�,Y ′
j� ∼ Bernoulli(1 − α), all of which are inde-

pendent. Thus, we have Ẽ[A] = 0 and

Ẽ[A2] =
∑

j∈I

∑

�∈[n]\BG0 (i,m+1)

E

[
X2

j�(Y j� − Y ′
j�)

2
]

= 2qα(1 − α)ñ|I | = 2α p ñ|I |.

Moreover, the random variables X j�(Y j� −Y ′
j�) take values in {−1, 0, 1} and are i.i.d.

with mean zero and variance 2α p. Hence Bernstein’s inequality yields the desired tail
bound for A. ��

Since i is fixed, we drop the argument (i) in Ts(i), f (i)s , Rs(i), etc. to ease the
notation below when there is no ambiguity. Recall that Rs and R′

s are defined by (22);
moreover, ηs and η′

s are defined by (25). Let f and v be the signature vector and the
variance vector respectively given by VertexSignature(G, i,m) (Algorithm 1),
and let f ′ and v′ be given by VertexSignature(G ′, i,m).

Lemma 5.9 (Entrywise difference between signatures). Condition further on a real-
ization of edges between Rs ∪ R′

s and SG0(i,m + 2) in the graphs G0, G, and G ′.
Let P̂ and Ê denote the conditional probability and expectation respectively. Then, for
s ∈ J , we have

fs − f ′
s = Zs + �s

for a random variable Zs and a deterministic quantity �s satisfying

• Ê[Zs] = 0;
• Ê[Z2

s ] ≤ vs + v′
s − 2ñ p(1 − p − α)

∣∣NG(Ts) ∩ NG ′(T ′
s ) ∩ SG0(i,m + 1)

∣∣;

• P̂
{|Zs | ≥ t

} ≤ 2 exp
( −t2/2
Ê[Z2

s ]+t/3

)
;

• |�s | ≤ |ηs | + |η′
s | + 2n0.2 p.

Moreover, the random variables Zs are conditionally independent for different s ∈ J .

Proof First, note that because of the further conditioning on the edges between Rs∪R′
s

and SG0(i,m + 2), the quantities ηs and η′
s defined in (25) become deterministic.

As G0
(BG0(i,m + 1)

)
is a tree by Condition (B1), for every v ∈ SG(i,m), we

have

NG(v) ∩ SG(i,m + 1) = NG(v) ∩ SG0(i,m + 1).
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Therefore, it holds that

fs =
∑

j∈NG (Ts )∩SG (i,m+1)

(
degG( j) − 1 − np

)

=
∑

j∈NG (Ts )∩SG0 (i,m+1)

(
degG( j) − 1 − ñ p

)+ (ñ − n)p
∣∣NG(Ts) ∩ SG0 (i,m + 1)

∣∣.

Furthermore, in view of the partition

NG(Ts) = (NG(Ts) ∩ NG ′(T ′
s )
) ∪ (NG(Ts)\NG ′(T ′

J )
) ∪ (NG(Ts) ∩ NG ′(T ′

J\{s})
)
,

we obtain

fs =
∑

j∈NG (Ts )∩NG′ (T ′
s )∩SG0 (i,m+1)

(
degG( j) − 1 − ñ p

)

+
∑

j∈(NG (Ts )\NG′ (T ′
J ))∩SG0 (i,m+1)

(
degG( j) − 1 − ñ p

)

+ ηs + (ñ − n)p
∣∣NG(Ts) ∩ SG0(i,m + 1)

∣∣.

Consequently,

fs − f ′
s = Zs + �s,

where

Zs :=
∑

j∈NG (Ts )∩NG′ (T ′
s )∩SG0 (i,m+1)

(
degG( j) − degG ′( j)

)

+
∑

j∈(NG (Ts )\NG′ (T ′
J ))∩SG0 (i,m+1)

(
degG( j) − 1 − ñ p

)

−
∑

j∈(NG′ (T ′
s )\NG (TJ ))∩SG0 (i,m+1)

(
degG ′( j) − 1 − ñ p

)

and

�s := ηs − η′
s + (ñ − n)p

(∣∣NG(Ts) ∩ SG0 (i,m + 1)
∣∣− ∣∣NG ′(T ′

s ) ∩ SG0 (i,m + 1)
∣∣
)
.

For the deterministic quantity �s , we have

|�s | ≤ |ηs | + |η′
s | + n0.1 p · 2n0.1 = |ηs | + |η′

s | + 2n0.2 p.

For the random variable Zs , it is not hard to see that the three sums in its definition
are over disjoint sets, so they are independent. Moreover, for Zs , the probabilities P̃

and P̂ coincide, because the extra conditioning for P̂ is on edges disjoint from those
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used to define Zs . The means, variances, and tail bounds for the three terms of Zs can
be derived using Lemma 5.8. Namely, we obtain Ê[Zs] = 0 and

Ê[Z2
s ] = 2α p ñ

∣∣NG(Ts) ∩ NG ′(T ′
s ) ∩ SG0(i,m + 1)

∣∣

+ p(1 − p)ñ
∣∣(NG(Ts)\NG ′(T ′

J )
) ∩ SG0(i,m + 1)

∣∣

+ p(1 − p)ñ
∣∣(NG ′(T ′

s )\NG(TJ )
) ∩ SG0(i,m + 1)

∣∣

≤ p(1 − p)ñ
(∣∣NG(Ts) ∩ SG0(i,m + 1)

∣∣+ ∣∣NG ′(T ′
s ) ∩ SG0(i,m + 1)

∣∣
)

− (2p(1 − p)ñ − 2α p ñ
)∣∣NG(Ts) ∩ NG ′(T ′

s ) ∩ SG0(i,m + 1)
∣∣

≤ vs + v′
s − 2ñ p(1 − p − α)

∣∣NG(Ts) ∩ NG ′(T ′
s ) ∩ SG0(i,m + 1)

∣∣,

where the first inequality holds because all the neighborhoods in the three terms are
disjoint and contained in either NG(Ts) or NG ′(T ′

s ). The tail bound for Zs follows
again from Bernstein’s inequality as in Lemma 5.8. The conditional independence of
Zs for different s ∈ J follows from the disjointness of sets that we sum over in the
definition of Zs . ��
Lemma 5.10 (Hoeffding’s inequality with truncation). Let X1, . . . , XN be indepen-
dent random variables satisfying that

∣∣E[Xi ]
∣∣ ≤ τ for τ > 0 and that

P
{∣∣Xi − E[Xi ]

∣∣ ≥ t
} ≤ 2 exp

(−c t2

1 + t

)
, ∀ t > 0,

for a constant c > 0 for each i ∈ [N ]. Then there exists a constant C > 0 depending
only on c such that, for any δ ∈ (0, 0.1),

P

{∣∣∣
N∑

i=1

(
X2
i − E[X2

i ]
)∣∣∣ ≥ C log(N/δ)

√
N log(1/δ)

+Cτ
(√

N log(1/δ) + log(1/δ)
)}

≤ δ.

Proof It is easily seen that

X2
i − E[X2

i ] = (Xi − E[Xi ]
)2 − E

[(
Xi − E[Xi ]

)2]+ 2E[Xi ]
(
Xi − E[Xi ]

)

= (Y 2
i − E[Y 2

i ])+ 2E[Xi ] Yi

where Yi := Xi − E[Xi ]. It suffices to control the sum of the above two terms over
i ∈ [N ].

Let us first control
∑N

i=1

(
Y 2
i − E[Y 2

i ]). For M > 0, we have

E[Y 2
i ] − E[Y 2

i · 1{|Yi | ≤ M}] = E[Y 2
i · 1{|Yi | > M}]

=
∫ ∞

M
2t · P{|Yi | > t} dt
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= 4
∫ ∞

M
t exp

(−ct2

1 + t

)
dt

≤ 16
cM + 1

c2
exp(−cM/2) ≤ (δ/N )100,

if δ ∈ (0, 0.1) andM = C1 log(N/δ) for a sufficiently large constantC1 = C1(c) > 0.
Moreover, by a union bound, Y 2

i = Y 2
i ·1{|Yi | ≤ M} for all i ∈ [N ]with probability at

least 1− (δ/N )100 if C1 is sufficiently large. Thus, by Hoeffding’s inequality applied
to Y 2

i · 1{|Yi | ≤ M}, we have

P

{∣∣∣
N∑

i=1

(
Y 2
i − E[Y 2

i · 1{|Yi | ≤ M}])
∣∣∣ ≥ 2M

√
N log(1/δ)

}
≤ δ.

Combining the above two displays yields

P

{∣∣∣
N∑

i=1

(
Y 2
i − E[Y 2

i ])
∣∣∣ ≥ 3C1 log(N/δ)

√
N log(1/δ)

}
≤ δ.

Next, we turn to the term
∑N

i=1 E[Xi ] Yi . Since
∣∣E[Xi ]

∣∣ ≤ τ , the variable E[Xi ] Yi
is sub-exponential with parameter C2τ for a universal constant C2 > 0. Bernstein’s
inequality then implies that

P

{∣∣∣
N∑

i=1

E[Xi ] Yi
∣∣∣ ≥ C3τ

(√
N log(1/δ) + log(1/δ)

)}
≤ δ

for a universal constant C3 > 0.
The above two parts combined complete the proof. ��

Lemma 5.11 (Difference between signatures). For any constants C, D, K , K ′ > 0,
there exist constants n0, R, κ > 0 with the following property. Suppose that

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , α ∈ (0, κ),

log
(
w4(log n)2

) ≤ m ≤ C log log n, w ≥ (log n)4.

Moreover, suppose that Conditions (B1) to (B7) hold with constants K , κ > 0 and a
subset J with |J | = 2w. Consider the same conditioning as in Lemma 5.9, such that
ηs and η′

s satisfy (24) for a constant K
′ > 0. Then it holds with conditional probability

at least 1 − n−D that

∑

s∈J

(
fs − f ′

s

)2

vs + v′
s

≤ 2w
(
1 − (1 − 9κ)m

)
.
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Proof Let

I :=
{
j ∈ SG0(i,m) : degG∩G ′( j) ≤ 2

3
np(1 − α)

}
.

By Conditions (B6) and (B7), we have that for any s ∈ {−1, 1}m ,

|I | ≤ (nq/3)m ≤ 1

2
(np/2)m(1 − 8κ)m ≤ 1

2
|Ts ∩ T ′

s |

if κ, α ∈ (0, 0.01) and m ≥ 3. Since G0
(BG0(i,m + 1)

)
is a tree, it is easy to see that

∣∣NG(Ts) ∩ NG ′(T ′
s ) ∩ SG0(i,m + 1)

∣∣

≥
∑

j∈(Ts∩T ′
s )\I

(
degG∩G ′( j) − 1

) ≥ 1

2
np · 1

2
(np/2)m(1 − 8κ)m

= 1

2
(np/2)m+1(1 − 8κ)m . (26)

Similarly, we also have

vs = np(1 − p)
∣∣NG(Ts) ∩ SG(i,m + 1)

∣∣ ≥ np(1 − p)
∑

j∈Ts\I

(
degG( j) − 1

)

≥ np(1 − p) · 1
2
(np/2)m(1 − 8κ)m · 1

2
np = (1 − p)(np/2)m+2(1 − 8κ)m .

On the other hand, by Conditions (B3) and (B4),

vs = np(1 − p)
∣∣NG(Ts) ∩ SG(i,m + 1)

∣∣ ≤ np
∑

j∈Ts
degG( j) ≤ K 2 (np)m+2

2m
.

The same estimates also hold for v′
s .

We will apply Lemma 5.10 with

Xs := fs − f ′
s√

vs + v′
s

= Zs + �s√
vs + v′

s

,

where Zs and �s satisfy the conclusion of Lemma 5.9. Towards that end, let us first
establish some estimates for the mean and variance of Xs . Using Lemma 5.9, (24),
and the above estimates for vs and v′

s , we obtain

∣∣Ê[Xs ]
∣∣ = |�s |√

vs + v′
s

≤ |ηs | + |η′
s | + 2n0.2 p

√
2(1 − p)(np/2)m+2(1 − 8κ)m
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≤ 2K ′ (np)m/2+1

2m w2√log n + 2n0.2 p
√
2(1 − p)(np/2)m+2(1 − 8κ)m

≤ 5K ′w2√log n

2m/2(1 − 8κ)m/2 for s ∈ J̃ (i),

∣∣Ê[Xs ]
∣∣ = |�s |√

vs + v′
s

≤ 2K ′ (np)m/2+1

2m/2

√
log n + 2n0.2 p

√
2(1 − p)(np/2)m+2(1 − 8κ)m

≤ 5K ′√log n

(1 − 8κ)m/2 for s ∈ J ,

(27)

and

Var(Xs) = Ê[Z2
s ]

vs + v′
s

≤ vs + v′
s − 2ñ p(1 − p − α)

∣∣NG(Ts) ∩ NG ′(T ′
s ) ∩ SG0 (i,m + 1)

∣∣

vs + v′
s

≤ 1 − ñ p(1 − p − α)(np/2)m+1(1 − 8κ)m

K 2(np)m+2/2m
≤ 1 − (1 − 8κ)m

3K 2

by Lemma 5.9 and (26) if α ≤ 0.1. Therefore,

Ê[X2
s ] = Ê[Z2

s ] + �2
s

vs + v′
s

≤ 1 − (1 − 8κ)m

3K 2 + 25(K ′)2w4 log n

2m(1 − 8κ)m

≤ 1 − (1 − 8κ)m

4K 2 for s ∈ J̃ (i)

if log
(
w4(log n)2

) ≤ m ≤ C log log n, κ > 0 is sufficiently small depending on C ,
and n ≥ n0 = n0(K , K ′, κ), and

Ê[X2
s ] = Ê[Z2

s ] + �2
s

vs + v′
s

≤ 1 − (1 − 8κ)m

3K 2 + 25(K ′)2 log n
(1 − 8κ)m

≤ 26(K ′)2 log n
(1 − 8κ)m

for s ∈ J .

By the bound P̂
{|Zs | ≥ t

} ≤ 2 exp
( −t2/2
Ê[Z2

s ]+t/3

)
in Lemma 5.9 and that Var(Xs) ≤

1, we see that P̂
{|Xs − Ê[Xs]| ≥ t

} ≤ 2 exp
(−t2/2
1+t/3

)
. Therefore, Lemma 5.10 can be

applied to show that, with conditional probability at least 1 − n−D ,

∑

s∈J

X2
s ≤

∑

s∈J

Ê[X2
s ] + C1

√
w(log n)3/2 + C1

(
max
s∈J

∣∣Ê[Xs]
∣∣
)(√

w log n + log n
)

for a constant C1 > 0 depending on D, where we recall |J | = 2w. Moreover, by
Condition (B5) and the above bounds on Ê[X2

s ], we have
∑

s∈J

Ê[X2
s ] =

∑

s∈ J̃ (i)

Ê[X2
s ] +

∑

s∈J\ J̃ (i)

Ê[X2
s ]

≤ 2w
(
1 − (1 − 8κ)m

4K 2

)
+ (log n)2

26(K ′)2 log n
(1 − 8κ)m

≤ 2w
(
1 − (1 − 8κ)m

5K 2

)
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if m ≤ C log log n, κ > 0 is sufficiently small depending on C , w ≥ (log n)4, and
n ≥ n0. The above two bounds together with (27) imply that

∑

s∈J

X2
s ≤ 2w

(
1 − (1 − 8κ)m

5K 2

)
+ C1

√
w(log n)3/2

+ C1
5K ′√log n

(1 − 8κ)m/2

(√
w log n + log n

)

≤ 2w
(
1 − (1 − 8κ)m

6K 2

)

if, again, m ≤ C log log n, κ > 0 is sufficiently small depending on C , w ≥ (log n)4,
and n ≥ n0. Finally, if m ≥ log log n and n ≥ n0 = n0(K , κ), then

(1 − 8κ)m

6K 2 ≥ (1 − 8κ)m

(1 + κ)m
≥ (1 − 9κ)m,

so the proof is complete. ��

5.4 Conclusion

We summarize the result of this section in the following proposition.

Proposition 5.12 (Difference between signatures of typical correct pairs). For any
constants C, D > 0, there exist constants n0, R, α0, c > 0with the following property.
Let J be a uniform random subset of {−1, 1}s of cardinality 2w for w ∈ N. Suppose
that

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , α ∈ (0, α0),

log
(
w4(log n)2

) ≤ m ≤ C log log n, w ≥ (log n)4.

Then with probability at least 1− n−D, for at least n− n1−c vertices i ∈ [n], we have
∑

s∈J

(
fs(i) − f ′

s (i)
)2

vs(i) + v′
s(i)

≤ 2w
(
1 − 1

(log n)0.1

)
. (28)

Proof Wefirst check that, with probability at least 1−n−D−1, Conditions (B1) to (B7)
hold for at least n − n1−c vertices i ∈ [n] with constants κ > 0 to be chosen and
K = K (C, D) > 0, where c > 0 depends on C , D, and κ:

1. Condition (B1) is the same as Condition (A1), so the result follows from Proposi-
tion 4.12.

2. For Condition (B2), we apply Lemma 4.2 and the relations n ≥ n0, log n ≤ nq ≤
n

1
R log log n , and m ≤ C log log n, where n0 and R depend on C and D, to obtain

the following: With probability at least 1 − n−D−2, it holds for all i ∈ [n] that
|BG0(i,m + 1)| ≤ K (np)m+1 ≤ n0.1 where K depends on D.
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3. Condition (B3) is standard and in fact holds for all vertices j ∈ [n]with probability
at least 1 − n−D−2 for a constant K > 0 depending only on D.

4. By Lemma 4.3, with probability at least 1 − n−D−2, Condition (B4) holds for all
vertices i such that G0(BG0(i,m + 1)) is a tree, that is, whenever Condition (B1)
holds.

5. Condition (B5) is the conclusion of Lemma 5.6, so it suffices to check the
three assumptions in that lemma, but those are already guaranteed by Condi-
tions (B1), (B3), and (B4) respectively. Therefore, Condition (B5) holds up to a
possible change of the constant K .

6. Condition (B6) is very similar to Condition (A4), with l = m, κ = 1/3, and the
graph G0 replaced by G ∩ G ′ which is a G(n, p(1 − α)) random graph. As a
result, a straightforward modification of Point 4 in the proof of Proposition 4.12
yields result. Namely, we obtain the bound

∣∣{ j ∈ SG0(i,m) : degG∩G ′( j) ≤
2
3np(1 − α)

}∣∣ ≤ 1
K ·3m |SG0(i,m)| for at least n − n1−2c vertices i ∈ [n] with

probability at least 1 − n−D−2, but |SG0(i,m)| ≤ K (nq)m by Lemma 4.2.
7. Given the constants κ , C , and D, we can choose δ and K according to Proposi-

tion 4.12, and then chooseα0 according to Proposition 5.1 to obtain Condition (B7)
for at least n − n1−2c typical vertices i ∈ [n] with probability at least 1− n−D−2.

Next, for any i ∈ [n] satisfying Conditions (B1) to (B7), we can apply Lemma 5.7
to obtain that ηs(i) and η′

s(i) satisfy (24) with probability at least 1 − n−D−2 for a
constant K ′ = K ′(D, K ) > 0. Then by Lemma 5.11, we obtain (28) for any such
vertex i with probability at least 1−n−D−2, if κ > 0 is chosen according to the lemma
and is sufficiently small depending on C so that (1 − 9κ)m ≥ 1

(log n)0.1
. ��

6 Signatures of wrong pairs of vertices

The structure of proofs in this subsection is similar to that in the previous subsection.
However, the technical details are slightly more involved when considering two (pos-
sibly intersecting) neighborhoods NG0(i,m + 1) and NG0(i

′,m + 1), where i and i ′
are distinct vertices.

6.1 Sparsification

The following lemma is in the same spirit as Lemma 5.6. In particular, note the extra
factor

(
w

np(1−α)m
+ √

w log n
)
in (29b) compared to (29a) (a trivial bound would give

a factor |J | = 2w instead). This will be crucial to controlling ζs(i, i ′) and ζ ′
s(i, i

′) in
Lemma 6.2 and subsequent estimates in Lemma 6.4.

Lemma 6.1 (Sparsification for a pair of vertices). For constants C1,C2,C3, D > 0,
there exists K = K (C1,C2,C3, D) > 0 with the following property. Let J be a
uniform random subset of {−1, 1}m of cardinality 2w ≥ log n forw ∈ N. With respect
to the randomness of J , the following holds with probability at least 1− n−D for any
distinct vertices i, i ′ ∈ [n]: If
• G0

(BG0(i,m + 1)
)
and G0

(BG0(i
′,m + 1)

)
are trees,
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• degG( j) ∨ degG ′( j) ≤ C1np for all j ∈ BG0(i,m) ∪ BG0(i,m),
• |Ts(i)| ∨ |T ′

s (i
′)| ≤ C2

( np
2

)m
for all s ∈ {−1, 1}m, and

• |BG0(i,m + 1) ∩ BG0(i
′,m + 1)| ≤ C3(nq)m,

then

(
max
s∈J

|Ls(i, i
′)|
)

∨
(
max
s∈J

|L ′
s(i, i

′)|
)

≤ K
(np)m+1

2m
, (29a)

(∑

s∈J

|Ls(i, i
′)|
)

∨
(∑

s∈J

|L ′
s(i, i

′)|
)

≤ K
(np)m+1

2m

( w

np(1 − α)m
+√w log n

)
,

(29b)

where

Ls(i, i
′) := NG

(
Ts(i)

) ∩ BG0(i
′,m + 1) ∩ SG0(i,m + 1), (30a)

L ′
s(i, i

′) := NG ′
(
T ′
s (i

′)
) ∩ BG0(i,m + 1) ∩ SG0(i

′,m + 1). (30b)

Proof Fix distinct vertices i, i ′ ∈ [n] such that the four conditions in the lemma hold.
For s ∈ {−1, 1}m , let

as := ∣∣Ls(i, i
′)
∣∣.

By the conditions |Ts(i)| ∨ |T ′
s (i

′)| ≤ C2
( np
2

)m for all s ∈ {−1, 1}m and degG( j) ∨
degG ′( j) ≤ C1np for all j ∈ BG0(i,m) ∪ BG0(i,m), we have

as ≤
∑

j∈Ts (i)
degG( j) ≤ C1C2

(np)m+1

2m
.

The same bound also holds for L ′
s(i, i

′). Hence (29a) is proved.
In addition, we have

∑

s∈{−1,1}m
as ≤ ∣∣BG0(i,m + 1) ∩ BG0(i

′,m + 1)
∣∣ ≤ C3(nq)m .

Since J is a uniform random subset of {−1, 1}m , Bernstein’s inequality for sampling
without replacement implies that, with probability at least 1 − n−D−3,

∑

s∈J

as ≤ |J |
2m

∑

s∈{−1,1}m
as + K1

√√√√
|J |
2m

∑

s∈{−1,1}m
a2s · log n + K1 max

s∈{−1,1}m |as | · log n

≤ K2
|J |
2m

(nq)m + K2
(np)m+1

2m
√|J | · log n + K2

(np)m+1

2m
log n

≤ 3K2
(np)m+1

2m

( w

np(1 − α)m
+√w log n

)

123



Exact matching of random graphs with constant correlation

for K1, K2 > 0 depending on C1,C2,C3, and D, where we used that |J | = 2w ≥
log n. The same bound also holds for

∑
s∈J |L ′

s(i, i
′)|, so (29b) is proved.

A union bound over all distinct i, i ′ ∈ [n] then completes the proof. ��

Lemma 6.2 (Small overlaps). For any C, D > 1, there exists c ∈ (0, 1/2) and
K , K ′, R, n0 > 1 depending on C and D with the following property. Let J be a
uniform random subset of {−1, 1}m of cardinality 2w ≥ log n for w ∈ N. If

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , m ≤ C log log n,

then with probability at least 1− n−D, there is a subset I ⊂ [n] with |I| ≥ n − n1−c

such that the following holds. For all distinct i, i ′ ∈ I, (29a) and (29b) hold, and

(
max
s∈J

∣∣ζs(i, i ′)
∣∣
)

∨
(
max
s∈J

∣∣ζ ′
s(i, i

′)
∣∣
)

≤ K ′ (np)m/2+1

2m/2

√
log n, (31)

where

ζs(i, i
′) :=

∑

j∈Ls (i,i ′)

(
degG( j) − 1 − np

)

and ζ ′
s(i, i

′) :=
∑

j∈L ′
s (i,i

′)

(
degG ′( j) − 1 − np

)
. (32)

Proof Since we will apply Lemma 6.1, let us first show that, with probability at least
1−n−D−1, there is a subset I ⊂ [n]with |I| ≥ n−n1−c such that the four conditions
in Lemma 6.1 hold for any distinct vertices i, i ′ ∈ I:
• Proposition 4.12 shows that with probability at least 1 − n−D , at least n − n1−c

vertices satisfy Condition (A1). The same proof with a slight change of constants
implies that, with probability at least 1 − n−D−2, there is a subset I ⊂ [n] with
|I| ≥ n − n1−c such that G0

(BG0(i, 3m + 3)
)
is a tree for all i ∈ I. (Here the

radius of the neighborhood is chosen to be 3m + 3 which is larger than m + 1
required in the first condition of Lemma 6.1; this is because 3m + 3 is needed in
the fourth condition below.)

• As before, we have degG( j) ∨ degG ′( j) ≤ C1np for all j ∈ [n] with probability
at least 1 − n−D−2 where C1 > 0 depends on D.

• By Lemma 4.3, with probability at least 1 − n−D−2, we have |Ts(i)| ∨ |T ′
s (i

′)| ≤
C2
( np
2

)m for all s ∈ {−1, 1}m and all vertices i such that G0(BG0(i,m + 1)) is a
tree, where C2 > 0 depends on C and D.

• By Lemma 4.2, it holds with probability at least 1 − n−D−2 that, for any distinct
vertices i, i ′ ∈ [n] such that G0

(BG0(i, 3m+3)
)
is tree, we have |BG0(i,m+1)∩

BG0(i
′,m + 1)| ≤ C3(nq)m where C3 > 0 depends on D.

Therefore, by Lemma 6.1, we obtain (29a) and (29b) for all distinct i, i ′ ∈ I with
probability at least 1 − 2n−D−1, where |I| ≥ n − n1−c.

123



C. Mao et al.

The rest of the proof is split into three cases according to the value of d :=
distG0(i, i

′). We focus on proving (31) for ζs(i, i ′), as the same argument also works
for ζ ′

s(i, i
′).

Case 1: d ≤ m + 1. In this case, we have i ′ ∈ BG0(i,m + 1). Let us condition on an
instance of G0

(BG0(i,m + 1)
)
, G
(BG0(i,m + 1)

)
, and G ′(BG0(i,m + 1)

)
such that

G0
(BG0(i,m + 1)

)
is a tree. Then Ls(i, i ′) defined in (30) is equal to

Ls(i, i
′) = NG

(
Ts(i)

) ∩ SG0(i
′,m + 1 − d) ∩ SG0(i,m + 1).

Under this conditioning, the random variables degG( j) − 1, j ∈ Ls(i, i ′), are condi-
tionally independent Binomial(ñ, p) where

ñ := n − ∣∣BG0(i,m + 1)
∣∣ ≥ n − n0.1

as before. Consequently,
∑

j∈Ls (i,i ′)
(
degG( j) − 1

) ∼ Binomial(ñ|Ls(i, i ′)|, p), and
so

|ζs(i, i ′)| =
∣∣∣
∑

j∈Ls (i,i ′)

(
degG( j) − 1 − np

)∣∣∣

≤ K2
(√

np|Ls(i, i ′)| log n + log n
)+ (n − ñ)p |Ls(i, i

′)|
≤ K3

√
np|Ls(i, i ′)| log n

with conditional probability at least 1 − n−D−2 for constants K2, K3 > 0 depending
on D. By a union bound over s ∈ {−1, 1}m and i, i ′ ∈ [n] together with (29a), we
obtain (31) for ζs(i, i ′).

Case 2:m+1 < d ≤ 2m+2. In this case, we have i ′ /∈ BG0(i,m+1). Let us condition
on an instance ofG0

(BG0(i,m+1)∪BG0(i
′,m+1)

)
,G
(BG0(i,m+1)∪BG0(i

′,m+
1)
)
, andG ′(BG0(i,m+1)∪BG0(i

′,m+1)
)
such thatG0

(BG0(i,m+1)∪BG0(i
′,m+

1)
)
is a tree. Then there is a unique path γ in G0

(BG0(i,m + 1) ∪ BG0(i
′,m + 1)

)

connecting i to i ′, and γ passes through a unique vertex v ∈ SG0(i,m + 1). Note
that v is adjacent to exactly two vertices in BG0(i,m + 1) ∪ BG0(i

′,m + 1), because
otherwise there would be a cycle inG0

(BG0(i,m+1)∪BG0(i
′,m+1)

)
. For the same

reason, if j ∈ SG0(i,m + 1)∩BG0(i
′,m + 1) and j �= v, then j is adjacent to exactly

one vertex in BG0(i,m + 1) ∪ BG0(i
′,m + 1).

In view of this structure, we have the following observation under the above con-
ditioning: If v /∈ Ls(i, i ′), then the random variables

degG( j) − 1, j ∈ Ls(i, i
′),

are conditionally independent Binomial(n̄, p), where

n̄ := n − ∣∣BG0(i,m + 1) ∪ BG0(i
′,m + 1)

∣∣ ≥ n − n0.1. (33)
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On the other hand, if v ∈ Ls(i, i ′), then

degG(v) − 2 and degG( j) − 1, j ∈ Ls(i, i
′)\{v},

are conditionally independent Binomial(n̄, p).
Consequently,

∑
j∈Ls (i,i ′)

(
degG( j)−1

)−1{v ∈ Ls(i, i ′)} isBinomial(n̄|Ls(i, i ′)|,
p), and so

|ζs(i, i ′)| ≤
∣∣∣
∑

j∈Ls (i,i ′)

(
degG( j) − 1

)− 1{v ∈ Ls(i, i
′)}
∣∣∣+ 1

≤ K2
(√

np|Ls(i, i ′)| log n + log n
)+ (n − n̄)p |Ls(i, i

′)| + 1

≤ K3
√
np|Ls(i, i ′)| log n

with conditional probability at least 1 − n−D−2 for constants K2, K3 > 0 depending
on D. By a union bound over s ∈ {−1, 1}m and i, i ′ ∈ [n] together with (29a), we
obtain (31) for ζs(i, i ′).

Case 3: d > 2m + 2. This case is trivial because Ls(i, i ′) ⊂ BG0(i,m + 1) ∩
BG0(i

′,m + 1) = ∅ so that ζs(i, i ′) = 0. ��

6.2 Difference between signatures of a typical pair

Throughout this subsection, we fix distinct vertices i, i ′ ∈ [n] and a subset J ⊂
{−1, 1}m of cardinality 2w for w ∈ N. Moreover, let us condition on an instance of
the three subgraphs

G0
(BG0(i,m + 1) ∪ BG0(i

′,m + 1)
)
, G
(BG0(i,m + 1) ∪ BG0(i

′,m + 1)
)
,

G ′(BG0(i,m + 1) ∪ BG0(i
′,m + 1)

)
,

and also all the edges between

SG0(i,m + 1) ∩ BG0(i
′,m + 1) and SG0(i,m + 2)

in G0, G, and G ′, as well as all the edges between

SG0(i
′,m + 1) ∩ BG0(i,m + 1) and SG0(i

′,m + 2)

inG0,G, andG ′. Note that under this conditioning, the quantities ζs(i, i ′) and ζ ′
s(i, i

′)
defined in (32) are deterministic. Suppose that the instance we condition on satisfies
the following statements for fixed constants K , K ′, κ > 0:

(C1) G0
(BG0(i,m + 1) ∪ BG0(i

′,m + 1)
)
is a tree or a forest of two trees;

(C2) |BG0(i,m + 1)| + |BG0(i
′,m + 1)| ≤ n0.1;

(C3) (29a), (29b), and (31) hold;
(C4)

∣∣{ j ∈ SG0(i,m) ∪ SG0(i
′,m) : degG∩G ′( j) ≤ 2np/3

}∣∣ ≤ 2(np/3)m ;
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(C5) |Ts(i)| ∧ |T ′
s (i

′)| ≥ (np/2)m(1 − 8κ)m for all s ∈ {−1, 1}m .
We consider the randomnesswith respect to the remaining possible edges of the graphs;
let P̄ and Ē denote the conditional probability and expectation respectively. Note that
for any vertex j ∈ SG0(i,m + 1)\BG0(i

′,m + 1), the random variable degG( j) − 1
is conditionally Binomial(n̄, p), where n̄ is defined in (33). Moreover, these binomial
variables are independent across different j ∈ SG0(i,m + 1)\BG0(i

′,m + 1).
In the following, let f (i) and v(i) be the signature vector and the variance vector

respectively given by VertexSignature(G, i,m) (Algorithm 1), and let f ′(i ′)
and v′(i ′) be given by VertexSignature(G ′, i ′,m). Since i and i ′ are fixed, we
omit the dependency of some quantities on (i, i ′) in the sequel to ease the notation.
For example, we omit the argument (i, i ′) in the quantities Ls and L ′

s defined in (30),
and in the quantities ζs and ζ ′

s defined in (32).

Lemma 6.3 (Entrywise difference between signatures). For every s ∈ J , we have

fs(i) − f ′
s (i

′) = Zs + �s

for a random variable Zs and a deterministic quantity �s satisfying

• Ē[Zs] = 0;
• vs(i) + v′

s(i
′) − 2n0.2 p − p(1 − p)n̄

(|Ls | + |L ′
s |
) ≤ Ē[Z2

s ] ≤ vs(i) + v′
s(i

′);
• P̄
{|Zs | ≥ t

} ≤ 2 exp
( −t2/2
Ē[Z2

s ]+t/3

)
;

• |�s | ≤ |ζs | + |ζ ′
s | + 2n0.2 p.

Moreover, the random variables Zs are conditionally independent for different s ∈ J .

Proof Similar to the proof of Lemma 5.9, we start with

fs(i) =
∑

j∈NG (Ts (i))∩SG0 (i,m+1)

(
degG( j) − 1 − n̄ p

)

+(n̄ − n)p
∣∣NG(Ts(i)) ∩ SG0(i,m + 1)

∣∣.

Furthermore, in view of the partition

NG(Ts(i)) = (NG(Ts(i))\BG0(i
′,m + 1)

) ∪ (NG(Ts(i)) ∩ BG0(i
′,m + 1)

)
,

we obtain

fs(i) =
∑

j∈(NG (Ts (i))\BG0 (i ′,m+1))∩SG0 (i,m+1)

(
degG( j) − 1 − n̄ p

)

+ ζs + (n̄ − n)p
∣∣NG(Ts(i)) ∩ SG0(i,m + 1)

∣∣

by the definitions of ζs in (32) and Ls in (30). An analogous decomposition holds for
f ′
s (i

′). Consequently,

fs(i) − f ′
s (i

′) = Zs + �s,
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where

Zs :=
∑

j∈(NG (Ts (i))\BG0 (i ′,m+1))∩SG0 (i,m+1)

(
degG( j) − 1 − n̄ p

)

−
∑

j∈(NG′ (T ′
s (i

′))\BG0 (i,m+1))∩SG0 (i ′,m+1)

(
degG ′( j) − 1 − n̄ p

)
.

and

�s := ζs − ζ ′
s + (n̄ − n)p

(∣∣NG(Ts(i)) ∩ SG0 (i,m + 1)
∣∣− ∣∣NG′ (T ′

s (i
′)) ∩ SG0 (i

′,m + 1)
∣∣
)
.

For the deterministic quantity �s , we have

|�s | ≤ |ζs | + |ζ ′
s | + n0.1 p · 2n0.1 = |ζs | + |ζ ′

s | + 2n0.2 p.

For the random variable Zs , it is not hard to see that the two sums in its definition are
over disjoint sets, so they are independent. Moreover, each sum is the deviation of a
binomial random variable from its mean: namely,

∑

j∈(NG (Ts (i))\BG0 (i ′,m+1))∩SG0 (i,m+1)

(
degG( j) − 1

)

is Binomial
(
n̄ · ∣∣(NG(Ts(i))\BG0(i

′,m + 1)) ∩ SG0(i,m + 1)
∣∣, p
)
, and similarly for

the other term. Hence, we obtain Ē[Zs] = 0 and

Ē[Z2
s ] = p(1 − p)n̄

∣∣(NG(Ts(i))\BG0(i
′,m + 1)) ∩ SG0(i,m + 1)

∣∣

+ p(1 − p)n̄
∣∣(NG ′(T ′

s (i))\BG0(i,m + 1)) ∩ SG0(i
′,m + 1)

∣∣

= p(1 − p)n̄
(∣∣NG(Ts(i)) ∩ SG0(i,m + 1)

∣∣

+ ∣∣NG ′(T ′
s (i

′)) ∩ SG0(i
′,m + 1)

∣∣− |Ls | − |L ′
s |
)

≥ vs(i) + v′
s(i

′) − 2n0.2 p − p(1 − p)n̄
(|Ls | + |L ′

s |
)

by the definitions of vs(i) and v′
s(i

′) in Algorithm 1, Condition (C2), and the fact
n − n̄ ≤ n0.1. It is also obvious that Ē[Z2

s ] ≤ vs(i) + v′
s(i

′). The tail bound for Zs

follows from Bernstein’s inequality. The conditional independence of Zs for different
s ∈ J follows from the disjointness of sets that we sum over in the definition of Zs . ��
Lemma 6.4 (Difference between signatures). For any constants C, D, K , K ′ > 0,
there exist constants n0, R, κ > 0 with the following property. Suppose that

n ≥ n0, log n ≤ nq ≤ n
1

R log log n , α ∈ (0, κ), 3 ≤ m ≤ C log log n,

w ≥ �(log n)5�.
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Moreover, suppose that Conditions (C1) to (C5) hold with constants K , K ′, κ > 0 and
a subset J with |J | = 2w. Then it holds with conditional probability at least 1− n−D

that

∑

s∈J

(
fs(i) − f ′

s (i
′)
)2

vs(i) + v′
s(i

′)
≥ 2w

(
1 − 1

(log n)0.9

)
.

Proof Let

I :=
{
j ∈ SG0(i,m) : degG∩G ′( j) ≤ 2

3
np(1 − α)

}
.

By Conditions (C4) and (C5), we have that for any s ∈ {−1, 1}m ,

|I | ≤ 2(nq/3)m ≤ 1

2
(np/2)m(1 − 8κ)m ≤ 1

2

(|Ts(i)| ∧ |T ′
s (i

′)|)

if κ, α ∈ (0, 0.01) and m ≥ 3. Since G0
(BG0(i,m + 1)

)
is a tree, it is easy to see that

vs(i) = np(1 − p)
∣∣NG(Ts(i)) ∩ SG(i,m + 1)

∣∣ ≥ np(1 − p)
∑

j∈Ts (i)\I

(
degG( j) − 1

)

≥ np(1 − p) · 1
2
(np/2)m(1 − 8κ)m · 1

2
np = (1 − p)(np/2)m+2(1 − 8κ)m .

The same estimate also holds for v′
s(i

′).
We will apply Lemma 5.10 with

Xs := fs(i) − f ′
s (i

′)
√
vs(i) + v′

s(i
′)

= Zs + �s√
vs(i) + v′

s(i
′)

,

where Zs and �s satisfy the conclusion of Lemma 6.3. Towards that end, let us first
establish some estimates for the mean and variance of Xs . Using Lemma 6.3, (31),
and the above estimates for vs(i) and v′

s(i
′), we obtain that for all s ∈ J ,

∣∣Ē[Xs]
∣∣ = |�s |√

vs(i) + v′
s(i

′)
≤ 2K ′ (np)m/2+1

2m/2

√
log n + 2n0.2 p

√
2(1 − p)(np/2)m+2(1 − 8κ)m

≤ 5K ′√log n

(1 − 8κ)m/2

(34)

and

Var(Xs) = Ē[Z2
s ]

vs(i) + v′
s(i

′)
≥ vs(i) + v′

s(i
′) − 2n0.2 p − p(1 − p)n̄

(|Ls | + |L ′
s |
)

vs(i) + v′
s(i

′)

≥ 1 − 2n0.2 p + p(1 − p)n̄
(|Ls | + |L ′

s |
)

2(1 − p)(np/2)m+2(1 − 8κ)m
.
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Lemma 6.3 also gives Var(Xs) = Ē[Z2
s ]

vs (i)+v′
s (i

′) ≤ 1 and P̄
{|Zs | ≥ t

} ≤
2 exp

( −t2/2
Ē[Z2

s ]+t/3

)
. It follows that P̄

{|Xs − Ē[Xs]| ≥ t
} ≤ 2 exp

(−t2/2
1+t/3

)
. There-

fore, Lemma 5.10 can be applied to show that, with conditional probability at least
1 − n−D ,

∑

s∈J

X2
s ≥

∑

s∈J

Ē[X2
s ] − C1

√
w(log n)3/2 − C1

(
max
s∈J

∣∣Ē[Xs]
∣∣
)(√

w log n + log n
)

for a constant C1 > 0 depending on D, where we recall |J | = 2w. Moreover, by the
above lower bound on Var(Xs) ≤ Ē[X2

s ] and (29b) assumed in Condition (C3), we
have

∑

s∈J

Ē[X2
s ] ≥ 2w −

∑

s∈J

2n0.2 p + p(1 − p)n̄
(|Ls | + |L ′

s |
)

2(1 − p)(np/2)m+2(1 − 8κ)m

≥ 2w − n−0.7 − p(1 − p)n̄

2(1 − p)(np/2)m+2(1 − 8κ)m

· K (np)m+1

2m

( w

np(1 − α)m
+√w log n

)

≥ 2w

(
1 − K2

(1 − 9κ)m log n

)

for a constant K2 > 0 depending on K , if w ≥ (log n)3, log n ≤ nq ≤ n
1

R log log n ,
α < κ , and n ≥ n0. The above two bounds together with (34) imply that

∑

s∈J

X2
s ≥ 2w

(
1 − K2

(1 − 9κ)m log n

)
− C1

√
w(log n)3/2

− C1
5K ′√log n

(1 − 8κ)m/2

(√
w log n + log n

)

≥ 2w

(
1 − K3

(1 − 9κ)m log n

)

ifw ≥ �(log n)5�. Finally, ifm ≤ C log log n andκ > 0 is sufficiently small depending
on C , then

K3

(1 − 9κ)m log n
≤ 1

(log n)0.9
,

so the proof is complete. ��

6.3 Conclusion

We summarize the result of this section in the following proposition.
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Proposition 6.5 (Difference between signatures of typical wrong pairs). For any con-
stants C, D > 0, there exist constants n0, R, α0, c > 0 with the following property.
Let J be a uniform random subset of {−1, 1}s of cardinality 2w for w ∈ N. Suppose
that

n ≥ n0, log n ≤ np(1 − α) ≤ n
1

R log log n , α ∈ (0, α0),

3 ≤ m ≤ C log log n, w ≥ �(log n)5�.

Then with probability at least 1− n−D, there is a subset I ⊂ [n] with |I| ≥ n − n1−c

such that for any distinct i, i ′ ∈ I,

∑

s∈J

(
fs(i) − f ′

s (i
′)
)2

vs(i) + v′
s(i

′)
≥ 2w

(
1 − 1

(log n)0.9

)
. (35)

Proof Wefirst claim that, with probability at least 1−n−D−1, there is a subset I ⊂ [n]
with |I| ≥ n − n1−c such that Conditions (C1) to (C5) hold for all distinct i, i ′ ∈ I
with constants K , K ′, κ > 0. To be more precise, K and K ′ will depend on C and D,
κ is to be chosen, and c depends on C , D, and κ . The proof is very similar to that of
Proposition 5.12, so we only provide a sketch and point out the differences.

1. If distG0(i, i
′) ≤ 2m+2, then Condition (C1) is weaker than thatG0

(BG0(i, 3m+
3)
)
is a tree. If distG0(i, i

′) > 2m + 2, then Condition (C1) is saying that
G0
(BG0(i,m + 1)

)
and G0

(BG0(i
′,m + 1)

)
are both trees. In either case, we

can show that the neighborhoods of most vertices are trees with high probability
as before.

2. Condition (C2) is essentially the same as Condition (B2) up to a constant.
3. Condition (C3) is a direct consequence of Lemma 6.2.
4. Condition (C4) is essentially the same as Condition (B6) up to constants.
5. Condition (C5) is a consequence of Condition (B7) since |Ts(i)| ≥ |Ts(i)∩T ′

s (i)|.

Therefore, if κ is chosen according to Lemma 6.4, we obtain (35) for any distinct
vertices i, i ′ ∈ I with probability at least 1 − n−D−2. ��

Proof of Theorem 2.1 Note that Algorithm 1 is equivariant with respect to the permuta-
tionπ in the sense thatVertexSignature(Gπ , π(i),m) andVertexSignature
(G, i,m) have the same output. Therefore, we may assume without loss of generality
that π is the identity. With the choice m = �22 log log n� and w = �(log n)5� in
Algorithm 2, it is easy to check that the assumptions of Propositions 5.12 and 6.5 are
satisfied.Therefore, these twopropositions together yield adesired subsetI ⊂ [n] such
that

∑
s∈J

( fs (i)− f ′
s (i))

2

vs (i)+v′
s (i)

< 2w
(
1− 1√

log n

)
and

∑
s∈J

( fs (i)− f ′
s (i

′))2
vs (i)+v′

s (i
′) > 2w

(
1− 1√

log n

)

for distinct i, i ′ ∈ I. The theorem follows immediately. ��
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7 Construction of an exact matching

This section is devoted to developing a procedure that refines an approximate match-
ing to obtain an exact matching. Before proving the main result, we establish some
auxiliary statements.

Lemma 7.1 (An elementary decoupling). Let M > 0 be a parameter, let � be a fixed
graph on [n], and let Q,W be two (possibly intersecting) subsets of vertices of � such
that

|N�(i) ∩ W | ≥ M for all i ∈ Q.

Then there are subsets Q′ ⊂ Q and W ′ ⊂ W such that Q′ ∩ W ′ = ∅, |Q′| ≥ |Q|/5,
and

|N�(i) ∩ W ′| ≥ M/2 for all i ∈ Q′.

Proof If |Q\W | ≥ |Q|/5, then there is nothing to prove, so we can assume that
|Q ∩ W | > 4|Q|/5. Let Q̂ be a uniform random subset of Q ∩ W . Consider random
disjoint sets Q̂ and Ŵ := (W\Q)∪ ((Q∩W )\Q̂). Fix i ∈ Q∩W . Note that each j ∈
N�(i)∩W belongs toN�(i)∩Ŵ with probability at least 1/2, and |N�(i)∩W | ≥ M by
assumption, so the variable |N�(i)∩ Ŵ | dominates Binomial(M, 1/2) stochastically.
Since this is still true conditional on i ∈ Q̂, we have

P
{
i ∈ Q̂, |N�(i) ∩ Ŵ | ≥ M/2

} = P
{
i ∈ Q̂

} · P
{|N�(i) ∩ Ŵ | ≥ M/2 | i ∈ Q̂

}

≥ 1

2
· 1
2

= 1

4
.

It follows that

E
∣∣{i ∈ Q̂ : |N�(i) ∩ Ŵ | ≥ M/2

}∣∣ =
∑

i∈Q∩W
P
{
i ∈ Q̂, |N�(i) ∩ Ŵ | ≥ M/2

}

≥ |Q ∩ W |
4

≥ |Q|
5

.

Therefore, there is a realization of (Q̂, Ŵ ) such that
∣∣{i ∈ Q̂ : |N�(i) ∩ Ŵ | ≥

M/2
}∣∣ ≥ |Q|/5. It then suffices to take W ′ = Ŵ and Q′ = {i ∈ Q̂ : |N�(i) ∩ Ŵ | ≥

M/2
}
. ��

For any subset I ⊂ [n], let I c := [n]\I .
Lemma 7.2 (Growing a subset of vertices). For any δ′ ∈ (0, 1/2], there are n0, c > 0
depending on δ′ with the following property. Assume n > n0, and that rn ≥ log n. Let
� be a G(n, r) graph, and let I be a random subset of [n] (possibly depending on �),
with |I | ≥ n − δ′n/6. Define a random subset of vertices

Ĩ :=
{
i ∈ [n] : |N�(i) ∩ I c| < δ′rn

}
.
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Then we have

P

{
| Ĩ c| ≤ 1

4
|I c|
}

≥ 1 − exp(−c rn log n).

Proof Given the assumptions on I , by considering sets W = I c and Q ⊂ Ĩ c, we
obtain

{| Ĩ c| > |I c|/4} ⊂
E :=

{
∃ Q,W ⊂ [n] : |W | ≤ δ′n/6, |Q|

= �|W |/4� �= 0, |N�(i) ∩ W | ≥ δ′rn for all i ∈ Q
}
.

Further, according to Lemma 7.1, E is contained in the event

E ′ :=
{
∃ Q′,W ′ ⊂ [n] : |W ′| ≤ δ′n/6, |Q′| ≥ ��|W ′|/4�/5� �= 0, Q′ ∩ W ′ = ∅,

|N�(i) ∩ W ′| ≥ δ′rn/2 for all i ∈ Q′}.

We estimate the probability of E ′ by taking the union bound over all possible realiza-
tions Q′ andW ′ (note that necessarily |W ′| ≥ δ′rn/2 in the event description).Observe
that for any disjoint fixed subsets Q′ and W ′, the binomial variables |N�(i) ∩ W ′|,
i ∈ Q′, are mutually independent (this is the reason for applying the decoupling
lemma, Lemma 7.1). We then get an upper bound

P
{| Ĩ c| > |I c|/4} ≤

�δ′n/6�∑

w=�δ′rn/2�

(
n

w

) n∑

k=��w/4�/5�

(
n

k

)
P

{ w∑

i=1

bi ≥ δ′rn/2

}k
,

where b1, . . . , bw are i.i.d. Bernoulli(r ) variables.
Applying Chernoff’s inequality (first estimate in Lemma 4.1), we get

P

{ w∑

i=1

bi ≥ δ′rn/2

}
≤
(

rw

δ′rn

)c1δ′rn
,

for some universal constant c1 > 0 and all w ≤ δ′n/6 (assuming that n is large
enough). Thus,

P
{| Ĩ c| > |I c|/4} ≤

�δ′n/6�∑

w=�δ′rn/2�

n∑

k=��w/4�/5�

(
en

w

)w(en
k

)k(
w

δ′n

)c1δ′rnk
.

A straightforward computation completes the proof. ��
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Lemma 7.3 (Number of neighbors). For any ε ∈ (0, 1] and α ∈ (0, ε/4], there is
n0 > 0 depending only on ε with the following property. Let n > n0 and q ∈ (0, 1).
Assume that p := (1 − α)q satisfies pn ≥ (1 + ε) log n. Let G0, G, and G ′ be as
before. Then with probability at least 1 − exp(−εpn/8),

|NG(i) ∩ NG ′(i)| ≥ ε2 pn/256 for all i ∈ [n].

Proof Pick any vertex i ∈ [n]. The variable |NG(i) ∩NG ′(i)| is Binomial(n − 1,(1−
α)p), so, applying Chernoff’s inequality (second estimate in Lemma 4.1), we get

P
{|NG(i) ∩ NG ′(i)| < u(1 − α)p(n − 1)

}

≤ exp(−(1 − α)p(n − 1)) · (e/u)u(1−α)p(n−1)

for every u ∈ (0, 1). Thus, assuming that n is large enough, we have

P
{|NG(i) ∩ NG ′(i)| < ε2 pn/256

} ≤ exp(−(1 − α)p(n − 1)) exp(εpn/16)

≤ exp(−(1 − 3ε/8)pn).

Taking the union bound over i ∈ [n], we get

P
{|NG(i) ∩ NG ′(i)| ≥ ε2 pn/256 for all i ∈ [n]} ≥ 1 − n exp(−(1 − 3ε/8)pn).

It remains to use the assumption pn ≥ (1 + ε) log n to get the result. ��
The next lemma is just a restatement of Lemma 4.6 in a more specific context:

Lemma 7.4 (Number of common neighbors of distinct vertices). For any δ′′ > 0 there
are n′′

0 ∈ N and c′′ > 0 depending on δ′′ with the following property. Assume that n >

n′′
0 and that p ∈ (0, 1/2] and α ∈ (0, 1/2] satisfy pn ≥ log n and 4pn log n ≤ √

n.
Let G0, G, and G ′ be as before. Then with probability at least 1− exp(−c′′ pn log n),
we have

|NG(i) ∩ NG ′(i ′)| ≤ δ′′ pn for all i, i ′ ∈ [n], i �= i ′.

Proof The result follows immediately by applying Lemma 4.6 with � = G0 and
J = {i, i ′}, together with a union bound over distinct i, i ′ ∈ [n]. ��
Proposition 7.5 (Improving a partial matching). For every ε ∈ (0, 1], there exists
n0 > 0 and κ ∈ (0, 1) depending on ε with the following property. Assume that

n ≥ n0, (1 + ε) log n ≤ pn ≤
√
n

4 log n
, α ∈ (0, ε/4].

Let the graphs G andG ′ be as before. Assume thatJ is a random subset of [n] (possibly
depending on G and G ′), and that g : J → [n] is a random injective mapping (again,
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possibly depending on G and G ′). Let

E := {∣∣{i ∈ J : g(i) = i}∣∣ ≥ n − κn
}
.

Define a random subset J̃ ⊂ [n] and a random injective mapping g̃ : J̃ → [n]
as follows: For every i ∈ [n], i is in the set J̃ if and only if there is a (unique) vertex
i ′ ∈ [n] such that

• |g(NG(i) ∩ J ) ∩ NG ′(i ′)| ≥ ε2 pn/512;
• |g(NG(i) ∩ J ) ∩ NG ′( j)| < ε2 pn/512 for all j ∈ [n]\{i ′};
• |g(NG( j) ∩ J ) ∩ NG ′(i ′)| < ε2 pn/512 for all j ∈ [n]\{i}.

We then set g̃(i) := i ′ for any such pair of vertices i and i ′.
Then with probability at least P(E) − exp(−εpn/9),

∣∣{i ∈ J̃ : g̃(i) = i
}∣∣ ≥ 1

2
n + 1

2

∣∣{i ∈ J : g(i) = i
}∣∣.

Proof Define random sets

I := { j ∈ J : g( j) = j},
Ĩ := {i ∈ [n] : ∣∣NG(i) ∩ I c

∣∣ < 2−10ε2 pn
}
,

Ĩ ′ := {i ∈ [n] : ∣∣NG ′(i) ∩ I c
∣∣ < 2−10ε2 pn

}
,

and consider the event

E ′ :=
{∣∣ Ĩ c

∣∣ ∨ ∣∣( Ĩ ′)c
∣∣ ≤ 1

4
|I c|, ∣∣NG(i) ∩ NG ′(i)

∣∣ ≥ ε2 pn/256 for all i ∈ [n], and

∣∣NG(i) ∩ NG ′(i ′)
∣∣ < 2−10ε2 pn for all i, i ′ ∈ [n], i �= i ′

}
.

If we choose κ > 0 sufficiently small and n0 sufficiently large depending on ε, then,
assuming n > n0, the event E ′ ∩ E has probability at least

P(E) − exp(−εpn/9),

by combining Lemmas 7.2, 7.3, and 7.4. We claim that everywhere on E ′ ∩ E , the set
J̃ and the mapping g̃ satisfy the conclusions of the proposition.

Condition on any realization of G,G ′,J , g such that the event E ′ ∩ E holds. Pick
any vertex i ∈ Ĩ ∩ Ĩ ′. By the definition of E ′ ∩ E , we have

∣∣g(NG(i) ∩ J ) ∩ NG ′(i)
∣∣ ≥ ∣∣NG(i) ∩ I ∩ NG ′(i)

∣∣

≥ ∣∣NG(i) ∩ NG ′(i)
∣∣− ∣∣NG(i) ∩ I c

∣∣

≥ ε2 pn/256 − 2−10ε2 pn ≥ ε2 pn/512.
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On the other hand, for every i ′ ∈ [n]\{i} we have
∣∣g(NG(i) ∩ J ) ∩ NG ′(i ′)

∣∣ ≤ ∣∣NG(i) ∩ I ∩ NG ′(i ′)
∣∣+ ∣∣g(NG(i) ∩ (J \I )) ∩ NG ′(i ′)

∣∣

≤ ∣∣NG(i) ∩ NG ′(i ′)
∣∣+ ∣∣NG(i) ∩ I c

∣∣

< 2−10ε2 pn + 2−10ε2 pn = ε2 pn/512,

and, similarly,

∣∣g(NG(i ′) ∩ J ) ∩ NG ′(i)
∣∣ ≤ ∣∣NG(i ′) ∩ I ∩ NG ′(i)

∣∣+ ∣∣g(NG(i ′) ∩ (J \I )) ∩ NG ′(i)
∣∣

≤ ∣∣NG(i ′) ∩ NG ′(i)
∣∣+ ∣∣I c ∩ NG ′(i)

∣∣

< 2−10ε2 pn + 2−10ε2 pn = ε2 pn/512.

Thus, Ĩ ∩ Ĩ ′ ⊂ J̃ and g̃(i) = i for all i ∈ Ĩ ∩ Ĩ ′. Moreover, by the first condition in
E ′, we have

∣∣ Ĩ ∩ Ĩ ′∣∣ ≥ n − ∣∣ Ĩ c∣∣− ∣∣( Ĩ ′)c
∣∣ ≥ n − 1

2
|I c| = 1

2
n + 1

2
|I |,

so the result follows. ��
Proof of Theorem 2.4 In short, the theorem follows by applying Proposition 7.5 itera-
tively.

To be more precise, first note that whenever we set π�(i ′) = i in Algorithm 4, it is
impossible to have π�( j) = i for j �= i ′ or π�(i ′) = j for j �= i thanks to the three
conditions. As a result, π� is a well-defined injective function between subsets of [n]
after the loop through i = 1, . . . , n, and so π� can be extended to a permutation on
[n].

Next, for any � ∈ [�log2 n�] and i ∈ [n], we have π−1
�−1

(NGπ (i)
) = π−1

�−1 ◦
π
(NG(π−1(i))

)
. Denote g� = π−1

� ◦ π . Therefore, when setting π�(i ′) = i in Algo-
rithm 4, we are defining g�

(
π−1(i)

) = i ′ if the conditions

• ∣∣g�−1
(NG(π−1(i))

) ∩ NG ′(i ′)
∣∣ ≥ ε2 pn/512,

• ∣∣g�−1
(NG(π−1(i))

) ∩ NG ′( j)
∣∣ < ε2 pn/512 for all j ∈ [n]\{i ′}, and

• ∣∣g�−1
(NG( j)

) ∩ NG ′(i ′)
∣∣ < ε2 pn/512 for all j ∈ [n]\{π−1(i)}

are satisfied. Replacing π−1(i) by i in the last statement (which is simply a change of
notation as i varies over [n]), we see that Proposition 7.5 can be applied with J = [n]
to yield the following: With probability at least

P

{∣∣{i ∈ [n] : g�−1(i) �= i}∣∣ ≤ κn

2�−1

}
− exp(−εpn/9),

we have

∣∣{i ∈ [n] : g�(i) �= i
}∣∣ ≤ κn

2�
.
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To conclude, note that

∣∣{i ∈ [n] : g�(i) �= i
}∣∣ = ∣∣{i ∈ [n] : π−1

� ◦ π(i) �= i
}∣∣ = ∣∣{i ∈ [n] : π�(i) �= π(i)

}∣∣.

Since π0 = π̂ and π�log2 n� = π̃ , applying the above argument iteratively for � =
1, . . . , �log2 n� gives that, with probability at least

P
{|{i ∈ [n] : π̂(i) �= π(i)}| ≤ κn

}− �log2 n� · exp(−εpn/9),

we have

∣∣{i ∈ [n] : π̃(i) �= π(i)
}∣∣ ≤ κn

2�log2 n� < 1,

that is, π̃ = π . Since �log2 n� · exp(−εpn/9) ≤ exp(−εpn/10) by the assumptions
on the parameters, this completes the proof. ��
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