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To investigate reaction order and kinetic parameters of the
reaction between crystal violet (CV) and sodium hydroxide
(NaOH), various concentrations of the reactants were applied.
The present work also verifies the unknown solid product
produced under highly concentrated conditions. The reaction
orders of CV and NaOH were determined to be 1 and 1.08 by
pseudo rate method, respectively, with a rate constant, k, of
0.054 [(M−1.08) s−1]. In addition to pseudo rate method, the half-
life approach was used to calculate the overall reaction order to
verify the accuracy of pseudo rate method. The overall reaction
order was determined to be 1.9 by the half-life method. The
overall reaction order based on the two methods studied was
approximately 2. The precipitate formation was observed when
high concentrations of CV (0.01–0.1 M) and NaOH (1.0 M) were
applied. Fourier transform infrared (FTIR) spectroscopy was
used to compare the spectra of the precipitate generated and a
commercial solvent violet 9 (SV9). Based on the FTIR spectra, it
was confirmed that the molecular structure of the precipitate
matched that of solvent violet 9.
1. Introduction
Crystal violet (CV, C25N3H30Cl) is a cationic triphenylmethane,
which is used in biomedical fields, forensics and the textile
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industry as a strong dye chemical [1]. For example, in the popular Gram’s method for identifying
different types of bacteria, CV binds to the peptidoglycan layer of gram-positive bacteria, yielding its
signature purple hue. By contrast, gram-negative bacteria lose this hue due to a thinner layer of
peptidoglycan [2]. Additionally, CV is an integral part of a zinc carbonate CV stain that aids to detect
fingerprints on non-porous surfaces [3]. Among the many applications, CV has been used extensively
as a synthetic dye chemical. The molecular structure of CV contains alternating single and double
bonds, which extend over three benzene rings and the central carbon atom. This extensive conjugation
is the main cause of the coloured appearance of the dye [4].

Although the bleaching process is a widely used method to effectively remove dyes from fabric,
bleach has long-term negative effects on both the human body and the environment and can damage
the fabric such that it is no longer suitable for recycling [5,6]. These challenges are compounded by
the fact that CV remains in the environment for long periods of time, and traditional methods (e.g.
filtration, precipitation, adsorption and electrodialysis) for removing pollutants cannot be applied to
CV due to its synthetic nature [7]. Not only does CV have the potential to contaminate the
environment (e.g. soil and water), it also acts as a mitotic poison, clastogen and tumour growth
promoter [8–10]. Additionally, a lifespan study by Littlefield et al. [11] showed an increase in both the
prevalence of liver neoplasms and the rate of mortality with subjection to CV. With careful
consideration of these detrimental effects, means of eliminating the potential threat of CV to both
environmental and human health become exceedingly important.

In fundamental chemical reaction studies, sodium hydroxide (NaOH) has been applied due to its
strong interaction with CV, which results in disruption of the extensive conjugation in the CV
structure and colour removal. Since NaOH is readily available and easily stored, its reaction with CV
is often used in educational contexts to study thermodynamic, kinetic and colorimetric data and to
use various analytical tools (e.g. ultraviolet-visible (UV-vis) spectroscopy) [4]. Previously, Felix
reported that CV decolorization with NaOH is an endothermic (ΔH= 13.95 kJ mol−1) and non-
spontaneous (ΔG= 91.43 kJ mol−1) reaction [12]. Based on the abundance of literature regarding the
kinetics of the reaction between CV and NaOH [13,14], the overall second-order reaction (first-order
with respect to both CV and NaOH) is often considered, although there are a substantial number of
studies where a precise reaction order for NaOH is calculated [4,13–16].

In this study, the CV and NaOH decolorization reaction was examined with varying concentrations of
CV and NaOH. UV-vis spectroscopy was used to derive the rate equation and reaction order. To identify
the final product, solvent violet 9 (SV9, C25H31N3O), formed at high concentrations of CV and NaOH,
Fourier transform infrared (FTIR) spectroscopy was employed. It is worthwhile to note that most
reported results do not show or discuss the presence or identification of precipitates. Based on our
knowledge, this is the primary study analysing the precipitate and comparing it with commercial SV9.
The methodology described herein could be applied for the conversion and removal of other natural
and synthetic dye chemicals, especially from dyed fabrics.
2. Experimental section
2.1. Materials and sample preparation
Powdered anhydrous CV (C25N3H30Cl, CAS# 548-62-9, ACS reagent, greater than or equal to 90%) and
NaOH pellets (NaOH, CAS# 1310-73-2, ACS reagent) were purchased from Sigma-Aldrich. Solvent violet
9 (SV9, C25H31N3O, CAS# 467-63-0, Tech grade) was purchased from BOC Sciences and used without
further treatment. Deionized (DI) water (approx. 20 mΩ cm−1, Direct-Q3, Millipore Sigma) was used
to make the CV and NaOH aqueous solutions. All samples were transferred using 100–1000 µl
Reference 2 micropipettes (Eppendorf) with single-use standardization pipette tips (Fisherbrand). A
1.0 × 10−2 M CV stock solution was used to prepare the desired working solutions through serial
dilution (i.e. 1.0 × 10−3, 1.0 × 10−4 and 1.0 × 10−5 M). For instance, to make a 500 ml volume of the
1.0 × 10−3 M solution, 50 ml of the 1.0 × 10−2 M CV solution was added to 450 ml of DI water. In the
case of NaOH solutions, a 1.0 M NaOH stock solution was used to prepare the 0.05, 0.1, 0.3 and
0.5 M NaOH working solutions.

To collect the absorbance spectra, 50 µl of CV and 50 µl of NaOH solutions were pipetted into a
microplate and placed into the UV-vis spectrometer. For the FTIR measurements, CV powder was
mixed with a minimal amount of water to form a paste. If precipitates formed, the samples were
separated from the solution and dried in an oven at 60°C for 48 h.
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Scheme 1. Schematics of the UV-vis spectroscopy measurement procedures.
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2.2. Characterization
The UV-vis spectra were obtained with a Tecan Infinite 200 PRO UV-visible spectrophotometer. The
samples were pipetted (100–1000 µl Reference 2 micropipettes, Eppendorf) into the microplate
(96-well Corning Falcon 351172 STERILE R), and measurements were conducted at room temperature
(21°C) in the range of 400–700 nm with a step size of 5 nm and two flashes. The general UV-vis
spectroscopy measurement procedures are shown in scheme 1.

To quantify changes in CV concentration during the reaction, an absorbance band at approximately
590 nm was monitored until the peak intensity was indistinguishable from the baseline reference point of
650–700 nm [17]. All absorbance data during the reaction was recorded using the i-control™ Microplate
Reader Software 1.11 (for the Infinite reader). In addition to UV-vis spectroscopy, to discern the time for
the reaction to reach completion, an extra batch of samples was prepared, and the colour change was
recorded. The infrared (IR) spectra were obtained using a Nicolet iS50 FTIR spectrometer (Thermo Fisher
Scientific) equipped with an added attenuated total reflectance accessory. The FTIR spectra were recorded
in the range of 400–1800 cm−1 at a resolution of 4 cm−1 with 32 scans. A background spectrum was
collected before each sample was analysed. The spectra were obtained using OMNIC software.
3. Results and discussion
3.1. Effect of crystal violet and sodium hydroxide concentration on crystal violet decolorization

and precipitate formation
UV-vis spectroscopy was applied to analyse the CV concentration during the reaction with NaOH. As
shown in figure 1, the maximum CV absorbance occurs at approximately 590 nm. As the
concentration of NaOH was increased from 0.05 M to 0.5 M with a fixed concentration of CV (1.0 ×
10−4 M), the reaction time decreased from 40 min to 3 min 30 s (figure 1a–d). Note that when a CV
concentration of 1.0 × 10−4 M CV only was analysed (without NaOH), the absorbance peaks (500 nm–
650 nm) showed extensive saturation, resulting in the absence of a clear peak (not shown for brevity).
The obtained results were used to calculate the kinetic parameters. For comparison purposes, the
video captured images are shown in figure 1a0–d0). As expected, the time needed for CV to decolorize
decreased with increasing NaOH concentration.

Figure 2 shows the UV-vis absorbance spectra with varied CV concentrations (1.0 × 10−4 M and 1.0 ×
10−5 M), while the NaOH concentration was fixed at 0.1 M. As observed, the reaction time decreased
from 20 min to 12 min 58 s with decreasing CV concentration. Although it was confirmed that
decolorization efficiency can be improved with increasing NaOH concentration (figure 1a–d ) or
decreasing CV concentration (figure 2a,b), the reaction time was not fully dependent on the NaOH/
CV concentration ratio (figure 2c). In the case of the 1.0 × 10−5 M CV and 0.1 M NaOH reaction
(NaOH/CV ratio = 1.0 × 104), the reaction time for CV decolorization was longer than that of the 1.0 ×
10−4 M CV and 0.5 M NaOH reaction (NaOH/CV ratio = 0.5 × 104). This result suggests that the
efficiency of the CV decolorization reaction could be controlled by modulating the NaOH/CV ratio
and the absolute value of the NaOH (or CV) concentrations. In the case of the 1.0 × 10−5 M CV and
0.1 M NaOH (NaOH/CV ratio = 1.0 × 104) solution, it is also considered that the reaction time would
have increased further because the CV and NaOH concentrations are low compared with 1.0 × 10−4 M
CV and 0.3 M NaOH (NaOH/CV ratio = 0.3 × 104) and 1.0 × 10−4 M CV and 0.5 M NaOH (NaOH/CV
ratio = 0.5 × 104). Because the 1.0 × 10−5 M CV and 0.1 M NaOH reaction (NaOH/CV ratio = 1.0 × 104)
showed a significantly shorter reaction time than that for 10−4 M CV and 0.1 M NaOH reaction
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Figure 1. UV-visible spectra of reaction progression. (a) 1.0 × 10− 4 M CV + 0.05 M NaOH, (b) 1.0 × 10− 4 M CV + 0.1 M NaOH, (c)
1.0 × 10− 4 M CV + 0.3 M NaOH and (d ) 1.0 × 10− 4 M CV + 0.5 M NaOH. Reaction conditions: temperature = 21°C, 100 µl total
volume. Video capture of the reaction at CV solution only, initial CV reaction with NaOH and completed reaction. (a0) 1.0 × 10− 4 M
CV + 0.05 M NaOH, (b0) 1.0 × 10− 4 M CV + 0.1 M NaOH, (c0) 1.0 × 10− 4 M CV + 0.3 M NaOH and (d0) 1.0 × 10− 4 M CV + 0.5 M
NaOH. Reaction conditions: temperature = 21°C, total volume = 2 ml (1 : 1 ratio).
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(NaOH /CV ratio = 0.1 × 104), based on the results shown in figures 1 and 2, it can be concluded that the
absolute value of the NaOH concentration has more of an impact on the rate than the CV concentration.
3.2. Determination of reaction order and rate constant
CV is a relatively large molecule with three benzene rings and an amine bonded to a central carbon atom.
Because NaOH is a strong base, it rapidly dissociates into Na+ and OH− ions in solution, saturating the
CV solution with hydroxide ions. A kinetic study of the decolorization of CV was performed based on
the results presented in figures 1 and 2. The rate of the reaction is given by the generalized rate law:

Rate ¼ k[CVþ]m[OH�]n, ð3:1Þ
where k is the rate constant for the reaction, [CV+] and [OH−] express the concentrations of CV and
hydroxide ions, respectively, m is the reaction order with respect to [CV+], and n is the reaction order
with respect to [OH−].

With an excess of NaOH (i.e. NaOH/CV concentration ratio = 1.0 × 103–1.0 × 104), the rate equation
could be simplified using the assumption that NaOH concentration can be considered constant
throughout the reaction,

k0 ¼ k[OH�]n: ð3:2Þ

The rate constant was determined using a method involving a pseudo rate constant (k0) to simplify
the rate law,

Rate ¼ �d[CVþ]
dt

¼ k0[CVþ]m: ð3:3Þ

The linear relationship between absorbance (A) and CV concentration is given by Beer’s law,

A ¼ 1cl, ð3:4Þ
where ε is the molar absorption coefficient, c is the concentration and l is the optical path length.

To determine the reaction order (m), the CV concentration ([CV+], 0th order), the natural log of [CV+]
(ln [CV+], 1st order) and the inverse of [CV+] (1/[CV+], 2nd order) were plotted as a function of reaction
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NaOH, (b) 1.0 × 10− 5 M CV + 0.1 M NaOH and (c) NaOH/CV ratio effect on reaction time. Reaction conditions: temperature = 21°C,
100 µl total volume.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220494
5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 Ja

nu
ar

y 
20

23
 

time based on the integrated rate law,

0th order: � d[CVþ]

[CVþ]0
¼ k0dt ! [CVþ] ¼ �k0t, ð3:5Þ

1st order: � d[CVþ]

[CVþ]1
¼ k0dt ! ln [CVþ] ¼ ln [CVþ]0 � k0t ð3:6Þ

and 2nd order: � d[CVþ]

[CVþ]2
¼ k0dt ! 1

[CVþ]
¼ 1

[CVþ]0
þ k0t: ð3:7Þ

As shown in figure 3b–e, all datasets are linear when the natural log of [CV+] is plotted against
reaction time, indicating that the order dependence with respect to [CV+] is 1st order, which is in
accordance with previous studies [4,12,13,18].

While the conclusion of first-order kinetics with respect to [CV+] coincides with previous literature
findings, the precise values of k and n were calculated to further investigate the reaction kinetics.
According to equation (3.6), the pseudo rate constant, k0, is determined by the slope of the linearized
graphs found using the absorbance data. Obtaining pseudo rate constants for different concentrations
of hydroxide allows a system of linear equations to be solved. Reaction order, n, with respect to
[OH−] and the reaction rate constant, k, are based on two solutions in this system.
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Taking the natural logarithm of both sides of equation (3.2), the following equation is obtained:

ln (k0) ¼ n�(ln [OH�] )þ ln (k): ð3:8Þ

Regression analysis on a plot of ln([k0]) against ln([OH−]) can be readily carried out to determine n
and k. This approach improves accuracy by incorporating data from all three runs, rather than using
only two runs, as reported in previous studies [15,16]. Therefore, when ln([k0]) is plotted against
ln([OH−]), the slope will be linear. This slope provides the reaction order (n) with respect to [OH−]
and the y-intercept represents the k value.



Table 1. Comparison of rate constants and reaction orders.

experimental conditions

rate constant (k) m n referencetemp. (°C) CV conc. (M)
NaOH
conc. (M)

6°C 2.600 × 10−6 0.008–0.024 0.032 [s−1] 0.38 0.62 [4]

21°C 2.600 × 10−6 0.008–0.024 0.120 [s−1] 0.24 0.76 [4]

30°C 8.812 × 10−5 0.04 0.130 [M−1 s−1] 1.00 1.00 [13]

7.5°C 1.985 × 10−5 0.01–0.05 0.034 [M−1 s−1] 1.00 1.00 [14]

21°C 1.985 × 10−5 0.01–0.05 0.118 [M−1 s−1] 1.00 1.00 [14]

45°C 1.985 × 10−5 0.01–0.05 0.721 [M−1 s−1] 1.00 1.00 [14]

room temp.a 1.0 × 10−5 0.004–0.008 0.160 [M−1 s−1] 1.00 1.00 [15]

room temp.a 2.000 × 10−5 0.02–0.10 0.170 [M−1.06 s−1] 1.00 1.06 [16]

21°C 1.0 × 10−5 –1.0 × 10−4 0.1–0.50 0.042 [M−0.85 s−1] 1.00 0.85 current

research
aThe value of reaction temperature was not reported.
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As shown in figure 3f, the plots of ln([CV+]) against time are linear and the slope is the pseudo rate
constant k0. In addition, figure 3g shows the plot of ln([k0]) against ln([OH−]) for the various NaOH
concentrations and derived k0 values. It is observed that the plot yields a straight line, which is consistent
with the derivation of equation (3.8). Based on figure 3g, the rate order with respect to [OH−], n, was
determined as 1.08 and the reaction rate constant, k, was determined as 0.054 (M−1.08) s−1. This
quantitative rate law allows the kinetics of the equation to be understood, as it is apparent from the
reaction order that changing the amount of hydroxide affects the reaction rate more than changing the
amount of CV would. These results are supported qualitatively as well, given that the hydroxide
functional group is smaller than the CV molecule. More hydroxide in solution would lead to more
frequent intermolecular collisions.

The obtained reaction order and rate constants were compared with previous studies, and the results
are displayed in table 1.

Many previous studies determined that the reaction order in respect to both CV and NaOH is first
order, which is well matched to the current results, while the obtained [OH−] reaction order (1.08)
was slightly higher than the reported value. The obtained rate constant, however, is quite different
compared with the literature data, even at similar reaction temperatures. It is assumed that higher CV
and NaOH concentrations under the current experimental conditions could contribute to the lower
rate constant. For instance, most previous literature indicated that the concentration of NaOH fell
between 0.0001 and 0.09 M [4,13–16], while the current hydrolysis reaction was carried out at higher
(0.1–0.5 M) NaOH concentrations. Highly concentrated solutions of NaOH may lead to a difference in
the reaction rate constant, which requires further investigation. Based on the literature results, it is
concluded that several reaction conditions such as mixing conditions, concentrations of reactants (CV
or NaOH) and reaction temperatures, could contribute to the discrepancy of rate constants [4,13–16].
The steady state or transient state condition may also affect the rate constant values. Thompson &
Jason [14] reported that the first 30 s of data were ignored when calculating the reaction orders and
rate constant, as the solutions were mixing in the cuvette during this time. Another variation in the
rate constants may arise due to the selection of different CV peak wavelengths (i.e. 530, 590 and
595 nm) from the UV-vis spectra, although this effect is expected to be minor [13,14]. As shown in
table 1, it is clear that the reaction rate is directly related to the reaction temperature. For instance,
Salahudeen & Rasheed and Thompson & Jason studied the effects of temperature on CV
decomposition and reported that the rate constant increased with increasing reaction temperature [4,14].

3.3. Overall reaction order from half-life method
Considering the error caused by the pseudo rate method, which assumes that the reaction order with
respect to CV is 1, the half-life method was employed to calculate the overall reaction order of the
hydrolysis of CV. This method assumes that the consumption of NaOH is proportional to the
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consumption of CV. Therefore, the consumption ratio (c) for the reactants is constant.

[OH�]
[CVþ]

¼ c: ð3:9Þ

Thus, the hydrolysis reaction in equation (3.1) can be written as follows:

Rate ¼ �d[CVþ]
dt

¼ k̂[CVþ]x, ð3:10Þ

where k̂ ¼ k � c and x ¼ mþ n (overall reaction order).
The following equation (3.11) represents the relationship between [CVþ] and reaction time (t):

[CVþ]1�x
t � [CVþ]1�x

0 ¼ k̂ (x� 1) t: ð3:11Þ
Since the half-life of the reaction, t1=2, is defined as the time required for the reactant concentration to fall
to half of its original value, equation (3.11) can be re-written as equation (3.12) and equation (3.13),

t1=2 ¼ (0:5)1�x � 1

k̂ (x� 1)
[CVþ]1�x

0 ð3:12Þ

and

ln t1=2 ¼ (1� x) ln [CVþ]0 þ ln
0:51�x � 1

k̂ (x� 1)

� �
: ð3:13Þ

Regression analysis on a plot of ln t1=2 against ln [CVþ]0 can be readily performed to determine the
overall reaction order x [19]. Figure 4a shows the CV conversion as a function of reaction time for
different concentrations of NaOH. Considering the rapid reaction at the beginning of the hydrolysis,
the sample with the lowest NaOH initial concentration, 0.05 M, was chosen for further analysis. As
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shown in figure 4b, the CV concentration decreased exponentially with increasing reaction time. Four
points were chosen to calculate the overall reaction order (x). Figure 4c depicts the plot of ln t1=2 and
ln [CVþ]0 for the various CV initial concentrations and the half-life derived from figure 4b. Based on
figure 4c, the overall reaction order was determined to be 1.90 by using the half-life approach.
Although this value is slightly lower than that of the pseudo rate constant method, 2.17, the overall
reaction order of the CV and NaOH reaction can be estimated to be approximately 2 at room
temperature (21°C). This result is consistent with previous studies as shown in table 1.
3.4. Analysis of precipitate chemical
Although the reaction times varied with different CV and NaOH concentrations (figures 1 and 2), due to
the excess of NaOH, most CV molecules were completely converted into a new compound, solvent violet
9 (SV9), as shown in figure 5 [18].

To confirm the existence of SV9, high concentrations of CV (i.e. 0.1 M and 0.01 M) and 1.0 M NaOH
were applied. It should be noted that the precipitate had an intense dark colour (photo in figure 6)), in
contrast with the colourless solution (figure 1a0–d0)) produced when the reactants were lower in
concentration. This phenomenon is probably due to the non-spontaneous nature of the high-
concentration reaction, as it did not proceed to completion with an excess of CV to decolorize. To
further study the molecular structure of these precipitates, FTIR spectroscopy was used. For
comparison purposes, solid CV and solid SV9 samples were analysed, with the results displayed in
figure 6. The spectrum representing the untreated, solid CV contains strong peaks at approximately
1162 cm−1, approximately 1349 cm−1 and approximately 1576 cm−1, which correspond to C-N
stretching vibration (or C-H stretching in aromatic ring), C-N stretching of aromatic tertiary amine (or
C-H deformation in methyl group) and C=C stretching of the benzene ring, respectively [20–23]. The
spectra of the precipitates show that most peak positions are very similar to those found in the
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spectrum for solid CV, while the intensity of the peaks changed drastically. For instance, the intensity of
the approximately 1576 cm−1 peak in the CV spectrum decreased after the reaction, and the peak shifted
to approximately 1564 cm−1. Upon closer inspection, the precipitate spectra were found to contain a weak
peak at approximately 1124 cm−1 corresponding to C-O stretching in the tertiary alcohol, which is not
present in the CV structure [24]. Compared with the spectrum of SV9, the spectra of the precipitates
clearly show that the peak positions and intensities are well matched. Therefore, it is reasonable to
conclude that the product formed after CV reacted with NaOH is SV9.
ing.org/journal/rsos
R.Soc.Open

Sci.9:220494
5. Conclusion
In this work, the reaction between CV and NaOH was investigated using UV-visible spectroscopy, FTIR
spectroscopy and video imaging. UV-vis spectroscopy was used for quantitative analysis, specifically for
the reaction order and rate constant derivation, while video imaging was used for qualitative analysis.
The reaction orders of CV and NaOH are 1.00 and 1.08, respectively, and the calculated rate constant
(k) is 0.054 [(M−1.08) s−1]. Another method using the half-life approach determined the overall reaction
order to be 1.9. Because the results differ only slightly, the overall reaction order of the CV and NaOH
reaction can be estimated to approximately 2 at room temperature (21°C), which matches previous
studies. FTIR spectroscopy was used to study the molecular structure and bonding vibration of CV,
the precipitate, and SV9. When high concentrations of both NaOH and CV reacted, a precipitate
formed, which was concluded to be SV9 by FTIR analysis.
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