
1.  Introduction
The thermosphere is the neutral portion of the upper atmosphere where many satellites, debris, and space assets 
reside. It is primarily heated and influenced by solar extreme ultraviolet (EUV) and far ultraviolet emissions 
which vary with the solar cycle (Emmert,  2015). Geomagnetic storms—often caused by coronal mass ejec-
tions (CMEs) and coronal holes—can cause sudden increases in mass density with little warning. In early 2022, 
SpaceX had 38 satellites fail to reach their desired orbits due to a density response to a CME which resulted in a 
minor geomagnetic storm (Hapgood et al., 2022). While the occurrence could have been avoided with adequate 
neutral density forecasts, current models carry high errors and uncertainty during geomagnetic events (Oliveira 
et al., 2021).

Although geomagnetic storms receive considerable attention due to their immediate consequences, density 
model performance also varies as a function of solar EUV output. Bowman et al. (2008) compared density ratios 
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and error standard deviations of thermosphere models with respect to the High Accuracy Satellite Drag Model 
(HASDM) which is the operational model used by the United States Space Force (Storz et  al.,  2005). Their 
results showed considerable variability as a function of solar activity with strong underestimation (density ratio 
of 0.7–0.8) during solar minimum. Furthermore, the error standard deviation of these models can be up to 45% 
during solar minimum and no less than 10% during solar maximum. This points to the need for innovative solu-
tions to provide overall improvements to our thermospheric mass density models.

One such solution is to develop a correction-based model using satellite density estimates (Choury et al., 2013; 
Licata, Mehta, Weimer, & Tobiska, 2021; Ruan et al., 2018; Weimer et al., 2016, 2020). Over the last few decades, 
there have been a growing number of satellites with high-fidelity onboard accelerometers such as CHAllenging 
Minisatellite Payload (CHAMP) (Lühr et al., 2002), Gravity Recovery and Climate Experiment (GRACE) (Tapley 
et al., 2004), and Swarm (Friis-Christensen et al., 2006). Some researchers have taken the accelerometer data 
from the satellites, removed other acceleration sources (e.g., solar radiation pressure), and isolated drag acceler-
ation therefore estimating density (Bruinsma & Biancale, 2003; Liu et al., 2005; Sutton, 2008; Doornbos, 2012; 
Calabia & Jin, 2016; Mehta et al., 2017; van den IJssel et al., 2020). These density sources have a high temporal 
cadence and, when combined, provide coverage over a wide array of locations and space weather conditions.

Although these correction-based approaches help calibrate the original model, they still only provide point esti-
mates. Point estimates do not provide the user with information on the potential error associated with the output, 
or density. Uncertainty quantification (UQ), with respect to thermosphere modeling, is concerned with provid-
ing information on the uncertainty associated with estimates of temperature or density (Boniface, Claude and 
Bruinsma, Sean, 2021; Licata, Mehta, Tobiska, & Huzurbazar, 2022; Licata & Mehta, 2022). This information—
often provided as a Gaussian distribution—can be used for analysis or potentially in determining satellite position 
uncertainty (Bussy-Virat et al., 2018; Licata, Mehta, & Tobiska, 2021).

In this work, we develop an exospheric temperature model based on satellite estimates using machine learn-
ing (ML) to feed into NRLMSIS 2.0 (Emmert et al., 2021). This model (called MSIS-UQ) provides a distri-
bution in its exospheric temperature predictions therefore incorporating uncertainty quantification (UQ) 
capabilities to NRLMSIS 2.0. MSIS-UQ differs from EXospheric TEMperatures on a PoLyhedrAl gRid—ML 
(EXTEMPLAR-ML) by: (a) using true locations (no grid) for training, (b) using the newest Mass Spectrometer 
and Incoherent Scatter radar (MSIS) model, and (c) providing uncertainty estimates. The manuscript is organized 
as follows. We describe the data, model development, and validation approaches. We then show results for over all 
model performance and a demonstration of its uncertainty capabilities. Last, we evaluate MSIS-UQ during a 
storm and perform a study to test its response to geomagnetic activity.

2.  Data and Methods
2.1.  Exospheric Temperature Estimates

Exospheric temperatures were obtained through a binary search, deriving the exospheric temperature required 
in NRLMSIS 2.0 to match satellite density estimates (Weimer et al., 2016, 2021). The density estimates origi-
nate from the following sources—CHAMP 2001: Doornbos (2012), CHAMP 2002–2010: Mehta et al. (2017), 
GRACE 2002–2009: Mehta et al. (2017), GRACE 2010: Sutton (2008), Swarm A 2013–2018: van den IJssel et al. 
(2020), and Swarm B 2012–2016: van den IJssel et al. (2020). Note that only GRACE-A measurements are used 
due to the similarity of the GRACE-A and GRACE-B orbits. The CHAMP and GRACE density estimates orig-
inate from accelerometer measurements and span an altitude range of 300–535 km while the Swarm A and B 
density estimates are obtained from GPS data and span an altitude range of 437–545 km. The cadence of the 
satellite estimates are 10, 5, 30, and 30 s for CHAMP, GRACE, Swarm A, and Swarm B, respectively. There are 
over 82 million samples total for model development and evaluation. This data set was originally derived for the 
EXTEMPLAR exospheric temperature correction model for NRLMSISE-00 and NRLMSIS 2.0 which consisted 
of linear models for 1,620 polyhedral grid cells (Weimer et al., 2020, 2021). The interfacing between a separate 
exospheric temperature model and MSIS was crucial for the development of MSIS-UQ.
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2.2.  Model Drivers

To run NRLMSIS 2.0, the following space weather inputs are required: F10.7, F81c, and Ap. F10.7 is a measure of 
the 10.7 cm solar radio flux and acts as a good proxy for solar EUV emissions while F81c is merely an 81-day 
centered average of the proxy. The Ap index is a measure of daily global geomagnetic activity. NRLMSIS 2.0 
also has a storm-time flag that allows additional 3-hourly ap values: ap, ap3, ap6, ap9, ap12-33, and ap36-57. The 
subscripts indicate the number of hours prior to epoch that ap value represents; when there are two numbers (e.g., 
36–57), the 3-hourly index values are averaged over this many hours prior to epoch. NRLMSIS also has temporal 
inputs (e.g., time of day, day of year) and spatial inputs (e.g., local time, longitude, latitude (LAT), and altitude).

To develop a machine-learned exospheric temperature model with a high temporal cadence, we expand the input 
set. To account for solar activity, the model receives F10.7, S10.7, M10.7, and Y10.7, all accounting for different forms 
of solar emissions that affect different regions of the thermosphere (Bowman et al., 2008; Tobiska et al., 2008). 
The ML model also uses inputs from EXTEMPLAR, particularly SN, SS, ΔT. The two S inputs are Poynting flux 
totals in the Northern and Southern hemispheres (Weimer, 2005a, Weimer, 2005b). ΔT is a parameter derived by 
Weimer et al. (2020, 2021) and represents exospheric temperature perturbations; it is a function of Poynting flux 
and simulated nitric oxide emissions.

For further representation of geomagnetic activity, a time history of SYM-H is used, similar to the use of 
storm-time ap indices for NRLMSIS 2.0. SYM-H represents disturbances to the geomagnetic field and has simi-
lar characteristics to Dst. A benefit over Dst is its 1-min cadence (Iyemori, 1990). The SYM-H inputs are as 
follows: SYM-H, SYM-H0-3, SYM-H3-6, SYM-H6-9, SYM-H9-12, SYM-H12-33, SYM-H33-57. Due to the model's use 
of in-situ satellite estimates, it takes location as an input. The local solar time (LST) is transformed using sine and 
cosine functions to make it continuous about midnight,

𝐿𝐿𝐿𝐿𝐿𝐿1 = sin

(

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

24

)

𝐿𝐿𝐿𝐿𝐿𝐿2 = cos

(

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

24

)

� (1)

The model also uses satellite LAT. To account for temporal dependencies, day of year (t1 and t2) and universal 
time (UT, t3 and t4) are transformed through similar functions,

𝑡𝑡1 = sin

(

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

365.25

)

𝑡𝑡2 = cos

(

2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

365.25

)

𝑡𝑡3 = sin

(

2𝜋𝜋𝜋𝜋𝜋𝜋

24

)

𝑡𝑡4 = cos

(

2𝜋𝜋𝜋𝜋𝜋𝜋

24

)

� (2)

2.3.  Data Preparation

The ML model drivers are the 21 space weather, spatial, and temporal inputs mentioned in the previous section. 
Each sample has an exospheric temperature estimate which will serve as the target. To reduce the variance of the 
output (T∞), we use a logarithmic transformation making the output log10T∞. The final step to create ML-ready 
data is to perform standard normalization. This will center the data and provide a unit standard deviation for each 
input and output with respect to the statistics of the training data,

𝑥̃𝑥 =

𝑥𝑥 − 𝜇𝜇

𝜎𝜎
� (3)

where x represents each input and the output, μ is the mean of that quantity over the training set, and σ is the 
standard deviation of that quantity over the training set. μ and σ must be saved for downstream use of the model.

The 81 million samples are split into training, validation, and tests sets to achieve an 80%–10%–10% distribution. 
Licata, Mehta, Weimer, and Tobiska (2021) split a similar data set to have long segments—on the order of months 
or years. However, the resulting model was not well-generalized across the sets. When comparing EXTEMPLAR 
and a previous version of MSIS over the same three time periods, the error statistics also varied. Therefore, we 
use a different approach to data splitting. Starting with the first sample, 8 weeks are used for training, the follow-
ing week is used for validation, and the subsequent week is used for testing. This pattern is repeated until the end 
of the data set. This approach forces similar solar cycle and spatial coverage across the three sets. Concurrently, 
there is a significant number of samples within each segment providing temporally disjoint segments throughout 
the 17 years time-span of the data set. Since each satellite has a different cadence and there are different numbers 
of satellites providing measurements at a given time, the number of samples in each segment varies. In the 
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training, validation, and test sets, the number of samples varies from 22,454 to 1,450,380, 12,990 to 181,423, 
and 12,888 to 181,422, respectively. This means that there are between 25,878 and 362,845 samples separating 
training segments.

2.4.  Model Development

A key consideration in ML model development is the choice for the loss (or objective) function. This will be 
the quantity that the algorithm will try to minimize or maximize during the training phase. For this work, we 
use the negative logarithm of predictive density loss function due to previous ML modeling results (Licata & 
Mehta, 2022; Licata, Mehta, Tobiska, & Huzurbazar, 2022) NLPD is given as

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦) =
(𝑦𝑦 − 𝜇𝜇)

2

2𝜎𝜎2

+

log

(

𝜎𝜎
2

)

2

+

log(2𝜋𝜋)

2

� (4)

where y, μ, and σ are the ground truth, mean prediction, and predicted standard deviation, respectively. This loss 
functions provides the capability for uncertainty prediction since the model can now make σ predictions and have 
them incorporated in the loss function without labels. The ML model will directly predict μ and σ for log10T∞ 
meaning it has two outputs. The output node for μ uses a linear activation function since the normalized values 
can take on any value (unbounded). The output node for σ must be positive, monotonically increasing, and have 
no upper-bound. Therefore, we proceed with the “softplus” activation function: f(x) = ln (1 + e x).

With the inputs/output(s) selected, normalization complete, loss function chosen, and output layer determined, 
the only remaining task for model development is to select an architecture and train a model. To accomplish this, 
we defined a scheme and hyperparameter space using Keras Tuner (O’Malley et al., 2019) as with previous work 
(Licata, Mehta, Weimer, & Tobiska, 2021, Licata, Mehta, Tobiska, & Huzurbazar, 2022; Licata & Mehta, 2022). 
Table 1 shows the parameters used and ranges provided to the tuner. Each hidden layer can have its own unique 
number of neurons, activation function, and dropout rate. Note: “trials” refers to number of model architectures, 
initial points is the number of randomly selected architectures prior to Bayesian optimization, and repeats refers 
to re-initializing weights and retraining.

Since there are over 65 million training samples in the data set, we only provide the tuner with a subset of this 
data. The tuner uses 1 million randomly selected samples from the training set and 200,000 randomly selected 

samples from the validation set. Each model trained by the tuner will run for 
50 training iterations (or epochs) with a batch size of 4,096. Upon comple-
tion, the 10 best models are saved based on the validation loss values. All 10 
models are evaluated (see Section 2.5), and the best performing one is used 
as a base architecture for full training. The best architecture from the tuner is 
displayed in Table 2.

2.5.  Model Analysis

When comparing model to satellite densities, we use the mean absolute error 
(MAE) metric in percentage (relative) form. This metric is chosen due to its 
intuitive nature. To assess the quality of the ML uncertainty estimates, we use 

Tuner option Choice Parameter Values/range

Scheme Bayesian optimization Number of hidden layers 1–10

Total trials 150 Neurons min = 16, max = 1,024, step = 4

Initial points 50 Activations relu, softplus, tanh, sigmoid, 
softsign, selu, elu

Repeats per trial 3 Dropout min = 0.10, max = 0.60, step = 0.01

Minimization parameter Validation loss Optimizer RMSprop, Adam, Adadelta, Nadam

Table 1 
Hyperparameter Tuner Parameters (Left) and Search Space (Right)

Neurons Activation Dropout rate

Layer 1 648 Relu 0.13

Layer 2 176 Tanh 0.21

μ Output 1 Linear 0.00

σ Output 1 Softplus 0.00

Note. There are 21 inputs for Layer 1, and it uses the NAdam optimizer 
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam.

Table 2 
Model Architecture for the Best Model From the Tuner
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a calibration error score (CES) (Licata, Mehta, Tobiska, & Huzurbazar, 2022; Licata & Mehta, 2022). This metric 
assesses how close the uncertainty estimates are to input prediction intervals (e.g., how close a 95% prediction 
interval is to containing 95% of true samples). The equations for MAE and CES are provided in Equations 5a 
and 5b, respectively.

MAE = 100%

|𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|

𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
� (5a)

CES =

100%

𝑚𝑚 ⋅ 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜
∑

𝑖𝑖=1

𝑚𝑚
∑

𝑗𝑗=1

|𝑝𝑝 (𝑧𝑧𝑖𝑖𝑖𝑖𝑖) − 𝑝𝑝 (𝑧̂𝑧𝑖𝑖𝑖𝑖𝑖)|� (5b)

In Equation 5a, ρsatellite is the estimate of density from a given satellite measurement (e.g., from CHAMP, GRACE, 
etc.). ρmodel is the density from the model being evaluated. In Equation 5b, m is the number of prediction intervals 
being tested, nout is the number of model outputs (for the ML model nout = 1), p(zi,j) is a given prediction interval, 
and 𝐴𝐴 𝐴𝐴 (𝑧̂𝑧𝑖𝑖𝑖𝑖𝑖) is the percentage of samples captured by the model's uncertainty estimates with the given prediction 
interval. In this work, the prediction intervals span from 5% to 99% in increments of 5%.

2.5.1.  Comparison With NRLMSIS 2.0 and HASDM

To assess the validity of the model in terms of mean density prediction, its error with respect to the satellite esti-
mates are compared to those of NRLMSIS 2.0 and HASDM. To get NRLMSIS 2.0 errors, the model is evaluated 
at all locations and times of the satellite measurements. For HASDM, the 3-dimension density grids from the SET 
HASDM density database are interpolated in log-scale to the satellite locations and times (Tobiska et al., 2021). 
We then break up the errors into the three sets used for ML model development (training, validation, and test). 
We do this to simultaneously test the generalization of our model while ensuring differences in performance 
across the sets is also seen with the other models. In addition to the error assessment, we also compute the CES 
for MSIS-UQ across the three sets (in terms of density). For information on the conversion from ML predicted 
exospheric temperature to NRLMSIS 2.0 adjusted density, see Weimer et al. (2020, 2021).

2.5.2.  Uncertainty Demonstration

The reliability of the MSIS-UQ uncertainty estimates is demonstrated in Section 3, but we further establish the 
capabilities in Section 3.1. The ML model directly predicts the uncertainty into the exospheric temperature which 
is then incorporated into NRLMSIS 2.0. The probabilistic T∞ values result in probabilistic local temperatures and 
species densities. We consider a given epoch (13 May 2007 at 21:42.50 UT) where CHAMP and GRACE are 
at very different locations; CHAMP is near the equator on the night-side while GRACE is at high LAT on the 
day-side. NRLMSIS 2.0 is provided probabilistic T∞ values from the MSIS-UQ distribution at each location, and 
we consider the temperature, species densities, and mass density between 100 and 800 km altitude. The distribu-
tions are shown as a function of altitude, and the satellite estimates are provided for reference.

2.5.3.  Post-Storm Cooling Capabilities

With overall performance investigated, we want to consider the 2003 Halloween storm along the CHAMP 
orbit. We interpolate global density grids for TIE-GCM (Qian et al., 2013), JB2008 (Bowman et al., 2008), and 
HASDM (Storz et al., 2005). In addition, we evaluate NRLMSIS 2.0, EXTEMPLAR, and MSIS-UQ directly at 
the CHAMP locations. The orbit-averaged densities are computed for all models (and CHAMP) for display and 
comparison. This can provide insight into storm responses and post-storm density depletion characteristics. In 
previous work, we investigated density ratios for NRLMSIS 2.0 and three ML models with time-lagged geomag-
netic activity to examine post-storm density characteristics expected within the models (Licata, Mehta, Weimer, 
et al., 2022). While two of the machine-learned models exhibited significant density depletion, NRLMSIS 2.0 
never showed evidence of thermospheric overcooling. We perform the same study—outlined below—to test if the 
exospheric temperature corrections can enforce the behavior present in the satellite datasets.

To start, all non-geomagnetic model drivers are kept to constant values. We set the solar indices to 120 solar flux 
units, and the time for the study is 00:00 UT during the fall equinox. Each of the time-history geomagnetic drivers 
will be increased individually while all others are kept at a constant value: ap = 56, SYM-H = −50 nT. Since the 
ML model uses Poynting Flux totals and ΔT at epoch, they are kept constant at 200 GW and 120 K, respectively. 
This study is also conducted at four discrete locations: night equator (2 hr LST, 0° LAT), day equator (14 hr LST, 
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0° LAT), night pole (2 hr LST, 80° LAT), and day pole (14 hr LST, 80° LAT). The density ratios are reported with 
respect to the given geomagnetic driver being set to 0.

However, achieving this requires an additional consideration relative to the work of Licata, Mehta, Weimer, 
et  al.  (2022). MSIS-UQ uses SYM-H while NRLMSIS 2.0 uses ap for time-series geomagnetic drivers. To 
account for this distinction, we first fit a line between all SYM-H and ap values within our data set. Using this, 
we find the SYM-H value associated with the ap value that must be used to get density from NRLMSIS 2.0. 
Therefore, density ratios for MSIS-UQ use this simultaneous SYM-H and ap variation as opposed to only using 
ap variations with NRLMSIS 2.0 alone.

3.  Results
Figure 1 shows the relative error distributions and MAE for NRLMSIS 2.0, HASDM, and MSIS-UQ with respect 
to density estimates from CHAMP, GRACE, Swarm A, and Swarm B. The calibration curve for MSIS-UQ is 
also displayed alongside the CES. This is separated by samples in the MSIS-UQ training, validation, and test 
sets. Similar figures are provided for each individual satellite in SM1. Note: these statistics are relative errors 
for MSIS-UQ since it was developed on this data set, but they could be interpreted as relative differences for 
NRLMSIS 2.0 and HASDM.

Panel (a) shows the altitudes for each satellite used in this analysis showing over a 200 km span over 15 years 
of measurements. The left-most panels (b), (d), and (f) indicate that MSIS-UQ provides much more accurate 
density predictions than both NRLMSIS 2.0 alone and HASDM. All three models have a tendency to overpredict 
density although MSIS-UQ has the smallest bias. The MAE values highlight the ∼25% error reduction from 
NRLMSIS 2.0 and the ∼11% error reduction from HASDM. Across the three sets, MSIS-UQ is well-generalized 
with density prediction errors ranging <1.5%. With respect to its uncertainty estimates (panels (c), (e), and (g)), 
MSIS-UQ has a CES <5% across the three sets. It has a tendency to underestimate in the middle prediction inter-
vals (between 20% and 80%) but is well-calibrated at prediction intervals >90%.

3.1.  Uncertainties as a Function of Altitude

Figure 2 contains uncertainty profiles for MSIS-UQ at CHAMP and GRACE locations on 13 May 2007. There 
are panels for species density, temperature, mass density, relative uncertainty, and satellite position. Please refer-
ence the figure caption and Section 2.5.2 for details.

Panels (a) and (b) show the species density profiles at CHAMP and GRACE positions, respectively. The uncer-
tainty bounds provide valuable information on the impact of exospheric temperature uncertainty on the uncer-
tainty of local species. For example, one can investigate the Oxygen (O) to Helium (He) transition for various 
locations and conditions. Panel (a) shows that at CHAMP's position, this transition is occurring somewhere in 
the region of 507–552 km (1-σ) while at GRACE's position, the transition may occur between 688 and 738 km 
(1-σ). Other insights can be gained such as which species are most impacted by exospheric temperature at a 
given location/altitude. Note: only 1-σ bounds are shown here to prevent artifacts at low-values caused by the 
semi-logarithmic scale. The scale also causes the bounds to appear to be not-centered about the mean.

Panels (c), (d), and (e) provide information on the local temperature and mass density with uncertainty. In panel 
(c), MSIS-UQ severely shifts the exospheric temperature prediction and brings it closer to the estimates of 
CHAMP and GRACE; in both cases NRLMSIS 2.0 overpredicts temperature. The uncertainty in temperature 
is unobservable below 130 km and grows until it reaches the asymptotic temperature between 250 and 300 km. 
The uncertainty bounds and mean remain unchanged above these altitudes. Note that the CHAMP and GRACE 
temperature estimates are for T∞ but we show them at their current altitude as the temperature has converged. In 
panel (d), we see different trends in mass density. Again the uncertainty is minimal below approximately 200 km 
and begins to increase for a few hundred kilometers. The overprediction of temperature in NRLMSIS 2.0 results in 
higher than observed density by CHAMP and GRACE around 350 and 475 km, respectively. MSIS-UQ provides 
a more accurate density predictions at the satellite locations. Panel (e) shows the 1-σ uncertainty with respect to 
mean density. This shows different model behavior between the two locations. At CHAMP's location, the uncer-
tainty increases to 24% around 460 km and decreased until around 700 km where it settles to 9%. At GRACE's 
location, the uncertainty continues to increase until it reaches 18% at 600 km where it begins to decrease.
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3.2.  Enhanced Storm and Post-Storm Modeling

Geomagnetic storms remain a challenge in modeling the thermosphere. Even further, post-storm characteristics 
vary between models, and understanding post-storm thermospheric overcooling has been a major focus in the 
community (Knipp et al., 2017; Lei et al., 2012; Weimer et al., 2015). To highlight this, we show orbit-average 
density along CHAMP's orbit during the 2003 Halloween storm for CHAMP, TIE-GCM, NRLMSIS 2.0, JB2008, 

Figure 1.  Altitudes of the satellites used for temperature and density estimates (a), relative error histograms (b, d, and f), and 
MSIS-UQ calibration curves (c, e, and g).
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Figure 2.  MSIS-UQ species density profiles for CHAMP (a) and GRACE (b) locations with 1-σ bounds, temperature profiles with 2-σ bounds (c), total mass density 
profiles with 2-σ bounds (d), 1-σ uncertainty normalized by the mean prediction (e), and the paths for CHAMP (f) and GRACE (g) with the current location denoted by 
the markers. This was conducted for 13 May 2007 at 21:42.50 UT.
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HASDM, EXTEMPLAR, and MSIS-UQ in Figure 3. Time history SYM-H inputs for MSIS-UQ are displayed 
in panel (c) for reference.

In the pre-storm period (28 October–29 October 2003), there is significant variability in model outputs. During 
the first peak of the storm, the models show similar trends but are mostly above the CHAMP density estimates. 
In the lull between the two peaks (30 October–31 October), all models show density decreases but to varying 
extents. NRLMSIS 2.0 shows the smallest density decay during this period, but due to the exospheric tempera-
ture corrections in MSIS-UQ, the density falls to CHAMP levels. For the second storm, all models overestimate 
density with the exception of TIE-GCM and JB2008. In the post-storm period (3 October–3 November), NRLM-
SIS 2.0 does not follow the trend observed by CHAMP—a sudden and severe decrease in density. JB2008 shows 
this briefly before overpredicting density to the extent of NRLMSIS 2.0. The MSIS-UQ follows the post-storm 
overcooling trends observed by CHAMP, showing the impact the exospheric temperature corrections to NRLM-
SIS 2.0 have. We now conduct the overcooling study from Licata, Mehta, Weimer, et al. (2022) to observe the 
characteristics in the model without effects from other drivers. These results are shown in Figure 4, and corre-
spond to Figure 2 in Licata, Mehta, Weimer, et al. (2022).

In Figure 4, the curves represent the density ratio of a given model when one of the time-lagged geomagnetic 
drivers are increased with respect to their value set to zero. In panel (e), for example, the orange curve for ap3 is 

Figure 3.  Orbit-average density for TIE-GCM, NRLMSIS 2.0, JB2008, MSIS-UQ, and CHAMP (a), orbit-average density 
for HASDM, EXTEMPLAR, MSIS-UQ, and CHAMP (b) and the associated SYM-H time-series inputs (c).

 15427390, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003267, W
iley O

nline L
ibrary on [01/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Space Weather

LICATA ET AL.

10.1029/2022SW003267

10 of 13

approximately 3.75 when ap3 = 400. This indicates that the density is 3.75 times the value when ap3 = 0. Panels 
(a–d) show the density ratios for NRLMSIS 2.0 while increasing each time-series ap value independently. We 
observe linear relationships between ap and density for all of the time-series inputs. The current 3-hourly ap 
value has the strongest impact on density and, of these four locations, never generates a density ratio greater than 
2.25. These results show that in NRLMSIS 2.0, the relative importance of each ap value becomes less important 
the further back from epoch it is with ap36-57 having minimal impact on density. The exception to this statement 
is ap12-13. At the day equator (panel (b)), it causes the second-most positive density ratio. When ap12-13 is very 
large, it causes a strong relative increase at all locations considered here. This could explain the overprediction 
observed in Figure 3. The second row (panels (e–h)) shows the results for MSIS-UQ. The trends shown in these 
panels contradict many observations when using NRLMSIS 2.0 alone. For example, at 3/4 locations, ap3 causes 
the largest density ratios, even being nearly twice as large at the night equator. MSIS-UQ also shows a nonlinear 
relationship between geomagnetic activity and density which is not as clearly seen in NRLMSIS 2.0 alone.

MSIS-UQ also enforces the idea of negative density ratios—density decreasing while the geomagnetic drivers are 
increasing. This is most pronounced at the two pole locations. When the least recent geomagnetic drivers (ap12-33 
and ap36-57) become large, the density becomes up to 25% lower than when they are set to zero. This overcool-
ing was seen in Figure 3 and is observed in the satellite density data, therefore becoming present in MSIS-UQ. 
Another interesting trend is seen at low levels on geomagnetic activity particularly in panels (g) and (h). When 
any of the ap values increase from 0 up to 50–100, the density decreases. This seems counter-intuitive but could 
be caused by the approach of the study. When ap is being considered, for example, the ap and SYM-H values 
are set to 56 and −50 nT, respectively. When ap = 0, this would represent the time immediately after moderate 
geomagnetic activity while ap = 56 would represent sustained moderate geomagnetic activity. The model shows 
that when the conditions abruptly return to quiet values, the density increases—likely only temporarily. The 
bottom row (panels (i–l)) show the temperature ratios from MSIS-UQ corresponding to the middle row. The 

Figure 4.  Density ratios for NRLMSIS 2.0 (a–d) and MSIS-UQ (e–h) with the corresponding temperature ratios for 
MSIS-UQ (i–l).
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general trends are the same between temperature and density; however, the difference comes from the magnitude. 
The relative changes in temperature result in much stronger changes in density. There are negative temperature 
ratios, but they are much less prominent due to the consistent scaling.

In SM2, we provide a movie of global density evolution for the 2003 Halloween storm at 400 km. This contains 
density maps for TIE-GCM, NRLMSIS 2.0, EXTEMPLAR, and MSIS-UQ. Prior to the storm, all models 
have a similar diurnal structure. This is quickly disrupted at the onset of the storm when both TIE-GCM and 
MSIS-UQ show strong auroral density enhancements. Throughout the storm, these are the only two models that 
display  significant global disruptions to the structure of the thermosphere at this altitude. The thermosphere 
expands and contracts both longitudinally and latitudinally for these models. EXTEMPLAR—a linear model 
based on the same data set as MSIS-UQ—models an abnormal thermosphere, but the movement is more longitu-
dinal or latitudinal with some wave-like oscillations about the equator. During this storm, NRLMSIS 2.0 exhibits 
general increases in density, but the structure is well-preserved. There are some slow-moving variations although 
it does not resemble the dynamics exhibited by the physics-based model.

4.  Summary and Conclusions
In this work, we developed an exospheric temperature model for NRLMSIS 2.0 with UQ. When these exospheric 
temperatures are input to NRLMSIS 2.0, the errors with respect to satellite density estimates are reduced from 
approximately 45%–20% (Figure  1). The relative error distributions for MSIS-UQ have lower variance and 
bias when compared to both NRLMSIS 2.0 and HASDM. The MSIS-UQ uncertainty estimates proved to be 
well-calibrated to the satellite density data with a tendency to underestimate the uncertainty bounds.

The uncertainty estimates were closely examined for a given time where CHAMP and GRACE were at unique 
locations in terms of local time and LAT (Figure 2). The uncertainty bounds for species densities showed poten-
tial for scientific value when considering relative abundances or the uncertainty associated with the O-He tran-
sition region. Instead of having a specific altitude where He takes over as the dominant constituent, we observed 
a 1-σ interval of 45–50 km where this may occur, depending on geographical location. Other panels in Figure 2 
highlight the improvement in temperature and density prediction with the MSIS-UQ T∞ predictions. Not only is 
the biased reduced, the uncertainty estimates can be used to inform decision making (e.g., collision probability 
estimation). In panel (e), we observed the effect of uncertain exospheric temperature on the relative uncertainty 
in density as a function of altitude, highlighting the ability to provide different uncertainty ranges as a function 
of position.

We also investigated the relationship between geomagnetic activity and density. We compared the density of 
multiple models to CHAMP during the 2003 Halloween storm (Figure 3). MSIS-UQ portrayed similar charac-
teristics to the satellite estimates, particularly after the storm when there was the most disagreement between 
the models. This was further explored in the time-lag study in Figure 4. By individually varying the time-series 
geomagnetic model drivers, we can observe the models' reaction in density. This showed NRLMSIS 2.0 has a 
very linear relationship between geomagnetic activity and density. Furthermore, the more recent the driver, the 
more it impacts density predictions. For MSIS-UQ, we observed nonlinear relationships between many of the 
time-lagged drivers and density, and the current ap value was rarely the most closely tied to density enhancements. 
We also observed post-storm overcooling effects due to the negative density ratios when the time-lagged drivers 
were increased. A video showing the evolution of density at 400 km during the 2003 Halloween storm (SM2) 
provided an example of how MSIS-UQ resembles behavior seen by a physics-based model during extremely 
nonlinear events, enhancing the capabilities of NRLMSIS 2.0.

MSIS-UQ has value in the community both from a research and operational standpoint. The model can be used to 
study uncertainty effects on species density, mass density, and temperature on a global scale. It can also be used to 
investigate global/local mean and uncertainty responses to geomagnetic storms. From an operational perspective, 
the uncertainty estimates are particularly valuable. MSIS-UQ combines the internal formulation of NRLMSIS 
2.0 with calibrated density uncertainties which can be used to obtain more precise collision probability estimates 
and even uncertainty estimates on satellite re-entry time/location. Further work can be conducted to also tune 
other temperature profile parameters in NRLMSIS 2.0 to vary the profile in the lower thermosphere. One alter-
native approach to achieving this is described by Mehta et al. (2019).
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Data Availability Statement
Requests can be submitted for full access to the SET HASDM density database at https://spacewx.com/hasdm/ 
and all reasonable requests for scientific research are accepted as explained in the rules of road document on 
the website. The historical space weather indices used in this study can be found at the following links: F10.7: 
https://www.spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-en.php, ap: https://doi.org/10.5880/
Kp.0001, and SYM-H: http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html. The remaining solar indices and prox-
ies can be found at https://spacewx.com/jb2008/ in the SOLFSMY.TXT file. Free, one-time only registration 
is required to access the historical data while nowcasts and forecasts are provided by SET as a data service 
from data@spacewx.com. The Weimer  (2019) Pointing flux data can be accessed at https://doi.org/10.5281/
zenodo.3525166. For operational use of this model, the Poynting flux totals can be obtained through the W05 
model (Weimer, 2005a, 2005b), and ΔT can be computed using equations in Weimer et al. (2020, 2021). W05 
is driven in real-time by solar wind measurements. Programs and files used for ML model development are 
available at https://doi.org/10.5281/zenodo.7245164. Specifically, data used for training, validation, and testing 
is provided along with programs to train a model from scratch. The pre-trained model is also available with a 
program to evaluate it for a given set of inputs.
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