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Abstract. Motivated by the spurious variance loss encountered during covariance propagation in atmospheric
and other large-scale data assimilation systems, we consider the problem for state dynamics governed
by the continuity and related hyperbolic partial differential equations. This loss of variance has been
attributed to reduced-rank representations of the covariance matrix, as in ensemble methods for
example, or else to the use of dissipative numerical methods. Through a combination of analytical
work and numerical experiments, we demonstrate that significant variance loss, as well as gain,
typically occurs during covariance propagation, even at full rank. The cause of this unusual behavior
is a discontinuous change in the continuum covariance dynamics as correlation lengths become
small, for instance in the vicinity of sharp gradients in the velocity field. This discontinuity in the
covariance dynamics arises from hyperbolicity: the diagonal of the kernel of the covariance operator
is a characteristic surface for advective dynamics. Our numerical experiments demonstrate that
standard numerical methods for evolving the state are not adequate for propagating the covariance,
because they do not capture the discontinuity in the continuum covariance dynamics as correlations
lengths tend to zero. Our analytical and numerical results show that this leads to significant,
spurious variance loss in certain regions and gain in others. The results suggest that developing
local covariance propagation methods designed specifically to capture covariance evolution near the
diagonal may prove a useful alternative to current methods of covariance propagation.
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1. Introduction. At the heart of modern data assimilation is covariance propagation.
Data assimilation techniques evolve the estimation error covariance along with the model
state, either explicitly as in the Kalman filter, implicitly as in variational methods, or using a
reduced-rank approximation as in ensemble schemes [22, 38, 9, 13]. To provide context for the
problem addressed in this paper, we start with a stochastic model state N-vector q, which is
propagated discretely in data assimilation schemes from time t;_1 to t; as

(1.1) qr = Mg r-195_1,

where My, .1 is the deterministic NV x N propagation matrix representing the model dynamics.
For simplicity, we consider here the linear case with no forcing, random or otherwise. From
the model state we can define the N x N symmetric positive semidefinite covariance matrix
at time {tg,

(1.2) P, =E[(q, — @) (ar — @)"],

where E[-] is the expectation operator, g, = E[q,] is the mean state, and superscript T’
denotes transpose. The basic equation of discrete covariance propagation behind modern
data assimilation schemes then follows directly from the discrete state propagation (1.1),

(1.3) Py =My 1P M i,

where Pj_q and Py are the covariance matrices at times ¢;_;1 and tj, respectively [22, 21,
chapter 6]. We omit a process noise term in (1.3), which will be discussed later.

Motivated by atmospheric data assimilation schemes used for global numerical weather
prediction (NWP) [11, 23], we consider covariance propagation associated with hyperbolic
partial differential equations (PDEs). Let € S%, where S? is the surface of the sphere of
radius 7, and take time ¢t > ty3. To fix ideas, we first consider the continuity equation, which
describes the continuum evolution of the stochastic model state ¢ = ¢(x, ) as follows:

G +v-Vqg+(V-v)g=0,
(1.4) q(x,t0) = qo(x).

The subscript ¢t denotes the time derivative unless noted otherwise. The two-dimensional
velocity field v = v(a, t) is taken to be deterministic and continuously differentiable while the
initial state qg is stochastic with mean g,. Equation (1.4) is the statement of mass conservation
when ¢ is the density of a passively advected tracer in a thin layer of atmosphere between two
isentropic surfaces, for instance [29, 17, sec. 2.5 — 2.6]. For the model state in (1.4), we can
define the covariance between two points x1,xs € S? as

(1.5) P(xy,9,t) = E[(g(@1, 1) — g(21, 1)) (q(@2,t) — q(@2,1))]-
The corresponding covariance evolution equation for (1.4) on S2 x S? and for t > tq becomes

P+v1-Vi{P+vy-Vo P+ (V1 V1 +V2-02)P =0,
(1.6) P(a:l, Q}Q,to) = P()(:Bl, :132).

Here V,; denotes the gradient with respect to x;, and v; = v(x;,t), i = 1,2.
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Both the model state and covariance equations given in (1.4) and (1.6) are hyperbolic
PDEs, the former in two space dimensions and the latter in four. For the covariance equation,
the characteristic (or trajectory) equations that describe the coordinate vectors @1 and o of
parcels located initially at coordinates s1 and so, respectively, both satisfy the same ordinary
differential equation,

d
d—if =v(z,t),
(1.7) x(to) = s
[37, following Ch.3 notation]. The coordinate vector x; for i = 1,2 can be written as

x; = x(t;s;), which is the solution to (1.7) that represents the arrival point x; at time ¢
of the characteristic (trajectory) departing from the point s; at tg. In the case that initial
parameters for ; and xo are equal, s; = sg, then it follows from (1.7) that x; and @2 are
also equal, 1 = x(t;s1) = x(t;s2) = @x2. Therefore, initial covariances that start on the
hyperplane ; = x5 (i.e., $1 = $2) remain on x; = a2 for all time, implying that the x;, x2-
hyperplane is everywhere characteristic [6, p. 3130]. We show in section 2 that as a result,
there is a discontinuous change in solutions to (1.6) along the @1, x2-hyperplane in the limit
as correlation lengths approach zero, for example in the vicinity of sharp gradients in the
velocity field which can arise naturally, as seen for instance in [27].

To describe this discontinuity, suppose first that the initial covariance Py is continuous on
S2x 82, and denote it by Péi(wl, x2). Thus, the stochastic initial state qq is spatially correlated,
with variance o2(x) = Pd(x,x). It follows that the solution of the covariance evolution
equation (1.6) along the @1, z2-hyperplane corresponds to the variance o?(x,t) = P(x,x,t)
and satisfies

0l +v-Vo?+2(V-v)o? =0,
(1.8) o (@, to) = o3(w) = P(, ),

where 02 = o2(x,t) for £ € S? and t > ty, which can be derived either from (1.6) or directly
from (1.4) [6, sec. 2].

Now suppose instead that the initial state ¢g is spatially uncorrelated, and denote its
covariance function by P§(x1)d(x1,x2), where ¢ is the Dirac delta and P§ is continuous
on S2. As we show in subsection 2.3, for t > ¢, the solution to (1.6) is then given by
P(x1,x2,t) = P°(x1,t)0(x1, x2), where P satisfies

Pf+v-V P+ (V.v)P° =0,
(1.9) P(x,ty) = Py(x).

Thus, near zero correlation length, the behavior of solutions of the covariance evolution equa-
tion along the @1, xo-hyperplane changes abruptly from that of the variance equation (1.8) to
that of (1.9), in the case of a nonzero divergent velocity field, V - v # 0. Such a discontinuous
change in covariance dynamics for states governed by the continuity equation (1.4) also holds
for states governed by a generalized version of (1.4), which we present in section 2.
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The characteristic behavior of the x1, x2-hyperplane in the continuum does not translate
into discrete space for typical discretizations (1.1) of (1.4): diagonal elements of Py, in (1.3)
depend on off-diagonal elements of Pj_;, and a diagonal initial covariance matrix in (1.3)
does not remain diagonal for all time. In this paper, we study the behavior of solutions of
the continuum covariance evolution equation (1.6) and a generalized version (2.8) near the
@1, xo-hyperplane, and we contrast this with the behavior of discretizations (1.3) near the
diagonal, using a combination of analytical and numerical methods. We conduct numerical
experiments using a one-dimensional version of (1.4) and study the covariance and variance
propagation as a function of correlation length scales of the initial covariance. We find in some
cases that the variance propagated numerically according to (1.3) bears little resemblance to
that of the continuum variance dynamics (1.8), exhibiting both variance loss and variance gain
relative to the continuum solution. In particular, variances propagated numerically according
to (1.3) tend to be better approximations of (1.9) than of (1.8) for short initial correlation
lengths, quite independently of any numerical dissipation or dispersion effects. This property
manifests itself as a large, spurious loss of variance in regions where the amplitude index m,
defined in (3.7) and (3.8) of subsection 3.3, is greater than one, and a spurious variance gain in
regions where the index m is less than one, as our analytical and numerical results illustrate.
This behavior is the result of the discontinuous change in the continuum covariance dynamics
in the limit as the correlation length tends to zero.

Spurious loss of variance is well known in the data assimilation literature. How covari-
ances propagated through data assimilation schemes tend to underestimate the exact error
covariances has long been noted [28, pp.23-24]. Variance loss has been discussed primarily
in the context of ensemble schemes [28, 25, 13] in recent years, where spurious variance loss
can be attributed to the use of reduced-rank covariance representations [14]. Several methods
have been developed to address variance loss to prevent filter divergence, such as covariance
inflation [1, 31, 28, Ch. 9.2], a scale-selective generalization of covariance inflation [7, sec.
2.4.4], and methods of discrete covariance propagation that address variance loss associated
with numerical discretization [33, 30]. Loss of variance is sometimes addressed through an
artificial model error or process noise term added to the discrete covariance propagation in
(1.3) [21, sec. 8.8-8.9]. Accurately estimating an appropriate model error/process noise term
is difficult because spurious variance loss can be due to several different known and unknown
sources, though it has been shown that adding a model error term can help rectify the neg-
ative impact of variance loss, for instance, by increasing ensemble spread in the case of the
ensemble schemes [31, 19]. Stochastic parameterization of subgrid scale physics also helps to
increase ensemble spread to prevent filter divergence [3, p. 567].

For the purpose of illuminating a root cause of variance loss, we consider in this work
only the unforced covariance dynamics and omit a model error term, artificial or not. The
focus of this paper is on the spurious loss and gain of variance associated with the peculiar,
discontinuous limiting behavior of solutions of the continuum covariance evolution equation
(1.6) and its generalization (2.8), where spurious variance gain, while not often noted in the
literature, can also cause issues during data assimilation. Spurious loss and gain of variance
due to this discontinuous limiting behavior is a full-rank effect. We believe ours is the first
work to identify and study this effect.
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The layout of this paper is as follows. In section 2, we consider a slightly generalized
form of the continuity equation to study the continuum covariance propagation. In subsec-
tion 2.1 we establish the generalized problem, defining the necessary operators and associated
PDEs used for the analysis. This is followed by subsection 2.2, where the continuum polar
decomposition is defined for use in subsection 2.3, which derives the generalized version of
(1.9) and discusses the discontinuous change in the continuum dynamics as initial correlation
lengths approach zero. The analysis sections are followed by numerical experiments, where
we illustrate spurious loss and gain of variance in full-rank covariance propagation through
a simple one-dimensional example. Subsection 3.1 details the experimental setup of the one-
dimensional problem, describing the numerical propagation methods, discretization schemes,
and initial covariances. Subsection 3.2 summarizes the results from these numerical experi-
ments, followed by subsection 3.3, which discusses additional interpretations of the numerical
experiments. Section 4 contains concluding remarks, followed by Appendices A and B, which
contain additional derivations.

2. Analysis. We first study covariance propagation in the continuum. We will consider
the state and covariance equations as PDEs with solutions in the Hilbert space L?, define the
associated linear operators, and use tools from functional analysis to study these equations
and operators. This continuum analysis is crucial for interpreting the results of the numerical
experiments given later in section 3.

2.1. Preliminaries. Let ) = Sf and take x € Q and t > t3. We will consider the

generalized advection equation for the model state ¢ = ¢(x, 1),

g +v-Vqg+bg =0,
(2.1) q(x,t0) = qo(x).

Here b = b(x, t) is a scalar, and we note that setting b = V - v yields the continuity equation
(1.4). From (2.1) we have

d

(2.2) i

¢dx + / (20 — V - v)g*dx = 0,
Q

which is derived via integration by parts, where we assume that 2b — V - v € L*(Q) and
qo € L*(Q) so that (2.1) has a unique solution ¢ € L?(Q) for all time (e.g., using energy
arguments applied to (2.2) similar to those presented in [37, sec. 5.3]). We write this solution
as

(2.3) q(x,t) = (Miqo)(x),

where M : L?(Q) — L?(Q) is the solution operator of (2.1),

(2.4) (M.f)(z) = /Q M (w1 €) f(€)d.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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The subscript ¢ on all operators denoted using the calligraphy font style, as in My for
example, indicates the operator evaluated at time ¢, not the time derivative. The kernel of
the operator My, M = M(x,t;&), is the fundamental solution of (2.1),

M;+v-VM+bM =0,

where the initial condition is the Dirac delta. Here, we simply view the Dirac delta as the
kernel of the identity operator Z: L2(Q) + L?(Q),

(2.6) (Zf)() = f(z) = /Q 5. €)F(€)dE.

Equation (2.3) is analogous to the discrete state propagation computed in data assimilation
schemes. We can propagate our discrete state g in (1.1) from time ¢ to tg,

(2.7) qy =My 1My _1p-2...Mo1M10qq,

My o

which is the discrete version of (2.3) evaluated at time ¢ = ¢;; the operator M, is the
continuum version of the propagation matrix My .

With the model state now defined, we can derive the corresponding covariance evolution
equation for P = P(x1,x9,t) with @1, o € Q and t > ¢ [6, sec. 2 and references therein]:

P+ v 'V1P+U2'V2P+(b1+b2)P:0,
(2.8) P(.’Dl, wz,to) = P()(:Bl, 2132),

where, again, V; refers to the gradient with respect to x;, and v; = v(x;,t), b; = b(x;,t) for
1=1,2.

The solution of the covariance evolution equation (2.8) can be expressed using the funda-
mental solution operator M; and its adjoint M. The adjoint fundamental solution operator
is defined using the inner product over the Hilbert space L?(),

(2.9) (M f,9)2 = (f,Mig)a Vf, g€ L*(Q).

The adjoint operator, M7 : L%(Q) — L%*(Q), can be expressed as an integral operator whose
kernel M* is the solution to the adjoint final value problem associated with (2.1),

(2.10) (MEF)(E) = /Q M* (€. 1) f () dz.

With respect to the method of characteristics, the fundamental solution operator M; prop-
agates the solution forward along the characteristics determined by departure points, and
the adjoint fundamental solution operator M propagates the solution backwards along the
characteristics determined by arrival points. This yields the symmetry property [8, p. 729]
that at any fixed time ¢ the kernels satisfy

(2.11) M(z, t;€) = M* (&, t).
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Using (2.11), we can express the covariance in terms of the kernels of the fundamental solution
and adjoint fundamental solution operators,

(2.12) Plarant) = [ [ M1t o6 )M (€, )i,
or simply

(2.13) P = MPoM;i,

where Po: L*(Q) — L?(Q) is the operator whose kernel is Py,

(2.14) (Pof)(z1) = /on(wla T2) f (z2)dx2,

and P;: L2(Q) — L2(Q) is the resulting operator at time t,

(2.15) (Pof) (@) = /Qp(wl,a;g, £)f (as)ds.

Thus, the covariance evolution equation (2.8) is interpreted as the evolution equation for the
kernel of the covariance operator P;. As with the state propagation, (2.13) evaluated at time
t; is the continuum version of the discrete covariance propagation,

(2.16) Py, = M oPoM,
following from (1.3) and (2.7).

2.2. The polar decomposition. We next define the (left) polar decomposition of the
fundamental solution operator M;, which will bring to light important properties of the
covariance evolution that will be discussed in subsection 2.3. The polar decomposition is a
canonical form for all bounded linear operators on Hilbert spaces [36, pp. 196-198]. It is the
unique decomposition M; = DUy, where Dy = (M M])Y/? and U, is a partial isometry.

To derive the polar decomposition for M, we first decompose the fundamental solution
M into

(2.17) Mz, t;§) = d(z, t)u(, t; §),
where d = d(z,t) and u = u(x, t; §) satisfy the following PDEs:

di+v-Vd+ <b;V-v>d:O,
(2.18) d(z, o) = 1,

1
ut+v-Vu—|—5(V-v)u:O,

(2.19) u(@, to; §) = o(z, §).
The solution u of (2.19) is quadratically conservative,
(2.20) d/ u?(z,t; €)dx = 0,
dt Jo

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 03/02/23 to 198.11.28.10 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CONTINUUM COVARIANCE PROPAGATION 893

and therefore defines a bounded linear operator U;: L*(Q) + L?(Q)) whose kernel is the
solution to (2.19),

(221) wi)(w) = [ ule.tOfE)de.
The operator U, is an invertible isometry and therefore unitary.

To obtain the operator Dy, we consider the operator My M. From (2.13), the operator
M M7 is just the covariance operator P, when the initial covariance operator Py is the
identity operator (2.6); equivalently, the kernel of the operator M; M7 is the solution to the
covariance equation (2.8) when the initial covariance Py(x1,x2) is the Dirac delta, d(x1, z2).
We show in Appendix A that the solution of (2.8) with the initial condition Py(xi,x2) =
§(x1, o) is P(x1,x2,t) = d*(x1,t)5(x1, T2), where d is the solution to (2.18). In other words,
according to (2.13), MM is in fact a multiplication operator. A multiplication operator
IC: L2(2) — L2(Q) is defined as one for which

(2.22) (K@) = K@)f@) = [ 1.0,
where k(x) € L>(Q) is the multiplication function. The operator M;M7: L?(Q) — L?(Q),

(2.23) (MM f)(z) = d*(x, ) f (),

is a multiplication operator, where the multiplication function satisfies the following differen-
tial equation:

2 +v-Vd>+ (20— V -v)d* =0,
(2.24) d*(z, tg) = 1.

As the operator MM is nonnegative, its square root exists, and we define the operator
Dy : L2(Q) = L?() as this square root,

(2.25) (Def) (@) = (MM 2 f)(@) = d(, 1) f (),

with the multiplication function for D; being the solution to (2.18). Note that because the
operator Dy is a multiplication operator with a real-valued multiplication function, it is self-
adjoint.

The decomposition (2.17) of the kernel of the fundamental solution operator gives us the
(left) polar decomposition of My,

(2.26) M, =D,

with Dy and U, as defined above. In the next section, we use this polar decomposition to
study the continuum covariance propagation.

Remark 2.1. The polar decomposition is a canonical form for all bounded linear operators
on Hilbert spaces [36, pp. 196-198] and is crucial for deriving the continuous spectrum equation
(2.33) in subsection 2.3. Related to the polar decomposition is the continuum singular value
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decomposition (SVD), which is a canonical form for compact linear operators on Hilbert spaces
[36, Thm. VI.17]. The fundamental solution operator M, defined for the advective dynamics
presented in this work, (2.1), is not compact; therefore the continuum SVD does not apply.
If a diffusion term were added to (2.1), say kV?2q for k > 0 a diffusion coefficient and V? the
Laplacian operator, the corresponding fundamental solution operator would become compact
and a continuum SVD would exist. The discrete SVD is used widely in matrix analysis,
particularly in NWP data assimilation literature [26, 5, 12, 2].

2.3. Continuum covariance propagation. The solution of the continuum covariance evo-
lution equation (2.8) depends on the initial covariance Py(x1,x2), and we show in this section
how the behavior of the solution changes as the initial correlation length tends to zero. To do
so, we will interpret the covariance function P(xy,x2,t) as the kernel of the operator P; de-
fined in (2.15), whose evolution can be written in terms of the fundamental solution operator,
its adjoint, and the initial covariance, as given in (2.13).

We consider two cases for the initial covariance Py(x1, x2). First, assume the initial covari-
ance is continuous on 2 x Q, and denote it as Pg(x1,x2). Since P{ is continuous, the solution
to the covariance equation (2.8) is a strong solution and has a bounded L2-norm. Therefore
the corresponding covariance operator, which we will denote as ’Pf, is a self-adjoint Hilbert—
Schmidt operator [36, pp. 210-211]. Hilbert—Schmidt operators are a subclass of the compact
operators, and it follows from spectral theory that self-adjoint Hilbert—Schmidt operators only
contain eigenvalues in their spectrum [20, pp. 230-232] with the possible exception of zero in
the continuous spectrum. The set of eigenvalues is often referred to as the discrete spectrum,;
hence we can refer to the covariance operator ‘Pf as the discrete spectrum covariance operator.

Now, consider the case where the initial state ¢q is spatially uncorrelated, whose covari-
ance we represent by P§(x1)d(x1,x2), and assume that the function Pf is continuous on €.
The Dirac delta in the initial covariance reduces the initial covariance operator (2.14) to a
multiplication operator (2.22) with multiplication function P§; denote this operator as Pyg.
We can see how this impacts the corresponding covariance operator, which we denote as Py,
by applying the polar decomposition (2.26) to (2.13) with Pg = P§,

(2.27) P; = DUPU;D, = D/P,D,,
where
(2.28) P, =UPU;.

From the definition of ¢, in (2.21), it follows that the operator P;: L*(Q) — L*(Q) has kernel
P = P(x1,x,t) given by

3 _ 1 _
P,+wv,-ViP+wvy-Vy P+ §(V1 V1 +V2"U2)P =0,

(2.29) P(wl,wg,to) = Poc(ccl)é(wl,wg),
whose solution is shown in Appendix A to be

(2.30) ]S(ml,azg,t) = ]50(331,75)5(331,:1:2),
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where

Pf4v- VP =0,

(2.31) Pe(a, ty) = PS(x).

Thus, P; is a multiplication operator, and it follows from (2.18) and (2.31) that P¢ in (2.27)
is also a multiplication operator,

(2.32) (Pif) (@) = Pl t) (@) = /Q Py, )3(1, w2) f (@2)das,

where P¢ = d2P is the solution to the continuous spectrum equation

Pf+v-VP'+ 20—V -v)P°=0,
(2.33) P(x,ty) = Py(x).

Since multiplication operators contain only a continuous spectrum [20, pp. 219, 240], we will
refer to Py as the continuous spectrum covariance operator and to P¢ as the continuous
spectrum solution.

Thus, we have shown that the solution of the covariance evolution equation (2.8) for initial
condition P§(x1)d(x1,x2) is P(x1,x2,t) = P°(x1,t)d(x1, x2); white noise evolved under the
state dynamics (2.1) remains white. Further, we can see explicitly that the dynamics of the
covariance along the x1,xo-hyperplane are governed by the continuous spectrum equation
(2.33) for spatially uncorrelated initial states, rather than by the variance equation

02 +v-V o2 +2b0% =0,
(2.34) o?(x,tg) = op(x) = Pl(x, ),

which follows directly from (2.8) when the initial covariance is continuous on € x €. Only
in cases where the velocity field is divergence-free are the continuous spectrum equation and
variance equation identical. The dynamics of the covariance along the @1, xo-hyperplane are
governed by the variance equation (2.34) for all continuous initial covariances, independently
of nonzero initial correlation lengths, but at zero correlation length the dynamics change
abruptly to those of the continuous spectrum equation (2.33).

Covariances associated with spatially uncorrelated initial states, which correspond to co-
variances with zero initial correlation length scales, are limiting cases in our analysis as well as
in practice. Atmospheric wind fields, for example, have sharp vertical correlation structures
relative to long horizontal correlations that need to be represented in covariances for NWP
models [35], and horizontal wind shear leads to tracer correlations that shrink in the direc-
tion perpendicular to the flow such that they are no longer spatially resolved [27]. Through
careful analysis and use of the polar decomposition, we are able to derive the discontinuous
change in dynamics along the x1, xo-hyperplane as the correlation length approaches zero for
covariances governed by (2.8), which is not readily apparent when first considering the model
state and covariance equations or when only considering these equations in discrete space.
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3. Numerical experiments. The purpose of the numerical experiments is to examine the
evolution of the diagonal of the covariance matrix P} during discrete covariance propagation
and its relation to the discontinuous change in the continuum dynamics along the @1, xo-
hyperplane as the initial correlation length approaches zero. To clearly illustrate the prob-
lems associated with full-rank covariance propagation, a simple example is used so that our
numerical results can be compared to a known exact solution. We conduct these experiments
for various types of initial covariances specified with different initial standard deviations and
different correlation kernel functions with varying correlation length scales.

3.1. Experimental setup. For these experiments, we will consider the one-dimensional
version of the continuity equation (1.4) over the unit circle Si. We take the velocity field to
be independent of time and spatially varying:

(3.1) v(z) = sin(z) + 2.

The exact solution to the one-dimensional continuity equation with this velocity field can
be obtained explicitly using the method of characteristics and is used as reference for our
experiments; see Appendix B for further discussion.

The spatial domain S} is discretized on a uniform grid, z; = iAz, i = 0,1,...,N — 1,
where N = 200 and Ax = QW” The time discretization is given by t; = kAt, where the time
step At is determined from the Courant—Friedrichs—Lewy number A,

At At
3.2 A= max |v(z)]—=3-—<1.
( ) x€[0,27r]| ( ) Az Ar —

For these experiments, we take A = 1. We ran experiments with several other values of A < 1
(not shown) and found it did not have a significant impact on the results.

3.1.1. Numerical covariance propagation. We use two methods of propagation to illus-
trate the impact of numerical schemes on the discrete covariance propagation (1.3) and to
leverage insights from continuum covariance analysis in the form of the polar decomposition.
The covariance matrix is propagated discretely using either of two methods:

1. Traditional propagation: the covariance is propagated as in (1.3), where the matrix
M, j.—1 is the finite difference discretization of the fundamental solution equation
(2.5).

2. Polar decomposition propagation: the polar decomposition of the fundamental solution
operator (2.26) is discretized and used in place of the matrix My, ;1 in (1.3).

In the polar decomposition propagation, (2.26) is discretized as follows. The operator
D; of (2.25) is a self-adjoint multiplication operator; therefore when ¢ = ¢, its corresponding
discretization is the diagonal matrix Dy o whose diagonal elements are (Dy )i = d(z;,ty).
Here d(z;,ty) is the solution to (2.18) evaluated on the discrete spatial grid at time ¢, which
we generate using the exact solution to (2.18), as discussed in Appendix B. The discretization
of the operator Uy of (2.21) is done via finite differences to generate the propagation matrix
U}, -1 corresponding to (2.19). The matrix Uy, ,—1, which propagates the solution from time
tp—1 to t, is independent of time by virtue of (3.1); therefore we will denote Uy p—1 = U
for simplicity. To compute the covariance matrix at time ¢y, Py, we do not construct the
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matrix M, 1 explicitly using the polar decomposition, but instead compute the covariance
as follows:

Py =Dy gUpp 1Up-1-2...UioPoUTl ... Ul Dy
(3.3) = Dy U Py(U")" Dy .

The Lax—Wendroff [24] and Crank—Nicolson [10] finite difference schemes are used to generate
the matrices Uy —1 and My, ;1 corresponding to their respective PDEs (2.19) and (2.5).
Like Uy j—1, M} x—1 is independent of time; therefore throughout the rest of the paper we
will denote My, .1 simply as M. We choose these two simple finite difference schemes to
illustrate their contrasting behaviors, particularly when generating the matrix U. According
to the continuum analysis, the operator U; is unitary. The Crank—Nicolson discretization
preserves the unitary property of U; because the scheme is quadratically conservative, but the
Lax—Wendroff scheme does not. In the numerical results, subsections 3.2 and 3.3, propagated
covariances are labeled by the finite difference scheme used to construct the matrices M and
U (Lax—Wendroff or Crank—Nicolson) followed by the method of propagation (traditional or
polar decomposition) as described in the beginning of this section.

3.1.2. Initial covariances. We generate four types of initial covariances from the follow-
ing two different correlation kernel functions: the Gaspari-Cohn (GC) fifth-order piecewise
rational function [15, eq. (4.10)], and the first order autoregressive function (FOAR) [16, eq.
(23)]. Using each correlation function, we construct the initial covariance matrix with either a
constant initial variance or spatially varying initial variance. Initial covariances with constant
initial variance take the initial variance to be one, while initial covariances with the spatially
varying initial variance take the initial variance as the square of the standard deviation

sin(3x)
3

The GC correlation function Cy(r(zi, x;),1/2,¢) is a compactly supported approximation to
a Gaussian function, supported on the interval 0 < r(x;,x;) < 2¢, where

(3.4) oo(z) = +1.

(3.5) r(zi, xj) = 2sin(|z; — x4]/2)

is the chordal distance between z; and z; on Si. On the uniform spatial grid of 200 grid
points for these experiments, values of ¢ = 1, 0.25, and 0.05 correspond to 100, 16, and 3 grid
lengths (Az), respectively, from the peak of the correlation function to where it becomes zero,
and 33, 8, and just 1 grid length, respectively, from the peak value of 1 to values less than
0.2; see Figure 1 for these examples.

The FOAR correlation function given by

(3.6) Fr(r(zi, ) = exp(—r(wi, x;)/L)

is continuous but nondifferentiable at the origin because of its cusp-like behavior (see Figure 1).
As with the GC correlation function, the chordal distance (3.5) is used to reflect periodicity of
the domain. The FOAR correlation functions are nonzero on the full spatial domain. On the
spatial grid, L = 0.5, 0.25, and 0.03 corresponds to 26, 12, and just 1 grid length, respectively,
from the peak of the correlation to where it becomes less than 0.2.
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Correlation Functions

Lo GC (Co(r(x,0),1/2,c)) FOAR (F.(r(x, 0)))
) — c=1 — L=05
\ --- c=025 | M -=-- L=0.25
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X X

Figure 1. Ezamples of the correlation functions used to generate the initial covariances for numerical
propagation. The GC correlation functions (left) are functions of compact support length parameter c, where
the FOAR correlation functions (right) are functions of length scale L.

3.2. Experimental results. From the continuum analysis, one might expect the diagonal
of the covariance matrix P} to behave according to the variance equation for covariances
with nonzero initial correlation lengths and according to the continuous spectrum equation
for covariances with zero initial correlation length. To establish a baseline, Figure 2 illustrates
the solutions to the variance equation (1D version of (1.8)) and continuous spectrum equation
(1D version of (1.9)) for unit initial condition and for the spatially varying initial condition
given by the square of (3.4). Considering the exact solutions first (black), we see that the
dynamics of the variance solution and continuous spectrum solution are quite different due to
the spatially varying velocity field (3.1). We also see that solving either the variance equation
or the continuous spectrum equation directly using the Crank-Nicolson scheme (colored)
produces solutions that are nearly indistinguishable from the exact solutions. Solutions to the
variance and continuous spectrum equations computed using Lax-Wendroff differ very slightly
from Crank-Nicolson and are not shown.

Figure 2 shows that propagating the diagonal of the covariance matrix P} numerically,
independently of the rest of the matrix, using the known dynamics of either the variance equa-
tion or the continuous spectrum equation, produces minimal discretization error. Figure 3
illustrates further that, at least for covariance matrices with relatively long initial correlation
lengths, the numerically propagated full covariance itself also contains only minor discretiza-
tion errors typically expected from finite difference approximations. Figure 3 shows results for
the GC initial correlation supported on the full spatial domain (¢ = 1). The dissipative be-
havior of both Lax—Wendroff schemes is clear in the normalized spectra (left panels), whereas
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Variance (02(x, t)) and Continuous Spectrum (P°(x, t)) Time Series, T = 3.979
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— 10 1
= ] ' N
=3
QII. i_ I'\\ il ,' \\
X /N PR

J y j |
N d.-._/\.‘ _-g-.-.-.-_-g." € \ = | // B ==
0 f == | \-==-=-'/\ _.---—A-—--.

§ o 104 |’||
= A I n
X+ 8] i\ '|||ll
5 m 1\
?f’;‘ 6 [N 1 l|||| ] h
'l 1 1 1
=0 4 1r\ 1 v ] 1 ]
X Z VA AW X 7AY
e A | - l, X —-N\"/\
o T mammmms = ® ]

0 ' n ' 21 0 n 21 0 ' n ' 21 0 ' n ' 2n
CN o?(x,t) ==+ Exacto?(x,t) =—— CNPS(x,t) —-- ExactPS(x,t) a?(x, t) > P(x, t)

Figure 2. Top: Solutions to the one-dimensional variance equation (1.8) and continuous spectrum equation
(1.9) at various times with velocity field (3.1), for unit initial condition (top row) and spatially varying initial
condition (bottom row) taken to be the square of (3.4). Time T = 3.979 corresponds to slightly after a full
period. Ezact solutions for each case are given in black dashed (variance) and black dot-dashed lines (con-
tinuous spectrum). Green curves denote the solution to the variance equation computed with Crank—Nicolson
(abbreviated CN); blue curves are solutions to the continuous spectrum equation computed with Crank—Nicolson.
Regions highlighted in grey correspond to regions where the exact solution to the variance equation is greater
than the exact solution to the continuous spectrum equation, i.e., o2 > P¢; unhighlighted regions correspond to
regions where o < P°.

both the traditional Crank—Nicolson propagation and polar decomposition propagation using
the Crank—Nicolson U (hereafter referred to as Crank—Nicolson polar decomposition) capture
the normalized spectra quite well. The small amounts of variance loss and gain seen in both
the constant initial variance and spatially varying initial variance cases (middle panels of Fig-
ure 3) are consistent with dissipation and phase errors expected from finite differences. The
polar decomposition methods (dashed) reduce the errors in the diagonals of the covariance
matrices only slightly compared to the traditional methods (solid). The correlations at row
150 (right panels), which correspond to where the variance reaches a maximum as the velocity
field is at a minimum, are nearly identical to the exact correlations, suggesting minimal errors
in correlation propagation.

The accuracy of numerically propagated full covariances is much worse for short initial
correlation lengths, increasingly so as they approach zero. We monitor the total amount of
variance lost or gained over time through the trace of the covariance matrix, Tr(Py). Figure 4
shows the trace time series for both the GC and FOAR cases with spatially varying initial
variance as initial correlation lengths tend to zero (the constant initial variance case results
are similar to Figure 4 and are not shown). The GC and FOAR cases in Figure 4 exhibit
similar behaviors in the trace over time, even though their initial correlation structures are
quite different. As the initial correlation lengths tend to zero, the amount of variance lost dur-
ing propagation increases strikingly in the Lax—Wendroff schemes. The polar decomposition
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Propagated Covariances at Final Time (T=3.979) Py = GC (c=1.0), 0p(x) =1

Normalized Spectra Variances (Diagonals) Correlations (Row 150)
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Propagated Covariances at Final Time (T=3.979) Py = GC (c=1.0), 0o(x) =sin(3x)/3 + 1
Normalized Spectra Variances (Diagonals) Correlations (Row 150)
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Figure 3. Propagated covariances at the final time T (slightly after a full period) for GC initial correlations
with ¢ =1 (supported on the full domain) for all four propagation methods. Top row: Constant initial variance.
Bottom row: Spatially varying initial variance. The left panels correspond to the mormalized spectra (relative
to largest eigenvalue), the middle panels show the discrete variances (covariance matriz diagonals), and the
right panels show the correlations at row 150 (location of mazimum in variance in space and time). The ezact
normalized spectra are given in solid black lines, and the exact variances and correlations are given in black
dashed lines. Crank-Nicolson (CN) and Laz—Wendroff (LW) M refer to traditional propagation using Crank—
Nicolson or Laz—Wendroff (solid). CN and LW PD refer to propagation using the polar decomposition (dashed)
with the matrix U constructed via the Crank—Nicolson or Lax—Wendroff scheme, respectively.

propagation schemes (dashed) are an improvement over traditional propagation in some cases
but are worse in others and generally suffer similar amounts of variance loss. We also observe
that as initial correlation lengths tend to zero, the numerical schemes gradually approach their
own limiting behavior at ¢ = L = 0, rather than a discontinuous change in dynamics as seen
in the continuum analysis.

Had we not performed the continuum analysis of section 2, one might assume that the
variance loss in Figure 4 is caused simply by dissipation. However, the Crank—Nicolson scheme
is not dissipative and yet produces significant variance loss. In fact, we see for the traditional
Crank—Nicolson propagation (solid light blue lines) that there are regions of both variance loss
and gain. We also see that for short, nonzero initial correlation lengths (¢ = 0.05, L = 0.03 in
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Trace Time Series as c—» 0 and L - 0 for go(x) =sin(3x)/3 + 1 (T=3.979)
c=0.25 c=0.15 c=0.05 c=0.0
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Figure 4. Trace time series for GC (top row) and FOAR (bottom row) for the spatially varying initial
variance (the square of (3.4)). Each panel corresponds to different values of ¢ and L, decreasing from left to
right towards ¢ = L = 0. Refer to Figure 3 for a description of the curves. For the cases when ¢ = L = 0
(rightmost panels), the exact solutions (solid black lines) are constant in time due to the fact that continuous
spectrum solution P¢ satisfies the continuity equation (1.9); hence its integral over space is constant.

particular), the numerical schemes better approximate the limiting case of ¢ = L = 0 than the
correct behavior for ¢, L > 0. This suggests that inaccurate discrete diagonal propagation is
particularly pronounced for short correlation lengths.

The behavior of the trace time series in Figure 4 indicates that covariance propagation
itself can be a source of spurious loss and gain of variance; however, it does not indicate
where exactly this manifests itself. To gain a better understanding of the source of variance
loss and gain, we examine various aspects of the propagated covariance matrix for different
types of initial covariances as we did in Figure 3, but now for covariances with shorter initial
correlation lengths.

Figures 5 and 6 are final time snapshots (in the same format as shown in Figure 3) of
propagated covariances specified using the GC correlation function with ¢ = 0.25 and FOAR
correlation function with L = 0.25, respectively, which are initially well resolved as described
in subsection 3.1.2 and correspond to the mildest variance loss and gain cases shown in leftmost
panels of Figure 4. The normalized spectra in both of these cases are similar to the spectra
seen in Figure 3, where the Lax—Wendroff schemes are severely dissipative and both Crank—
Nicolson methods approximate the exact spectrum moderately well.

The diagonals extracted from the numerically propagated covariances in Figures 5 and 6
are strikingly different from the exact solution. Though covariances with these values of ¢
and L are well resolved initially, the extracted diagonals are smooth but wholly inaccurate.
Across all four methods of propagation we see regions of both variance loss and variance
gain, clearly illustrating that inaccurate discrete diagonal propagation is the problem more so
than dissipation. The diagonal propagation becomes worse when the initial covariance has a
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Propagated Covariances at Final Time (T=3.979) Py = GC (c=0.25), 0p(x) =1

Normalized Spectra Variances (Diagonals) Correlations (Row 150)
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Propagated Covariances at Final Time (T=3.979) P, = GC (c=0.25), 0p(x) =sin(3x)/3+ 1

Normalized Spectra Variances (Diagonals) Correlations (Row 150)
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Figure 5. Same as Figure 3 for ¢ = 0.25.

spatially varying variance (bottom rows of Figures 5 and 6), which is a more realistic situation
in practice. The errors we observe in the diagonals of the covariance matrices, interestingly,
are not reflected in the normalized spectra; considering the normalized spectra alone would not
even hint at the problems occurring in the discrete diagonal propagation. The correlations, as
expected, show dispersion off the diagonal. The oscillatory behavior of both Crank—Nicolson
schemes due to numerical dispersion is expected for this finite difference scheme [4, p. 46].
In the limiting case when the initial correlation lengths become zero, we see two contrast-
ing behaviors in the numerically propagated covariances depending on the initial variance;
see Figure 7. When the initial variance is constant (i.e., the initial covariance is the iden-
tity matrix), the Crank—Nicolson polar decomposition is the only scheme that correctly cap-
tures the behavior of the exact covariance (top row of Figure 7). This is expected from
the definition of the Crank—Nicolson polar decomposition in this case. Since the initial
covariance is the identity matrix and the matrix U constructed using the Crank—Nicolson
scheme is unitary, the Crank—Nicolson polar decomposition propagation (3.3) reduces to
P, = ijonI(Uk)TD;%O = DkygUk(Uk)Tka = Dio, which is exact since the diago-
nal of Dy, is evaluated analytically. When the initial variance varies spatially (bottom row
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Propagated Covariances at Final Time (T=3.979) P, = FOAR (L=0.25), op(x) =1

Normalized Spectra Variances (Diagonals) Correlations (Row 150)
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Figure 6. Same as Figure 5 for the FOAR correlation function with L = 0.25.

of Figure 7), the Crank—Nicolson polar decomposition propagation instead behaves more sim-
ilarly to the Crank—Nicolson traditional propagation, and both have regions of variance loss
and variance gain. Carefully comparing the diagonals extracted from the traditional and polar
decomposition propagated covariances, the Crank—Nicolson polar decomposition propagation
is a slight improvement over the Crank—Nicolson traditional propagation, but these differ-
ences are relatively minor compared to their absolute errors. The Lax—Wendroff schemes are
substantially dissipative in all cases. We also observe that as the values of ¢ and L decrease
towards zero, the normalized spectra in Figures 3 and 5 to 7 decay more slowly and become
relatively flat. This suggests that low-rank approximations would have difficulty capturing
these covariances as correlation lengths shrink.

Comparing the diagonals of the covariance matrices at the final time across a series of
initial correlation lengths in Figures 8 and 9 demonstrates the severity of the variance loss
and gain caused by inaccurate discrete diagonal propagation and provides a closer look at
the approach to a limiting behavior seen in the trace time series. Without prior knowledge
of the discontinuous change in dynamics as the initial correlation length tends to zero, one
might surmise from Figures 8 and 9 that the observed discrete diagonal behavior is caused
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Propagated Covariances at Final Time (T=3.979) Py = a%(x)l, oOo(x)=1
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Propagated Covariances at Final Time (T=3.979) Py = 03(x)I, do(x) = sin(3x)/3 + 1
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Figure 7. Propagated covariances at the final time T (slightly after a full period) for initial covariances with
zero initial correlation lengths (¢ = L = 0) for all four propagation methods. Top row: Constant initial variance
(identity matriz). Bottom row: Spatially varying initial variance. The left panels correspond to the normalized
spectra (relative to the largest eigenvalue), the middle panels show the discrete variances (covariance matriz
diagonals), and the right panels show the correlations at row 150 (location of the mazimum in variance in space
and time). The exact normalized spectra are given in solid black lines, and the exact diagonals (solutions to the
continuous spectrum equation) and correlations are given in black dashed lines. See caption of Figure 3 for a
description of the colored curves.

by dissipation. Knowing the continuum behavior, however, makes it clear that we are ob-
serving inaccurate discrete diagonal propagation associated with the discontinuous change in
continuum dynamics. The Crank—Nicolson polar decomposition propagation for a constant
initial variance is the only scheme that captures the correct diagonal behavior when the initial
covariance is the identity and gradually approaches this behavior as the initial correlation
length decreases. For all other cases in Figures 8 and 9, the resulting covariance matrix diag-
onals are smooth, but grossly incorrect, and gradually approach their own limiting behavior
at ¢ = L = 0 rather than changing abruptly as in the continuum case. The Lax—Wendroff
schemes are severely dissipative, hardly resembling the correct dynamics, and are not shown
in these and subsequent figures.
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Covariance Diagonals for Pp = GC as c - 0 at Final Time (T=3.979)
CNM CN PD

— ¢=0.25 c=0.15 — ¢=0.05 — ¢=0.0 ---- Exact (c>0) —-— Exact (c=0)

Figure 8. Covariance diagonals extracted from Crank—Nicolson traditional and polar decomposition propa-
gation methods at the final time T for GC initial correlations as ¢ approaches zero. Top row: Constant initial
variance. Bottom row: Spatially varying initial variance. Left column: Propagation via traditional Crank—
Nicolson (CN M). Right column: Propagation via Crank—Nicolson polar decomposition (CN PD). Black curves
are the ezact diagonals, dashed curves are covariances with nonzero initial correlation lengths (variance solu-
tion), and dot-dashed curves are covariances with zero initial correlation length (continuous spectrum solution).
These ezact curves here labeled as Exact (¢ > 0) and Exact (¢ = 0) are the same ezact curves labeled as Exact
o?(x,t) and Exact P°(z,t) in Figure 2. In the top right panel, the exact curve for ¢ = 0 (black dot-dashed)
and the CN PD curve for ¢ =0 (magenta) identically overlap.

The errors in the discrete diagonal propagation are not limited to the final time; errors
start to accumulate early on in the propagation cycle. We show this for the GC case in
Figure 10, where the FOAR results are similar but are not shown. We can see clearly that
rather than approximating the variance for ¢ > 0 (black dashed lines), the Crank—Nicolson
schemes (blue) tend to approximate the continuous spectrum (¢ = 0, brown), which is not
the correct diagonal behavior for this case. Along with the diagonals extracted from the
propagated covariances in Figure 10, we include the variance propagated independently by
solving the one-dimensional version of (1.8) using the Crank-Nicolson scheme, as was shown
in Figure 2. Including the variance solution computed using the Crank—Nicolson scheme in
Figure 10 emphasizes that propagating the covariance diagonal independently using the known
diagonal dynamics significantly reduces the errors in the variance compared to the diagonal
extracted from the propagated covariance matrix.
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Covariance Diagonals for Pp = FOAR as L— 0 at Final Time (T=3.979)
CN M CN PD

— L=0.25 L=0.15 — [=0.03 — [=0.0 ---- Exact (L>0) —-— Exact (L=0)

Figure 9. Same as Figure 8 for FOAR correlation function initial covariances.

3.3. Interpretation of the experimental results. Grey regions in Figure 10 correspond
to where the exact variance solution is larger than the exact continuous spectrum solution,
and these regions tend to correspond to where the numerically propagated diagonal for the
short, nonzero initial correlation length (blue) exhibits variance loss. Further insight into
this behavior can be gained by returning to the generalized continuum problem presented
in section 2. Assuming P{(z,z) = P§(x), as is the case in Figure 10, by multiplying the
variance equation (2.34) by P¢ and the continuous spectrum equation (2.33) by o2, taking the
difference, and dividing by (P€)?, we find from the quotient rule that the ratio

o?(x,t)

(3.7) ]

=m(x,t)

satisfies the continuity equation with unit initial condition,

my+v-Vm+(V-.-v)m=0,
(38) m(m,to) = 1,

for all x € Q and t > tg. From (3.8), the ratio 0?/P¢ must be conserved, and this holds
for the generalized variance and continuous spectrum equations (2.33) and (2.34)—mnot just
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Variance Time Series (T = 3.979) for P; = GC (c = 0.05)

12 t=1/4T t=1/2T t = 3/4T t=T
104
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0 n 2n 0 m 2n 0 m 2n 0 m 2n
CN Variance (o2(x, t)) CNM == CNPD = = Exact (c=0.05) —— Exact (c=0) o2(x, t) > PE(x, t)

Figure 10. Variance time series for GC case with ¢ = 0.05. Top row: Constant initial variance. Bottom
row: Spatially varying initial variance. Diagonals extracted from the Crank—Nicolson traditional and polar
decomposition propagation are shown (solid and dashed blue lines) as well as propagating the variance by
solving the variance equation (one-dimensional version of (1.8)) independently using Crank—Nicolson (green).
The exact solutions to the variance and continuous spectrum equations are shown in black dashed lines and
solid brown lines and are denoted as Exact (¢ = 0.05) and Exact (¢ = 0), respectively. Regions where the exact
variance is larger (smaller) than the exact continuous spectrum are highlighted in grey (white).

those presented in the numerical experiments. In regions where m > 1 we have o2 > P¢,
and conversely in regions where m < 1 we have 02 < P¢. In fact, the function m of (3.8) on
St with velocity field (3.1) can be expressed explicitly using (B.7), taking one as the initial
condition. Solving m = 1, or equivalently v(s(x,t)) — v(z) = 0 (following the notation of
Appendix B), determines the boundaries between regions where m is less than or greater than
one in S} at every time t > t.

For short initial correlation lengths, if the numerical schemes are better approximating
the continuous spectrum solution P¢, regions where m > 1 should correspond to variance loss
and regions where m < 1 should correspond to variance gain. Therefore, we refer to the ratio
m as the amplitude index, which can be used to interpret the variance loss and gain observed
in our numerical results. For example, regions where the index m is greater than one, i.e.,
0% > P¢, highlighted in grey in Figure 10, generally do coincide with regions where we see
variance loss in the Crank—Nicolson traditional and polar decomposition schemes. Conversely,
in the unshaded regions of Figure 10 where the index m is less than one, i.e., 02 < P¢, the
Crank—Nicolson traditional and polar decomposition schemes generally exhibit variance gain.
Hence, we can exploit the amplitude index m to indicate regions of variance loss and gain.

Since the amplitude index m must be conserved according to (3.8), for a typical velocity
field v there will always be regions of the spatial domain where m is greater than one and
regions where m is less than one at any given time ¢. This implies that we should see both
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loss and gain of variance at individual times; whether there will be global variance loss or
variance gain depends on the details of the velocity field v. In all the numerical results,
Figures 310, we see both spurious variance loss and gain as a result of inaccurate discrete
diagonal propagation. Data assimilation literature tends to focus on loss of variance because
of its known negative impact on data assimilation schemes [21, sec. 8.8, 28, sec. 9.2, 1,
18, 27]. However, we see here for a general advective system that both loss and gain exist
as reflected by the conservation law (3.8), cumulatively causing wholly inaccurate discrete
diagonal propagation. Variance inflation, a tool often used in data assimilation practice to
combat variance loss by rescaling the variance, typically by a multiplicative or additive factor,
could perhaps be optimally adjusted in this context. Distinguishing between regions where
the index m is greater than or less than one in general isolates the regions of variance loss
and gain, respectively; thus the inflation factor could be tuned to only inflate where we
expect variance loss. This would avoid using a single scale-factor that inflates the whole
variance function and would prevent variance inflation in regions where we already see variance
gain.

Since covariance information on and close to the diagonal may be sufficient information for
many applications, local covariance evolution, where the variance and correlation lengths are
propagated rather than the full matrix, may prove useful. Reference [6] first discussed local
covariance evolution through continuum analysis of hyperbolic and parabolic PDEs, similar
to the equations discussed here. The covariance equation in 2N spatial dimensions, where N
is the number of spatial dimensions of the state, is reduced to a system of auxiliary PDEs in
N dimensions consisting of variance and correlation length equations, which approximate the
covariance locally. The parametric Kalman filter (PKF) [34, 32, 33] applies the ideas of [6]
to advective-diffusive dynamics and the Burgers equation, where the PKF evolves variance
and local diffusion tensor dynamics to approximate covariance matrices. Our results, together
with the results of [6] and [34, 32, 33], suggest further investigation into local covariance
propagation, which may help reduce computational expense and the spurious loss and gain of
variance observed in full covariance propagation.

4. Conclusions and discussion. In this work, we study covariance propagation associated
with random state variables governed by a generalized advection equation. We do this in an
effort to understand the root causes of spurious loss of variance, which is observed in data
assimilation schemes wherein the covariance is explicitly or implicitly propagated. Using a
continuum analysis to guide the numerical results, new insights are gained through the detailed
study of both the continuum and discrete covariance evolution. The main conclusions are as
follows:

1. Continuum analysis of the state and covariance equations (2.1) and (2.8) is necessary
to establish a fundamental understanding of the covariance evolution. In particular,
the continuum analysis uncovers the discontinuous behavior of the dynamics along
o1 = a2 as the correlation length approaches zero, for example in the vicinity of sharp
gradients, which is an insight crucial for understanding the spurious loss and gain of
variance observed in our numerical experiments.

2. Comparison of the numerical results with the continuum analysis shows that full-
rank covariance propagation via (1.3) typically results in considerable spurious loss
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of variance. This is due to the peculiar discontinuous behavior of the dynamics far
more than to any numerical dissipation. Discrete propagation using (1.3) produces
inaccurate covariance matrix diagonals, resulting in both variance loss in regions where
the amplitude index m is greater than one and variance gain in regions where this
index m is less than one. When propagating initial covariances with short, nonzero
correlation lengths, the numerical schemes better approximate the dynamics of the
zero correlation length case than those of the nonzero correlation length case.

3. Isolating the variance and propagating it independently eliminates the variance loss
and gain observed during full-rank covariance propagation and yields accurate prop-
agation because it adheres to the continuum dynamics. This result suggests further
investigation into alternate methods of covariance propagation.

Though the continuum analysis performed here may not be tractable in all situations,
it serves as a foundation for understanding covariance evolution and interpreting the results
of our numerical experiments. Central to the continuum analysis is the polar decomposition
of the fundamental solution operator (2.26), which is general in that it is a canonical form
for all bounded linear operators on Hilbert spaces. Thus, we expect that much of the work
presented here can be extended to general hyperbolic systems of PDEs having a quadratic
energy functional, e.g., [7].

It is important to recognize that the loss of variance observed in our numerical experiments
is a result of the discontinuous change in continuum covariance dynamics discussed in subsec-
tion 2.3. Even when propagating covariance matrices using a fully Lagrangian scheme, as done
in [27], propagated covariances still suffer from spurious loss of variance that is not due to the
numerical scheme but rather to the discontinuous change in dynamics that we’ve identified in
this work. Covariance propagation tends to be overlooked in the data assimilation literature
as a potential source of variance loss, particularly when using the same numerical method that
propagates the state. Data assimilation schemes that do not propagate the covariance explic-
itly may experience errors similar to what we observe here because the underlying cause of
these errors is the covariance dynamics—not the numerical scheme. Studying full-rank covari-
ance propagation as in (1.3) isolates the spurious loss of variance as an issue with covariance
dynamics and implies that approximations to (1.3), such as in ensemble Kalman filters, can
suffer variance loss in a similar manner. The errors caused during the covariance propagation
may be a neglected source of the model error or “system error” observed in data assimilation
schemes [19, p. 3285].

Our work brings to light a fundamental issue associated with current approaches to numeri-
cal covariance propagation and recommends investigation into alternate methods of covariance
propagation. Figures 2 and 10, which display the independent variance propagation for exam-
ple, suggest that local covariance evolution may be an adequate alternative. As discussed in
[6, 34, 32, 33], for applications in which information on and close to the diagonal is sufficient,
evolving the variance and correlation lengths themselves may serve as an alternative to full
covariance evolution.

Appendix A. Proofs of solutions with Dirac delta initial conditions. We begin by

verifying that P(x1,x2,t) = d?*(x1,t)d(x1, T2), where d? satisfies (2.24), is the solution to the
covariance evolution equation (2.8) for Py(x1, x2) = §(x1, T2).
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Proof. The function P(xy,x2,t) = d?*(x1,t)0(x1, x2) is a weak (distribution) solution of
(2.8) with Po(:l:l, :122) = 5(%1, :132) if
(A1) (6. P) =0

for all test functions ¢ € C1(2 x Q x [tg, T]) with period t = T, where L£* is the adjoint
differential operator

(AZ) L= —0; —v1 V1 —v9:Vo+b +by — Vi v —Va-v9
corresponding to the differential operator
(A.3) L =0 +v1:Vi+vy:Vy+b + by

of (2.8). Here we denote (-, ) as the inner product over L?(2 x Q x [tg, T]) and we will denote
(-,-)" as the inner product over L?(§2 x [tg,T]). Substituting P = d?(x1,t)d(x1,x2) into the
expression for (L*¢, P), applying the Dirac delta, and expanding the result yields

(A.4) (L¢, P) = (=¢t(x1,®1,t) — V1 - (vid(x1,21,1))
+ (2b1 — Vl-vl)qﬁ(scl, I, t), d2(:121, t))/,

where we note that Vy vy |g,—2, = Vi-v1 and Vi¢(x1,21,t) = Vid(x1, T2, t)|wy—a, +
Vood(x1, @2, t)|z,—2,. Using integration by parts to move derivatives off of the test function
¢ onto d? in (A.4) gives us

(A.5) (L*¢, P) = (p(xy, @y, t),d? + vy -V d* + (2b) — Viv1)d?) =0,

since d? satisfies (2.24). Thus, P(x1, To,t) = d*(x1,t)5(x1, T2) is a weak solution to (2.8). W
To show that P = P°(zy1,t)5(x1, xs) is the solution to (2.29) for Py = P§(x1)d(x1, z2)
follows an identical proof as given above, where we take
1
(AG) b; — ivi-vi, 1=1,2,
(A.ﬁ) dQ(ml,t) — Pc(ml,t),

where P° satisfies (2.31).
Appendix B. Solution to the state equation. In this appendix we solve the one-
dimensional version of (1.4) used in the numerical experiments with velocity field (3.1),
Qt+UQx+U/q:O7 HARS 8117
(B.1) q(z,to) = qo(),
v = sin(z) + 2.

To solve (B.1), we start by rewriting the equation in terms of the Lagrangian/total derivative

D
(B2) Ht = 8t + v@x.
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By doing so, (B.1) becomes the ordinary differential equation (1-D version of (1.4))

(B.3) q(z,to) = qo(x)-

Associated with (B.3) are the Lagrangian trajectories, or characteristic equations, that deter-
mine how the spatial variable x evolves over time:

dx(t)
) _ (),

(B.4) x(ty) = s.

Here, we take s as a general initial parameter and define our solutions to (B.4) as z(¢;s),
following the notation of [37, Ch. 3] and discussion in section 1.

Since the state equation is reduced to an ordinary differential equation in (B.3), solutions
are of the form

t /
(B.5) g(z,t) = qola(to))elo ~ @

We can solve the integral in the exponential of (B.5) using a simple u—substitution of u = x(t)
along with (B.4),

56) /t: ! (e(r))dr = / " —((ff)) du =1n ((:c((t)))> '

To rewrite (B.6) in terms of (z,t), we first solve for z(¢; s) using the characteristic equation
(B.4), then invert to determine s = s(x,t), which can be done since the velocity field v is
continuously differentiable [37, Ch. 3]. Therefore, substituting (B.6) and x(tp) = s(x,t) into
(B.5), we have the explicit solution to (B.1),

B7) o(a.t) = an(sas0)

(B.8) s(z,t) = 2tan~! <‘f tan <tan_1 <2tan(f//§2) + 1) — ‘/St) — ;) .

The function tan~! refers to the principle branch of inverse tangent, where y = tan~!(z),
x € R,y € (—n/2,m/2), defined by solving = = tan(y) [39, sec. 6.3.3]. Figure 11 plots (B.7)
for two different initial conditions, along with solving (B.1) using Lax—Wendroff and Crank—
Nicolson schemes on a uniform grid of 200 grid points and unit Courant—Friedrichs—Lewy
number.

The amplitude index m of (3.8) on ST with velocity field (3.1) can be expressed explicitly
using (B.7) taking one as the initial condition. The exact solution d of (2.18) on S} for b = v,,
as in the numerical experiments, can also be computed explicitly from (B.7) (as d? in this
case satisfies (B.1) with unit initial condition).

sin(s(z,t)) + 2)
sin(z) + 2 ’
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State (q(x, t)) Time Series, T = 3.979
t=1/4T t=1/2T t=3/4T t=T

Jo(x)=1

sin(3x)/3+1

qo(x)

21 0 ' M ' 21 0 ' n ' 21 0 ' 7 ' 2n
e CN LW --- Exact

o
B

Figure 11. Solutions to (B.1) for qo(z) = 1 (top row) and qo(xz) = sin(3z)/3 + 1 (bottom row) at four
different times. The exact solution (black dashed line) is shown along with finite-difference solutions using
Crank—Nicolson (blue) and Laxz—Wendroff (orange). The finite difference solutions are nearly indistinguishable
from the exact solution.
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