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Abstract— The Hilbert transform is widely used in
biomedical signal processing and requires efficient
implementation. We propose the implementation of the discrete
Hilbert transform based on emerging memristor devices. It uses
two matrix multiplication layers using weights programmed in
the memristor array and a linear Hadamard product
calculation layer mappable to CMOS. The functionality was
tested on a dataset of optical cardiac signals from the human
heart. The results show negligible <1% angle error between the
proposed implementation and the MATLAB function. It also
has robustness to non-idealities. This proposed solution can be
applied to bio-signal processing at the edge.

Keywords—Hilbert Transform, Biomedical, Memristor, In-
memory Computing, Discrete Fourier Transform

I. INTRODUCTION

Artificial intelligence algorithms and information
technologies are being adopted to analyze medical data in
specialties like radiology, oncology and cardiology, promising
faster interpretation with accuracy close to doctors’
diagnostics [1]. The next frontier is to bring these powerful
algorithms to implantable medical devices. An example is the
implantable cardioverter devices needed for life-saving
resuscitation of patients suffering from cardiac ventricular
fibrillation. Existing implantable cardioverter devices have
low resolution for sensing and therapy using a single point
contact sensor to estimate the heart rate. Heart conformal
electronic platforms promise high spatial definition
measurements across the entire heart ventricle and low-energy
stimulation [2], aiming to provide personalized electrotherapy
that terminates life threatening tachycardias with 10x-100x
less energy than a typical shock [3]. However, the few existing
prototypes used in research need a large number of wires to
extract the sensor data for processing on the lab computers. In
prior work [4], we have proposed a distributed analog
computing algorithm which could be mapped to a network of
integrated chiplets. A computing chiplet would be integrated
with one or more sensors and actuators, all embedded in an
organ-conformal substrate. Such system could support high
resolution, ideally with hundreds or thousands of sensors for
millisecond decision-making for real-time therapy. While
promising, this computing technology would require the
sensor signals to be pre-processed via Hilbert transform before
the abnormal cardiac wavefronts can be determined.

Hilbert transform has been an important signal processing
method in engineering, science, and medical applications, as
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it is useful to identify the dynamic characteristics of non-
stationary and non-linear systems. For ventricular
arrhythmias, the Hilbert transform is an efficient signal
analysis method for determining the instantaneous frequency
of time-varying electrocardiogram signals captured from local
sensors on the heart tissue [5,6]. The Hilbert transform
representation of the data is key in the detection of subtle
frequency changes needed to recognize the initiation and/or
termination of ventricular tachycardia / fibrillation. Therefore,
an integrated real-time organ conformal system, such as the
distributed network of computing chiplets previously
proposed (Fig. 1), would have to include on-chip capabilities
for the Hilbert transform pre-processing.

Area, energy and speed are concerns in current hardware
technologies based entirely on traditional transistor CMOS
circuitry [7]-[11]. Emerging electronic devices could support
faster, more energy efficient and more compact
implementations. Analog computing hardware based on new
device technologies, such as memristors, promises to
implement small neuro-inspired networks 103-10° times faster
and more efficiently than conventional technologies [12] by
accelerating the vector-matrix multiplication at the physical
level. Memristors (or ReRAM) are nanoscale devices with
two terminals and programmable conductance which maps
well to a matrix architecture (crossbar).
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Fig.1 Motivation to implement DHT on-chiplet for pre-processing as part of
a high resolution cardiac implant.

In this work, we propose the implementation of Discrete
Hilbert Transform (DHT) using memristor crossbars. Since
memristor devices are notorious for having device non-
idealities, such as state noise, yield issues and limited
precision, this work pursues an exploratory investigation via
simulation that consider the potential memristor-related non-
idealities and their impact on the accuracy of the memristor-
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based DHT results by comparison with a software benchmark
obtained in MATLAB.

II. METHODS

A. Hilbert Transform

Hilbert transform H(t) of a temporal domain signal f(t)
is defined by the convolutional equation [13] :
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which is a convolution between f(t) and — —

The Discrete Hilbert Transform (DHT) can be calculated
based on the Discrete Fourier Transform (DFT) aiming to
calculate the frequency spectrum of discrete temporal signals.
The corresponding inverse process of the DFT is the inverse
Discrete Fourier Transform (IDFT) to convert the frequency
domain signal to the temporal domain signal. The equations
are:
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where X is the discrete Fourier transform of the time
domain signal x,,, n=0, 1,2, ..., N-1.

From the equation, the length of the time domain signal is
N, x, represents the discrete point at N. The calculated
spectral value is Xj. Each x,value at N time step is required
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to multiplied by the factor e_]nk(W), which is a complex
number. By summing up all these products, the k™ spectral
X of a discrete time signal can be acquired.

Xkef""(zwn) 3)

From equation (2) and (3), the expression can be
implemented via vector-matrix multiplication. Such an
implementation was proposed for the Discrete Fourier
Transform in [14]. The vector-matrix multiplication is
implemented in digital hardware via multiply-accumulate
(MAC) operations. The equation of the single MAC

operation node is:
m
y= z WiX; 4)
i=1

where y is the calculated output, x; is the set of input signal
with a length of i. w; is weight matrix. As seen in Equation
(4), the output is calculated via the sum of the weighted
inputs. The MAC operation is critical in neural networks for
artificial intelligence applications.

B. Memristor Implementation

Emerging computing technologies, such as memristor
devices, have demonstrated advantages in terms of energy
and compact implementation of deep neural networks [15],
mapping MAC operations physically to hardware using
Ohm’s and Kirchhoff’s laws. They can also be ultra-scaled,

down to 2 nanometers lateral dimensions [16]. A memristor
device is commonly implemented with a sandwich structure
of metal-insulator-metal (Fig.2a). The intermediate insulator
is typically an oxide which serves as a memristive functional
material. A one-step ‘forming’ process is needed to create the
filamentary path in the insulator. Set and reset pulses can then
be reversibly applied to program the device to a desired
conductance state between low (OFF) and high (ON) states
(Fig.2b). Memristor devices can be integrated with
complementary metal-oxide-semiconductor (CMOS) control
circuitry as dense matrices (crossbars) for MAC operation
(Fig.2c). A typical current-voltage characteristics of a
memristor device is shown in Fig.2d.
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Fig.2 Memristor device. a) Structure; b) Symbol and sketch of the switching
process; ¢) Back-end-of-line integration of a memristor crossbar (top) onto
CMOS circuitry (bottom); d) Current vs. voltage characteristics.

C. Proposed Hilbert transform mapped to MAC operation

In this work, we propose a method of mapping Hilbert
transform to the memristor-implemented MAC operations
(Fig. 3). In the proposed method, the fixed weight matrices
store the calculated values needed for the MAC operation to
map the mathematical formula of the transformation. Each
matrix supports a step in the calculation - first a fast Fourier
transform, followed by an inverse fast Fourier transform. To
calculate the discrete Hilbert transform, a 2-layers MAC
operation structure and a linear Hadamard product layer are
proposed. Both DFT and IDFT stages map the mathematical
formulas to the numerical value of the memristor arrays.
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Fig.3 Sketch of the memristor-based Hilbert transform
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To calculate the whole transformation, the size of the input
layer needs to be equal to the sampling length of the input.
For the second stage, the number of neurons in this layer
depends on the length of spectral signal resulting from the
DFT. These parallel nodes are necessary, and they all receive
the same input values. The only difference is in their weights,
the value of the weights depends on the value &, which is the
index of the nodes in the second layer. A signum function
connects the two to represent the convolutional term in the
time domain for the Hilbert transform and zero out all
negative values in the frequency domain. The third layer
calculates the IDFT. All the values in the weight matrix are
similar to the first layer, the only difference is the sign in the
complex factor. The simulation was benchmarked against the
predefined ‘Hilbert’ function in MATLAB.

D. Metrics

To compare the overall quality of the different methods,
we use the root mean square error (RMSE) analysis, which is
the most expressive quantity for the difference between two
sets of similar samples as well as eligible for the noise
performance analysis. RMSE of the memristor-based Hilbert
Transform results by comparison with the benchmark
MATLAB result is defined as:
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where N is the data points in sequence of i = 1,2, ..., N. y; is
the actual signal need to be evaluated. Y.y, is the reference
of the error calculation. In this work, the reference is the
MATLAB ‘Hilbert’ function. For both one-dimensional and
two-dimensional signal, one simulation only saves one value
point for the evaluation. The calculated results of the
intermediate DFT are based on the spectral domain signal,
and the Hilbert transform is based on the phase domain. All
phase domain outputs are rescaled to the range -1 to 1 for
RMSE analysis.

III. RESULTS

A. Dataset

The dataset consisted of 4,000 optical maps of the
fibrillation behavior in a ventricular (epicardium) tissue
recorded at 1kHz sampling rate with a size of 100*50 pixels.
Optical signals were used for this study because of their high
resolution of the optical signal compared to existing lower
resolution electrical sensor arrays in organ conformal
platforms. To obtain the data, a deidentified donor human
heart from the Washington Regional Transplant Community
(Falls Church, VA) was used. The study was approved by the
Institutional Review Board at the George Washington
University. Details on the measurement setup for this data
were presented elsewhere [17].

The fibrillation events presented in the recording allow for
the analysis of various wavefront patterns. An example is
shown in Fig. 4. The wavefront and the singularities are
detectable in phase domain, therefore, the Hilbert transform
is used to transform the time domain raw optical data into the
phase domain with a scale between —m and 7 [5].

Fig.4. Representative examples of DHT on cardiac mapping. A) Raw input
image #100 and B) its corresponding Hilbert transform; C-D) similar for
input #150.

B. Ideal implementation

In this analysis, the memristor array is assumed to consist
of ideal devices that have infinite resolution. Their resolution
would match the MATLAB benchmark which is 64-bits
floating point.

As shown in Fig.5 through the Hilbert transform, the raw
input optical signal is transformed to the phase domain. Fig.5
B shows an example used for the phase domain signal of the
Hilbert transform in MATLAB and the array implementation
results. The RMSE is calculated on the rescaled phase domain
signal where the scale is -1 to 1. These results indicate that
the array implementation of the Hilbert transform can achieve
a RMSE at 0.0769 on average of 4000 images compare
against the benchmark.
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Fig.5 Proposed vs. benchmark DHT: A) an example of raw input optical
signal #100; B) its benchmark phase mapping obtained from MATLAB; C)
proposed DHT assuming ideal memristor crossbars; D) the difference
between proposed vs. benchmark; and E) calculated RMSE for all 1000
images.

C. Impact of Limited Bit Precision

While the results of the RMSE analysis using the
proposed method with the ideal floating-bit precision are
promising, such high-level precision is not possible to
achieve in hardware implementation because of the
constrains of the memristor device, as well as power and area
in neuromorphic hardware for inference at the edge.
Memristor devices have shown to have >6-bit equivalent
number of states.

In this section, the results for lower fixed-bit precision
simulation are investigated, to make the algorithm easily
mappable for hardware. The rounding method in this study is
rounding-to-nearest. Fig.6 compared the results with the
different bit level limitations. Bit level from 1 bit to 8 bit was
explored. The results indicates that the overall RMSE
decreases as the bit value increases. At bit level 6, possible
with a memristor implementation, the averaged RMSE is
0.1579 which is very close to the ideal case. This is promising
since memristor devices have shown to have >6-bit
equivalent number of states [17,18].
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Fig.6 Bit precision analysis, A) RMSE for all images calculated for various
bit precision levels vs. the 64 floating point precision from MATLAB, B)
mean RMSE for different bit precision levels. Error bars represent standard
deviation.

D. Read Noise Analysis

Another concern is the reading noise which might occur
when doing the MAC operation through the pre-programmed
memristor array. The memristor potentially could suffer from
read noise, as prior literature has shown typical noise level
for oxide-based devices with a standard deviation of 0.007 to
0.1 due to Johnson-Nyquist noise, random telegraph noise,
etc.[20]

The results shown in Fig.7 indicate that the performance
of the algorithm in terms of RMSE are robust to read noise.
The noise was modeled as a Gaussian distribution with mean
equals to 0 and desired standard deviation. The noise model
applied to all 4 metrics for both real and imaginary part for
both FFT and IFFT. The value in the model is limited to 1
(representing the maximum conductance of the memristor)
and -1 (its respective minimum conductance). With a larger
standard deviation, by applying the noise model, the value of
the memristor array might exceed 1 or -1, so truncation is
used to clip the value. In Fig.7 (B), the worst case of RMSE
is at sigma=0.1, with the value of averaged 0.2881 for all
pixels through all datasets.
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Fig.7 Read noise analysis, A) RMSE between reading noise levels (mean=0,
sigma varying) and the benchmark calculated from MATLAB internal
function through all images, B) averaged overall RMSE for different levels
of the read noise. Error bars represent standard deviation.

E. Error rate

Another potential reliability issue is the device stuck error
rate analysis, due to yield issues. As shown in Fig. § the
inference of the edge computing is not robust to failed
devices, either the ON or OFF state. With a 10% error rate,
the RMSE increases to ~0.3. The stuck-to-ON and stuck-to-
OFF states have shown to experience a similar negative
impact in terms of the RMSE. This poor performance in
arrays with poor yield is expected, since each of the weight
in the array corresponds to a frequency in the spectral
domain, which can be significant for the investigated DHT
map. However, given the critical requirements for the

highest-performing components embedded in a medical
implant, the average yield is not necessarily a concern since
each chiplet would be individually tested, selected, and
assembled in the proposed computing application for robust
integration with the sensors, actuators and the rest of the
computing circuitry.
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Fig. 8 Impact of device stuck error rate: A) RMSE between multiple error
ratios and the benchmark calculated from MATLAB internal function
through all images for failure to minimum (stuck-to-OFF); B) RMSE
between multiple error ratios and the benchmark calculated from MATLAB
internal function through all images for failure to maximum (stuck-to-ON);
C) the averaged RMSE for each error ratios for both failure modes; D)
Respective outputs for DHT considering the ideal case versus E-H) 1%, 5%,
10%, and 20% of memristor devices stuck to ON respectively.

IV. CONCLUSION

In this paper, we proposed a memristor-based Hilbert
transform and investigated its potential for potential use with
non-ideal memristor arrays for cardiac signal pre-processing.
By analyzing the performance in terms of the RMSE
compared against the benchmark at multiple bits precision,
reading noise levels and device stuck error rates cases, the
reliability of energy efficient memristor implementation of
Hilbert shows promise for potential integration into chiplets
for cardiac implants. Beyond the Hilbert transform for
cardiac mapping, this memristor-based MAC operation
structure could be investigated for other biomedical
applications, for example for processing auditory and
electroencephalography signals [21], [22].
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