
 

Discrete Hilbert Transform via Memristor Crossbars 
for Compact Biosignal Processing 

 

Lei Zhang 
Department of Electrical and Computer 

Engineering 
The George Washington University 

Washington DC, 20052, USA 
Email: zjiaz_821117@gwmail.gwu.edu 

Zhuolin Yang 
Department of Electrical and Computer 

Engineering 
The George Washington University 

Washington DC, 20052, USA 
Email: zlyang@gwmail.gwu.edu 

 

 

 

Kedar Aras  
Department of Biomedical Engineering 

The Georgre Washington University 

Washington DC, 20052, USA 
Email: kedar_aras@email.gwu.edu 

Abstract— The Hilbert transform is widely used in 
biomedical signal processing and requires efficient 
implementation. We propose the implementation of the discrete 
Hilbert transform based on emerging memristor devices. It uses 
two matrix multiplication layers using weights programmed in 
the memristor array and a linear Hadamard product 
calculation layer mappable to CMOS. The functionality was 
tested on a dataset of optical cardiac signals from the human 
heart. The results show negligible <1% angle error between the 
proposed implementation and the MATLAB function. It also 
has robustness to non-idealities. This proposed solution can be 
applied to bio-signal processing at the edge. 
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I. INTRODUCTION 

Artificial intelligence algorithms and information 
technologies are being adopted to analyze medical data in 
specialties like radiology, oncology and cardiology, promising 
faster interpretation with accuracy close to doctors’ 
diagnostics [1]. The next frontier is to bring these powerful 
algorithms to implantable medical devices. An example is the 
implantable cardioverter devices needed for life-saving 
resuscitation of patients suffering from cardiac ventricular 
fibrillation. Existing implantable cardioverter devices have 
low resolution for sensing and therapy using a single point 
contact sensor to estimate the heart rate. Heart conformal 
electronic platforms promise high spatial definition 
measurements across the entire heart ventricle and low-energy 
stimulation [2], aiming to provide personalized electrotherapy 
that terminates life threatening tachycardias with 10x-100x 
less energy than a typical shock [3]. However, the few existing 
prototypes used in research need a large number of wires to 
extract the sensor data for processing on the lab computers. In 
prior work [4], we have proposed a distributed analog 
computing algorithm which could be mapped to a network of 
integrated chiplets. A computing chiplet would be integrated 
with one or more sensors and actuators, all embedded in an 
organ-conformal substrate. Such system could support high 
resolution, ideally with hundreds or thousands of sensors for 
millisecond decision-making for real-time therapy. While 
promising, this computing technology would require the 
sensor signals to be pre-processed via Hilbert transform before 
the abnormal cardiac wavefronts can be determined. 

Hilbert transform has been an important signal processing 
method in engineering, science, and medical applications, as 

it is useful to identify the dynamic characteristics of non-
stationary and non-linear systems. For ventricular 
arrhythmias, the Hilbert transform is an efficient signal 
analysis method for determining the instantaneous frequency 
of time-varying electrocardiogram signals captured from local 
sensors on the heart tissue [5,6]. The Hilbert transform 
representation of the data is key in the detection of subtle 
frequency changes needed to recognize the initiation and/or 
termination of ventricular tachycardia / fibrillation. Therefore, 
an integrated real-time organ conformal system, such as the 
distributed network of computing chiplets previously 
proposed (Fig. 1), would have to include on-chip capabilities 
for the Hilbert transform pre-processing. 

Area, energy and speed are concerns in current hardware 
technologies based entirely on traditional transistor CMOS 
circuitry [7]–[11]. Emerging electronic devices could support 
faster, more energy efficient and more compact 
implementations. Analog computing hardware based on new 
device technologies, such as memristors, promises to 
implement small neuro-inspired networks 103-106 times faster 
and more efficiently than conventional technologies [12] by 
accelerating the vector-matrix multiplication at the physical 
level. Memristors (or ReRAM) are nanoscale devices with 
two terminals and programmable conductance which maps 
well to a matrix architecture (crossbar).  

 
Fig.1 Motivation to implement DHT on-chiplet for pre-processing as part of 
a high resolution cardiac implant. 

In this work, we propose the implementation of Discrete 
Hilbert Transform (DHT) using memristor crossbars. Since 
memristor devices are notorious for having device non-
idealities, such as state noise, yield issues and limited 
precision, this work pursues an exploratory investigation via 
simulation that consider the potential memristor-related non-
idealities and their impact on the accuracy of the memristor-
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based DHT results by comparison with a software benchmark 
obtained in MATLAB. 

II. METHODS 

A. Hilbert Transform 

Hilbert transform  of a temporal domain signal  
is defined by the convolutional equation [13] :  

   1
   

  



   1

 ∗      1 

which is a convolution between  and  
.  

The Discrete Hilbert Transform (DHT) can be calculated 
based on the Discrete Fourier Transform (DFT) aiming to 
calculate the frequency spectrum of discrete temporal signals. 
The corresponding inverse process of the DFT is the inverse 
Discrete Fourier Transform (IDFT) to convert the frequency 
domain signal to the temporal domain signal. The equations 
are:  

  1
  

                    2



 

where  is the discrete Fourier transform of the time 
domain signal , n = 0, 1, 2, …, N-1.  

From the equation, the length of the time domain signal is 
N,   represents the discrete point at N. The calculated 
spectral value is . Each value at N time step is required 

to multiplied by the factor 
  , which is a complex 

number. By summing up all these products, the kth spectral  of a discrete time signal can be acquired.  

   
                          3




 

From equation (2) and (3), the expression can be 
implemented via vector-matrix multiplication. Such an 
implementation was proposed for the Discrete Fourier 
Transform in [14]. The vector-matrix multiplication is 
implemented in digital hardware via multiply-accumulate 
(MAC) operations. The equation of the single MAC 
operation node is: 

   



                                      4 

where y is the calculated output,  is the set of input signal 
with a length of .   is weight matrix. As seen in Equation 
(4), the output is calculated via the sum of the weighted 
inputs.  The MAC operation is critical in neural networks for 
artificial intelligence applications. 

B. Memristor Implementation 

Emerging computing technologies, such as memristor 
devices, have demonstrated advantages in terms of energy 
and compact implementation of deep neural networks [15], 
mapping MAC operations physically to hardware using 
Ohm’s and Kirchhoff’s laws. They can also be ultra-scaled, 

down to 2 nanometers lateral dimensions [16]. A memristor 
device is commonly implemented with a sandwich structure 
of metal-insulator-metal (Fig.2a). The intermediate insulator 
is typically an oxide which serves as a memristive functional 
material. A one-step ‘forming’ process is needed to create the 
filamentary path in the insulator. Set and reset pulses can then 
be reversibly applied to program the device to a desired 
conductance state between low (OFF) and high (ON) states 
(Fig.2b). Memristor devices can be integrated with 
complementary metal-oxide-semiconductor (CMOS) control 
circuitry as dense matrices (crossbars) for MAC operation 
(Fig.2c). A typical current-voltage characteristics of a 
memristor device is shown in Fig.2d. 

 
Fig.2 Memristor device. a) Structure; b) Symbol and sketch of the switching 
process; c) Back-end-of-line integration of a memristor crossbar (top) onto 
CMOS circuitry (bottom); d) Current vs. voltage characteristics. 

C. Proposed Hilbert transform mapped to MAC operation 

In this work, we propose a method of mapping Hilbert 
transform to the memristor-implemented MAC operations 
(Fig. 3). In the proposed method, the fixed weight matrices 
store the calculated values needed for the MAC operation to 
map the mathematical formula of the transformation. Each 
matrix supports a step in the calculation - first a fast Fourier 
transform, followed by an inverse fast Fourier transform. To 
calculate the discrete Hilbert transform, a 2-layers MAC 
operation structure and a linear Hadamard product layer are 
proposed. Both DFT and IDFT stages map the mathematical 
formulas to the numerical value of the memristor arrays. 

 
Fig.3 Sketch of the memristor-based Hilbert transform 
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To calculate the whole transformation, the size of the input 

layer needs to be equal to the sampling length of the input. 
For the second stage, the number of neurons in this layer 
depends on the length of spectral signal resulting from the 
DFT. These parallel nodes are necessary, and they all receive 
the same input values. The only difference is in their weights, 
the value of the weights depends on the value k, which is the 
index of the nodes in the second layer. A signum function 
connects the two to represent the convolutional term in the 
time domain for the Hilbert transform and zero out all 
negative values in the frequency domain. The third layer 
calculates the IDFT. All the values in the weight matrix are 
similar to the first layer, the only difference is the sign in the 
complex factor. The simulation was benchmarked against the 
predefined ‘Hilbert’ function in MATLAB. 

D. Metrics 

To compare the overall quality of the different methods, 
we use the root mean square error (RMSE) analysis, which is 
the most expressive quantity for the difference between two 
sets of similar samples as well as eligible for the noise 
performance analysis. RMSE of the memristor-based Hilbert 
Transform results by comparison with the benchmark 
MATLAB result is defined as: 

    ∑ 
                          5 

where N is the data points in sequence of   1, 2, … , .  is 
the actual signal need to be evaluated.  is the reference 
of the error calculation. In this work, the reference is the 
MATLAB ‘Hilbert’ function. For both one-dimensional and 
two-dimensional signal, one simulation only saves one value 
point for the evaluation. The calculated results of the 
intermediate DFT are based on the spectral domain signal, 
and the Hilbert transform is based on the phase domain. All 
phase domain outputs are rescaled to the range -1 to 1 for 
RMSE analysis. 

III. RESULTS 

A. Dataset 

The dataset consisted of 4,000 optical maps of the 
fibrillation behavior in a ventricular (epicardium) tissue 
recorded at 1kHz sampling rate with a size of 100*50 pixels. 
Optical signals were used for this study because of their high 
resolution of the optical signal compared to existing lower 
resolution electrical sensor arrays in organ conformal 
platforms. To obtain the data, a deidentified donor human 
heart from the Washington Regional Transplant Community 
(Falls Church, VA) was used. The study was approved by the 
Institutional Review Board at the George Washington 
University. Details on the measurement setup for this data 
were presented elsewhere [17].  

The fibrillation events presented in the recording allow for 
the analysis of various wavefront patterns. An example is 
shown in Fig. 4. The wavefront and the singularities are 
detectable in phase domain, therefore, the Hilbert transform 
is used to transform the time domain raw optical data into the 
phase domain with a scale between  and  [5].  

 
 
 

(A)           (B)            (C)            (D) 

    

Fig.4. Representative examples of DHT on cardiac mapping. A) Raw input 
image #100 and B) its corresponding Hilbert transform; C-D) similar for 
input #150.  

B. Ideal implementation 

In this analysis, the memristor array is assumed to consist 
of ideal devices that have infinite resolution. Their resolution 
would match the MATLAB benchmark which is 64-bits 
floating point.  

As shown in Fig.5 through the Hilbert transform, the raw 
input optical signal is transformed to the phase domain. Fig.5 
B shows an example used for the phase domain signal of the 
Hilbert transform in MATLAB and the array implementation 
results. The RMSE is calculated on the rescaled phase domain 
signal where the scale is -1 to 1. These results indicate that 
the array implementation of the Hilbert transform can achieve 
a RMSE at 0.0769 on average of 4000 images compare 
against the benchmark.  

(A)            (B)          (C)           (D)              (E) 

 
Fig.5 Proposed vs. benchmark DHT: A) an example of raw input optical 
signal #100; B) its benchmark phase mapping obtained from MATLAB; C) 
proposed DHT assuming ideal memristor crossbars; D) the difference 
between proposed vs. benchmark; and E) calculated RMSE for all 1000 
images. 

C. Impact of Limited Bit Precision 

While the results of the RMSE analysis using the 
proposed method with the ideal floating-bit precision are 
promising, such high-level precision is not possible to 
achieve in hardware implementation because of the 
constrains of the memristor device, as well as power and area 
in neuromorphic hardware for inference at the edge. 
Memristor devices have shown to have >6-bit equivalent 
number of states. 

In this section, the results for lower fixed-bit precision 
simulation are investigated, to make the algorithm easily 
mappable for hardware. The rounding method in this study is 
rounding-to-nearest. Fig.6 compared the results with the 
different bit level limitations. Bit level from 1 bit to 8 bit was 
explored. The results indicates that the overall RMSE 
decreases as the bit value increases. At bit level 6, possible 
with a memristor implementation, the averaged RMSE is 
0.1579 which is very close to the ideal case. This is promising 
since memristor devices have shown to have >6-bit 
equivalent number of states [17,18].  
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   (A)                                                    (B)        

 
Fig.6 Bit precision analysis, A) RMSE for all images calculated for various 
bit precision levels vs. the 64 floating point precision from MATLAB, B) 
mean RMSE for different bit precision levels. Error bars represent standard 
deviation. 

D. Read Noise Analysis 

Another concern is the reading noise which might occur 
when doing the MAC operation through the pre-programmed 
memristor array. The memristor potentially could suffer from 
read noise, as prior literature has shown typical noise level 
for oxide-based devices with a standard deviation of 0.007 to 
0.1 due to Johnson-Nyquist noise, random telegraph noise, 
etc.[20] 

The results shown in Fig.7 indicate that the performance 
of the algorithm in terms of RMSE are robust to read noise. 
The noise was modeled as a Gaussian distribution with mean 
equals to 0 and desired standard deviation. The noise model 
applied to all 4 metrics for both real and imaginary part for 
both FFT and IFFT. The value in the model is limited to 1 
(representing the maximum conductance of the memristor) 
and -1 (its respective minimum conductance). With a larger 
standard deviation, by applying the noise model, the value of 
the memristor array might exceed 1 or -1, so truncation is 
used to clip the value. In Fig.7 (B), the worst case of RMSE 
is at sigma=0.1, with the value of averaged 0.2881 for all 
pixels through all datasets. 

   (A)                                                  (B)        

 
Fig.7 Read noise analysis, A) RMSE between reading noise levels (mean=0, 
sigma varying) and the benchmark calculated from MATLAB internal 
function through all images, B) averaged overall RMSE for different levels 
of the read noise. Error bars represent standard deviation. 

E. Error rate 

Another potential reliability issue is the device stuck error 
rate analysis, due to yield issues. As shown in Fig. 8 the 
inference of the edge computing is not robust to failed 
devices, either the ON or OFF state. With a 10% error rate, 
the RMSE increases to ~0.3. The stuck-to-ON and stuck-to-
OFF states have shown to experience a similar negative 
impact in terms of the RMSE. This poor performance in 
arrays with poor yield is expected, since each of the weight 
in the array corresponds to a frequency in the spectral 
domain, which can be significant for the investigated DHT 
map. However, given the critical requirements for the 

highest-performing components embedded in a medical 
implant, the average yield is not necessarily a concern since 
each chiplet would be individually tested, selected, and 
assembled in the proposed computing application for robust 
integration with the sensors, actuators and the rest of the 
computing circuitry. 

 
Fig. 8 Impact of device stuck error rate: A) RMSE between multiple error 
ratios and the benchmark calculated from MATLAB internal function 
through all images for failure to minimum (stuck-to-OFF); B) RMSE 
between multiple error ratios and the benchmark calculated from MATLAB 
internal function through all images for failure to maximum (stuck-to-ON); 
C) the averaged RMSE for each error ratios for both failure modes; D) 
Respective outputs for DHT considering the ideal case versus E-H) 1%, 5%, 
10%, and 20% of memristor devices stuck to ON respectively. 

IV. CONCLUSION 

        In this paper, we proposed a memristor-based Hilbert 
transform and investigated its potential for potential use with 
non-ideal memristor arrays for cardiac signal pre-processing. 
By analyzing the performance in terms of the RMSE 
compared against the benchmark at multiple bits precision, 
reading noise levels and device stuck error rates cases, the 
reliability of energy efficient memristor implementation of 
Hilbert shows promise for potential integration into chiplets 
for cardiac implants. Beyond the Hilbert transform for 
cardiac mapping, this memristor-based MAC operation 
structure could be investigated for other biomedical 
applications, for example for processing auditory  and 
electroencephalography signals [21], [22]. 
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