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Abstract

We propose BAPose, a novel bottom-up approach that
achieves state-of-the-art results for multi-person pose es-
timation. Our end-to-end trainable framework leverages
a disentangled multi-scale waterfall architecture and in-
corporates adaptive convolutions to infer keypoints more
precisely in crowded scenes with occlusions. The multi-
scale representations, obtained by the disentangled water-
fall module in BAPose, leverage the efficiency of progres-
sive filtering in the cascade architecture, while maintain-
ing multi-scale fields-of-view comparable to spatial pyra-
mid configurations. Our results on the challenging COCO
and CrowdPose datasets demonstrate that BAPose is an ef-
ficient and robust framework for multi-person pose estima-
tion, significantly improving state-of-the-art accuracy. Hu-
man Pose Estimation, Multi-Scale Representations

1. Introduction

Estimating human pose in crowded scenes is a chal-
lenging task of high interest in computer vision research
and applications such as action recognition, sports analysis,
human-computer interactions, and sign language recogni-
tion. Various methods have focused on specific aspects of
human pose estimation, including 2D pose estimation [40],
[28], [43], [3], [39]; 3D pose estimation [37], [47], [1], [5];
single frame detection [6]; pose detection in videos [12];
dealing with a single person [43] or multiple people [7].

Multi-person pose estimation is very challenging due to
joint occlusions and the large number of degrees of free-
dom in the human body. Common approaches include the
deployment of statistical and geometric models to estimate
occluded joints [33], [29] and the use of anchor poses [37],
[42], although the latter is limited by the number of poses in
its library and has difficult generalizing to unforeseen poses.

State-of-the-art (SOTA) methods for multi-person pose
estimation can be divided in two distinct approaches: top-
down and bottom-up. The former detects instances of per-

Figure 1. Pose estimation examples with our BAPose method.

sons in the image and then perform single person pose es-
timation for each individual. The latter either detect all
keypoints and group them by affinity relations [7], [21], or
directly regress the keypoints to each person in the image
[14]. Overall, top-down approaches achieve high accuracy,
albeit they require an extra step for detection, resulting in a
slower and more costly process. On the other hand, bottom-
up approaches are based on a single-stage for multi-person
pose estimation that is generally more efficient.

We propose BAPose, a bottom up framework that is
named after “Basso verso l’Alto” (bottom-up in Italian).
The BAPose method is a single-stage, end-to-end train-
able network that improves recent successful approaches by
UniPose [3] , UniPose+ [5], and OmniPose [4] to bottom-
up multi-person 2D pose estimation. BAPose achieves
SOTA results in two large datasets without requiring post-
processing, intermediate supervision, multiple iterations or
anchor poses. The main contributions of BAPose are:

• We propose BAPose, a novel single-pass, end-to-end
trainable, multi-scale approach for bottom-up multi-
person 2D pose estimation, that achieves SOTA results
on the COCO and CrowdPose benchmarks.

• Our bottom-up approach combines multi-scale water-
fall features with disentangled adaptive convolutions
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and an integrated multi-scale decoder to disambiguate
the joints of individuals in crowded scenes without re-
quiring a separate detector.

• The enhanced multi-scale capability of BAPose is suit-
able for human pose estimation in images with a large
number of person instances, drastically increasing the
SOTA performance for the CrowdPose dataset.

2. Related Work
The use of Convolutional Neural Networks (CNNs) for

deep learning methods enabled leaping advances for the
task of human pose estimation [40], [7], [37], [5]. The Con-
volutional Pose Machines (CPM) [43] approach uses a se-
quence of CNN stages in the network to refine joint detec-
tion. Expanding [43] integrated Part Affinity Fields (PAF)
in their OpenPose [7] framework to better capture relation-
ships between joints for improved human pose estimation.

The Stacked Hourglass (HG) network [28] utilizes a
multi-stage approach by cascading hourglass structures
through the network to refine the resulting pose estimation.
This work was further expanded to incorporate the multi-
context approach in [13] by augmenting the backbone with
residual units in order to increase the receptive Field-of-
View (FOV). A downside of this approach is the increase
in complexity by the addition of another stage of postpro-
cessing with Conditional Random Fields (CRFs) and the as-
sociated increase in computational load.

Aiming to offer a multi-scale approach to feature repre-
sentations, the High-Resolution Network (HRNet) includes
both the high and low resolutions to obtain a larger FOV.
The Multi-Stage Pose Network (MSPN) [23] follows a
similar approach to HRNet by combining the cross-stage
feature aggregation and coarse-to-fine supervision, while
Distribution-Aware coordinate Representation of Keypoints
(DARK) method [44] refines their decoder in order to re-
duce the inference error at the decoder stage. In fur-
ther work, [11] combined the HRNet structure with multi-
resolution pyramids to obtain multi-scale features.

Developments in graphical components for CNNs in-
spired [45] by applying graphs to further extract the con-
textual information for pose, while Cascade Feature Aggre-
gation (CFA) [38] applied the cascade approach into the se-
mantic information for pose estimation. Generative Adver-
sarial Networks (GANs) were used in [8] to learn depen-
dencies and contextual information for pose. Transformer-
based networks were also investigated by TokenPose [24] to
better asses the global dependencies of the pose estimation.

A limitation of top-down approaches is the requirement
of an independent module for the detection of instances of
humans in the frame. LightTrack [32], for instance, applies
YOLOv3 [36] to detect subjects prior to the detection of
joints for pose estimation, while LCR-Net [37] applies mul-
tiple branches for detection by using Detectron [15] and the

arrangement of joints during classification.
With the goal of developing a unified framework to over-

come the limitation of top-down approaches, UniPose [3]
combines the bounding box generation and pose estimation
in a single, one-pass network. This approach is possible
due to the larger FOV and significant increase in the multi-
scale representation obtained by the Waterfall Atrous Spa-
tial Pooling (WASP) module [2], allowing greater FOV and
results in better representation of contextual information.

2.1. Bottom-Up Approaches

Bootom-up methods face the additional challenge of de-
tecting the joints of multiple people without an external per-
son detector that is commonly used in top-down methods.
The most common approach for bottom-up estimation is to
associate detected keypoints with each person in the image.
The problem was cast in terms of integer linear program-
ming in [35], [17], but a clear drawback is the high process-
ing time inhibiting real-time performance.

OpenPose [7] is considered a breakthrough approach for
grouping keypoints by introducing PAF. Other methods fur-
ther developed PAF, such as Pif-Paf [21] and associative
embedding [27]. Similarly, PersonLab [34] adopted Hough
voting, and [19] hierarchical graphical clustering.

The dense regression of pose candidates is adopted by
several recent works [31], [30]. A limitation of this ap-
proach is the lower regression accuracy in the localization
process, that usually requires an additional post-processing
step in order to improve the regression results. Aim-
ing to bridge the gap, [41] applied a mixture density net-
work to better handle uncertainty in the network before
regression. The recent Disentangled Keypoint Regression
(DEKR) method [14], on the other hand, learns disentan-
gled representations for each keypoint and utilizes adap-
tively activated pixels, ensuring that each representation fo-
cuses on the corresponding keypoint area.

2.2. Multi-Scale Feature Representations

The reduction of resolution that takes place in CNN
methods is a challenge for pose estimation or semantic seg-
mentation methods. Fully Convolutional Networks (FCN)
[26] addressed resolution reduction by adopting upsampling
strategies to increase the size of the features maps, reverting
it to the original input dimensions. Further, DeepLab [9] de-
ployed atrous convolutions to achieve a multi-scale frame-
work and increase the size of the receptive fields, avoiding
downsampling with the introduction of the Atrous Spacial
Pyramid Pooling (ASPP). The DeepLab applies atrous con-
volutions in four parallel branches with different rates, and
combines them at the original image resolution.

Improving upon ASPP [9], the WASP module incorpo-
rates multi-scale features without immediately parallelizing
the input stream [2], [3]. The WASP module creates a wa-
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Figure 2. BAPose architecture for bottom-up multi-person pose estimation. The input color image is fed through the HRNet backbone for
initial feature extraction, followed by the D-WASP module and an adaptive convolution based decoder to generate one heatmap per joint
(17 joints in the figure) and offset regression for the localization of each person instance.

terfall flow by initially processing through a filter and later
creating a new branch, and extends the cascade approach
by combining the streams from all its branches reaching a
multi-scale representation. The OmniPose framework [4]
introduced the enhanced WASPv2 module, improving upon
the multi-scale feature extraction from the backbone and in-
cludes the decoder features of the network.

3. BAPose Architecture

The proposed BAPose bottom-up method, illustrated in
Figure 2, consists of a single-pass, single output branch net-
work that is effective for multi-person 2D pose estimation in
crowded scenes. BAPose integrates improvements in multi-
scale feature representations [4], [14], an encoder-decoder
structure combined with the spatial pyramid pooling of the
waterfall configuration, and disentangled adaptive regres-
sion for person localization and parts association.

The processing pipeline of the BAPose architecture is
shown in Figure 2. The input image is initially processed
by the HRNet feature extractor. The extracted multi-scale
feature maps are then processed by the D-WASP module
with integrated decoder, that extracts the location of key-
points and contextual information for the localization re-
gression. The network generates K heatmaps, one for each
joint, with the corresponding confidence maps as well as
2 offset maps for the identification of person instances and
association of keypoints to each instance. The integrated D-
WASP decoder generates detections from all scales of the
feature extraction for both visible and occluded joints while
maintaining the image resolution through the network.

Our architecture includes several innovations that con-
tribute to increased accuracy. In the D-WASP module, BA-
Pose combines atrous convolutions and the waterfall archi-
tecture to increase the network’s capacity to represent multi-
scale contextual information by the probing of feature maps
at multiple rates of dilation. This configuration achieves
a larger FOV in the encoder. Our architecture also inte-
grates disentangled adaptive convolutions in the decoding

process, enabling the single-pass detection of multiple per-
son instances and their keypoint estimation. Additionally,
our network demonstrates superior ability to deal with a
large number of subjects by the enhanced extraction of fea-
tures at multiple scales, as indicated by SOTA results for
the CrowdPose dataset presented in Section 6. Finally, the
modular nature of BAPose facilitates the easy implementa-
tion and training of the network.

Our work on BAPose introduces the D-WASP module
for the more complex task of bottom-up, multi-person pose
estimation. Top down methods utilize detectors for iden-
tifying individual poses in multi-person settings, which re-
quires an additional stage of processing. BAPose utilizes a
bottom-up approach, without relying on an additional per-
son detector to locate different instances of persons in the
image, which is different and more efficient than top-down
approaches, e.g.OmniPose [4]. The D-WASP module pro-
posed in BAPose combines, for the first time, the multi-
scale approach of the waterfall atrous convolutions with dis-
entangled adaptive convolutions to better estimate the joints
and effectively detect multiple person instances.

3.1. Disentangled Waterfall Module

The proposed enhanced “Disentangled Waterfall Atrous
Spatial Pyramid” module, or D-WASP, is shown in Figure
3. The D-WASP module processes all four levels of fea-
ture maps from the backbone through the waterfall branches
with different dilation rates. Low-level and high-level fea-
tures are represented at the same resolution, achieving a
refined localization for joint estimation. Furthermore, the
D-WASP module uses adaptive convolution blocks to in-
fer the final heatmaps for joint localization and offset maps
for person instance regression. The module generates both
the keypoints and offset heatmaps for each person, through
their respective heads illustrated in Figure 3. The D-WASP
architecture helps to more effectively discern multiple peo-
ple in a crowded setting due to its multi-level and multi-
scale representations, contributing to SOTA performance.

The design of the D-WASP module relies on a combina-
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Figure 3. The D-WASP disentangled waterfall module. The inputs are 32, 64, 128, and 256 features maps from all four levels of the HRNet
backbone and low-level features from the initial layers of the framework. The module outputs both the keypoints and offsets heatmaps.

tion of atrous and adaptive convolutions. Atrous convolu-
tions are utilized in the initial stages to expand the FOV by
performing a filtering cascade at increasing rates to gain ef-
ficiency. The waterfall modules are designed to create a wa-
terfall flow, initially processing the input and then creating a
new branch. D-WASP goes beyond the cascade approach of
[10] by combining all streams from all its branches and the
average pooling layer from the original input. Additionally,
our module incorporates a larger number of scales com-
pared to WASPv2 [4] by adopting all 480 feature maps from
all levels of the HRNet feature extractor. Adaptive convolu-
tions are used to better infer the individual keypoints and
offset heatmaps during the regression process by provid-
ing context around the vicinity of each detected joint and
strengthening the relationship between associated joints.

3.1.1 Waterfall Features and Adaptive Convolutions

The D-WASP module operation begins with the concatena-
tion g0 of all feature maps fi from the HRNet feature ex-
tractor, where i = 0, 1, 2, 3 indicates the levels at different
scales and summation is overloaded for concatenation:

g0 =
3∑

i=0

(fi) (1)

Following the concatenation of all feature maps, the water-
fall processing is described as follows:

fWaterfall = W1 ⊛ (
4∑

i=1

(Wdi
⊛ gi−1) +AP (g0)) (2)

fmaps = W1 ⊛ (W1 ⊛ (W1 ⊛ fLLF + fWaterfall) (3)

where ⊛ represents convolution, g0 is the input feature map,
gi is the feature map from the ith atrous convolution, AP is
the average pooling operation, fLLF are the low-level fea-
ture maps, and W1 and Wdi represent convolutions of ker-
nel size 1×1 and 3×3 with dilations of di = [1, 6, 12, 18],
as shown in Figure 3. After concatenation, the feature maps

are combined with low level features. The last 1×1 con-
volution reduces the number of feature maps down to one
quarter of the number in the combined input feature maps.

Finally, the D-WASP module output fD−WASP is ob-
tained from the multi-scale adaptive convolutional regres-
sion, where adaptive convolution is defined as:

y(c) =
9∑

i=1

(wix(g
c
i + c)) (4)

where c is the center pixel of the convolution, y(c) repre-
sents the output of the convolution for input x, wi are the
kernel weights for the the center pixel its neighbors, and gci
is the offset of the ith activated pixel. In the adaptive con-
volutions, the offsets gci are adopted in a parametric manner
as an extension of spatial transformer networks [18].

3.1.2 Disentangled Adaptive Regression

The regression stage for multi-person pose estimation is
considered the most challenging and a bottleneck in per-
formance for bottom-up methods. To address the limitation
of regression, additional processing may utilize pose candi-
dates, post-processing matching schemes, proximity match-
ing, and statistical methods, however these may be compu-
tationally expensive or limited in effectiveness.

D-WASP expands on the idea of regression by focus, by
not only learning disentangled representations for each of
the K joints, but also using multiple scales to infer each
representation for all keypoints from multiple adaptively ac-
tivated pixels. This configuration gives each regression a
more robust contextual information of the keypoint region,
and results in a more accurate spatial representation.

The multi-scale approach proposed by the D-WASP
module, allows BAPose to regress person detections and
keypoints with a larger FOV, increasing the network capa-
bility to infer joints association through the use of adap-
tive convolutions. Differently than the WASPv2 [4] de-
coder stage that only extracts the heatmaps for joints, the
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D-WASP multi-scale disentangled adaptive regression de-
termines both the keypoint heatmaps and the final offset
heatmaps that are used to regress the position of each in-
dividual in the image and their respective joints.

In addition, the integration of the multi-scale feature
maps in the disentangled adaptive regression utilizes multi-
ple resolutions at the regression stage, allowing the network
to better infer the locations of people and their joints. As a
consequence, BAPose demonstrates superior performance
(see Section 6), especially in challenging scenarios that in-
clude large numbers of people in close proximity.

4. Datasets
We evaluated the BAPose method on two datasets for 2D

multi-person pose estimation: Common Objects in Context
(COCO) [25] and CrowdPose [22]. The large and most
commonly adopted COCO dataset [25] consists of over
200K images with more than 250K instances of labelled
people keypoints. The keypoint labels consist of 17 key-
points including all major joints in the torso and limbs, as
well as facial landmarks of nose, eyes, and ears. The dataset
is challenging dataset due to the large number of images in
a diverse set of scales and occlusion for poses in the wild.

The CrowdPose dataset [22] is more challenging due to
crowds and low separation among individuals. The dataset
contains 10K images for training, 2K images for validation,
and 20K images for testing. In addition to joints annota-
tions, it also contains body part occlusions. We follow eval-
uation procedures from [11] and [14].

We generated ideal Gaussian maps for the joints ground
truth locations during training, which is a more effective
strategy for training loss assessment compared to single
points at joint locations. As a consequence, the BAPose
was outputs heatmap locations for each joint. The value of
σ = 3 was adopted, generating a well defined Gaussian re-
sponse for both the ground truth and keypoint predictions,
with a decent separation of keypoints and avoiding large
overlapping of keypoints.

5. Experiments
BAPose experiments followed standard metrics set by

each dataset, and same procedures applied by [11], and [14].

5.1. Metrics

For the evaluation of BAPose, the evaluation is done
based on the Object Keypoint Similarity metric (OKS).

OKS =
(
∑

i e
−d2

i /2s
2k2

i )δ(vi > 0)∑
i δ(vi > 0)

(5)

where, di is the Euclidian distance between the estimated
keypoint and its ground truth, vi indicates if the keypoint is
visible, s is the scale of the corresponding target, and ki is

the falloff control constant. Since the OKS measurement is
adopted by both datasets and is similar to the intersection
over the union (IOU), we report our OKS results as the Av-
erage Precision (AP) for the IOUs for all instances between
0.5 and 0.95 (AP ), at 0.5 (AP 50) and 0.75 (AP 75), as well
as instances of medium (APM ) and large size (APL) for
the COCO dataset. For the CrowdPose dataset, we report
easy (APE), medium (APM ,) and hard size (APH ) in-
stances, as well as the overall Average Recall (AR), includ-
ing for medium (ARM ) and large (ARL) instances.

5.2. Parameter Selection

We use a set of dilation rates of r = {1, 6, 12, 18} for the
D-WASP module, similar to [4], and train the network for
140 epochs. The learning rate is initialized at 10−3 and is
reduced by an order of magnitude in two steps at 90 and 120
epochs. The training procedure includes random rotation
[−30◦, 30◦], random scale [0.75, 1.5], and random trans-
lation [−40, 40], mirroring procedures followed by [14].
All experiments were performed using PyTorch on Ubuntu
16.04. The workstation has an Intel i5-2650 2.20GHz CPU
with 16GB of RAM and an NVIDIA Tesla V100 GPU.

6. Results

This section presents BAPose results and compares on
two large datasets with SOTA methods.

6.1. Experimental results on the CrowdPose dataset

We performed training and testing on the CrowdPose
dataset, a difficult challenge due to the high occurrence of
crowds in the images. Results are shown in Table 1.

Our BAPose method significantly improves upon the
performance of SOTA methods for 512×512 input reso-
lution, achieving AP of 72.2% BAPose outperforms other
bottom-up approaches by a wide margin, even those that
utilized higher input resolutions. BAPose increased the AP
of previous bottom-up methods from 65.7% to 72.2% (rela-
tive increase of 9.9%) when compared to previous SOTA
at the same resolution, that is a 19.0% reduction in er-
ror (from 34.3% to 27.8%). The capabilities of the multi-
scale approach of BAPose are further exemplified by ob-
serving more precise joint estimations with threshold of
75% (AP 75), drastically reducing the error by 25.7% (from
29.6% to 22.0%) and increasing the previous SOTA AP
from 70.4% to 78.0% (relative increase of 10.8%) when
compared to the previous SOTA, HRNet-W32 [14].

Additionally, BAPose outperforms networks that utilize
top-down approaches by a significant margin increasing
from 70.0% to 72.2%. Differently than top-down methods,
BAPose does not rely on ground truth for person detection
and has to infer the location of all individuals in a modular,
single-pass process. For the CrowdPose dataset, BAPose’s
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Figure 4. Pose estimation examples using BAPose with the CrowdPose dataset.

Method Input Approach AP AP 50 AP 75 APE APM APH

Size
BAPose (W32) 512 BU 72.2% 89.6% 78.0% 79.9% 73.4% 61.3%

MIPNet [20] 512 TP 70.0% - - - - -
HRNet-W48 [14] 640 BU 67.3% 86.4% 72.2% 74.6% 68.1% 58.7%

JC SPPE [22] - TP 66.0% 84.2 71.5 75.5% 66.3% 57.4%
HigherHRNet-W48 [11] 640 BU 65.9% 86.4% 70.6% 73.3% 66.5% 57.9%

HRNet-W32 [14] 512 BU 65.7% 85.7% 70.4% 73.0% 66.4% 57.5%
Mask R-CNN [16] - BU 60.3% - - 69.4% 57.9% 45.8%

Table 1. BAPose results and comparison with SOTA methods for the CrowdPose dataset for testing. TP and BU represent the Top-Down
and Bottom-Up approaches, respectively.

Method Input GFLOPs Params
Size (M)

HRNet-W32 [14] 512 45.4 29.6
BAPose-W32 512 56.8 30.3

HRNet-W48 [14] 640 141.5 65.7
HigherHRNet-W48 [11] 640 154.3 63.8

BAPose-W48 640 183.2 67.4

Table 2. GFLOPs and number of parameters comparison.

performance is superior to networks utilizing higher resolu-
tion inputs of 640×640 [14], [11] while processing the less
computationally expensive 512×512 resolution.

It is important to observe that the BAPose framework
was able to achieve this significant increase in AP for
the CrowdPose dataset while utilizing a backbone smaller
(HRNet-W32 [47]) compared to the previous SOTA de-
ploying a larger backbone (HRNet-W48 [47]), reducing the
number of parameters by 54.9% and GFLOPs by 67.9%.

Figure 4 illustrates successful detections of multi-person
pose for the CrowdPose test set. The examples demonstrate
how effectively BAPose deals with occlusions, close prox-
imity of individuals, as well as detections at different scales.

6.2. Experimental results on the COCO dataset

We next performed training and testing on the COCO
dataset, which is challenging due to the large number of
diverse images with multiple people in close proximity, and
additionally includes images lacking a person instance.

We first compared BAPose with SOTA methods for the
COCO validation and test-dev datasets. The validation re-
sults in Table 3 show that BAPose achieves significant im-
provement over the previous SOTA for both input resolu-
tions. The BAPose results at the former resolution are ob-
tained with a significantly lower computational cost com-
pared to methods with higher resolution, as shown in Table
2, while achieving comparable results to higher resolution.

The incorporation of the D-WASP module achieves an
increased overall accuracy of 69.1% when using single-
scale testing significantly increasing the AP accuracy at
512×512 resolution by 1.6%. For multi-scale testing BA-
Pose achieves 71.9% improving upon previous SOTA of
70.7%, that is an increase in accuracy of 1.7%. This perfor-
mance increase represents an error reduction of 3.4% (from
32.0% to 30.9%) for single-scale and 4.1% error reduction
for multi-scale (from 29.3% to 28.1%).

BAPose improves the accuracy of the previous SOTA
in all keypoint estimation metrics and IOU for the COCO
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Figure 5. Pose estimation results using BAPose with the COCO dataset.

Method Input AP AP 50 AP 75 APM APL ARSize
Single-Scale Testing

BAPose (W48) 640 71.6% 88.6% 78.3% 67.3% 78.7% 76.5%
HRNet-W48 [14] 640 71.0% 88.3% 77.4% 66.7% 78.5% 76.0%

HigherHRNet-W48 [11] 640 69.9% 87.2% 76.1% - - -
BAPose (W32) 512 69.1% 87.0% 75.6% 63.1% 78.6% 73.7%

HRNet-W32 [14] 512 68.0% 86.7% 74.5% 62.1% 77.7% 73.0%
HigherHRNet-W32 [11] 512 67.1% 86.2% 73.0% - - -

HGG [19] 512 60.4% 83.0% 66.2% - - 64.8%
Multi-Scale Testing

BAPose (W48) 640 72.7% 88.6% 79.1% 69.3% 78.4% 77.9%
HRNet-W48 [14] 640 72.3% 88.3% 78.6% 68.6% 78.6% 77.7%

HigherHRNet-W48 [11] 640 72.1% 88.4% 78.2% - - -
BAPose (W32) 512 71.9% 88.3% 77.8% 67.2% 79.1% 76.6%

HRNet-W32 [14] 512 70.7% 87.7% 77.1% 66.2% 77.8% 75.9%
HigherHRNet-W32 [11] 512 69.9% 87.1% 76.0% - - -

HGG [19] 512 68.3% 86.7% 75.8% - - 72.0%

Table 3. BAPose results and comparison with SOTA methods for the COCO dataset for validation.

dataset. Most of the performance improvements of BAPose
are attributed to performing better on harder detections and
more refined predictions at AP 75. The results on the COCO
validation dataset, in Table 3, show the greater capability of
BAPose to detect more complex and harder poses while still
using a smaller resolution in the input image.

We also trained and tested BAPose-W48 at 640×640
resolution, achieving 71.6% accuracy for the COCO vali-
dation set with single scale testing and 72.7% with multi-
scale testing, improving the previous SOTA by 0.8% and
0.6%, respectively. This improvement represents an error
reduction of 2.1% and 1.4% compared to HRNet-w48 [14].
However, larger resolution models require much higher
computational resources, as illustrated by the GFLOPs and
memory requirements in Table 2. Compared to BAPose-
W32, HRNet-W48 requires 249.1% the number of GFLOPs

and HigherHRNet-W48 requires 271.7% the number of
GFLOPs, demonstrating that BAPose-W32 results in a bet-
ter trade-off between accuracy and computational cost.

Figure 5 presents examples of pose estimation results for
the COCO dataset. BAPose effectively locates symmetric
body joints and avoids confusion due to occlusion between
individuals. This is illustrated in harder to detect joints such
as ankles and wrists. Overall, the BAPose results demon-
strate robustness for pose estimation in challenging condi-
tions, such as images that include multiple individuals with
high overlapping ratio combined with shadows or darker
images, or partial pose present in the image.

For the larger COCO test-dev dataset, shown in Table 4,
BAPose achieves again new SOTA performance over meth-
ods using input resolutions of 512×512. Our method ob-
tained an overall precision of 68.0% when using single-
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Method Input AP AP 50 AP 75 APM APL ARSize
Single-Scale Testing

BAPose (W48) 640 70.3% 89.6% 77.5% 65.9% 77.1% 75.4%
HRNet-W48 [14] 640 70.0% 89.4% 77.3% 65.7% 76.9% 75.4%

HigherHRNet-W48 [11] 640 68.4% 88.2% 75.1% 64.4 74.2 -
BAPose (W32) 512 68.0% 88.0% 74.8% 62.4% 76.6% 72.9%

HRNet-W32 [14] 512 67.3% 87.9% 74.1% 61.5% 76.1% 72.4%
SPM [31] - 66.9% 88.5% 72.9% 62.6% 73.1% -

CenterNet-HG [46] 512 63.0% 86.8% 69.6% 58.9% 70.4% -
OpenPose [7] - 61.8% 84.9% 67.5% 57.1% 68.2% 66.5%

Multi-Scale Testing
BAPose (W48) 640 71.2% 89.4% 78.1% 67.4% 76.8% 76.8%

HRNet-W48 [14] 640 71.0% 89.2% 78.0% 67.1% 76.9% 76.7%
HigherHRNet-W48 [11] 640 70.5% 89.3% 77.2% 66.6% 75.8% -
Point-set Anchors [42] 640 68.7% 89.9% 76.3% 64.8% 75.3% 74.8%

BAPose (W32) 512 70.4% 89.3% 77.4% 66.0% 76.9% 75.6%
HRNet-W32 [14] 512 69.6% 89.0% 76.6% 65.2% 76.5% 75.1%

HGG [19] 512 67.6% 85.1% 73.7% 62.7% 74.6% 71.3%

Table 4. BAPose results and comparison with SOTA methods for the COCO dataset for test-dev.

scale testing and 70.4% when using multi-scale testing,
which are relative improvements over SOTA of 1.0% for
single (from 67.3% to 68.0%) and 1.1% (from 69.6.% to
70.4%) for multi scale testing. BAPose reduced the error
at the 512×512 resolution by 2.1% (from 32.7% to 32.0%)
for single-scale and 2.6% (from 30.4% to 29.6%) for multi-
scale testing. When training and testing at the 640×640
resolution, BAPose-W48 achieved accuracies of 70.3% for
single-scale testing and 71.2% when using single-scale
multi-scale testing, an improvement of 0.4% for single-
scale testing and 0.3% for multi-scale testing compared to
the previous SOTA, reducing the error by 1.0% and 0.7%,
respectively. These results further demonstrate BAPose
most significant improvements are in smaller and harder tar-
gets consistent with the findings from the validation dataset.

7. Ablation Study on Waterfall Modules

We performed an ablation study comparing the D-WASP
module vs. WASP [3] vs. WASPv2 [4], and vs. the base-
line without the waterfall module [39]. Since HRNet and
UniPose are methods for single person and top-down pose
estimation, we adapted all models to the same decoding pro-
cedures used by BAPose. We adopted a HRNet-W32 for all
backbones to have a direct comparison. Table 5 demonstrate
the results. For both datasets, we found that D-WASP ob-
tained a significant and consistent improvement over SOTA.

The improvement obtained with BAPose using the D-
WASP module was more significant for the CrowdPose
dataset due to the more complex settings with multiple
people and bigger need for people detection over multiple

Method Waterfall COCO CrowdPose
Module AP AP

HR-Net[39] None 68.0% 65.7%
UniPose[3] WASP 68.2% 67.2%

OmniPose[4] WASPv2 68.5% 69.0%
BAPose D-WASP 69.1% 72.2%

Table 5. Results on the COCO and CrowdPose datasets. All net-
works use HRNet-W32 backbone and different waterfall modules.

scales and multiple occlusions, further demonstrating the
higher robustness of the D-WASP module for more complex
tasks of bottom-up pose estimation and more keypoints.

8. Conclusion
We presented the BAPose method for bottom-up multi-

person pose estimation. The BAPose network includes the
novel D-WASP module that combines multi-scale features
obtained from the waterfall flow with the person detection
capability of the disentangled adaptive regression. BAPose
is a end-to-end trainable, single-pass architecture that with-
out anchors, prior person detections, or postprocessing.

The results demonstrate SOTA performance for both the
COCO and CrowdPose datasets in all metrics, superior ca-
pability of person detection and pose estimation in densely
populated images, and the robustness of the BAPose frame-
work, when estimating a large number of pose instances in
crowds, allowing the expansion of our framework to the
broader task of complete body pose estimation including
hands, feet, and facial landmarks.
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