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Abstract

This paper deals with the problem of graph matching or network alignment for Erd6s—
Rényi graphs, which can be viewed as a noisy average-case version of the graph
isomorphism problem. Let G and G’ be G(n, p) Erd6s—Rényi graphs marginally,
identified with their adjacency matrices. Assume that G and G’ are correlated such
that E[G;; G j] = p(l — ). For a permutation 7 representing a latent matching
between the vertices of G and G’, denote by G™ the graph obtained from permuting
the vertices of G by m. Observing G™ and G’, we aim to recover the matching 7.
In this work, we show that for every ¢ € (0, 1], there is ng > 0 depending on ¢ and
absolute constants «g, R > 0 with the following property. Letn > ng, (14¢)logn <
np < nm, and 0 < o < min(«, £/4). There is a polynomial-time algorithm F
such that P{F (G™, G’) = w} = 1 — o(1). This is the first polynomial-time algorithm
that recovers the exact matching between vertices of correlated Erd6s—Rényi graphs
with constant correlation with high probability. The algorithm is based on comparison
of partition trees associated with the graph vertices.
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1 Introduction

The problem of graph matching (also known as graph alignment or network alignment)
refers to finding a mapping between vertices of two given graphs in order to maximize
alignment of their edges. If the two graphs are isomorphic, the problem is the celebrated
graph isomorphism problem, for which no polynomial-time algorithm is known in the
worst case (see [1] and references therein). In general, the noisy graph matching
problem can be formulated as the quadratic assignment problem, which is NP-hard to
solve or approximate (see surveys [3, 23]).

While in the worst case the problem appears intractable, an optimal matching of
certain random graphs can be realized in polynomial time. In particular, the graph
isomorphism problem for Erd6s—Rényi graphs above the connectivity threshold can
be solved in polynomial time with high probability [4, 5, 9]. More recently, numer-
ous results have been obtained in the literature for matching a pair of correlated
Erdds—Rényi graphs [2, 6-8, 10, 11, 13-15, 17, 18, 20-22, 24, 26, 27]. At the same
time, conditions for existence of a polynomial-time algorithm for recovering the latent
matching between the two graphs are far from being fully understood. In this work,
we make further progress along this line of research by proposing a polynomial-time
algorithm which produces an exact matching between a pair of correlated Erd6s—Rényi
graphs with constant correlation, which is the first result of this kind in the literature.
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Exact matching of random graphs with constant correlation

1.1 The correlated Erdos-Rényi graph model

We consider the correlated Erdos—Rényi graph model [22] in this work. Fix p € (0, 1),
a € [0, 1 — p], and a positive integer n. Let Go be a G (n, %) Erd6s—Rényi graph,
which is called the parent graph. Conditional on the parent graph G, a subgraph G is
obtained by removing every edge of G( independently with probability «; moreover,
another subgraph G’ of G is obtained in the same way (conditionally) independently
of G. Then G and G’ are marginally both G (n, p) graphs, and for every pair of distinct

vertices i and j in [n] := {1, 2,...,n},
PP{i is adjacent to j in G | i is adjacentto j in G’} =1 —a.

Note that « indicates the noise level in the model, while 1 — « can be viewed as the
correlation between the two graphs. Given a permutation 7w : [n] — [n], let G denote
the graph obtained from permuting the vertices of G by . In other words, i is adjacent
to j in G if and only if 7 (i) is adjacent to 7 (j) in G”. The permutation 7 is unknown
and represents the latent matching between the vertices of the two graphs. Observing
the graphs G™ and G’, we aim to recover the matching 7 exactly.

1.2 Prior work and our contributions

We use the standard asymptotic notation O(-), o(-), and 2(-) for a growing n; we
also use O(-) to hide a polylogarithmic factor in n. Moreover, we use C, C’, ¢, ¢/,
possibly with subscripts, to denote universal positive constants that may change at
each appearance.

Let us focus our discussion on the exact recovery of the latent matching 7. First, it
is without loss of generality to assume that the average degree of each graph exceeds
the so-called connectivity threshold. To be more precise, if np < (1 — ¢)logn, a
G (n, p) graph will almost surely contain isolated vertices, so exact recovery of the
matching is impossible in this case. We therefore assume that the average degree
satisfies np > (1 + ¢) logn for an arbitrarily small absolute constant ¢ > 0. Then a
G (n, p) graph is known to be connected almost surely as n grows.

For the correlated Erd6s—Rényi graph model, the optimal information-theoretic
threshold for exact recovery of 7 is known [26]. For example, in the regime ; L ~ =
o(1), exact matching is possible if np(1 — ) > (1 +¢&’) log n for any constant &’ > 0.
In particular, if np = (1 + ¢)logn for a small constant ¢ > 0, then this threshold
requires « to be slightly smaller than . In the dense case where np is much larger than
log n, the information-theoretic threshold even allows « to be close to 1. However, this
optimal condition is achieved by the maximum likelihood estimator which employs
an exhaustive search over the set of permutations and is therefore computationally
infeasible. Several recent works developed quasi-polynomial and polynomial time
algorithms for exact recovery of 7w under stronger conditions. A selection of prior
results along with ours are listed in Table 1.

As shown in Table 1, before this work, no polynomial-time algorithm is known to
achieve exact recovery if the noise parameter « is a small constant nor if the average
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Table 1 Conditions for exact matching

Condition Time complexity
(26] np(l—a) = (1 +&)logn if 125 = o(l) Exponential
[2] np > n°M 1 - > (logn)—°D ,0(logn)
[11] np > (logn)€, o < (logn)~€ O3 p? +n2S)
Clogn < np < eoeloen® o < (loglogn)=C
[12] np > (logn)€, a < (logn)~—€ CE
[20] np = (logm©, a < (loglogn)~© 0(m?)
1
This work (1+¢)logn < np < nChelogn ¢ < min(const, £/4) p2+o()

degree np is close to the connectivity threshold log n. Our work achieves both condi-
tions and therefore resolves what was seen as a main open problem in this literature.
In particular, if np = (1 4 ¢) logn for a constant ¢ > 0, the condition required by
our algorithm differs from the optimal information-theoretic condition by at most a
constant factor.

While our main focus is exact recovery of the latent matching 77, part of our strategy
applies to partial recovery of m and is expected to carry over to sparser regimes
where exact matching is impossible; see Theorem A and Sect. 2.2 for details. The
new algorithm we propose is based on exploring large neighborhoods of vertices via
partition trees, a technique that may be of further interest. Moreover, the last step of
our algorithm is to obtain an exact matching from a (potentially adversarial) partial
matching. To this end, we develop a method that tolerates any constant fraction of
wrongly matched pairs in the initial partial matching; see Sects. 2.3 and 7 for details.

1.3 Main results

Everywhere in this paper, when discussing the computational complexity of a func-
tion, we assume that elementary arithmetic operations as well as the square root and
the logarithm, can be computed exactly in time O(1). We note that analyzing the
algorithms using the floating point arithmetic, while certainly possible, adds unnec-
essary technical details to the presentation and does not affect the order of the time
complexity.

Our first main result deals with almost exact recovery of the latent permutation.
The algorithm succeeds with probability at least 1 — n~? for an arbitrary constant
D > 0, even when the average degree is logarithmic in n.

Theorem A (Almost exact matching). For any constant D > 0, there exist constants
ap, no, R, ¢ > 0 depending on D with the following property. Let G and G’ be the
graphs given by the correlated Erdds—Rényi graph model defined in Sect. 1.1, with
parameters n, p, and « such that

1
n>ng, o€ (0,a), logn=<np(l—a)<nklelen,
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Exact matching of random graphs with constant correlation

Then there is a random function Fy defined on pairs of graphs on [n] and taking
values in the set of permutations on [n), such that

e Fy is independent from the graphs G™ and G/,
e F, has expected time complexity 0 (n?), and
e for any latent permutation w : [n] — [n],

P{Fal(G”, G')(i) # (i) for at most n' =€ indices i € n} >1-—n"P.

The next result establishes existence of a polytime procedure producing an exact
matching with high probability.

Theorem B (Exact matching). For any constant ¢ € (0, 1], there exists a constant
ng > 0 depending on ¢ and absolute constants oy, R > 0 with the following property.
Let G™ and G’ be the graphs given by the correlated Erdés—Rényi graph model defined
in Sect. 1.1, with parameters n, p, and o such that

1
n > no, (14 ¢)logn < np < nRioglogn | 0 < o < min(ag, £/4).

Then there is a random function F,, defined on pairs of graphs on [n] and taking
values in the set of permutations on [n), such that

o F,, is independent from the graphs G™ and G',
e F,. has expected time complexity n*+°V and
e for every permutation 7 : [n] — [n],

P{Fex(G", G =7} =1— n1% — exp(—epn/10).

The actual computational procedures for F,; and F,, in the above theorems will

71 .
be discussed in Sect. 2. Note that the theorems assume np < nRloglgn | that is, the
graphs in consideration are sufficiently sparse. This is because the success of our main
algorithm relies on the condition that the neighborhood of radius O (log log n) around
1

any typical vertex is a tree. In the denser regime where n Rloglen < np < O(1),
the problem of matching two Erd6s—Rényi graphs with constant correlation remains
open. It is interesting to study whether an extension of the algorithms in this work
or our earlier work [20] can solve the problem. A major difficulty is to handle the
probabilistic dependency across multiple steps of an iterative algorithm in the dense
regime.

1.4 Notation

For any positive integer n, let [1] be the set of integers {1, 2, ..., n}. Let N denote the
set of positive integers and Ny the set of nonnegative integers. Let A and Vv denote the
min and the max operator for two real numbers, respectively.

For a graph G with vertex set [n] and i € [n], let deg; (i) denote the degree of i in
G. For distinct vertices i, j € [n], let distg (i, j) denote the distance between i and j
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in the graph G. Let N (i) denote the set of neighbors of i in G. For a subset S C [n],
let NG (S) := U;eg NG (i). For r € N, let BG (i, r) and Sg (i, r) denote the ball and
the sphere of radius r centered at i in G, respectively. Let G(S) denote the subgraph
of G induced by S C [n]. In particular, G(Bg (i, r)) is the r-neighborhood of i in G.

2 Algorithms and theoretical guarantees

Letn € Nand p € (0, 1) be global constants that are known to the algorithms.

2.1 Partition trees and vertex signatures

In order to recover the latent matching m between vertices of the two graphs, we
associate a signature, that is, a 2™ —dimensional vector, to every vertex in G” and
every vertex in G’. The signature of vertex i in a given graph I is constructed based
on the partition tree rooted at i, which is, by definition, a complete binary tree 7 whose
nodes {7,"}se(—1,1y» at level m form a partition of the sphere Sr (i, m). Algorithm 1
gives the precise construction of the partition tree and the signature associated to a
vertex.

Algorithm 1 VertexSignature
Input: a graph I on the vertex set [n], a vertex i € [n], and a depth parameter m € N
Output: a signature vector f € R¥" and a vector of variances v € R?"

I: Tg <~ {i} > & denotes the empty tuple
2: fork=0,...,m—1do

3 fors e {—1,1}F do

4 TEH < {J e Mo N Srli k+ 1) = degr(j) = np}
5. T(’;f_‘l) ~{j e \r(TH NS k+1) ¢ degp(j) < np}
6: end for

7: end for

8: define f(i) € R?" by f(i)s := > N rmnsem+ 1 (degr () — 1 = np) for
se{—1,1}"

9: definev(i) € R?" by v(i)s := np(1—p)INr(T")NSr (i, m+1)| fors € {—1, 1}™

10: return f (i) and v(i)

Algorithm 1 can be informally described as follows. Given a vertex i, we construct
inductively a binary tree of sets Tsk, k=0,...,m,s € {—1, 1}k, starting with Tg =
{i}. Each set Tsk, s € {—1, 1}, is a subset of the sphere Sr (i, k). For every k < m and
s €{—1, l}k, Txk has two children T(];f_l 1 and T(]:trl 1 with the union T(’;f_l 1 U T(’;::Ll 1
equal to N (Tsk)ﬂSr (i, k+1).Here, we write (s, 1) for abinary vectorin {—1, 1)K+
formed by concatenating s and £1. The set T(ISL _11) is the collection of all vertices in

Nr (Tsk )YNSr (i, k+1) with degree strictly less than np, and T(]:Zrll) — the vertices with

degrees at least np (note that the input of the algorithm is a realization of a G (n, p)
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TG = {i}; T(lfl) = {i1,i2}; T(1+1) ={ish

T(Q,L,l) = {i12,921, %22 }; T(2,1,+1) ={ink; T(2+11,1) = {i31,i32}; T(QH,H) = {iz3}.

Fig. 1 An example of a partition tree of a vertex i of a graph with parameters np = 3.5 and
m = 2. The blue lines denote the edges of the graph. The nodes of the partition tree of i are 7Y =
i Ty =tk Thy) = kT3, ) = linvnink T2, ) =k T4, ) =

{iz1,i32}; T(ZJFLH) = {i33} (color figure online)

random graph, hence the threshold value). The collection of sets of vertices
T=|{T}:k=0,....m, s e{-1,1}}}

associated with a given vertex i is referred to as the partition tree rooted at i. It can
be viewed as a data structure encoding statistics of paths of length m starting at i and
classified according to the degrees of the comprised vertices. The key point of our
approach is that the partition trees contain sufficient information for recovering the
latent matching between the correlated graphs. We refer to Fig. 1 for an example of
the partition tree of a vertex in a graph.

With the partition tree constructed, Algorithm 1 then defines the signature f (i) €
R2" of vertex i to be a vector whose entries are based on degrees of neighbors of vertices
in the leaves of the partition tree. Finally, the auxiliary vector v(i) € R*" encodes the
variances of the entries of the signature vector in a G (n, p) random graph, conditional

on a realization of the (m + 1)-neighborhood of i. For matching vertices of G™ and

fs (D)= £ @)
NOXOEADN
where the superscript “’” denotes that the signature vector and the vector of variances
are for a vertex i’ in G’; see Algorithm 2 for details.

Since we will take m = O(loglogn) and the average degree of each graph is

G’, we will use normalized differences of signatures with components

assumed to be n Rloglogn for a sufficiently large constant R, the expected time complexity
of computing one signature vector with Algorithm 1 given the adjacency matrix of I'
is O(n).

2.2 Almost exact matching
With the signatures constructed, we then match vertex i in G™ and vertex i’ in G’ if

and only if their signatures are sufficiently close. Ideally, the difference between the
signatures of a “correct” pair of vertices, 7 (i) in G™ and i in G’, should be small,
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while the difference between the signatures of a “wrong” pair of vertices, 77 (i) in G”
and i’ in G’ fori # i’, should be large. Algorithm 2 compares signatures in terms of a
sparsified €>—distance weighted by the associated variances. The results of the vertex
comparisons are stored in an n X n matrix, denoted by B in the algorithm description.

Algorithm 2 SignatureComparison

Input: two graphs I and ' on the vertex set [n]
Output: a matrix B € {0, 1}/"*"

I: m < [22loglogn]

2w <« L(logn)5J

3:fori=1,...,ndo

4: (f(i), v(i)) <« VertexSignature(l, i, m)
5: (f’(i), V’(i)) <« VertexSignature(I”, i, m)
6: end for

7: J <« a uniform random subset of {—1, 1}"* of cardinality 2w
g fori=1,...,ndo

9. fori’=1,...,ndo ,

10: it ey S < 2w(l — =) then
11: B; i <1

12: else

13: Bi.i’ ~0

14 end if

15 end for

16: end for

17: return B

To be more precise, given two vertices i and i” in graphs I" and '/, with signatures
f (i) and f’(i") and variance vectors v(i) and V' (i), respectively, the algorithm com-

Nl 2
putes the sum ZSG 7 %, where J is a uniform random subset of {—1, 1}

of a cardinality polylogarithmic in n. If this sum is smaller than the threshold
[J] (1 - ﬁ) , then we match the vertices i and i’. The main difficulty of the signature
comparison is that, under the assumption of constant correlation between the graphs
G and G’, the signature vectors of vertex i in G and G’ will be only slightly corre-
lated with a high probability. To distinguish between a correct and a wrong matching,
we need to be able to distinguish between “very slightly correlated” and “essentially
uncorrelated” signature vectors, which is achieved through a rather delicate analysis.

This is the reason why the threshold |J](1 — Jktﬂ) is only slightly different from

the value |J| which would be the expected squared ¢>—distance between two indepen-
dent random vectors in R”, normalized so that the variance of each component of the
difference is one.

Moreover, taking the sparsified distance over J in Algorithm 2, rather than summing
over all indices s € {—1, 1}"*, weakens the dependence across entries of the signature

s N gl I\ 2
vectors and allows us to prove strong concentration bounds for " _; %
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The idea of comparing the sparsified signature vectors is taken from earlier work [20]
by the current authors.

It is not difficult to see that the expected time complexity of Algorithm 2 is of order
O (n?), because it amounts to computing and comparing all the signature vectors,
which are of length polylogarithmic in n. Theorem 2.1, which is the main technical
result of the paper, then guarantees that Algorithm 2 distinguishes correct pairs from
wrong pairs for most vertices with high probability. The proof of the theorem is given
at the end of Sect. 6.

Theorem 2.1 (Difference between signatures of typical vertices). For any constant
D > 0, there exist constants o, no, R, ¢ > 0 depending on D with the following
property. Let G™ and G’ be the two graphs given by the correlated Erd6s—Rényi graph
model defined in Sect. 1.1 with underlying matching  : [n] — [n] and parameters
n, p, and o« such that

1
n > no, o € (0, ap), logn < np(l — o) < pRloglogn |

Let B € {0, 1}"*" be given by Algorithm 2 with G™ and G’ as input graphs. Then,
with probability at least 1 — n=P, there exists a subset T C [n] with || > n —n'~¢
such that By ; = 1 forany i € Z, and By i = 0 for any distinct i, i’ € T.

To pass from a matrix B in the above theorem to a permutation, we apply a simple
procedure, Algorithm 3, which yields an almost exact estimate 7 of the underlying
matching 7. The computational complexity of Algorithm 3 is clearly O (n?). Propo-
sition 2.2 ensures that Algorithm 3 succeeds deterministically.

Algorithm 3 ApproximateMatching

Input: a binary matrix B € {0, 1}"*"

Output: a permutation 7 : [n] — [n]

1: H <« the bipartite graph whose adjacency matrix is B

2: let V. = V’ = [n] be the two parts of vertices of H

3: while the edge set of H is nonempty do

4:  pick an arbitrary edge i ~ i’ in H wherei € V andi’ € V'

5. define7 (i) =i

6:  delete the edge i ~ i’ from H

7 V <« V\{i}

8 V'« VA{i'}

9: end while

10: if V # o then

11:  define 77|y to be an arbitrary bijection from V' to V so that 7 is a permutation
on [n]

12: end if

13: return 7
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Proposition 2.2 (Matching from comparisons). Fix a permutation 7w : [n] — [n], a
matrix B € {0, 1Y"*", and a subset T C [n] with |I| > n — k for a positive integer
k < n/4. Suppose that Byy; = 1 for any i € I, and By ;) = 0 for any distinct
i,i" € I. Then Algorithm 3 outputs a permutation 7 : [n] — [n] satisfying

[{i € [n]:7G) #m)}| < 4k.

Proof First, it is clear that Algorithm 3 outputs a bijection 7 : [n] — [n], so 7 is
well-defined.

Next, we claim that the while loop in Algorithm 3 will be run for at least n — 2k
iterations. To this end, suppose that it has been run for strictly fewer than n — 2k
iterations, after which we have |V| = |V’| > 2k + 1. Since |Z| > n — k, it follows
that |[Z N V’'| > k+ 1. Foreach i’ € Z N V’, consider two cases:

e Suppose that 7(i") € V, that is, 7 (i") has not been deleted. By the assumption on
B, we have By () ; = 1, so the edge 7 (i") ~ i’ is still present in the graph H. As
a result, the while loop will be run for at least one more iteration.

e Suppose that 77 (i’) has already been deleted in a previous iteration, say, along with
another vertex j'. Then there is an edge 7 (i") ~ j’ in the original bipartite graph,
thatis, By iy, jy = 1. As j' # i’, by the assumption on B, we must have j* € [n]\Z.
Since |[n]\I | < k, this case can occur for at most k vertices i’.

To conclude, because |Z N V’| > k + 1, there is at least one i’ € Z N V' that falls into
the first case above. Thus, the while loop will be run for at least one more iteration,
and the claim is proved.

Furthermore, consider an iteration of the while loop in which we pick an edge i ~ i’
in H fori € V and i’ € V'. There are two cases:

e Suppose that both 7 ~!(i) and i’ are in Z. Since B; i» = 1, by the assumption on
B, we must have 7 1(j) = i’ so that 7 (') = i = 7 (’).

e Suppose that either 7 1 (i) or i’ is in [n]\Z. After this iteration, i and i’ are deleted
from the vertex sets. Since |[n]\I | < k, this case can occur at most 2k times in
total.

Recall that the while loop will be run for at least n — 2k iterations, and among them, at
least n—4k iterations fall into the first case above. Consequently, we have w (i") = 7 (i)
for at least n — 4k vertices i’ € [n]. O

Combining Theorem 2.1 and Proposition 2.2 immediately yields the following
result.

Corollary 2.3 (Almost exact matching). In the same setting as in Theorem 2.1, using
the matrix B € {—1, 1}"*" given by Algorithm 2 as the input, we run Algorithm 3 to
produce 7 : [n] — [n]. Then, with probability at least 1 — n=PL, it holds that

[{i €nl:7G) #7@)}| <4n'

Note that Corollary 2.3 implies Theorem A in the introduction.
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2.3 Exact matching

Having obtained an estimate 7 of the underlying matching 7, we now aim to recover
7 exactly by refining 77. The algorithm we propose is based on iterative refinements
of an initial partial matching by studying intersections of neighborhoods of vertices
in G and G’. At each step, we obtain a matching with the number of incorrectly
matched pairs of vertices smaller by a constant factor than that number in the previous
step. After a logarithmic number of such iterations, we obtain the exact matching with
high probability. A formal description of the procedure is given in Algorithm 4.

Algorithm 4 RefinedMatching

Input: two graphs I" and I on [r], a permutation 7 : [n] — [n], and a parameter
e>0

Output: a permutation 7 : [n] — [n]

1: My < T

2. for¢=1,...,[log,n] do

3 fori=1,...,ndo

4 if there is a vertex i’ € [n] such that

5 o 7 L (NF @) NN ()| > e2pn/512

6: o |7, (NF ) NN ()] < €2 pn/S12 forall j € [n]\{i'}
7 o |7, (NF (D) NN ()| < e?p/S12 forall j € [n]\{i}
8 then

9: we(i’) < i

10: end if

11:  end for

12:  extend 7y to a permutation on [n] in an arbitrary way

13: end for

14: T < Tllogy n
15: return 77

The underlying reason for why Algorithm 4 succeeds is a certain expansion prop-
erty of sparse Erd6s—Rényi graphs. Note that at each step of Algorithm 4, we assign
me(i’) = i whenever i’ is a vertex in [n] with |n[fl (Ne= () N N (i)| “large”
and both |7, (Ng= (1)) N N (j)| and |7, (NG~ (7)) N N (i')] “small” for all
j € [n\{i'}and j € [n]\{i}. Accordingly, the partial matching 7r; will be an improve-
ment over y_1 unless there are many (of order roughly [{v € [n] : wp—1(v) # 7T(V)}])
vertices of G or G’ with a considerable proportion of neighbors wrongly matched
by m¢—1. This, however, can be ruled out with a high probability. The basic prin-
ciple can be formulated as follows. If I is any random subset of [n] containing
a vast majority of the vertices of G, then for any positive constant ¢ > 0 the set
{i € [n]: |INg(@i) NIl > cpn} has cardinality at most 4—1‘|1"| with high probability;
see Sect. 7 for deails.

Moreover, observe that the expected time complexity of Algorithm 4 is n>to(D,
The n? part comes from the loop over i € [1] and the “if” statement which consists in
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searching over i’ € [n]. All the other computations can be done in n°(!) time because
the neighborhoods are of typical size n°(1. The following theorem provides guarantees
on the performance of Algorithm 4.

Theorem 2.4 (Refining a partial matching). For any ¢ € (0, 1], there exists no > 0
and k € (0, 1) depending on & with the following property. Let G and G’ be the
two graphs given by the correlated Erdds—Rényi graph model defined in Sect. 1.1 with
underlying matching © : [n] — [n] and parameters n, p, and o such that

n>ny, (1+e)logn<pn< ,
4logn

a e (0,e/4].

Given a random matching 7 : [n] — [n] (possibly depending on G™ and G’), and
with G™, G, Tt as the input, let T : [n] — [n] be the output of Algorithm 4. Then we
have

Pl =n} = P{l{i € [n]: 7() # 7 ()}| < kn} —exp(—epn/10).

The following corollary of the above theorems is our final result on exact recovery
of the underlying matching.

Corollary 2.5 (Exact matching). Fix a constant ¢ € (0, 1]. There exists a constant
ng > 0depending on ¢ and absolute constants oy, R > 0 with the following property.
Let G™ and G' be the two graphs from the correlated Erdés—Rényi graph model
defined in Sect. 1.1 with underlying matching w : [n] — [n] and parameters n, p,
and « satisfying

1
n > no, (1+e)logn < np < pRioglgn | 0<a<ayA(e/4).

Run Algorithm 2 (with G™ and G’ as input graphs) to obtain B € {0, 1}"*", then
run Algorithm 3 to obtain 7 : [n] — [n], and finally run Algorithm 4 to obtain
7 : [n] — [n]. Then we have

Pl# =7} > 1—n"'" —exp(—epn/10).

Proof First, we apply Corollary 2.3 with D = 10 to obtain |{i € [n] : 7() #
n(i)} | < 4n'~¢ with probability at least 1 —n~'°. Then, we choose k depending on &
according to Theorem 2.4. If n is sufficiently large depending on ¢, then 4n' ¢ < «n,
so Theorem 2.4 gives the result. O

Observe that Corollary 2.3 implies Theorem B from the introduction.

2.4 Further related work

The algorithms proposed above are related to several existing methods for graph match-
ing. First, to achieve exact matching under the stronger condition o« < (logn)~C, the
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paper [11] introduced a method based on comparing the degree profiles of vertices,
that is, the empirical distributions of neighbors’ degrees. The condition can be fur-
ther improved to & < (loglogn)~C for sparse graphs by exploring neighbors’ degree
profiles. Note that the degree profiles of neighbors of a vertex are determined by the 3-
neighborhood of the vertex. On the other hand, our algorithm uses degree information
in a neighborhood of radius ® (loglog n) around each vertex, which is key to match-
ing graphs with constant correlation. Prior to our work, large neighborhood statistics
were used in the paper [21] which studied seeded graph matching — the version of
the problem where a handful of correctly matched pairs of vertices are given to the
algorithm as “seeds”. We remark that, while the idea of leveraging degree statistics in
neighborhoods is not new, our method of exploiting correlation via partition trees is
novel.

The local tree structure in sparse graphs has been used in previous work for partial
matching [15] and correlation detection [16]. It is worth noting that these papers
considered local trees whose nodes are vertices of the observed graphs, while we
consider partition trees whose nodes are sets of vertices. This is crucial to our analysis,
which centers around estimating the overlaps between nodes of partition trees.

Moreover, the procedure of refining a partial matching (Algorithm 4) bears similar-
ity to algorithms in prior works on similar topics [17, 19, 28]. The problems studied
in these works, however, are inherently different from ours. To be more precise, it is
assumed in these papers that the initial partial matching g is independent from the
observed graphs, while the initial matching we study can be an estimator computed
from the observed graphs or even adversarially chosen. This adversarial setting has
been studied in [2, 11], but they require a vanishing fraction of wrongly matched pairs
in the initial matching, while our result can tolerate any constant fraction.

Finally, the strategy of matching vertices via comparing signature vectors appeared
in the paper [20] by the current authors. In this previous paper, to exploit correlation
between the two graphs, we started with comparing certain degree quantiles of the
vertices and then refine the matched quantiles of vertices in two steps to obtain the
final matching. The essence of this procedure is different from that in the current
paper, although both eventually lead to weakly correlated signature vectors of length
polylogarithmic in n. The more “global” strategy of comparing degree quantiles allows
us to match G(n, p) graphs with any average degree np > (logn)€ but requires a
smaller noise level @ < (loglogn)~C. On the other hand, the current work adopts a
more “local” approach of comparing neighborhoods that are typically trees, yielding
a better condition o < const for sparse graphs.

3 Overview of the analysis

Our proof starts with some preparatory observations on the structure of large neigh-
borhoods in sparse Erdés—Rényi Graphs, comprised in Sect. 4. The main goal is to
show that with a high probability and for an appropriate choice of a parameter k, the
k—neighborhoods of a vast majority of vertices are trees having sizes in a prescribed
range, and with a prescribed statistics of nodes with very high or very low degrees.
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The main tools in this section are standard concentration inequalities and standard
properties of the binomial distribution.

The signature comparison is carried out in Sects. 5 and 6. We recall that the depth
parameter m for constructing the signatures is double logarithmic in n. Section 5 starts
with a crucial observation that the classes 7, (i, G) and 7," (i, G’) from the partition
trees of i in G and G’, respectively, typically have intersections which introduce a
detectable correlation of the degree statistics of their neighbors. More specifically,
we show that under an appropriate graphs density assumption, with high probability
almost every vertex i has |7," (i, G)NT" (i, G')| > (np/2)" (1 —v)™, where v > 01is
an arbitrarily small constant. The proof is accomplished by induction, by considering
ng (i,G)N Tf (i, G") for 0 < £ < m (see Proposition 5.1). Note that the size of the
intersection |77 (i, G) N T]" (i, G")| is still vanishing compared to the typical order of
magnitude of |7}" (i, G)| and |T]" (i, G')| (that is, roughly (np/2)™).

Further, in Sect. 5.2 we discuss the sparsification procedure which greatly sim-
plifies the signature comparison. Sparsification is introduced to avoid the situation
when for many pairs of distinct indices s,s’ € {—1, 1}, the sets )" (i, G) and
Ts’,”(i, G’) still have a considerable intersection, which would introduce complex
dependencies between components of the signature vectors of i in G and G’. While
such an event appears difficult to control directly, by taking a relatively small uni-
form random subset J of indices in {—1, 1} instead of the entire index set, we
can guarantee that the undesired situation does not occur with high probability.
More precisely, we are able to show that under some additional technical assump-
tions, the sets Ry (i) := Ng(T)"(i, G)) N Ng/(T}”\{S}(i, G')) N Sgy(i,m + 1) and
Ri(i) = No/(T}" (i, G)) N NG(T} (i, G)) N SGe(i,m + 1), with s € J, have
small cardinalities with a high probability. The comparison of signatures of correct
pairs of vertices is then accomplished in Sect. 5.3, with Sect. 5.4 summarizing the
results.

Section 6, where the comparison of signatures of wrong pairs of vertices is carried
out, has the same high-level structure as Sect. 5, although in that case somewhat more
delicate estimates are required to show that the signature vectors of distinct vertices
of G and G’ are “essentially uncorrelated”.

Construction of an exact matching between vertices of the two graphs from the
approximate matching obtained in Theorem 2.1 and Corollary 2.3, is accomplished
in Sect. 7. The goal of this section is to show that with high probability, Algorithm 4
described in Sect. 2, with the input partial matching given by Corollary 2.3, will
produce the exact matching between G™ and G’.

4 Large neighborhoods in an Erd6s-Rényi graph

In this section, we consider structural properties of vertex neighborhoods in sparse
Erd6s—Rényi graphs. While some of the statements (in particular, regarding the sets
Tsl from Algorithm 1) are method-specific, others, dealing with degree concentration
and existence of cycles, are standard. Nevertheless, we prefer to provide the proofs for
completeness. For the reader’s convenience, we recall Chernoff’s inequality for sums
of Bernoulli random variables:
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Lemma 4.1 (Chernoff’s inequality; see, for example, [25, Section 2.3]). Let by, . .., by,
be independent Bernoulli random variables with a parameter q € (0, 1). Then

u s
]P’{ Zbi > s} < exp(—qu)<ﬂ> , §>qu,
i=1 §
and
- equ\’
P bi < — —1), 0 .
{§,<s}_exp( qu)( s) <s§s <qu
In particular, for every s > e’qu,
u
P{ Zb,- > s} < exp(—qu) exp(—s),
i=1
and for every s € (qu, 2qu],
R ] e (- 5)
Zb > 5 < exp )
qu

where ¢ > 0 is a universal constant.

4.1 Cardinality estimates for large neighborhoods and vertex classes

Lemma 4.2 (Sizes of neighborhoods and their intersections). For any D > 1, there is
K > 0 and ng € N depending only on D such that the following holds. Let G be a
G(n, p) graph with n > no and pn > logn. With probability at least 1 —n~P, we

have that
IBG(i, )| < K(np)  foranyi,l € [n]. (1)

On the event that (1) holds, for any m € N and any i, j € [n] such that i # j and
G(Bg(i,3m)) is a tree, if d := distg (i, j) < 2m, then

|Bg (i, m) N Bg(j, m)| < Knp)"14/21,

Proof The first part of the lemma is standard: It is not hard to see that |Sg (i, )| is
stochastically dominated by a Binomial(nl , pl ) random variable, so the bound follows
from Chernoff’s inequality (third estimate in Lemma 4.1) and a union bound. We omit
the details.

For the second part, assume that (1) holds. Fix distinct i, j € [r] and let d =
distg (i, j) < 2m.Then there exists a path y fromi to j oflengthd.Fixv € Bg (i, m)N
Bg(j, m). Then there is a path from i to v in Bg (i, m) which we denote by y;, and
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there is a path from j to v in Bg(j, m) which we denote by y;. Since Bg (i, m) U
Bg(j, m) is contained in Bg (i, 3m) which is assumed to be a tree, the paths y, y;,
and y; are unique. Since the union of y, y;, and y; is a tree, all of them must pass
through a unique common vertex w. Since the length of y; is at most m, we have
v € Bg(w,m — distg (i, w)); similarly, we get v € Bg(w, m — distg(j, w)). As
a result, if /[ := m — max(distg(w, i), distg(w, j)), then v € Bg(w, ). Note that
m—d <[ <m— [d/2] in particular.

We now count the total number of vertices v € Bg (i, m) N Bg(j, m) by reversing
the above reasoning: For any fixed w on the path y, there are at most K (np)’ vertices
in Bg(w, I); this gives an upper bound on the number of possible v that connects to
w. Letting w vary on the path y and recalling the definition of /, we easily see that
each/ =m —d,...,m — [d/2] corresponds to at most two w. Therefore, the total
number of v can be bounded by

m—T[d /2]

2 Y K@p) <4K(npy" T2,
I=m—d

which finishes the proof (up to a change of the constant K). O

Lemma 4.3 (Sizes of vertex classes). For any C, D > 1, there exists Q > 0, R > 0,
and ny € N depending only on C and D such that the following holds. Let G be a
G(n, p) graph with n > ny and

1
logn < np < pRloghzn ?)

Fix a positive integer m < Cloglogn. Forl € [m], s € {—1, 1}1, and i € [n], let
TSI (i) denote the class Tf of vertices constructed in VertexSignature(G,i,m)
(Algorithm 1). Then, with probability at least 1 — nP, for any i € [n] such that
G(Bg(@i,m+ 1)) isatree, anyl € [m], and any s € {—1, 1}1, we have

<o (")

Proof Fixi € [n] throughout the proof. We omit the subscript G in notations Bg, Sg,
etc. for simplicity. For readability, we split the proof into a few parts.

Redefining the classes of vertices Let us define a modified version of the degree of
a vertex and the classes 7 = T/ (i) which coincide with the original definitions when
G(B(i, m + 1)) is a tree. Namely, for j € S(i, [), we set

deg(j) = IN() NS, 1+ DI + 1. 3)

Define classes 7":,1 the same way as TSI but with deg(j) replaced by cTe\g( J); that is,
TY = {i},and for/ € Ny and s € {—1, 1},
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T = {(j e N@THNSG. 1+ 1) : deg(j) = np).

’]?(ISHD ={J e N(THNSG, 1+1): deg(j) < np}.

Note that if G(B(i, m + 1)) is a tree, then deg(j) = deg(j) for any j € B(i, m)\{i},
and thus Tl = T’ forany ! < m and any s € {—1, 1}\. Therefore, it suffices to bound
the cardlnahty of Tl forl € [m].

Setup of the induction For the base case /[ = 1 of the induction, it is standard to
show that

P{I7!| < Knp| = P{deg(i) = Knp} = 1 —n~P"! @)

for a constant K > 0 depending only on D, since np > logn and n = no = no(D).
The same bound holds for |T'! 11 as well.
Next, we set up the induction from [ € [m — 1] to [/ + 1. Define

l
0,:=2K (1 + %) , 5)

so Q; < 2eK foralll € [m].Lets = (sq,...s;) besuchthats; = 1. Thecase s; = —1
can be handled in the same way. As the induction hypothesis, we assume that

7)1 < Qinp/2)'.
The induction step consists in proving that
ITGH) < Qi (np/2)™!

with overwhelming probability (which will be explained more precisely below). The
same bound for TH'1 |, can be established similarly, finishing the induction.
To make the h1gh probability statement in the induction precise, we define an event

& = {deg(j) < KnpV j € BGi.I)} (©)

for any [ € [m]. Moreover, let P; and [E; denote respectively the probability and the
expectation conditional on the subgraph G (5(i, [)). For the induction step, we will
show that conditional on an instance of G (B(i, [)) such that £_; occurs, we have

~ np +1 ~ np [ o
P, {|T(l:11)| < Qi1 (7) and & occurs ‘ 7! < 0 (7) >1_p D1,
@)
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Taking a union bound over (4) and (7) for/ € [m — 1] and s € {—1, 1}!, we can
remove the conditioning and obtain

~ l i
]P{|Tj| <2¢K (%) Vielml, s e {1, 1}1} >1-3 2w Pl =1 on P
=1

The induction step, part 1 We will estimate the size of the set ./\/(il) NSGE, 1+ 1)
first. Let us condition on an instance of G (B(i, [)) such that &_ occurs. Further, fix
aset F C S(i, ) suchthat 1 < |F| < Q;(np/2)!, and condition on i[ = F.Then the
random variables cTch( j) — 1 are independent across different j: The independence
is ensured by the modified definition (3) of the degree of a vertex as we exclude the
edges connecting different vertices in F'.

Moreover, for any j € F, d/e\g(j) — 1 is distributed as a Binomial(n — |B(i, )|, p)
random variable Z; conditioned on Z; — 1 > np. Since &_; occurs, we have
|B@G,D| < 2(Knp)l < n%! in view of the conditions [ < m < C loglogn and
(2). It is not hard to see that P{Z; — 1 > np} > 1/4. Then Chernoff’s inequality
(fourth estimate in Lemma 4.1) yields

P {d/e?;(j) >np(l+1) ’ ﬁl = F} :IP’{ZJ- >np(l+1)| Z; znp}
54]P’{Zj >np(1+t)}
< 4exp(—ct2np) ®)

for any ¢ € (0, 1) and a universal constant ¢ > 0. In addition, a bound similar to (8)
for j € S(i, [)\ F can also be established, yielding

]P’l{ max d/\g(j) > Knp ‘ i[ = F} <n P2
jeSa.D

for K > 0 depending only on D. Since we already condition on an instance of
G (B(i, 1)) such that &_ occurs, the above inequality together with the definition of
& in (6) implies that

P, {51 occurs ‘ T"Sl = F} >1—nP2 )

Next, define an indicator

— 1
Ij:= Il{deg(j) > np (l—i-ﬁ)}

Then (8) with t+ = 1/(2m) shows that /; is a Bernoulli(9) random variable with
0 < dexp(=22). As |F| < Q;(np/2)!, using the conditional independence of deg ()

2
for different”}' and applying Chernoff’s inequality (first estimate in Lemma 4.1), we

get
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P, le > ﬁ (%)l ‘ T'=F} <exp (—’;—; (%)Hl) <n P72 (10

for a constant ¢’ > 0, since m < Cloglogn, np > logn, and n > ng = no(C, D).
If ZjeF Ij < ZL (%)l the event & occurs, and |[F| < Oy (%)l, then

m

. 1
> deg(j) = 3 1j - Knp +I|Fl-np (14—

JjeF JjeF

o () o0 ()14
a1 )"

by the definition of Q; in (5). Combining this with (9) and (10) yields

3 I+1 A
P, {lN(F) NS, 1+ )] <20 (1 + —) (%) and & ocours | 7! = F}
4m 2

_ 3 I+1 -

> P Zdeg(j) <20y (1 + E) (%) and & occurs ‘ TSZ =F
JeF

—-D-2

>1-—2n

for all F suchthat |F| < Q; ( %)l. Removing the conditioning on T“Yl = F, we derive
that

—~ . 3 np I1+1 ~ np 1
1 = i 1 it
P, {|N(Ts)ﬂ8(l,l+ D <20 (1 4 4m) ( : ) and & occurs ‘ ) < Q,( ; ) }
. 3 np I1+1 =
= Y m{NEINSG I+ =20 14+ = (—) and & occurs‘TY —F
, 4m 2 :
Fl<0/("2)
~ ~ np 1
-y {TSI =F ‘ \T_g[| <0 (7) }
>1-2n"P72 (11)

The induction step, part2  For brevity, denote H = N(T*Sl) NS, 1+ 1). We further
condition on an instance of G(B(i, [ + 1)) such that

3 I+1
|H| <20/ |1+ — (_np) and & occurs,
4dm 2

that is, the high-probability event in (11) occurs. Then the quantities Ec?g( j) — 1for
j € H arei.i.d. Binomial(n — |B(i, [ + 1)|, p) random variables. For j € H, denote
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by Y; the indicator of the eventd/é\g(j) > np. Since |B(@, [+ 1)| < 2(Knp)'T! < n®1
by the conditions [ < m < Cloglogn and (2), we have

1| Con®!
< 2 an—o.4

Pryy {CTe\g(j) >np} — 3 /D

Erpi [¥;] - %} =

where C> > 0 is a universal constant. Therefore,

1
ls+11)| =Y ¥ =) (Y —EY) + <§ +n°~4> |H|.

jeH jeH

Hoeffding’s inequality then yields

1 _ np\l+1
Pz+1{|Téf)|>(§+n 0'4>|H|+—Qz< ) }

<Py Z( —Ei1Yj) = SLQ (%)Hl
jeH

c 1 np\+1\? b
< exp <—m (S_le (7) > ) <n

if m < Cloglogn and n > nog = no(C, D), where we used |H| < 20y (1 + %)
(np/2)'*1. Moreover,

G +n_0‘4> \H| + —Q, ( p)l+1
<o) () + g ()

np 1+1
= O+ ( 2) ;

SO we obtain
P 1+1 e
Pz+1{|”)|<Qz+1(2) >1-n D2

It follows from the above inequality and (11) that

~ np +1 p
P, {lTéTf)i <0 (F)  and&oceurs | (7] < 0 (F) }

= r {17ty < o (1) i <200 (14 2-) (1)

~ I
&y occurs, and |TSI| < Q0 (%) }
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P {IHI <20 <1 + i) (@)lﬂ and & oceurs ‘ 7 < o (%)1}

4dm 2

> 1 - niDils

which completes the induction. O

4.2 One-neighborhoods of typical vertices

Lemma 4.4 (Minimal degree of a typical vertex). For any 8’ > 0 there are n;, € N
and ¢ > 0 depending on 8’ with the following property. Assume that n > n, and that
r € (0, 1) satisfiesrn > logn. Let " be a G(n, r) Erdés—Rényi graph, and let J be any
fixed subset of [n]. Then for any integer k such tharmax (2, |J | exp(—c'rn)) < k < c’n,

P {degr(i) < (1 — &")rn for at least k vertices i € J} < exp(—crnk).

Proof For any distincti, j € [n],letb;; be the indicator of the event {(i, j) is an edge of
I'}. Fix for a moment any 2 < k < |J| and k distinct vertices vy, va, ..., vx in J. Let
1 < £ < k. Conditioned on any realization of random variables (b, j)ie[¢—1], j£v; > the
variables (by,, ;) j£uv,,...,v, are (conditionally) i.i.d. Bernoulli(r). Hence, by Chernoff’s
inequality (second estimate in Lemma 4.1),

P{ D by < (1=8Yrn | (by jiere-, j#v,.}

J#V1,.00¢
e(n — Or )(1_5/)”’

<exp(—=(n —Or) (m

< exp(—8'rn/2)

if £ < k < §'n/2. This implies

]P’{ > by, < (1 —8)rnforalll <f < k} < exp(—kd'rn/2).
JFVL, -0

By the above bound and a union bound over all possible subsets of J of cardinality k,
we have

J
P {degr(i) < (1 — 8")rn for at least k vertices i € J} < exp(—k8’rn/2)<|k|)
< exp(—k8'rn/4)

ifk > e|J|exp(—8'rn/4). o

An immediate consequence of the above lemma is the following result.
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Lemma 4.5 (Degrees of typical vertices). For any k € (0, 1/2), there exists ¢ > 0
and ny € N depending on k with the following property. Suppose that n > ngy and
nr > logn. Let I" be a G(n,r) Erdos—Rényi graph. Then with probability at least
1 — exp(—crnlogn),

[{i e n]: NI = A —x)nr}| > n—n'"" (12)

Proof We apply Lemma 4.4 with J = [n] to obtain the following: There is a constant
¢ > 0 depending on « such that for any integer k such that max(2, n exp(—cnr)) <
k <cn,

P{INr ()| < (1 — «)nr for at least k vertices i € [n]} < exp(—ckrn).
Taking

1—-c

k:= (max (logn, nexp(—cnr))—l <n

we see that |[NT(i)] > (1 — k)nr for more than n — n'= vertices i € [n] with
probability at least 1 — exp(—crnlogn). O

Lemma 4.6 (Number of common neighbors). For any 8" > 0 there are ng € N and
¢ > 0 depending on 8" with the following property. Assume that n > ng and that
r € (0, 1/2] satisfies rn > logn. Let T be a G (n, r) Erdés—Rényi graph, and let J be
any fixed subset of [n] such that |J| - rnlogn < \/n. Then for every v € J we have

P{|Nr ) N (M (I\{v) U T)| = 8"rn} < exp(—c"rnlogn).
Proof For any distinct i, j € [n], let b;; denote the indicator of the event

{(i, j) is an edge of I'}. For any given vertex i of I', we have, by Chernoff’s inequality
(third estimate in Lemma 4.1),

INF(i)| < ernlogn
with probability at least 1 — exp(—rn) exp(—ern logn), whence the event
£ = [INF(I\{o)] < 7] - ernlogn}
has probability at least 1 — exp(—ernlogn). Observe that N (J\{v}) (and so &)
is measurable w.r.t. the collection of variables (b;;);iec/\(v}, j%i- Conditioned on any
realization of (b;;);cy\{v}, ji such that &' holds, the variables byj,j € Nr(J\{vD\J,

are (conditionally) i.i.d. Bernoulli(r). Hence, by Chernoff’s inequality (first estimate
in Lemma 4.1) and the assumption |J| - rnlogn < /n,

elJ|-er’nlogn )5””1/2

B{NE0) N (N \DV)| 2 8" /21 €1} < (T T
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< exp(—cyirnlogn)

for some ¢; > 0 depending on §”. Finally, we note that, again by Chernoff’s inequality
and the assumption on |J|,

P{INr(v) N J| = 8"rn/2 | '} < exp(—carnlogn)
for some ¢; > 0 depending on 8”, and the result follows. O
Lemma 4.7 (Neighbors’ degrees in a typical graph). For any k, A € (0, 1/2), there
exist ¢, > 0 and ny € N depending on k and A with the following property. Let

n > ng and rn > logn, and let T be a G (n, r) Erdés—Rényi graph. Further, let J be
a fixed subset of [n] such that

N

rnlogn’

1
Elognflllf (13)

Then with probability at least 1 — exp(—crn logn),

[{j € Nr(i) : degr(j) = nr +8/nr}| > (1/2—k)nr, and  (14a)
{j € Nr() : degp(j) < nr —8/nr}| = (1/2 — k)nr (14b)

for at least |J| — max(Xlogn, |J|exp(—crn)) verticesi € J.

Proof Choose 8’ = 8" := k /4, and let ¢/, ¢” be the corresponding constants from
Lemmas 4.4 and 4.6. Denote by £ the event

&= {INr(v)| > (1 — §")rn for at least | J| — max ((A/Z) logn,
[J] exp(—c/rn)) vertices v € J,
INF () NN (U\{vH U J)| < 8"rnforall v e J, and
NP (D) < |J|-ernlogn}.

In view of Lemmas 4.4 and 4.6, and by applying Chernoff’s inequality (Lemma 4.1)
to estimate the upper tails of |NT(v)| for v € J, it is not difficult to see that the event
& has probability at least

1 —exp(—c’(A/2) rnlogn) — n - exp(—c"rnlogn) — exp(—ernlogn)
> 1 —exp(—2cirnlogn)

for a constant ¢; > 0 depending on « and A.

Note that £ is measurable with respect to the variables (b;;)icy, j£i, Where b;; is
the indicator of the event {(i, j) is an edge of I'}. Condition on any realization of the
variables (b;)icy, j#i such that the event £ holds. Denote U; := N (i)\(Nt(J\{iHU
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J) for i € J. Observe that the sets U;, i € J, are disjoint, and everywhere on £ we
have

l{i € 7: Uil = (1 —k/2)rn}| = |J| — max ((»/2)logn, | J| exp(—c'rn)). (15)

Let§ € (0, 1) be a parameter to be chosen later. Fix i € J and let

VARES Z bjk, JjeU.
ke[n]\(JUNT(J))

Then the indicators of the events
{Zj > nr +8«/nr} , jeu,

are conditionally i.i.d. given (byj)vey, j#v. Observe that for every j € U;, the variable
Z is conditionally Binomial(n — |J U Nr(D)],r), and so

nr +8y/nr —E[Z;] < 28,/Var(Z;) + 3r'/% [ Var(Z)

in view of the assumption (13) on |J|. Hence, by the Berry—Esseen theorem (or by a
direct computation), there is a choice of §, as a function of «, so that

Z; > nr +d8+/nr

with conitional probability at least 1/2 — «x /4. Thus, applying Hoeftfding’s inequality,
for every i such that |U;| > (1 — «/2)rn, we have

jeUi: zj=nr+8nr}| = > 1{Z; = nr +8/nr} = (1/2 = k)rn

JjeU;

with conditional probability at least 1 — exp(—co«2rn), for some universal constant
c > 0.
Finally, the variables

, 1€J,

HjEUi: Z bjkznr—l—&/nr}

ke[n\(JUNT(J))

are conditionally mutually independent given (by;)yey, j£v. It remains to apply Cher-
noff’s inequality (second estimate in Lemma 4.1) to the sum of the indicators

> JIH{jeUi: > bjkznr+aﬁ}

ieJ: |\Ui>(1—«k/2)rn ke[n\(JUNT(J))

Z(I/Z—K)rn}
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to obtain the following: Since the above sum is over at least | J | —max ((A /2)logn, |J|
exp(—c’rn)) summands by (15), with probability at least 1 — exp(—c3rnlogn),

> (1/2 —k)rn

HjeUi: Z bijnr+8«/nr}

ke[n]\(JUNT(J))

for at least |J| — max ((3k/4) logn, |J| exp(—C3rn)) vertices i € J, where ¢3 > 0
is a constant depending on « and A. Then (14a) follows immediately. The condition
(14b) is verified by analogy. O

We now prove a lemma similar to the above, but with J = [n].

Lemma 4.8 (Neighbors’ degrees of typical vertices). For any k € (0, 1/2), there exist
¢, 6 > 0andng € Ndepending on k with the following property. Suppose thatn > ny
andlogn < rn < n'/* LetT be a G(n, r) Erd6s—Rényi graph. Then with probability
at least 1 — exp(—crnlogn),

{j € Nr(@) : degp(j) = nr 4+ 8/nr}| = (1/2 — k)nr, and (16a)
{j € Nr() : degp(j) < nr —8/nr}| = (1/2 — i)nr. (16b)
for at least n — nl=¢ vertices i € [n].
Proof Let ¢ := [rn/?logn]. We partition [n] into ¢ fixed subsets Jj, ..., J; such
that
il <nje <
rnlogn
for every i € [£]. By Lemma 4.7 and a union bound over Ji, ..., J¢, the probability
that
{j € Nr() : degp(j) = nr +8v/nr}| < (1/2 = i)nr (17)

for at most max(logn, |J¢| exp(—crn)) vertices i € J, for all £ € [£] is at least

1 — Lexp(—4crnlogn) > 1 — exp(—2crnlogn),
where ¢ > 0 depends on . On this high-probability event, (17) holds for at most
2¢

¢ - max(logn, |J¢| exp(—crn)) < max(2rn3/2 10g2n, n exp(—crn)) < n'-

vertices i € [n], since logn < rn < nl/*. This proves (16a). The proof of (16b) is
analogous. O
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4.3 Tree structure of large neighborhoods

Lemma 4.9 (Counting subsets via probabilistic method). Let n, d, k € N be such that
2k < d < n. Fix an integer M > (2n/d)*d log(en/d). There exists a collection of M
subsets A; C [n] with |A;| = k for each i € [M] such that the following holds. For
every subset B C [n] with |B| = d, there is i € [M] such that A; C B.

Proof Fix asubset B C [n] with |B| =d.Let Ay, ..., Ay bei.i.d. uniformly random
subsets of [n] with |A;| = k for each i € [M]. Then we have

_d@d=1)-d—k+1) d\k
P{A; C B} = nn—1)---(n—k+1) >(2n>

and thus

P{A; ¢ BYi € [M]) < (1 — (%)k>M < exp ( _ M(%)k)

A union bound over all subsets B C [n] with |B| = d yields

P{3B Cnl, |Bl=d, st A; ¢ BYi € [M]} <exp<—M(%)k> , (Z) <1

if M > (2n/d)*dlog(en/d). Taking the complement of the above event completes
the proof. O

Lemma 4.10 (Tree structure in a typical graph). Forn € Nand r € (0, 1), let T be
a G(n,r) Erdds—Rényi graph. For any x € N, the probability that there are at least
(5x)3(10g n)0(nr)3* vertices of T whose x—neighborhoods are not trees, is bounded
from above by exp(—log” n).

Proof For an integer k > 2, fix for a moment k distinct vertices vy, ..., v € [n],
and consider the event & that the x—neighborhood of each of the vertices is not a tree.
Given any realization of I' from &£, we shall construct an auxiliary subgraph H of I'
iteratively as follows.

At the beginning of the process, H is empty. Since the x—neighborhood of v
contains a cycle, there is a cycle in this neighborhood which we denote as an ordered
collection of vertices S = (5] (u))i“zo, satisfying S1(0) = S1(z1) and 3 < z1 < 2x,
and a path P} = (P (u))i':0 of length 0 < £; < x starting at v and ending at S;(0),
with P; U §7 containing only one cycle, that is, S;. We then add the vertex and the
edge sets of P U S; to H.

Next, we consider the vertex v,. One of the following two assertions is then true
for vy:

e Either there is a cycle $» = (S2(u)):2, in " and a path P, = (P, (u))ﬁzz0 starting
at vy and ending at S>(0), with the same conditions on lengths and cycle number

as above, and such that the vertex set of P, U S; is disjoint from the vertex set of
Py U S;. In this case, we add P, U S, to H.
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e Or, there is a path P, = (P> (u))f;z:0 of length ¢> < x, starting at v, and ending at
some vertex of P; U Sy, such that Py U S; U P, contains only one cycle, S;. We
then add P, to H.

To summarize the first two steps informally, the subgraph H now consists of either
(1) two connected components, with one component containing a cycle S| and a path
P; connecting v to a vertex in S, and the other component containing a cycle S and
apath P, connecting v to a vertex in Sp; or (2) one connected component, containing
acycle Sy, apath Py connecting v to a vertex in S, and a path P> connecting v, to a
vertex in §1 U Py.

Next, we continue to do the same construction for v3, after which the possibilities
of the subgraph H include the following: (1) three components, S1 U Py, S> U P>, and
S3 U P3; (2) two components, S1 U P; U P> and S3 U Ps; (3) two components, S1 U Pj
and S U P, U Ps3; (4) one component, S U P U P, U Ps.

More rigorously, repeating the process forall vy, . . ., vx, we can guarantee that there
exists an integer 1 < h < k, a partition of [k] into & non-empty subsets 71, ..., Tj,
cycles §; = (Sj(u)),ijzo, 1 <j <h,with3 < z; < 2x, and paths P; = (P; (u))ﬁfzo,
1 <i <k,with0 < ¢; < x, such that all of the following conditions are satisfied:

e cach of 71, ..., T, consists of consecutive integers, and they form an ordered

partition of [k] (for example, k = 6, h = 3, T1 = {1,2,3}, T» = {4}, and

T3 = {5,6});

3<zj<2xforalll <j<h,and0 < ¥ <xforalll <i <k;

§;(0) = Sj(zj) foreach 1 < j < h;

P;(0) = v; forall 1 <i <k (ith path starts at v;);

Pi(¢;) = Sj(0)foralll < j <handi =min7; := min{i’ : i’ € T;} (the path

P; attaches vertex v; to the cycle S; at §;(0) for i = min T});

o Pi(¢) € U PpPruU Sj,forall 1 < j <handi € T;\{minT}} (each vertex

i'eT;,i'<i

v; € Tj is attached via the path P; to the union of S; and the paths P; with i "e T;
and i’ < i);

e The vertices Sj(u),0 <u <zj,1 <j<h,and ,(u),0 <u < ¥{;,1 <i <k,
are all distinct;

o All unordered pairs of vertices {S; (1), Sj(u +1)},0 <u <z;,1 <j
{Pi(u), Pi(u+1)},0 <u<¥;,1 <i <k,areedges of T;

e As a consequence of the above conditions, the subgraphs Ui,eTj Py U S; are
disjoint across different 1 < j < h;

e The subgraph H := (U?:1 Sj) u (Uf-;l Pi) contains exactly & cycles and &
connected components (one cycle in each component).

h, and

IA
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Thus, the probability of £ can be (crudely) estimated from above as

k
Z Z Z Z pab e 2 ek (3 gk
h=1

Tiu---uTp=[k] z1,....z2n€{3,....2x} £1,....0k€{0,....x}

where the exponent of r is the number of edges, the exponent of n is the number of
vertices (besides the fixed vy, . . ., vg), and the factor (3xk)¥ is bounding the number
of possible vertices to which vy, ..., v are attached via the paths. To bound the above
sum, we note that

e the number of all possible ordered partitions 71, . .., Tj, of [k] is at most (zkk) bya
standard “stars and bars” argument;

e the sums over z1, ..., z; and £q, ..., €} give a factor at most (2x)k(x + l)k;

o zi+--+z+ L4+ 4 & < 3kx.

Combining the above estimates, we conclude that the probability of £ is bounded from
above by

(2kk> 20 + D ) Gxk)kn* < Gkx)* (nr)3 k.

Finally, let T be the collection of all vertices of I' whose x—neighborhoods are
not trees. We are interested in bounding P{|T| > d} where d > 2k using the above
bound on the probability of £. By Lemma 4.9, it suffices to take a union bound over
[(2n/d)*dlog(en/d)] subsets of cardinality k, yielding

PIT| > d} < Gkx)*(nr)*n~*[@2n/d)*d log(en/d)] < exp(—log”n)
once we take k = ﬂog2 n]andd > (5x)3(10g n)®(nr)3*. m]

4.4 Typical vertices in the parent graph

Recall that the parent graph Gg is a G(n, ¢) random graph. We consider parameters
n, q,and m € N satisfying

1
n > no, logn < ng < pRloglgn | m < Cloglogn,

where ng, R, and C are positive constants.

Letus first define a fypical vertex of the parent graph G . The definition incorporates
all the structural properties of vertex neighborhoods that will be important for signature
comparison.

Definition 4.11 We say that a vertex i € [n] of Gy is typical with parameters m € N,
Kk >0,K >1,and § > 0, and write i € TypG0 (m, k, K, 8), if i has the following
properties:

(A1) Go(Bg,(i,m + 1)) is a tree.
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(A2) degg,(j) < Kng forany j € Bg,(i,m + 1).

(A3) 1S, i, )| > (1 —)ng - 3" and |Bg, (i, )] < K (ng)! foralll € [m].

(A4) Forany! € {0, ..., m}, the following holds. Denote by HD(/) the set of vertices
in the /-sphere whose degrees are relatively high:

HD() :={j € Sg, (i, 1) : degg,(j) > (1 —K)ng}.

Then

K
K -3

IS6, (i, D\HD())| < 156, (@, DI

(A5) For any I € {0,...,m — 1}, the following holds. For j € Sg,(i, ), denote
by V4 (j) the set of its neighbors whose degrees are noticeably larger than the
mean:

Vi(j) = 1{j € Ngy(j) NSg, (i, 1+ 1) : degs,(j") > ng +8./nq}.

Furthermore, denote by W, (I) the subset of Sg, (i, /) for which the sets V. (j)
are large:

Wil) :={j € SGo(i. 1) : |V+(j)| = (1/2 — k)ng}.

Then

K
K -3

1SGo (i, D\WL (D] < 1SGo @, DI

(A6) Forany!/ € {0, ..., m — 1}, the following holds. For j € Sg, (i, [), denote by
V_(Jj) the set of its neighbors whose degrees are noticeably smaller than the
mean:

V() = {J € Ny (j) N Sg, (i, 1+ 1) : degg,(j)) < ng — 8/ngq}.
Furthermore, let
W_() :={j € Sgoi. 1) : [V_()| = (1/2 = k)ng}.

Then

K

1SG, (1, D\W-(D] = WISGO(I'J)L

The sets HD (1), W4 (1), W_(I) depend, of course, on i. However, we do not mention
this dependence explicitly to lighten the notation. The following is the main statement
of the subsection.
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Proposition 4.12 For any k € (0, 1/2) and C, D > 1, there exist §, ¢ € (0, 1/2) and
K, R,ng > 1 depending on k, C, D such that the following holds. If

N
n > ny, logn < ng < nRloglogn | m < Cloglogn,

then with high probability, most vertices of a G(n, q) graph Gq are typical with
parameters m, k, K, and §:

IP{ITypGO(m,K,K,(S)| >n —nlfc} >1-—n"D,

Proof Consider each condition in Definition 4.11:

1. By Lemma 4.10, with probability at least 1 — exp(— log? n), there are at most
(5m +5)* (logn)°(ng)™"* < /n

vertices of Gy whose (m + 1)-neighborhoods are not trees, where the above

inequality holds because m < Cloglogn and ng < nm for R depending on
C.

2. By Chernoff’s inequality (third estimate in Lemma 4.1) and the condition ng >
logn, we in fact have degg (j) < Kng for all j € [n] with probability at least

1 —n P! where K depends on D.

3. The upper bound |Bg, (i, )| < K (np)l holds simultaneously for all i € [n] with
probability at least 1 —n~P~! by (1).
For the lower bound in the case [ = 1, the bound (12) in Lemma 4.5 with I" = G
shows that |Sg, (i, )| = |[Ng,()| > (1 — «)ng for at least n — n'=¢ vertices
i € [n] with probability at least 1 — n~P=1 wherec¢; > 0 depends on k and D.
Thelowerboundinthecasel € {2, ..., m}istrivial, because the size of S, (i, ) is
of order (ng)! which is much larger than ng -3/~ ! foralli € [n] with overwhelming
probability.

4. Forl = 0,if i satisfies Condition (A3), thendeg(i) > (1—«)ng andso Sg, (i, 0) =
HD(0) = {i}.
Next, fix [ € [m]. We will show that with high probability, any vertex i € [n]
satisfying Conditions (A1) and (A3) also satisfies Condition (A4). Towards this
end, condition on any realization of the subgraph Go (B¢, (i, /—1)) and all the edges
between Bg, (i, [ —1) and its complement. Let PP denote the conditional probability.
Under this conditioning, Sg, (i, /) is determined. Let G := Go([n]\Bg,(i,1—1))
andn :=n—|Bg,(i,1—1)|. Then Gis conditionally a G (n, ¢) graph and Sg, (i, 1)
is a fixed subset of vertices.
For j € Sg, (i, ), let us define

HD(l) := {j € Sg,(i, 1) : degg(j) + 1> (1 —K)ng).
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If Go(Bg, (i, m + 1)) is a tree, then degg (j) + 1 = degg, (), and so }T]S(l) =
HD(/). Applying Lemma 4.4 with ' = G and J = S, (i, ), we obtain

P{|Sg, i, D\HD()| < k} = 1 — exp(—cagiik) (18)

for a constant ¢; > 0 depending on k, where max (2, |J| exp(—ca2qn)) < k < con.
If i satisfies Condition (A3), then

Bg, i, )| < K (ng)™ < Kn*,

1
since m < Cloglogn and nq < nRleloer where R depends on C and D. As a
result, 0.9n <7 < n and

|| exp(—caq) < Kn® exp(—cagi) < 1,

where the last inequality holds because ng > logn and n > ng = ng(x, C, D) if
we choose R = R(C) appropriately. Therefore, we can take k = [2(2—:2)1 so that

the error probability in (18) is at most »~°~2. Finally, since

2(D +2) k ng-371 K .
k:[ W<K.3l T < 115G, D

2
for i satisfying Condition (A3), we obtain from (18) that with probability at least
1 —nP=1 for any vertex i € [n] satisfying Conditions (A1) and (A3),

1860 D\HDO)] < 7156, G. D)

5. Forl = 0, the bound (16a) in Lemma 4.8 with I' = G shows that with probability
atleast 1 —n P2 wehave Sc, (i, 0) = {i} = W (0) foratleastn —n'~% vertices
i € [n], where c¢3 > 0 depends on k and D. Therefore, Condition (A5) holds for
these vertices.

Next, fix [ € [m — 1]. We will show that with high probability, any vertex i € [n]
satisfying Conditions (A1) and (A3) also satisfies Condition (AS). As in the proof
of Condition (A4), we let P denote the probability conditional on any realization
of the subgraph G (Bg, (i, ! — 1)) and all the edges between Bg, (i, [ — 1) and its
complement. Again, let G = Go([n]\BGO @i, l1- 1)) and7 :=n— |Bg, (i, —1)]
so that G is conditionally a G (71, ¢) graph.

For j € 5¢, (i, 1), let

Vi(j) =i’ € Ng(j) : degg(j') > ng + 8/nq)

and
Wi(l) = {j € SGo(i, 1) : [V4()l = (1/2 = )ng}.
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If G()(BGO(Z m)) is a tree, then it is not hard to see that V+(]) V.(j) and
thus W+(l) Wi (l). To bound |$G0 @, l)\WJr (D], we apply Lemma 4.7 with
r = G J = 86,(i, 1), and A = 7. Note that by Condition (A3) together with

l
the conditions logn < ng < nXleler and m < C loglogn, we have

Jn

rnlogn’

1
Elogn <I|Sc,,D| <

so Lemma 4.7 can indeed be applied. Hence, we obtain that with probability at
least 1 — exp(—carn logn) > 1 — n—P-2

. o K . K .
160 (i D\ ()] < max (S logn. 186, Dl exp(—carn)) = =716 (i. 1)

by Condition (A3) and m < Cloglogn, where c4, § > 0 depend on « and D.
6. This part is analogous to the previous one.

Finally, by a union bound, with probability at least 1 —n 2, the number of non-typical
vertices is at most /n 4+ n!=¢1 42,17 < !¢ for a constant ¢ > 0. The proof is
therefore complete. O

5 Signatures of correct pairs of vertices

The goal of this section is to show that with probability close to one, for almost every
vertex i, the signatures f(i) and f’(i) computed in the graphs G and G’ are close
to each other, in the sense that the sparsified £,—distance of appropriately normalized
signatures is less than a given threshold. The constant correlation between G and
G’ introduces a very large noise so that the normalized signatures are still “almost
orthogonal”, and a high precision of the estimates is required to distinguish this case
from the case when signatures of different vertices are compared.

5.1 Overlap between neighborhoods of a typical vertex in the child graphs

Let the graphs G, G, and G’ be given by the correlated Erd6s-Rényi graph model
with parameters n, p « as defined in Sect. 1.1. That is, Gg is a G (n, ¢) Erd6s—Rényi
graph, where g := 1 . Conditional on Gy, the subgraph G is obtained by removing
every edge of Gy 1ndependently with probability «, and G’ is a conditionally i.i.d.
copy of G. Fix m € N. For [ € [m], s € {—1, 1}1, and i € [n], let Tsl(i, G) denote
the set Tvl of vertices constructed in VertexSignature(G, i, m) (Algorithm 1);
similarly, let TSI (i, G") and TSI (i, Go) denote the sets constructed by Algorithm 1 when
the input graph is G” and G respectively. Recall that collections Typg, (m, k, K, §)
of vertices of the parent graph G( were described in Definition 4.11. In what follows,
Py denotes the probability conditional on an instance of Gy.

Proposition 5.1 For any parameters «, K,8, D > 0, there exist ag € (0, 1) and
ng > 0 depending only on these parameters such that the following holds for any
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a € (0, p) and n > ng satisfying nq > logn. Condition on an instance of the parent
graph Gy. Fix m € N. Then with (conditional) probability at least 1 —n~P, for every
typical vertex i € Typg,(m, «, K, 8) and any s € {—1, 1}",

T (i, G)NT (i, G = (np/2)" (1 — 8k)™.

Proof Fix a typical vertex i € Typg, (m,«, K, ), and let/ € {0,...,m — 1}. We
start with proving the following claim showing that with overwhelming probability,
the degrees of all vertices in HD(/) in the child graphs G and G’ remain relatively
large, where HD(/) is defined in Condition (A4).

Claim 5.2 There exists oy > Odepending onk, K, and D such that forany a € (0, ap),
Po{ degi (j) A degg(j) > (1 —26)np V j € HD(D} = 1 —n~ P71
To prove the claim, let j € HD(/). Then

Py {degG(j) <{- 2/c)np} + Py {degG/(j) <{1- 2/c)np}
< Po{(1 — &) degg, (j) — degs(j) > knp}
+Po {(1 — @) degg, (j) — degg (j) > knp}.

Note that deg(j) and degg (/) are Binomial(degg,(j), I — «) random variables
conditional on G, where degg, (j) < Kng by Condition (A2). Hence, the right-hand

2
side of the inequality above is bounded by 2exp ( — ¢*Z£) for a constant ¢ > 0

depending on K. We can choose « sufficiently small depending on «, K, and D such
that this error probability is at most n~?~2. The claim follows by taking the union
bound over j € HD(I).

Next, we will show that with overwhelming probability, the sets W, (/) and W_(I)
defined in Conditions (AS) and (A6) respectively remain at least the same size under
a slight change of their definitions. Namely, to take advantage of the independence of
degrees of different vertices, we consider the spheres around i and the neighborhoods
in Go, but evaluate the degrees in G and G’. Specifically, we prove the following
claim.

Claim 5.3 There exists ag > 0 depending on k, K, 8§, and D such that for any a €

(0, ap), the following holds. For j € Sg,(i,!), denote by VE’G/ (j) the set of its
neighbors in Gy whose degrees in G and G’ are larger than the mean:

VG () i= ) € Noo() NSy 1+ 1) : degg(j) > np and degg (j') > np).
Then

Po [IVE T () = /2= 20mg ¥ j e Wy} = 1—n~P7,
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To prove this claim, consider a vertex j € Wy (/) where W, (/) is defined in Condi-
tion (A5), and estimate the probability of the event that [V (j)| < (1/2 — 2k)ng.
Note that since i is typical, these events are independent for different j € W, (I)
conditional on G. Consider j* € V4.(j), so that degg, (j") > nq +8,/nq. The distri-
bution of the random variable deg; (j') is conditionally Binomial(deg, (j N, 1 —a).
Therefore, assuming o < 1/2, by Bernstein’s inequality we have

Po{ degq(j/) < ng(1 — )} < Pof degg, (j') — degq (/) = a degg, (j/) + (1 — )3 /nq)

( c(1 —a)?8%ng )
=exp| — - )
adegg, (j) + (1 —a)d/nq

where ¢ > 0 is a universal constant, and where deg, (J ") < Kng by Condition (A2).
Let T > 0 be a number depending on «, K, and D which will be chosen soon. Then,
since n is large, we can choose ¢ € (0, 1/2] depending on 8, K, and 7 (and thus only
on k, K, 8, and D) such that for any o € (0, «p), the above error probability is less
than /2. Similarly, one can show that

Po{degs (j') < ng(l —a)} < /2,

and so

Po{j’ € Vi (H\VEC ()} = Pof degg(j) < ng(1 — )}
+Po{ degg(j) < ng(1 —a)} < 7.

Note that |V.(j)] < degg,(j) < Kng, and that the events {j" € Vi ()\V."% (j))
are independent for different j/ € V,(j) conditional on Gy for a typical vertex i.
Assuming that T K < «, we get by Chernoff’s inequality (first estimate in Lemma4.1),

et Kng\“"
Kkng '

Po{ IV (G\VEC ()l = kng) < (

As nqg > logn, we can choose T depending only on «, K, and D so that the bound
above does not exceed n= P2, By the union bound,
Po{3j € Wi (D) s.t. [VE T ()l < (1/2 = 26)nq)
<Pof3j € Wal) st [Ve(D\VE O (DI = kng} <n™ P71
finishing the proof of the claim.
Applying the same argument, one can establish a similar claim for the set W_(I).

Claim 5.4 There exists ag > 0 depending on k, K, §, and D such that for any a €
(0, ap), the following holds. For j € Sg,(i,!), denote by y o6 (j) the set of its

neighbors in Gy whose degrees in G and G’ are smaller than the mean:

VI () = {i' € Noy() N Sayli L+ 1) : degg(j') < np and degg(j') < np}.
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Then
Po [IVIT () = /2= 20mg ¥ j e W-h} = 1 =P,

Equipped with Claims 5.2, 5.3, and 5.4, we can complete the proof of the proposi-
tion. Let £(i, I) be the event that the following statements hold:

o deg;(j) > (1-2«)npanddegg (j) > (1—2/<)npforatleast(l - ﬁ) 1SG, (i, D
vertices j € Sg, (i, 1);
o IVIT (DI = (172 = 26)ng and [VET ()] = (1/2 = 2)ng for at least

(1 - ﬁ) |SG, (i, 1)| vertices j € Sg, (i, ).

Then the above claims together with Conditions (A4), (AS), and (A6) imply that

m—1
P, i ﬂ 5(1‘,1)} >1-nP.

1=0
Assuming that the event ﬂ;”z 61 E(i, 1) occurs, we will show that
T/ (i, G) N T}(i. G| = (1 — 8k) (np/2)’ (19)

forall/ € {0,...,m}and s € {—1, l}l by induction on /. For [ = 0, this inequality
trivially holds. Assume that (19) holds for/ € {0,...,m — 1} and s € {—1, 1}/, and
consider, for instance, s’ = (s, 1) € {—1, 1})*!. The case s’ = (s, —1) € {—1, 1}/ !
is handled the same way.

Let W be the set of all vertices j € TSI (i,G)N TSZ (i, G) such that deg;(j) >

(1 = 2)np, degg (j) > (1 — 2c)np, and |VE Y (j)| = (1/2 — 2«)ng. Then

K

l: 1.
IWI 1T G) N TG, G = 24—

1SG, i, D = (1 —20)|T! (i, G)N TG, G,

where the last inequality relies on the induction hypothesis (19) and that |Sg, (i, [)| <
K (ng)" in Condition (A3).

For any j € W, the entire set Vf’G,( J) is contained in T(l;ll) (i,G)yNn T(I:II) i, G).
Since these sets are disjoint for different j € W,

TG Gy N T G G = Y IVEC G = W (172 = 260ng
jew

> (1/2 = 4)ng |T) (i, G) N T/ (i, G|
> (1= 80 (p/2)™1,
where the last inequality follows from the induction hypothesis. O

For the rest of this section, we fix a positive integer m and simplify the notation of
classes of vertices by omitting m as follows: For s € {—1, 1}1 and i € [n], let T(i)
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denote the set 7;" of vertices constructed by VertexSignature(G, i, m) (Algo-
rithm 1); similarly, let 7} (i) denote the set constructed by Ver texSignature(G’, i,
m). Moreover, for any subset J C {—1, 1}, we define

T,6) = JT:6) and T7G) = JTG).

seJ seJ

5.2 Sparsification

For pairs of distinct indices s, s € {—1, 1}, the sets Ty(i) and TS’, (i) may have a
considerable intersection, which introduces complex dependencies between compo-
nents of the signature vectors of i in G and G’. To tackle this issue, we now use
sparsification—taking a small random subset J of indices in {—1, 1}"" instead of the
entire index set—to guarantee that the undesired situation does not occur for too many
pairs s, s’ € J with high probability. We first state a lemma from [20].

Lemma 5.5 (Lemma 16 of [20]). Fix a constant S > 0 and an even integer k € N. Let
Q and Q' be two finite sets, and let

k k
Q=J ad @ =]
i=1

i=1

be partitions of Q and Q' respectively such that |2;| < S/k for all i € [k]. Fur-
thermore, let w € {2,3,...,k/2} and let I be a uniform random subset of [k] of
cardinality 2w. Then, for any L > 1 and p € (0, 1/4) such that pw is an integer, we
have

3\ pw
P[{ier: 3j e\ st 12N @)l = LS/k*}| = 20w} = (8%> |

Proof This is a restatement of Lemma 16 of [20] with y ~1|Q’| replaced by S, and L
replaced by L/y; the same proof works to give the statement above. Note that in that
lemma, it is assumed in addition that |Q;| > y|'|/k, but this condition is never used
in the proof. O

The following lemma shows that the intersection between the neighbors of T;(i)
in G and the neighbors of T/,(i) in G’ is not too large for most pairs s, s" € J. More
precisely, in (22), we let R; (1) denote the intersection between the neighbors of T (i)
and the neighbors of TS (i) forany s" € J, s’ # s, and we define RS (i) analogously.
The lemma states that there is a subset J (i) C J thatis almost as large as J (note (20)
and that we take 2w = |J| > 2(log n)* in Lemma 5.11) such that R (i) and R, (i) are
sufficiently small for all s € J(i). Note the extra factor 1 /2™ in (21a) for s € J (i)
compared to (21b) for any s € J. This will be crucial to controlling 7, (i) and 1 (i) in
Lemma 5.7 and subsequent estimates in Lemma 5.11.
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Lemma 5.6 (Sparsification). For constants C1, C > 0, thereexists K = K(Cy, C2) >
0 with the following property. Let J be a uniform random subset of {—1, 1} of car-
dinality 2w for an integer w > 2(logn)?. With respect to the randomness of J, the
following holds with probability at least 1 — exp(—(log n)'3) for any vertex i € [n]:

If

° GO(BGO(i, m + 1)) is a tree,
e degs(j) vdegs (j) < Cinp forall j € Bg, (i, m), and
o ILOIVIT()] < C2(%F)" forall s € (=1, 1),

then there is a subset J (i) C J such that

[J\J ()] < (logn)?, (20)
and
IRy v IR < Kw (”’2:+1 forall's € J(i), (21a)
|Rs ()| V |RL(D)| < K("pz)—:“ foralls € J, (21b)
where
Rs(i) := N (T (1)) N Ne/ (T) () N Sg, (i, m + 1), (22a)
Ry (i) == N/ (T, () N NG (Thsy () N Sg, (i, m + 1). (22b)

Proof Fix a vertex i such that the three conditions in the lemma hold. Since
Go(Bg,(i,m + 1)) is a tree and by definition Sg(i, m) = Use{_u}m T, (i) and
S (i, m) = Use(—1.1yn T (i), we have partitions

Soim+= | (NG(TS(i)) N Sgy (i m + 1)),

se{—1,1}m

Soim+=|J (NG,(T;(i)) N Sg,y i, m + 1)).

se{—1,1m

Using the conditions |7, (i)| v |7} ()| < C2(*£)" forall s € {—1, 1}" and degg; (j) v
degg/(j) < Cinp forall j € Bg, (i, m), we see that

(np)erl

[No (1) 1 Sayim + D] v [N (T0) N 8o, G.m + 1| = 16720

Note that (21b) is a consequence of the above bound.
Moreover, we can apply Lemma 5.5 with Q@ = Sg(i,m + 1), Q' = S/ (i, m + 1),
k=2" S =C Canp)" !, L = 8ew?, and p = 5-(logn)? to obtain the following:
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With probability at least 1 — exp(—(logn)?/2),

Hs e J: 3t e \s) st Ng (To@) N Nor (T/ (1)) N Sey i m + 1)

(np)m—H

> 86w3C1C2 4m

1 2
H < 5(logm)?. (23)
A similar estimate holds if 7 and T’ are swapped. Next, define

(np)m—i-l }

J(i) = {s e J: |Ry()| VIRL()| < 16ew*C1Cy o

which is a superset of

m+1
{s €J: Ve \{sh NG (T () NNg (T] (i) N Sgy(i,m + 1)| < 8ew’C1C, (”Z)m }

ﬂ {s €J: Vte\ls), [Ne(T)) NNG(T: (i) N Sgo (i, m + 1)

(np)m+1
FIZE

< 8ew’CiCy

As aresult of (23) and the counterpart with 7" and T’ swapped, we see that (20) holds.
Moreover, (21a) holds by the definition of J (7).
Finally, a union bound over vertices i € [n] completes the proof. O

5.3 Difference between signatures of a typical pair

Throughout this subsection, we fix a vertex i € [n], a subset J C {—1, 1} of car-
dinality 2w for w € N, and a subset J(i) C J. Moreover, we condition on the
neighborhoods Go(Bg, (i, m + 1)), G(Bg, (i, m + 1)), and G'(Bg, (i, m + 1)) such
that the following statements hold for fixed constants K, ¥ > 0:
(B1) Go(Bg,(i,m + 1)) is a tree;
(B2) |Bg,(i,m+ )| <n®!;
(B3) deg;(j) v degs (j) < Knp forall j € Bg,(i, m) for a constant K > 0;
B4 |Ts()| Vv IT,(@)| < K(np/2)™ forall s € {—1, 1}™;
(B5) (20), (21a), and (21b) hold;
B6) |{j € Sg,(i,m) : degrg(j) < 3np(1 — a)}| < (ng/3)™, where G N G’
denotes the graph on [n] whose edge set is the intersection of those of G and
G';
(B7) |Ts() N T @) = (np/2)" (1 — 8k)™ for all s € {—1, 1}™".
We consider the randomness with respect to the remaining possible edges of the graphs;
let P and E denote the conditional probability and expectation respectively. For any
J € Sg,(i,m + 1), it is not hard to see that the random variable deg;(j) — 1 is
conditionally Binomial (72, p) where

i =n—|Bg,(i,m+ 1| >n—n"",
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and these binomial variables are independent across different j € Sg, (i, m + 1).

Lemma 5.7 (Small overlaps). For any D, K > 0, there exists K' = K'(D,K) > 0

such that the following holds. Define Ry(i) and R} (i) as in (22). With (conditional)

probability at least 1 —n=P,

m/2+1

Ins ()] V L) < K’( p)2 w?/logn foralls € J (i), (24a)
m/2+1

ERGINAUAGIES K’( l;)m/z Viogn foralls e J, (24b)

where

ns(@) = Z (degg(j) — 1 —np) and ny(i) = Z (degg/(j) — 1 —np).
JERs (D) JER(D)
(25)

Proof Recall that the variables deg; ( j) 1, j € R4(i), are conditionally indepen-
dent Binomial(ii, p) where i > n — n%!. As a result, Y ierii) (degg(j) — 1) ~
Binomial(n| Ry (i)|, p), and so

@) =| 3 (degg()—1-np)|
JERs ()

< Ka(v/np|Rs(i)|logn +logn) + (n — ) p | R (i)

< K3y/np(IRs ()] + 1) logn

with probability at least 1 — n~P=! for constants K>, K3 > 0 depending on D. We
then combine the above bound with Condition (BS) to obtain (24a) and (24b). Finally,
a union bound over s € {—1, 1}"* completes the proof. O

Lemma 5.8 (Correlated binomial). Let P and E denote the conditional probability
and expectation respectively, defined at the beginning of this subsection. Fix a subset
I C Sg,(i,m+1). Let

A=) (degg(j) —degg/(j)) and B:=Y_(degs(j)—1—iip)
jel jel

where i = n — |Bg, (i, m 4 1)|. Then we have
e E[A]=E[B] =0;

o E[A2) = 2apii|l| and E[B?] = p(1 — p)ii|l|;

o P{A| > 1} < 2exp (i) and P{|B| > 1} < Zexp<

FAT3 for every
t>0.

E[B2]+t/3>
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Proof We first consider the variable B. Since ) ;. (deg;(j) — 1) is conditionally
Binomial(n|7], p), the mean, variance, and tail bound for B are all standard facts.
Next, consider the variable A. Note that we can write

A= Z Z Xje(Yje — Y]/-e),

J€l teln\Bg, (i, m+1)

where X ;o ~ Bernoulli(g) and Yy, Y//'Z ~ Bernoulli(1 — «), all of which are inde-
pendent. Thus, we have E[A] = 0 and

Ea’1=3Y" 3 E[X?Z(ng—YJfl)z] = 2qa(l — )ii|I| = 2apilll.
Jel teln\Bgy (i.m+1)

Moreover, the random variables X j¢ (Y ¢ — Y]’. ) take values in {—1, 0, 1} and are i.i.d.
with mean zero and variance 2« p. Hence Bernstein’s inequality yields the desired tail
bound for A. O

Since i is fixed, we drop the argument (i) in T5(i), f(i)s, Rs(i), etc. to ease the
notation below when there is no ambiguity. Recall that R, and R are defined by (22);
moreover, 7, and 7, are defined by (25). Let f and v be the signature vector and the
variance vector respectively given by VertexSignature(G, i, m) (Algorithm 1),
and let f" and V' be given by VertexSignature(G’, i, m).

Lemma 5.9 (Entrywise difference between signatures). Condition further on a real-
ization of edges between Ry U R, and S, (i, m + 2) in the graphs Gy, G, and G'.
Let P and K denote the conditional probability and expectation respectively. Then, for
s € J, we have

fs_fs/:Zs‘i‘As

for a random variable Z; and a deterministic quantity Ay satisfying
E[Z,] = 0;
o B[Z] < vy + Vv, —2ip(l — p — @)|NG(Ty) N NG (T)) N Sgy i, m + 1)

P{IZs| = 1} < 2exp (E[Z§J+t/3 ’

|As| S |ns| + |?7§| + 2n0'2p.

’

Moreover, the random variables Z are conditionally independent for different s € J.

Proof First, note that because of the further conditioning on the edges between Ry U R,
and Sg, (i, m + 2), the quantities 7, and 7, defined in (25) become deterministic.

As GO(BGO (i,m+ 1)) is a tree by Condition (B1), for every v € Sg (i, m), we
have

Ne()NSg@i,m+1) =Ng() NS, (i, m+ 1).
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Therefore, it holds that

fs= Z (degg(j) — 1 —np)
JENG(Tx)NSG (i, m+1)
= Z (degg(j) — 1 —iip) + (i — n)p [NG(Ty) NS, (i, m + D).

JENG(T)NSGy (i m+1)
Furthermore, in view of the partition

N6 (Ty) = (N6 (Ty) N NG/ (T)) U (NG (T)\NG (T))) U (NG (Ty) N NG (T )

we obtain
fi = > (degg(j) —1—1ip)
JENG(THNNG (THNSGo (m+1)
+ > (degg(j) — 1 —7ip)
JEWNG(TO\NG (TINNS, (i,m+1)
+ 15 + (@ = n)p |[NG(Ts) N Sgy(i.m + 1)|.
Consequently,
fs_fs/:Zs+ASs
where
Zs = > (deg (j) — deggr (/)
JENG(T)NN G (THNS, (i.m+1)
+ > (degg(j) —1—1p)
JEWNG(TN\NG (TIHNSg, (i,m+1)
- > (deggr(j) — 1 —iip)
JEWNG (TH\NG(T))NSg (i, m+1)
and

A =g =, + G = mp (NG (1) 0 Sy Gy m + D] = [N/ (T) NSy i, m + D ).
For the deterministic quantity Ay, we have
Al < Insl + gl 4+ p - 20%0 = [ns] + | + 202 p.
For the random variable Z;, it is not hard to see that the three sums in its deﬁnitiog
are over disjoint sets, so they are independent. Moreover, for Zj, the probabilities P

and P coincide, because the extra conditioning for IP is on edges disjoint from those
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used to define Z;. The means, variances, and tail bAounds for the three terms of Z; can
be derived using Lemma 5.8. Namely, we obtain E[Z;] = 0 and

E[Z]] = 20pii| NG (Ty) N Ng/(T)) N Sy (i m + 1)
+ p(1 = pIit| (NG (TO\N/(T)) N Sy (i, m + 1))
+ p(1 = p)i| (NG (TO\NG(T))) N Sy (i, m + 1)
< p(l — p)ﬁ<|NG(Ts) NS6y (i, m+ D] + [N (T N Sy (i, m + 1)\)
— (2p(1 = p)it = 2ap 1) NG (Ty) N NG/ (T)) N Sg,(i.m + 1)]
< Vs +V, = 2iip(1 — p — )| NG (Ty) N NG (T)) N Sgy(i,m + 1)

’

where the first inequality holds because all the neighborhoods in the three terms are
disjoint and contained in either Ng (Ts) or Ng/(T}). The tail bound for Z; follows
again from Bernstein’s inequality as in Lemma 5.8. The conditional independence of
Z, for different s € J follows from the disjointness of sets that we sum over in the
definition of Zj. O

Lemma 5.10 (Hoeffding’s inequality with truncation). Let X1, ..., Xy be indepen-
dent random variables satisfying that |IE[X,~]’ < 1 for T > 0 and that

2

t
), vVt >0,
1+1

P{|X; —E[X/]| > 1} < 26xp<

for a constant ¢ > 0 for each i € [N]. Then there exists a constant C > 0 depending
only on c such that, for any § € (0, 0.1),

N
P{| D" (X2 — BIxP)| 2 Clog(/8)y/Nog(1/5)
i=1
—I—C‘L’(\/N log(1/8) + 1og(1/5))] <.

Proof 1t is easily seen that

2 2
X7 —EIX71 = (Xi — EIX:1)” — E[(X; — E[X;1)"] + 2 E[X;1(X; — E[X;])
= (Y7 —E[Y2]) + 2E[X;]Y;
where Y; := X; — E[X;]. It suffices to control the sum of the above two terms over
i €[N].
Let us first control ZlNzl (Yi2 — E[Yiz]). For M > 0, we have
E[Y/]—E[Y - 1{|Yi| < M}] = E[Y? - 1{|Y;| > M}]
o0
= / 2t - P{|Y;| > t}dt
M
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0 —Ct2
=4/ texp( )dt
M 1+1¢

M + 1
< 16c 2+
C

exp(—cM/2) < (§/N)',

if§ € (0,0.1)and M = Cj log(N /§) for asufficiently large constant C; = Cy(c) > O.
Moreover, by a union bound, Yl.2 = Yl.z-]l{|Y,-| < M} foralli € [N]with probability at
least 1 — (§/N)'%0if Cy is sufficiently large. Thus, by Hoeffding’s inequality applied
to Y? - 1{|Y;| < M}, we have

il

N
=

(Y} —E[Y? 1{|Yi| < M}])‘ > 2M~/Nlog(1/8)] <3.

1
Combining the above two displays yields
N
P{| > (47 — E1Y21)| = 3C1 log(N/8)y/Nog(1/8) ] <.
i=1
Next, we turn to the term Y/ | E[X;]Y;. Since |E[X;]| < 7, the variable E[X;]Y;

is sub-exponential with parameter C,t for a universal constant C»> > 0. Bernstein’s
inequality then implies that

N
]P’H S EXY,
i=1

> Cat(y/Nlog(1/8) +log(1/9))} =8

for a universal constant C3 > 0.
The above two parts combined complete the proof. O

Lemma 5.11 (Difference between signatures). For any constants C, D, K, K' > 0,
there exist constants ngy, R, k > 0 with the following property. Suppose that

1
n > no, logn < ng < pRloglgn | o€ (0,k),

log (w*(logn)?) <m < Cloglogn, w > (logn)™.

Moreover, suppose that Conditions (B1) to (B7) hold with constants K,k > 0 and a
subset J with |J| = 2w. Consider the same conditioning as in Lemma 5.9, such that
ns and i, satisfy (24) for a constant K’ > 0. Then it holds with conditional probability
at least 1 — n~P that

n2
> % <2w(l—(1-9%)").
seJ $ S
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Proof Let
. . . 2
[ = {] € 86, m) : deggng () = 5np(1 = a)}.
By Conditions (B6) and (B7), we have that for any s € {—1, 1},

1
1] < (ng/3)" = S(np/2)" (1 = 8k)™ =< 5170 Ty

| —

ifk, o € (0,0.01) and m > 3. Since GO(BGO(i, m+ 1)) is a tree, it is easy to see that
NG (Ty) NN (T)) N Sgo (i, m + 1)

; 1 1
= Z (degGﬁG’(]) - 1) > -np- E(np/Z)m(l — 8k)™
Je(TsNTH\I

1
= E(np/z)'"“(l — 8K)™. (26)
Similarly, we also have

vs = np(l = p)[NG(T) NSg i, m+ D] = np(1 —p) Y (degg(j) —1)
JET\I

1 1
>np(l—p)- E(np/Z)m(l — 8i)" - NP = (1 = p)(np/2)" 21 — 8k)™.

On the other hand, by Conditions (B3) and (B4),

, . 2 (np)"+2
vy =np(l — P)|NG(Ts) NSg(i,m+ 1)} =np Z degg(j) = K “om
jeTy

The same estimates also hold for v;.
We will apply Lemma 5.10 with

o fS_f_y/ _ Zs‘l‘As
: NAZE 7R +v’

where Z; and A satisfy the conclusion of Lemma 5.9. Towards that end, let us first
establish some estimates for the mean and variance of X;. Using Lemma 5.9, (24),
and the above estimates for v, and v}, we obtain

Al
Vs +V,

Ins| + Ins| +2n%2p
T V200 = p)(ap/2ym (1 = 8y

[BLx1| =
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Y /2]
m

- 21(/7(”2 w2/logn + 2n%2p - 5K'w?/logn
T V20 = p)(ap/2ym (1 — Bicym — 21 = By
p)(np

m/2+1
[As] - 2K,(npz)m/z Viogn +2n°2p - 5K’ /logn

fors € J (i),

®x,]| = < < f J,
[ELXS]] s +V, T 200 = p)(np/2ym (1 = 8ym (1 —8i)m/? orse
27
and
Var(x,) — B2 _ v+ Vi =2ip(1 = p = 0)|NG(Ty) 0 Nor (T7) 0 Sy o + 1)
Vs + V, Vs + Vg
_Ap(l—p—wp/)" A —8)" (1 —80)"
— K2(np)m+2/2m =7 3K2

by Lemma 5.9 and (26) if « < 0.1. Therefore,

R[Z2] 4+ A2 _,_=so" 25(K")*w* logn

R[X2] =
[X5] Vi +V, 3K2 2m (1 — 8ic)m
(1 — 8k)" -
<l forse @)

if log (w4(log n)2) <m < Cloglogn, k > 0 is sufficiently small depending on C,
andn > ng =no(K, K', k), and

R[Z2] + A2 P 25(K")?logn - 26(K")2logn

I’E[sz] = / - 2 m  — m
Vg + Vg 3K (1 —8k) (1 —8k)

fors € J.

By the bound }f”{|ZS| > 1} <2exp (#ﬁﬁ) in Lemma 5.9 and that Var(X,) <

1, we see that I@’{|Xs — E[Xs]l > t} < 2exp (ffzg) Therefore, Lemma 5.10 can be
D

applied to show that, with conditional probability at least | —n™",

ZX? < ZIAE[XE] + C «/E(logn)w2 + Ci (meajx |IAE[XS]|>(,/wlogn + logn)
N

seJ seJ

for a constant C; > 0 depending on D, where we recall |J/| = 2w. Moreover, by
Condition (B5) and the above bounds on E[ X Sz], we have

Y oEIx= ) EXJ1+ Y BIx7

sel seJ (i) seJ\J ()
(1 —8i)™ ,26(K")*logn (1 —8k)™
< 2u(1 = L3 | (ognp 20D Lo8n g (1 - L8y
= v axz ) Tleen =g = 2w 5K2
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if m < Cloglogn, k > 0 is sufficiently small depending on C, w > (logn)*, and
n > ng. The above two bounds together with (27) imply that

Y x?<ow ( ﬂ)Jrcl\/_(lognﬁ/2

5K
seJ

Ci SK'Vlogn (,/wlogn+logn)

( 8K)m/2
(1 —8k)™
<20(1- 55—

if, again, m < Cloglogn, ¥ > 0 is sufficiently small depending on C, w > (log n)4,
and n > ng. Finally, if m > loglogn and n > ng = no(K, «), then

(1—80)" _ (18"

6k = (o =072

so the proof is complete. O

5.4 Conclusion

We summarize the result of this section in the following proposition.

Proposition 5.12 (Difference between signatures of typical correct pairs). For any
constants C, D > 0, there exist constants ng, R, oo, ¢ > 0 with the following property.
Let J be a uniform random subset of {—1, 1} of cardinality 2w for w € N. Suppose
that

1
n>ng, logn <ng <nRoeler o€ (0,ap),

log (w4(log n)2) <m < Cloglogn, w > (log n)*.

Then with probability at least | —n~P, for at least n — n' = vertices i € [n], we have
2
i) — fl 1
Z—(ﬂ(? ff(,)) §2w(1——). (28)
vs (i) + v (i) (log n)0-1

seJ

Proof We first check that, with probability at least 1 — n~P=1 Conditions (B1) to (B7)
hold for at least n — n!=¢ vertices i € [n] with constants ¥ > 0 to be chosen and
K = K(C, D) > 0, where ¢ > 0 depends on C, D, and k:

1. Condition (B1) is the same as Condition (A1), so the result follows from Proposi-
tion 4.12.

2. For Condition (B2), we apply Lemma 4.2 and the relations n > ng, logn < ng <
nm, and m < Cloglogn, where nop and R depend on C and D, to obtain
the following: With probability at least 1 — n~2~2, it holds for all i € [n] that
|BG,@i,m+ 1)| < K(np)"*+! < n®! where K depends on D.
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3. Condition (B3) is standard and in fact holds for all vertices j € [n] with probability
at least 1 — n~P~2 for a constant K > 0 depending only on D.

4. By Lemma 4.3, with probability at least 1 — n~?~2, Condition (B4) holds for all
vertices i such that Go(Bg, (i, m + 1)) is a tree, that is, whenever Condition (B1)
holds.

5. Condition (B5) is the conclusion of Lemma 5.6, so it suffices to check the
three assumptions in that lemma, but those are already guaranteed by Condi-
tions (B1), (B3), and (B4) respectively. Therefore, Condition (B5) holds up to a
possible change of the constant K.

6. Condition (B6) is very similar to Condition (A4), with [ = m, x = 1/3, and the
graph G replaced by G N G’ which is a G(n, p(1 — «)) random graph. As a
result, a straightforward modification of Point 4 in the proof of Proposition 4.12
yields result. Namely, we obtain the bound |{] € Sgy(i,m) : deggng (j) <
%np(l — a)} < K+3m|SGO(i,m)| for at least n — n'=2¢ vertices i € [n] with
probability at least 1 — n~P=2, but |SG, (i, m)| < K(ng)™ by Lemma 4.2.

7. Given the constants x, C, and D, we can choose § and K according to Proposi-
tion 4.12, and then choose g according to Proposition 5.1 to obtain Condition (B7)
for at least n — n'~%¢ typical vertices i € [n] with probability at least 1 —n=P~2,

Next, for any i € [n] satisfying Conditions (B1) to (B7), we can apply Lemma 5.7
to obtain that 7, (i) and 7/ (i) satisfy (24) with probability at least 1 — n~P=2 for a
constant K’ = K’(D, K) > 0. Then by Lemma 5.11, we obtain (28) for any such
vertex i with probability at least | —n~?~2 if k > 0 is chosen according to the lemma

and is sufficiently small depending on C so that (1 — 9«)" > W. O

6 Signatures of wrong pairs of vertices

The structure of proofs in this subsection is similar to that in the previous subsection.
However, the technical details are slightly more involved when considering two (pos-
sibly intersecting) neighborhoods N, (i, m 4+ 1) and Ng,(i’, m + 1), where i and i’
are distinct vertices.

6.1 Sparsification

The following lemma is in the same spirit as Lemma 5.6. In particular, note the extra
factor (np(+a)m + /wlogn) in (29b) compared to (29a) (a trivial bound would give
a factor |J| = 2w instead). This will be crucial to controlling & (i, i’) and ¢/(i, i') in
Lemma 6.2 and subsequent estimates in Lemma 6.4.

Lemma 6.1 (Sparsification for a pair of vertices). For constants C1, C2, C3, D > 0,
there exists K = K(Cy, Ca, C3, D) > 0 with the following property. Let J be a
uniform random subset of {—1, 1} of cardinality 2w > log n for w € N. With respect
to the randomness of J, the following holds with probability at least 1 —n~P for any
distinct vertices i, i’ € [n]: If

e Gy (BGO (i,m+ 1)) and GO(BGO @i',m+ 1)) are trees,
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o deg;(j) vdegs (j) < Cinp forall j € Bg,(i,m) U Bg, (i, m),
o |T()|VIT/()] < C2(*2)" forall s € {(—1, 1}, and
o |Bg,(i,m+1)NBg,(i',m+ 1)| < C3(ng)"™,

then
.o S el (np)m+l
(r?eaj)(lLs(l,l)|)v(r§1€ajx|Ls(z,t)|> <K= (292)
.o (”P)mH w
(sezles(l,z)|>\/(S€ZJ|L @, l)|> o (np(l—a)m + wlogn),
(29b)
where
Lg(i,i") == Ng(Ts (D)) N Bgy (', m + 1) NSy (i,m + 1), (30a)
Li(i,i") == Ng(T,(i") N Bgy(i,m + 1) N Sg, (i’ ,m + 1). (30b)

Proof Fix distinct vertices i, i’ € [n] such that the four conditions in the lemma hold.
Fors € {—1, 1}, let

as = |Ls(, 1))

By the conditions |T;(i)| V |7 (i")| < C2(*2)" forall s € {—1, 1} and degg; (j) Vv
degg/(j) < Cinp forall j € Bg, (i, m) U Bg, (i, m), we have

( p)m-H

a; < ) degg(j) < 106 o

JeT: ()

The same bound also holds for L (i, i"). Hence (29a) is proved.
In addition, we have

Y. as < By, m+1) N Bgy (i, m+ 1| < C3(ng)™.
se{—1,1}m

Since J is a uniform random subset of {—1, 1}"", Bernstein’s inequality for sampling
without replacement implies that, with probability at least 1 — n~2=3,

[J] [J] )
Zas§7 3 a kK o > a} logn -+ Ky max las| - logn

seJ se{—1,1}m se{—1,1}m
|J] (np)"*! (np)"*!
§K22—m(nq)m+K2 S |J|~10gn+Kleogn
(np)"*!
< 3K ( Jwl )
=JK2 om np(l T vwlogn
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for K1, K» > 0 depending on Cy, C2, C3, and D, where we used that |J| = 2w >
log . The same bound also holds for ., |L; (i, )], so (29b) is proved.
A union bound over all distinct i, i” € [n] then completes the proof. m]

Lemma 6.2 (Small overlaps). For any C,D > 1, there exists ¢ € (0,1/2) and
K,K',R,ng > 1 depending on C and D with the following property. Let J be a
uniform random subset of {—1, 1} of cardinality 2w > logn for w € N. If

1
n > no, logn < ng < pRloglgn | m < Cloglogn,

then with probability at least 1 — n~P | there is a subset T C [n] with |Z| > n— nl—c
such that the following holds. For all distinct i, i’ € Z, (29a) and (29b) hold, and

mj2+1
(r&ajx |25, i’)|) v (I?ealx ¢, i/)|) < K/(npz)m—/z,/logn, (31)

where

GG i =) (degg(j)—1—np)

JELs(i,i")

and ¢lGQ.i"):= Y (degg(j)—1—np). (32)

JjeLi(,i)

Proof Since we will apply Lemma 6.1, let us first show that, with probability at least
1—n~P~! thereisasubsetZ C [n]with |Z| > n —n'~¢ such that the four conditions
in Lemma 6.1 hold for any distinct vertices i, i’ € Z:

e Proposition 4.12 shows that with probability at least 1 — n~ ", at least n — n' ¢
vertices satisfy Condition (A1). The same proof with a slight change of constants
implies that, with probability at least 1 — n~?~2, there is a subset Z C [n] with
IZ| = n — n'~¢ such that Go(Bg, (i, 3m + 3)) is a tree for all i € Z. (Here the
radius of the neighborhood is chosen to be 3m + 3 which is larger than m + 1
required in the first condition of Lemma 6.1; this is because 3m + 3 is needed in
the fourth condition below.)

o As before, we have deg; (j) Vv degs/(j) < Cinp for all j € [n] with probability
at least 1 — n~P=2 where C; > 0 depends on D.

e By Lemma 4.3, with probability at least 1 —n=2=2, we have | Ty (i)| V |T/(i")| <
Cz(%)m for all s € {—1, 1}’ and all vertices i such that Go(Bg,(i,m 4+ 1)) isa
tree, where C, > 0 depends on C and D.

e By Lemma 4.2, it holds with probability at least 1 — n~?~2 that, for any distinct
vertices i, i’ € [n] such that Gy (l’)’c0 (i,3m+ 3)) is tree, we have |Bg, (i, m+1)N
Bg, (@', m + 1)| < C3(ng)™ where C3 > 0 depends on D.

Therefore, by Lemma 6.1, we obtain (29a) and (29b) for all distinct i, i’ € Z with
probability at least 1 — 2n~P=1 where |Z| > n— nl—e,
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The rest of the proof is split into three cases according to the value of d :=
distg, (i, i"). We focus on proving (31) for £,(i, i’), as the same argument also works
for ¢/(i,i").

Case 1: d < m + 1. In this case, we have i’ € Bg, (i, m + 1). Let us condition on an
instance of GO(BGO(i, m + l)), G(BGO(i, m+ 1)), and G/(BGO(i, m—+ 1)) such that
GO(BGO (i,m+ 1)) is a tree. Then L, (i, i’) defined in (30) is equal to

Ly(i,i") = Ng(Ty(D)) N Sgo(i'sm +1 —d) N Sgyiym + 1).

Under this conditioning, the random variables deg; (j) — 1, j € Ly(i, i "), are condi-
tionally independent Binomial(7z, p) where

ii :=n—|Bg,(i,m+1)| >n—n"!

as before. Consequently, ZjeLS(i,i’) (degG () — 1) ~ Binomial(7z|Ls (i, i")|, p), and
)

G =] Y (degg() — 1= np)

JeLs(i,i")
< Ka(y/np|Ls(i, i")|logn +logn) + (n — i) p |L(i, i)
< K3y/np|Ls(i,i")|logn

with conditional probability at least 1 — n~°~2 for constants K», K3 > 0 depending
on D. By a union bound over s € {—1, 1} and i,i’ € [n] together with (29a), we
obtain (31) for ¢, (i, i’).

Case2:m+1 < d < 2m+2.Inthis case, we havei’ ¢ Bg, (i, m+1). Letus condition
onan instance of Go(Bg, (i, m+1)UBg,(i’, m+1)), G(Bg, (i, m+1)UBg, (', m+
1)), and G’(BGO(z’, m+1)UBg, (', m+ 1)) such that GO(BGO (i, m+1)UBg, (", m+
1)) is a tree. Then there is a unique path y in GO(BGO (i, m+1)UBg,(i",m+ 1))
connecting i to i’, and y passes through a unique vertex v € Sg,(i, m + 1). Note
that v is adjacent to exactly two vertices in Bg, (i, m + 1) U Bg,(i’, m + 1), because
otherwise there would be a cycle in G (BGO (i, m+1DUBg, ', m+ 1)). For the same
reason, if j € Sg,(i,m+1)NBg, (', m+1) and j # v, then j is adjacent to exactly
one vertex in Bg, (i, m + 1) U Bg, (', m + 1).

In view of this structure, we have the following observation under the above con-
ditioning: If v ¢ Ly (i, i’), then the random variables

degG(]) - 17 J € LS(i’ i/),
are conditionally independent Binomial(nz, p), where
ini=n—|Bg,(i,m+1)UBgyi',m+ 1| >n—n" (33)
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On the other hand, if v € L (i, i), then
degg(v) —2 and degg(j) — 1, j € Ly(i,i")\{v},

are conditionally independent Binomial (7, p).
Consequently, ZjeLS(i,i’) (degG(j)—l)—ll{v € Lg(i,i")}is Binomial(n|L, (i, i")|,
p), and so

GG S| Y (degg() — 1) — Lv € Ly(i, )] + 1

JELy (i)
< Ka(VnplLs(i.i")|logn +logn) + (n = )p |Ls (i, )| + 1
< K3y/np|Lg(i,i")|logn
with conditional probability at least 1 — n~?~2 for constants K>, K3 > 0 depending

on D. By a union bound over s € {—1, 1} and i, i’ € [n] together with (29a), we
obtain (31) for &, (i, i’).

Case 3: d > 2m + 2. This case is trivial because L;(i,i") C Bg,(i,m + 1) N
Bg,(i’,m + 1) = @ so that £ (i, i) = 0. 0

6.2 Difference between signatures of a typical pair

Throughout this subsection, we fix distinct vertices i,i’ € [n] and a subset J C
{—1, 1} of cardinality 2w for w € N. Moreover, let us condition on an instance of
the three subgraphs

Go(Bg,(i,m+1)UBg,(i',m+ 1)), G(Bg,(i,m+1)UBg,(',m+ 1)),
G'(Bgy(i,m+ 1) UBg,(i',m + 1)),

and also all the edges between
Scoi,m+1)NBg,(i',m+1) and Sg,@i,m+2)
in Go, G, and G’, as well as all the edges between
SGo(i',m+ 1) NBg,(i,m+1) and Sg,(',m+2)
in Gy, G, and G’. Note that under this conditioning, the quantities £, (i, i) and £, (i, i)

defined in (32) are deterministic. Suppose that the instance we condition on satisfies
the following statements for fixed constants K, K', x > 0:

(C1) GO(BGO i,m+1)UBg,(",m+ 1)) is a tree or a forest of two trees;
(C2) [Bgy(i.m + D]+ [Bgy (i’ .m + 1| < n®!;

(C3) (29a), (29b), and (31) hold;

(€4 [{J € Sgo(i,m) U S, (i, m) : deggng: (j) < 2np/3}| < 2(np/3)";
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(C5) [Ty ()| AT/ = (np/2)™ (1 — 8k)™ forall s € {—1, 1}™.

We consider the randomness with respect to the remaining possible edges of the graphs;
let P and E denote the conditional probability and expectation respectively. Note that
for any vertex j € Sg, (i, m + 1)\Bg,(i’, m + 1), the random variable deg; (j) — 1
is conditionally Binomial(7z, p), where 7 is defined in (33). Moreover, these binomial
variables are independent across different j € Sg, (i, m + 1)\Bg, (@', m + 1).

In the following, let f (i) and v(i) be the signature vector and the variance vector
respectively given by VertexSignature(G, i, m) (Algorithm 1), and let f'(i)
and V/(i") be given by VertexSignature(G’,i’, m). Since i and i’ are fixed, we
omit the dependency of some quantities on (i, i) in the sequel to ease the notation.
For example, we omit the argument (i, i") in the quantities L and L, defined in (30),
and in the quantities ¢, and ¢/ defined in (32).

Lemma 6.3 (Entrywise difference between signatures). For every s € J, we have
fs(i) - fy/(l/) = Zs + As

for a random variable Z; and a deterministic quantity Ay satisfying

E[Z,]1=0; )

V(i) + V(") — 2n%2p — p(1 — p)it(|Lg| + |L}|) < E[Z2] < vs (i) + v, (i),
P —?/2 .

P{|Zs| >t} < 2exp (E[Zl§]+t/3>’

|As| < |§v| + |§y/| + 21’10'2p.

Moreover, the random variables Zg are conditionally independent for different s € J.

Proof Similar to the proof of Lemma 5.9, we start with

fi() = > (degg(j) — 1 —7ip)

jeNG(T:(i))ﬂSGO(i,erl)
+(@ — n) p |[NG(Ts () N Sy (i, m + 1)

Furthermore, in view of the partition
Na(Ts (D) = (NG (Ts())\Bg,y (i, m + 1)) U (NG (Ts (i) N Bg, (', m + 1)),
we obtain

() = > (degg(j) — 1 —7ip)
JEWG (T, (D\Bay @' m+1)N S (m+1)

+ ¢+ (1 —n)p [NG(T5() N Sg,y (i, m + 1)

by the definitions of ¢ in (32) and L in (30). An analogous decomposition holds for
f1@i"). Consequently,

@) = [() = Zs + Ay,
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where
7 = Z (degg(j) — 1 —ip)
JEWNG(T()\Ba, (i .m+1)NSG, (i ,m+1)
- > (degg (j) — 1 —iip).
JEWG (T ")\Bay (i, m+1)NSc, (i’ m+1)
and

Asi=8 =g+ @—n)p (|NG(Ts(i)) N SGy (i, m+1)| = [N (T7(")) N Sg, (i, m + 1)|).
For the deterministic quantity Ay, we have
Al < 18l + 1801 +n p 2%t = 5] + 165 + 202 p.
For the random variable Zj, it is not hard to see that the two sums in its definition are

over disjoint sets, so they are independent. Moreover, each sum is the deviation of a
binomial random variable from its mean: namely,

> (degg () — 1)

JEWNG(T3 ()\Bay (i .m+1)NSGy im+1)

is Binomial (i1 - |(Ng (Ty (1))\Bg, (i', m + 1)) N Sg, (i, m + 1)
the other term. Hence, we obtain E[Z,] = 0 and

, p), and similarly for

E[Z]1 = p(1 — p)it| N (T (0)\Ba, (', m + 1)) N Sg, (i, m + 1)
+ p(1 = p)ia|(No (T ()\Bg, (i, m + 1)) N S, (i, m + 1)

= p(1 = p)i(|NG(Ts () N Sy i m + 1)
+ [N (T N Sy m + 1)| — |Ly| — |L;|)
> vy (i) + v, (i) — 2n°%p — p(1 — p)ii(|Ls| + |L}])

by the definitions of v, (i) and v, (i") in Algorithm 1, Condition (C2), and the fact
n —n < n%! It is also obvious that I_E[Zsz] < vs(i) + v} (i"). The tail bound for Z
follows from Bernstein’s inequality. The conditional independence of Z; for different
s € J follows from the disjointness of sets that we sum over in the definition of Z;. O

Lemma 6.4 (Difference between signatures). For any constants C, D, K, K’ > 0,
there exist constants ng, R, k > 0 with the following property. Suppose that

1
n > no, logn < ng < nRloglogn a € (0,k), 3 <m < Cloglogn,

w > [(logn)’].
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Moreover, suppose that Conditions (C1) to (C5) hold with constants K, K’, k > 0 and
a subset J with |J| = 2w. Then it holds with conditional probability at least 1 —n
that

() = f1G))° 1
Z NOERAR) = 2“’(1 B (1ogn)0-9)'

seJ

Proof Let

. . . 2
I .= {] € Sg, (i, m) : deggng (j) < gnp(l —a)}.

By Conditions (C4) and (C5), we have that for any s € {—1, 1},

1 1
1] =2(ng/3)" < 5(np/2)™ (1 — 8)™ < 3 (ITs @ AT )

[\

ifk, € (0,0.01) and m > 3. Since GO(BGO(i, m+ 1)) is a tree, it is easy to see that
Vs(i) = np(1 = p)[NG(T,() N Sgli.m + D] =np(l—p) Y (degg(j) — 1)
JET(D\I
1 1
>np(l—p)- z(np/Z)'"(l —8i)" - SnP = (1 — p)(np/2)" 2 (1 — 8i)™.

The same estimate also holds for v, (i").
We will apply Lemma 5.10 with

_ SO FG) _ Zi+ A
W@+ V@) @)+ VD

where Z; and A satisfy the conclusion of Lemma 6.3. Towards that end, let us first
establish some estimates for the mean and variance of X;. Using Lemma 6.3, (31),
and the above estimates for v, (i) and V, (i"), we obtain that for all s € J,

x| = |A] 2K’("”) ikt «/logn+2n02 - 5K’ /Togn
W= MO - vaa —p)(np/z)m+2(1 gcym (1 —8k)m/?
(34)
and
72 . !y 02, _ = 1
Var(X,) = .]E[ZX] . Vg (i) + v, (') — 2n .p p(l‘ pIa(|Ls| + L))
Vs (1) + v (@) Vs (1) 4 v (i)
o 2%+ p( = pyi(ILsl + 1L51)
a 2(1 = p)(np/2)™T2(1 — i)™
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E[Z2] -

ROEAC < 1 and ]P’{|Z | > [} <
_42 2 _ _

2exp <—E[Z§]it/3>' It follows that P{| X, — E[X,]| > ¢} < 2exp (1+l§3) There-

fore, Lemma 5.10 can be applied to show that, with conditional probability at least

-D
1—n=",

ZXSZ > ZI_E[XSZJ — C1v/w(logn)®? — C1<majx |I_E[XS]|>(\/wlogn + logn)

seJ seJ

Lemma 6.3 also gives Var(X5) =

for a constant C; > 0 depending on D, where we recall |J| = 2w. Moreover, by the
above lower bound on Var(X;) < IE[XSZ] and (29b) assumed in Condition (C3), we
have

o o 20%%p + p( = pya(ILs| + IL}))
2B = 20 = ) L s

seJ seJ
-0.7 _ p(l —pn
2(1 = p)(np/2)m+2(1 — 8k )™

(np)" ! w
K 2m (np(l—a)’”+ wlogn)

K>
>2wll—- —n——
(1 —9)™logn

1
for a constant K > 0 depending on K, if w > (logn)3, logn < ng < nRKweben,
o < k,and n > ng. The above two bounds together with (34) imply that

>2w—n

K
Sox2zow(1l- —— ) — C1Vwllogn)*?
oy (1 —9«)™logn

5K’ /logn
- C TP )m/z(,/wlogn—f—logn)

K3
>2w(ll— ————
( (1 —=9«)m logn>

ifw > [(logn)’].Finally,ifm < Cloglognandx > Ois sufficiently small depending
on C, then

K3 - 1
(1 —=9k)™logn ~ (logn)0?’

so the proof is complete. O

6.3 Conclusion

We summarize the result of this section in the following proposition.
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Proposition 6.5 (Difference between signatures of typical wrong pairs). For any con-
stants C, D > 0, there exist constants ng, R, oy, ¢ > 0 with the following property.
Let J be a uniform random subset of {—1, 1} of cardinality 2w for w € N. Suppose
that

1
n > no, logn < np(l —«a) < nRloglogn | o € (0, ap),

3<m<Cloglogn, w > |(logn)’].

Then with probability at least 1 —n=P, there is a subset T C [n] with |I| > n —n'~¢
such that for any distinct i, i’ € Z,

Z —(fS(i) — fs/(i/))z > 2w<1 S ) (35)
RGOS AU N (logn)®9 /"

Proof We first claim that, with probability at least 1 — n~P=1 thereis asubsetZ C [n]
with |Z]| > n — n!=¢ such that Conditions (C1) to (C5) hold for all distinct i,i’ € T
with constants K, K’, k > 0. To be more precise, K and K’ will depend on C and D,
k is to be chosen, and ¢ depends on C, D, and «. The proof is very similar to that of
Proposition 5.12, so we only provide a sketch and point out the differences.

1. Ifdistg, (i, ") < 2m+2, then Condition (C1) is weaker than that G (BGO (i,3m+
3)) is a tree. If distg,(i,i’) > 2m + 2, then Condition (C1) is saying that
Go(Bg,(i,m + 1)) and Go(Bg,(i’,m + 1)) are both trees. In either case, we
can show that the neighborhoods of most vertices are trees with high probability
as before.

Condition (C2) is essentially the same as Condition (B2) up to a constant.
Condition (C3) is a direct consequence of Lemma 6.2.

Condition (C4) is essentially the same as Condition (B6) up to constants.
Condition (C5) is a consequence of Condition (B7) since |T5(i)| > |Ts (i) N T, (i)].

Al o

Therefore, if « is chosen according to Lemma 6.4, we obtain (35) for any distinct
vertices i, i’ € T with probability at least 1 — n~P~2, O

Proof of Theorem 2.1 Note that Algorithm 1 is equivariant with respect to the permuta-
tion 7 inthe sense that VertexSignature(G”, 7 (i), m) and VertexSignature
(G, i, m) have the same output. Therefore, we may assume without loss of generality
that 7 is the identity. With the choice m = [22loglogn] and w = |[(log n)’] in
Algorithm 2, it is easy to check that the assumptions of Propositions 5.12 and 6.5 are
satisfied. Therefore, these two propositions together yield a desired subset Z C [r] such

SNl 2 Nl 2
that Y, GXO=ROR o -1y angy T GO-ROR g 1)

Vs () 4V} (1) Jlogn Vi (1) +V; (i) Jlogn
for distinct i, i’ € Z. The theorem follows immediately. O
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7 Construction of an exact matching

This section is devoted to developing a procedure that refines an approximate match-
ing to obtain an exact matching. Before proving the main result, we establish some
auxiliary statements.

Lemma 7.1 (An elementary decoupling). Let M > O be a parameter, let I be a fixed
graph on [n], and let Q, W be two (possibly intersecting) subsets of vertices of I such
that

INcG)NW|>M foralli € Q.

Then there are subsets Q' C Q and W' C W such that Q' " W' = &, |Q'| > |0|/5,
and

INc(D)NW'|>M/2 forallie Q.

Proof If |Q\W| > |Q| /5 then there is nothing to prove, so we can assume that
QN W|>4[0]/5. Let Q be a uniform random subset of O N W. Consider random
disjoint sets Q and W := (W\Q) uen W)\Q) Fixi € QN W.Note thateach j €
N1 (i)NW belongs to N1 (i)N W with probability atleast 1/2, and | N (i)NW| > M by
assumption, so the variable |NT (i) N W| dominates Binomial(M, 1/2) stochastically.
Since this is still true conditional on i € Q, we have

Pli € 0, INt()NW| = M/2} =Pli € O} - P{INt() N W| = M/2 | i € O}

=

S
1 1
2 4

| =

It follows that

E|{i € O0: Nc)NWI=M/2)|= ) Plie . INt()NW| = M/2}

icONW
lenwi_ 0l
- 4 -5

Therefore, there is a realization of (Q, W) such that |{z € Q ¢ NEG) N W|
M/2}| = 1Q1/5. It then suffices to take W' = W and Q' = {i e 0 INr()NW|
M/2}.

alv v

For any subset I C [n], let I€ := [n]\1.

Lemma 7.2 (Growing a subset of vertices). For any 8’ € (0, 1/2], there are ngy, ¢ > 0
depending on §' with the following property. Assume n > ng, and that rn > logn. Let
I" be a G(n, r) graph, and let I be a random subset of [n] (possibly depending on T'"),
with |I| > n — §'n/6. Define a random subset of vertices

i= {i elnl: INFG)N I < S/rn}.
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Then we have
.
IP’{|IC| < Z'IC|} > 1 — exp(—crnlogn).

Proof Given the assumptions on /, by considering sets W = I¢ and Q C I€, we
obtain

[17¢] > |1/4} €
£ = {a Q. W Clnl: |W| <8n/6, |0

— [IW|/4] #0, Nt () N W| > &'rn foralli Q}.
Further, according to Lemma 7.1, £ is contained in the event

&= {3 O\ W Clnl: |W|=<&n/6, 10 =[[IW[/41/51#0, O'NW =g,

INFG) N W > 8'rn/2 foralli e Q/}.

We estimate the probability of £ by taking the union bound over all possible realiza-
tions Q' and W’ (note that necessarily | W’| > 8'rn/2 in the event description). Observe
that for any disjoint fixed subsets Q' and W', the binomial variables |[N(i) N W],
i € Q, are mutually independent (this is the reason for applying the decoupling
lemma, Lemma 7.1). We then get an upper bound

18'n/6] n w k
P> 110/4) = Y <”> 3 (Z)P{;biza’mﬂ},

w=T8m/2] 7 k=TTwy41/5]

where by, ..., by are i.i.d. Bernoulli(r) variables.
Applying Chernoff’s inequality (first estimate in Lemma 4.1), we get

i rw c18'rn
]P’{ b; > 5’rn/2} < ( - ) ,
= 8'rn

for some universal constant ¢; > 0 and all w < §'n/6 (assuming that n is large
enough). Thus,

[8'n/6] n w k c18'rnk
~ éen en w
SR DYDY (;) (7) (5_> :

w=[8'rn/2] k=[Tw/41/5]

A straightforward computation completes the proof. O
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Lemma 7.3 (Number of neighbors). For any ¢ € (0, 1] and o € (0, ¢/4], there is
ng > 0 depending only on ¢ with the following property. Let n > ng and g € (0, 1).
Assume that p := (1 — «)q satisfies pn > (1 + ¢)logn. Let Gy, G, and G' be as
before. Then with probability at least 1 — exp(—epn/8),

ING (i) NN ()| > e2pn/256  foralli € [n].

Proof Pick any vertex i € [n]. The variable |Ng (i) N Ng(i)] is Binomial(n — 1,(1 —
o) p), so, applying Chernoff’s inequality (second estimate in Lemma 4.1), we get

P{ING (i) N Ngr (D] < u(l —a)p(n — 1)}
<exp(—(1 —a)p(n — 1)) - (e/u)"1—0P=D

for every u € (0, 1). Thus, assuming that n is large enough, we have

PLING (i) N Ng ()] < &2 pn/256} < exp(—(1 — ) p(n — 1)) exp(e pn/16)
< exp(—(1 —3¢/8)pn).

Taking the union bound over i € [n], we get
]P’{ING(i) NNg (i) > ezpn/256 foralli e [n]} > 1 —nexp(—(1 —3¢e/8)pn).
It remains to use the assumption pn > (1 + ¢) logn to get the result. O

The next lemma is just a restatement of Lemma 4.6 in a more specific context:

Lemma 7.4 (Number of common neighbors of distinct vertices). For any §” > 0 there
are n; € Nand ¢" > 0 depending on 8" with the following property. Assume that n >
ng and that p € (0,1/2) and a € (0, 1/2] satisfy pn > logn and 4pnlogn < /n.
Let Go, G, and G' be as before. Then with probability at least 1 — exp(—c” pnlogn),
we have

ING(D) NN (i) <8"pn foralli,i’ € n], i #1i .

Proof The result follows immediately by applying Lemma 4.6 with I' = G and
J = {i,i'}, together with a union bound over distinct i, i" € [n]. O

Proposition 7.5 (Improving a partial matching). For every ¢ € (0, 1], there exists
ng > 0and k € (0, 1) depending on ¢ with the following property. Assume that

n > nyg, (14+¢e)logn < pn < , o € (0,¢e/4].

~ 4logn

Let the graphs G and G' be as before. Assume that T is a random subset of [n] (possibly
depending on G and G'), and that g : J — [n] is a random injective mapping (again,
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possibly depending on G and G’). Let
E=|{ltieT: gi)=i}| =n—«n}.

Define a random subset J C [nlanda random injective mapping g : J = [n]
as follows: For every i € [n], i is in the set J if and only if there is a (unique) vertex
i’ € [n] such that

o [gNG(I)NT) N NG (i) = e2pn/512;
o [gNG(I)NT)NNg ()| < e2pn/512 forall j € [n]\{i'};
o IgNG(J)NT) NNG(i")| < &2pn/512 for all j € [n]\{i}.

We then set g(i) := i’ for any such pair of vertices i and i’.
Then with probability at least P(E) — exp(—epn/9),
A e 1 L. N
|{l eJ: gh) =1}| > §n+ §|{l eJ: gl)= l}|
Proof Define random sets

I'={jeJ: g(j)=j}
[={ielnl: [Ng@)NnI|<27"%pn},

I':= {i € [n]: |Ng/(i) N IC| < 2_1082[771},
and consider the event
£ = {|1”C}v|(i’)°‘| < £|1"|, |NG (i) N\ NG (i)| = e?pn/256  foralli € [n], and
NG () NN @] <2702 pn foralli,i’ € [n], i #1'}.

If we choose « > 0 sufficiently small and ng sufficiently large depending on &, then,
assuming n > ny, the event £ N & has probability at least

P(€) — exp(—&pn/9),

by combining Lemmas 7.2, 7.3, and 7.4. We claim that everywhere on £’ N &, the set
J and the mapping g satisfy the conclusions of the proposition.

Condition on any realization of G, G’, J, g such that the event £’ N £ holds. Pick
any vertex i € I N I'. By the definition of £’ N &, we have

|gWNG () N T) NN (D] = [Na@) N T NN ()]
> |NG(@) N NG ()| — [Na(G) N I¢|
> &2pn /256 — 2702 pn > &2 pn/512.
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On the other hand, for every i’ € [n]\{i} we have

lgNG () NT) N NG ("] < [Na@) NI NN ()| + |sWNe @) N (T\D) NN (0]
< [Ne() N NG ()| + [Na () N I¢|
< 271082pn + 2710£2pn = szpn/512,

and, similarly,

g NG (") NT) N NG ()| < [Na(@) NI NNG ()] + [gWNa (") N (T\D) NN ()]
< WNa(@) N NG ()] + |16 N N ()|
< 2_1082]7” + 2_1082pn = szpn/512.

Thus, I NI’ C J and g@i) =iforalli € I NI'. Moreover, by the first condition in
&', we have

7 ' —lrel —_ |¢1\¢ _l c_l l
|[INT|=n— I |0 =n ST =5n+ 31,

so the result follows. O

Proof of Theorem 2.4 In short, the theorem follows by applying Proposition 7.5 itera-
tively.

To be more precise, first note that whenever we set 7¢(i") = i in Algorithm 4, it is
impossible to have 7, (j) = i for j # i’ or m¢(i’) = j for j # i thanks to the three
conditions. As a result, 7y is a well-defined injective function between subsets of [r]
after the loop through i = 1, ..., n, and so m, can be extended to a permutation on

(n].
Next, for any £ € [Hogz n]] and i € [n], we have n[_ll (J\f(;n (i)) = rr[_ll o

n(NG (n_l(i))). Denote gy = ne_l o 7. Therefore, when setting 7y (i) = i in Algo-
rithm 4, we are defining g¢ (7 ~'(i)) = i’ if the conditions

o [ge-1(NG(@™ 1)) N NG ()| = €2 pn/512,

o [ge—1(NG( 1) N NG (j)| < e2pn/512 forall j € [n]\{i'}, and

o |ge—1(NG()) NNG ()| < e?pn/512forall j € [n]\{z ' (i)}

are satisfied. Replacing 7 ~! (i) by i in the last statement (which is simply a change of
notation as i varies over [n]), we see that Proposition 7.5 can be applied with 7 = [n]
to yield the following: With probability at least

B{[ti € (1) ge-1) # )] < 5777 | — exp(—epn/9).
we have

(i e n: 2e) # i} < 5
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To conclude, note that

Hieml:ge) #i}| =i eml:n; omG) #i}| =|{i € n]: () # 7}

Since 79 = 7 and 7i0g, 7 = 7, applying the above argument iteratively for £ =

1,..., [log, n] gives that, with probability at least
]P’{|{i en]:n@) #nx@)} < Kn} — [log, n] - exp(—epn/9),
we have
. . ) Kn
Hienl:72G) £#n@)}| < o < 1,

that is, 7 = 7. Since [log, n] - exp(—epn/9) < exp(—epn/10) by the assumptions

on the parameters, this completes the proof. O
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