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ABSTRACT. In this paper, we describe a certain kind of g-connections on a projective line,
namely Z-twisted (G, q)-opers with regular singularities using the language of generalized
minors. In part one [FKSZ] we explored the correspondence between these g-connections
and QQ-systems/Bethe Ansatz equations. Here we associate to a Z-twisted (G, g)-oper a
class of meromorphic sections of a G-bundle, satisfying certain difference equations, which
we refer to as (G, ¢)-Wronskians. Among other things, we show that the QQ-systems and
their extensions emerge as the relations between generalized minors, thereby putting the
Bethe Ansatz equations in the framework of cluster mutations known in the theory of
double Bruhat cells.
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1. INTRODUCTION

The concept of opers, specific connections on principal G-bundles (G is a simple complex
Lie group), was introduced by Beilinson and Drinfeld [BD] in the context of the geometric
Langlands correspondence. The idea of an oper goes back to the work of Drinfeld and
Sokolov, where the local formulas for such connections emerged as Lax operators for KdV
systems in the context of the celebrated Drinfeld-Sokolov reduction [DS].

An important example of Geometric Langlands correspondence [F3] discovered and ex-
tensively studied by E. Frenkel and his collaborators [FFR,F1,F2] is between G-opers on
the projective line with regular singularities and trivial monodromy and the Bethe equa-
tions, describing the spectrum of the Gaudin model for the Lie algebra of the Langlands
dual group “G.

Recently a g-deformation of this example has been discovered, first, for SL(N) in [KSZ]
and then in the case of simple simply connected complex G in [FKSZ], following the local
consideration related to the g-analogue of the Drinfeld-Sokolov reduction [SS] and related
g-difference operators [MV]. We refer to the analog of an oper connection as (G, q)-oper
which has the structure of the g-connection introduced by Baranovsky and Ginzburg [BG].

On the other side of the correspondence, the Gaudin model was replaced by the Bethe
ansatz equations for XXZ models, the integrable models based on quantum groups. A

Date: March 2, 2023.



2 P. KOROTEEV AND A.M. ZEITLIN

fascinating intermediate object needed for establishing the correspondence is the so-called
QQ-system, a functional equation that produces the Bethe equations upon certain nonde-
generacy conditions. The Q@Q-system previously emerged in the study of representations of
quantum affine algebras [BLZ3,FH]| as well as the ODE/IM correspondence [MRV1, MRV2].

It turned out, that the concept of a (G, ¢)-oper and its treatment of the QQ-systems and
its extensions appeared to be an effective tool in the study of quantum integrable systems
such as in quantum/classical duality [KSZ], bispectral duality and even in enumerative
geometry [KPSZ,KZ1,KZ2| and physics [GK, BKK]. There also exists a deformation of
the geometric Langlands correspondence in the example above, known as the quantum
g-Langlands [AFO].

Let us be more concrete about the explicit structure of (G, q)-opers as introduced in
[FKSZ]. One can locally think about the g-oper connection locally as an element A(z) €
G(z) = G(C(z)). The so-called Miura condition implies that this g-connection is preserved
by a certain reduction to the Borel subgroup. The zero monodromy condition is replaced in
this case by the Z-twisted condition A(z) = g(qz)Zg~'(z), where g(2) € G(z),and Z € H =
B/[B, B] C G is an element of the Cartan subgroup referred to as the twist parameter. For a
regular Z there is exactly |W¢| (here W is a Weyl group of G) Z-twisted (G, ¢)-Miura opers
associated to a given (G, ¢)-oper. To establish correspondence with the QQ-systems and as
a byproduct, the Bethe ansatz equations, one introduces a milder condition by requiring this
condition to hold on (G, q)-oper-invariant two-dimensional subspaces within fundamental
highest weight (lowest weight in this manuscript) representations. In this case, one applies
Z-twisted condition to 2 x 2 matrices A;(z) (GL(2,q)-opers), one for every fundamental
weight, thus producing a system of functional equations known as the Q@Q-system. In [FKSZ]
we referred to a ¢g-connection with this milder Z-twisted condition as Miura-Pliicker (G, q)-
oper. We also introduced quantum Bécklund transformations, following [MV] for Miura-
Pliicker (G, q)-opers (g-gauge transformations of a certain kind), which produces another
Miura-Pliicker (G, ¢)-oper from a given one corresponding to w(Z)-twist, w € W, provided
that certain nondegeneracy conditions on the Q@Q-system hold. This effectively produced a
new QQQ-system for every w € Wy, generating altogether what we call the full QQ-system
(see [ESV] for related studies on the full Q@Q-system). If the nondegeneracy conditions
repeated themselves for each simple reflection until we reach the maximal element wg then,
as we have shown in [FKSZ], the corresponding Miura-Pliicker g-oper becomes Z-twisted
Miura g-oper.

At the same time, we established in [KZ1], that in the case of G = SL(IN) these nonde-
generacy conditions on the parts of the full Q@Q-system are actually redundant. We obtained
that by following another approach to (SL(N), g)-opers, which involves the associated bun-
dle produced by the defining representation. That approach heavily relies on the fact that
the defining representation is exact. The elements of the full QQ-system are produced by
certain minors of the g-deformation of the Wronskian matrix, which is constructed from the
components of a certain section of the line bundle (this section produces locally the entire
fiber of the associated bundle via the action of the (SL(N), g)-oper connection [KSZ]). The
functional relations of the QQ-system emerge from certain determinant identities known
since the 19th century between the corresponding minors. This led us to conjecture in
[KZ1] that for a general simple simply connected G, the QQ-system is produced from the
relations between generalized minors, as studied in the works of Berenstein, Fomin, and
Zelevinsky [BZ,FZ2,FZ1, BFZ]. However, the (G, ¢)-Wronskian matrix construction for G
was not clear, since one does not have the luxury of SL(N) case. The cluster interpretation
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of Bethe equations (using the TQ-relation) was given previously by Hernandez and Leclerc
in [HL].

This is exactly what we devote this paper to. Namely, we define the (G, q)- Wronskians
as meromorphic sections of a G-bundle by introducing the system of ¢-difference equations
for the associated bundles corresponding to fundamental weights. We establish the cor-
respondence between classes of (G, ¢)-Wronskians and Z-twisted Miura-Pliicker opers, so
that the elements of the QQ-system emerge as generalized minors ({Ay.w,w,; }, w € Wg in
the notation of [FZ1]) of (G, ¢)-Wronskians. This reformulation, in particular, leads to the
equivalence between Miura-Pliicker (G, ¢)-opers and Z-twisted Miura (G, g)-opers as it was
in the case of SL(IV). Finally, for each class of (G, q)-Wronskian we introduce a univer-
sal (G, q)-Wronskian, which in the case of SL(N) coincides with the g-Wronskian matrix,
modulo multiplication by a diagonal matrix.

Future Directions. We hope that our results can be useful in a deeper understanding of
the ODE/IM correspondence [BLZ1,BLZ2,BLZ3,DDT] (see [FF] for related ideas). In the
nutshell, the ODE/IM relates vacuum eigenvalues of Baxter operators of the quantum KdV
model associated with affine Lie algebra g and spectral determinants of certain singular
differential operators associated with affine opers associated with the Langlands dual 1.
It was shown in [MRV1,MRV2] that for the standard quantum KdV system, the spectral
determinants of the corresponding Strum-Liouville differential operators can be identified
with solutions of the Q@Q-system (albeit with different analyticity conditions on the entire
Q-functions).

As was already pointed out in [FKSZ], our results anticipate an intriguing relationship
between (G, q)-opers which we are discussing here, and the differential operators from the
ODE/IM. Recall that according to [MRV1], Section 4, for every fundamental highest weight
representation of g there exists a pair of normalized (singular at the origin) solutions of the
linear ODE X (z), ¢ (z) which are the eigenvectors of the associated monodromy matrix
to the ODE in question, which are associated (in a nontrivial way) to the top two weights in
the representation. The main point of interest in ODE/IM correspondence is the study of the
so-called W()-solutions for each such representation, with a certain prescribed asymptotic
behavior at infinity. It turns out that each W9 is a linear combination of x(*) and () with
coefficients being generators of the QQ-system (in this incarnation they are referred to as
spectral determinants) and some terms corresponding to lower weights. That allows us to
speculate that one can relate the g-connection A(z) of the (G, g)-opers to the monodromy
matrix of the ODE from [MRV1]. Indeed, in our construction of the Miura-Pliicker g-oper
(see formula (4.6) and the Theorem 4.18) the decomposition of W) solution in terms of
xD (), ¢ (x) corresponds to exactly the first terms in the decomposition of the action of
a (G, q)-Wronskian (associated to a Miura (G, ¢)-oper) on the highest weight vector. Thus
there seems to be an interesting duality between (G, ¢)-opers and affine opers for LG — the
former objects are related to g-difference operators, the latter to differential operators. We
plan to pursue this idea in future publications.

Structure of the Paper. This paper is organized as follows. In Section 2 we set up the
group-theoretic data which will be needed for our construction. In Section 3 we review basic
definitions and theorems of [FKSZ] using the new conventions. The final Section 4 contains
new results about generalized minors and quantum Wronskians as well as an illustration of
these results for G = SL(r + 1).
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2. GROUP-THEORETIC DATA

Let G be a connected, simply connected, simple algebraic group of rank r over C. We fix
a Borel subgroup B_ with unipotent radical N_ = [B_, B_] and a maximal torus H C B_.
Let By be the opposite Borel subgroup containing H. Let {ai,...,a,} be the set of
positive simple roots for the pair H C B;. Let {d1,...,d,} be the corresponding coroots;
the elements of the Cartan matrix of the Lie algebra g of G are given by a;; = (o, &;). The
Lie algebra g has Chevalley generators {e;, fi, &;}i=1,...r, so that b_ = Lie(B_) is generated
by the f;’s and the &;’s and by = Lie(B,.) is generated by the e;’s and the &;’s. Let wy, . ..w,
be the fundamental weights, defined by (w;, &;) = d;5.

Let W = N(H)/H be the Weyl group of G. Let w; € W, (i = 1,...,r) denote the simple
reflection corresponding to «;. We also denote by wg be the longest element of W, so that
By = wp(B-). Recall that a Coxeter element of W is a product of all simple reflections in
a particular order. It is known that the set of all Coxeter elements forms a single conjugacy
class in W¢g. We will fix once and for all (unless otherwise specified) a particular ordering
(iy, ..., ) of the simple roots. Let ¢ = wj, ... w;, be the Coxeter element associated to
this ordering. In what follows (unless otherwise specified), all products over i € {1,...,r}
will be taken in this order; thus, for example, we write ¢ = [ [, w;. We also fix representatives
si € N(H) of w;. In particular, s =[], s; will be a representative of ¢ in N(H).

Although we have defined the Coxeter element ¢ using H and B_, it is in fact the case
that the Bruhat cell BeB makes sense for any Borel subgroup B. Indeed, let (®, A) be the
root system associated to GG, where A is the set of simple roots as above and ® is the set of
all roots. These data give a realization of the Weyl group of G as a Coxeter group, i.e., a
pair (Wg, S), where S is the set of Coxeter generators w; of W associated to elements of
A. Now, given any Borel subgroup B, set b = Lie(B). Then the dual of the vector space
b/[b, b] comes equipped with a set of roots and simple roots, and this pair is canonically
isomorphic to the root system (®,A) [CG, §3.1.22]. The definition of the sets of roots and
simple roots on this space involves a choice of maximal torus T' C B, but these sets turn
out to be independent of the choice. Accordingly, the group N(T')/T together with the set
of its Coxeter generators corresponding to these simple roots is isomorphic to (W, S) as a
Coxeter group. Under this isomorphism, w € W corresponds to an element of N(7T')/T by
the following rule: we write w as a word in the Coxeter generators of W corresponding to
elements of S and then replace each Coxeter generator in it by the corresponding Coxeter
generator of N(T')/T. Accordingly, the Bruhat cell BwB is well-defined for any w € Wg.

3. MIURA (G, q)-OPERS WITH REGULAR SINGULARITIES AND QQ-SYSTEMS

In this section, we reformulate basic definitions and results from [FKSZ] using the nota-
tion and conventions which needed in this paper.

3.1. g-connections and the structure of (G, ¢)-opers. Given a principal G-bundle F¢
over P! (in the Zariski topology), let ?qG denote its pullback under the map M, : P! — P!
sending z — qz. A meromorphic (G, q)-connection on a principal G-bundle Fg on P! is a
section A of Homg,, (F¢,FE), where U is a certain Zariski open dense subset of Pl. We
can always choose U so that the restriction Fg |y of F¢ to U is isomorphic to the trivial
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G-bundle. Choosing such an isomorphism, i.e. a trivialization of Fg|y, we also obtain a
trivialization of F¢| MUY Using these trivializations, the restriction of A to the Zariski
q

open dense subset U N M LU) can be written as a section of the trivial G-bundle on
Uun Mq_l(U), and hence as an element A(z) of G(z). Changing the trivialization of Fg|y
via g(z) € G(z) changes A(z) by the following g-gauge transformation:

(3.1) A(2) = g(g2)A(2)g(2) "
This shows that the set of equivalence classes of pairs (Fg, A) as above is in bijection with

the quotient of G(z) by the ¢g-gauge transformations (3.1).
We define a (G, g)-oper in the following way (see [FKSZ])*

Definition 3.1. A meromorphic (G, g)-oper (or simply a g-oper) on P! is a triple (F¢, A, Fp, ),
where A is a meromorphic (G, ¢)-connection on a G-bundle Fg on P and Fp . is a reduc-
tion of Fg to B, satisfying the following condition: there exists a Zariski open dense
subset U c P! together with a trivialization g, of Fp, such that the restriction of the
connection A : F¢ — FE to U N M (U), written as an element of G(z) using the triv-
ializations of Fg and Sth on UNM, L(U) induced by 25 ., takes values in the Bruhat cell
B, (CU 0 My (U)])eB4 (C[U 0 M; (U).

Since G is assumed to be simply connected, any g-oper connection A can be written
using a particular trivialization 25, ) in the form
g +

(3.2) A(z) =/ (2) [ [(@i(2) % si)n(2),

(2
where ¢;(z) € C(z) and n(z),n/(z) € N4 (z) are such that their zeros and poles are outside
the subset U N M, *(U) of P'.
Notice that in the above characterization one can view (G, g)-oper locally on UNM, L)
as an equivalence class of the g-connections of the form (3.2) under the action of ¢g-gauge
transformations in N (z), since the Cartan action is g-gauge fixed by the choice of {¢;(2)}i_;.

One can describe the set of representatives of these equivalence classes of g-connections as
follows (see [SS] and [FKSZ]).

Theorem 3.2. There exist a unique element u(z) € N1 (z) such that

(3.3) u(gz)A(z)u"(2) € N3 (2) [J(¢i(2) "% s0),

(3
where N§ = Ny NsN_s™ 1.

3.2. Miura (G, q)-opers. The Miura (G, g)-opers are g-opers together with an additional
datum: a reduction of the underlying G-bundle to the Borel subgroup B_ (opposite to B )
that is preserved by the oper g-connection.

Definition 3.3. A Miura (G, q)-oper on P! is a quadruple (Fg, A, IB,,IB_), where (Fgq,A,Tp,)
is a meromorphic (G, g)-oper on P! and Fp_ is a reduction of the G-bundle F¢ to B_ that
is preserved by the g-connection A.

Forgetting Fp_, we associate a (G, g)-oper to a given Miura (G, q)-oper. We will refer to
it as the (G, ¢)-oper underlying the Miura (G, g)-oper.

n this paper we use slightly different conventions than in [FKSZ], namely we intechange By and B_
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Suppose we are given a principal G-bundle F; on any smooth complex manifold X
equipped with reductions Fp, and Fp_ to By and B_ respectively. We then assign to
any point x € X an element of the Weyl group Wg. To see this, first, note that the fiber
Fa,x of Fg at x is a G-torsor with reductions Fp, , and Fp_ , to By and B_ respectively.
Choose any trivialization of Fg 4, i.e. an isomorphism of G-torsors Fg , ~ G. Under this
isomorphism, Fp, , gets identified with aBy C G and Fp_, with bB_. Then, a~'b is
a well-defined element of the double quotient B4\G/B_, which is in bijection with Wg.
Hence, we obtain a well-defined element of We.

We will say that 3p, and Fp_ have generic relative position at x € X if the element of
W assigned to them at z is equal to 1. This means that the corresponding element a~'b
belongs to the open dense Bruhat cell By B_ C G.

Theorem 3.4. [FKSZ| For any Miura (G,q)-oper on P!, there exists an open dense subset
V C P! such that the reductions I, and Fp_ are in generic relative position for allx € V.

Let U be a Zariski open dense subset on P! as in Definition 3.1. Choosing a trivialization
1p, of Fg on UN Mq_l(U), we can write the g-connection A in the form (3.2). On the
other hand, using the B_-reduction Fp_, we can choose another trivialization of F; on
U N M; (U) such that the g-connection A acquires the form A(z) € B_(z). Hence the
following Corollary holds, which is a local description of the Theorem above.

Corollary 3.5. [FKSZ| There exists g(z) € B4(z)N_(z) C G(z) such that
(3-4) g(za)n'(2) [ [(@i(2) % si)n(2)g(2) " = A(2) € B+ (2).

7

As an immediate consequence, we obtain the following Proposition.

Proposition 3.6. [FKSZ| For any Miura (G, q)-oper on P', there exists a trivialization of
the underlying G-bundle Fg on an open dense subset of P' for which the oper q-connection
has the form

(3.5) A(z) € No(2) [ [([0i(2)] "% s:) N (2) N B_(2).

()

The following Theorem allows us to describe the explicit form of the Miura (G, q)-opers:

Theorem 3.7. [FKSZ] Every element of the set N4 (z)[[;([¢i(2)]"%s;)N1(z) N B_(z)
can be written in the form
$i(2)t;

(3.6) H [gz(z)} 7diemﬂv gi(z) € (C(z)x,

)

where each t; is determined by the lifting s;.

3.3. Miura (G, q)-opers with regular singularities. It is clear that (G, ¢)-opers depend
on the choice of the lift of the Coxeter element ¢ to G(z), namely the functions {¢;(2) }i=1, . r-
We will be interested in the case when these are polynomial functions.

Let {Ai(2)}i=1,...r be a collection of nonconstant polynomials.

Definition 3.8. [FKSZ] A (G, q)-oper with reqular singularities determined by {A;(2) }i=1
is a g-oper on P! whose ¢g-connection (3.2) may be written in the form

(3.7) Alz) = ' (2) [ [ % sin(2),  n(2),n'(2) € Na(2).

i
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A Miura (G, q)-oper with regular singularities determined by polynomials {A;(2)}i=1,. r is
a Miura (G, g)-oper such that the underlying g-oper has regular singularities determined by
{Ai(2) bzt

Recall Theorem 3.7. Observe that we can choose liftings s; of the simple reflections
w; € Wg in such a way that t; =1 for all ¢ =1,...,7. From now on, we will only consider
such liftings.

Theorem 3.7 leads to the following statement:

Theorem 3.9. [FKSZ| For every Miura (G, q)-oper with reqular singularities determined
by the polynomials {A;(2)}i=1,. r, the underlying q-connection can be written in the form

(3.8):

(3.8) A(z) = [[ls() % 5%, gi() e C(2)™.

7

=

3.4. Z-twisted (G, q)-opers. Next, we consider a class of (Miura) g-opers that are gauge
equivalent to a constant element of G (as (G, g)-connections). Let Z be an element of the
maximal torus H. Since G is simply connected, we can write

(3.9) zZ=1J¢"  Gecs
i=1

Definition 3.10. [FKSZ] 1) A Z-twisted (G, q)-oper on P! is a (G, q)-oper that is equivalent
to the constant element Z € H C H(z) under the g-gauge action of G(z), i.e. if A(z) is the
meromorphic oper g-connection (with respect to a particular trivialization of the underlying
bundle), there exists g(z) € G(z) such that

(3.10) A(2) = g(g2) Zg(2) ™"

2) A Z-twisted Miura (G, q)-oper is a Miura (G, q)-oper on P! that is equivalent to the
constant element Z € H C H(z) under the ¢g-gauge action of Bi(z), i.e. g(z) € B4+(z) in
(3.10).

The following Proposition relates Z-twisted(G, g)-opers and their Miura counterparts.

Proposition 3.11. 1) Let Z € H. For any Z-twisted (G, q)-oper (Fq,A,Tp,) and any
choice of B_-reduction Fp_ of Fg preserved by the oper q-connection A, the resulting Miura
(G, q)-oper is Z'-twisted for a particular Z' € Wg - Z.

2) If Z is a regular element of G, then for each Z' € Wg - Z, there is a unique By -reduction
on the (G, q)-oper (Fa, A, Fp,) making it into a Z'-twisted Miura (G, q)-oper.

From now on we will focus on the case when Z is regular (see [FKSZ] for the statement
of the Proposition 3.11 in the general situation).

Consider a Miura (G, g)-oper with regular singularities determined by polynomials {A;(z) }i=1,.. r.
Thus, the underlying (G, g)-connection can be written in the form (3.8). We can define the
associate (H, q) connection which has the form:

(3.11) Af(z) = Hgi(Z)*C”-

We call AY(z) the associated Cartan q-connection of the Miura g-oper A(z). If our Miura
g-oper is Z-twisted, then we also have A(z) = v(qz)Zv(2)~!, where v(z) € B_(z). Since
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v(z) can be written as

(3.12) v(z) = Hyi(z)*é‘in(z), n(z) € N_(z), wi(z) € C(2)*,
Thus

() = . Yile2)
(5.13 () = L),

3.5. Miura-Pliicker (G, q)-opers. In this section, we will relax Z-twisted condition on
the Miura (G, q)-opers.

Consider w;, the ith fundamental weight of G. Let V,~ be the irreducible representation
of G with lowest weight —w; with respect to B_. It comes equipped with a line L; C V,~
of lowest weight vectors stable under the action of By. Let v, be a generator of the line
L; Cc V.. It is a vector of weight —w; with respect to our maximal torus H C B_. The
subspace of V™ of weight —w; + «; is one-dimensional and is spanned by e; - v, . Therefore,
the two-dimensional subspace W; of V™ spanned by the weight vectors v, and e; - v, is a
B_-invariant subspace of V.

Now, let (Fg,A,Fp,,Fp_) be a Miura (G, g)-oper with regular singularities determined
by polynomials {A;(2)}i=1,. » (see Definition 3.8). Recall that Fp_ is a B_-reduction of a
G-bundle F on P! preserved by the (G, q)-connection A. Therefore for each i = 1,...,r,
the vector bundle

V,L»_:S:B_ X V;_:fFGxVZ»_
B_ G

associated to V,” contains a rank-two subbundle

Wi = ?B_ X Wi
B_

associated to W; C V;~, and W; in turn contains a line subbundle

£;2937 x L
B_

associated to L; C W;.

Denote by ¢;(A) the g-connection on the vector bundle V; (or equivalently, a (GL(V;), q)-
connection) corresponding to the above Miura g-oper connection A. Since A preserves Fp_
(see Definition 3.3), we see that ¢;(A) preserves the subbundles £, and W; of V; . Denote
by A; the corresponding g-connection on the rank 2 bundle 'W;.

Let us trivialize Fp_ on a Zariski open subset of P! so that A(z) has the form (3.8)
with respect to this trivialization. This trivializes the bundles V", W;, and £, so that the
g-connection A4;(z) becomes a 2 x 2 matrix whose entries are in C(z), which can be thought
of as Miura (GL(2), g)-opers.

Using this collection {A;}i—1 ., we introduce the notion of Z-twisted Miura-Plicker
(G, q)-oper.

Definition 3.12. [FKSZ| A Z-twisted Miura-Plicker (G, q)-oper is a meromorphic Miura
(G, q)-oper on P! with underlying g-connection A(z) satisfying the following condition: there

exists v(z) € B_(z) such that for all : = 1,...,r, the Miura (GL(2), ¢)-opers A;(z) can be
written in the form

(3.14) Ai(2) = v(2q) Zv(2) Hw, = vi(2q) Zivi(2) 7L,
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where v;(z) = v(2)|w, and Z; = Z|w,.

Thus the resulting Cartan connection (3.11) of Z-twisted Miura-Plicker (G, q)-oper as in
the Z-twisted case:

(3.15) ATz =1] [ci

i

—&y
vi(gz)
yi(2)

Next we will formulate the nondegeneracy condition for Z-twisted Miura-Plicker (G,q)-
opers (see [FKSZ] for the equivalent definitions).

Definition 3.13. [FKSZ] We call Z-twisted Miura-Plicker (G, q)-oper with regular singu-
larities nondegenerate if each y;(z) from formula (3.15) is a polynomial, and for all 4, j, k
with ¢ # j and a;; # 0,a;, # 0, the zeros of y;(2) and y;(z) are g-distinct from each other
and from the zeros of Ag(z).

We notice that {y;(2)}i=1,..» can be chosen to be monic.

3.6. QQ-systems and Miura-Pliicker (G, q)-opers. From now on, we will assume that
our element Z =[], (/" € H satisfies the following property:

(3.16) [I¢7¢d"  vi=1,...r.
=1

Since []i_, ¢/ # 1 is a special case of (3.16), this implies that Z is reqular semisimple.
We introduce the following system of equations [FKSZ]:

(3.17) &Q'(2)Q'(g2) — &Q"(¢2)Q',(2) =

s T [@bea)] T TT[eke] ™ i=tn

j>i j<i
where
. aji -1 —aji
(3.18) G=a[l¢"  &=¢"'1[¢"
j>i j<i

and we use the ordering of simple roots from the definition of (G, ¢)-opers.

We call this the QQ-system associated to G and a collection of polynomials A;(z), i =
1,...,r.
the following properties: condition (3.16) holds for the G’s; for all 4,7,k with ¢ # j and
aik, aji; 7 0, the zeros of Qi (z) and Q' (z) are g-distinct from each other and from the zeros
of Ag(2); and the polynomials Q° (z) are monic.

We have the following Theorem, which relates solutions of the QQQ-system to Z-twisted
Miura-Pliicker (G, g)-opers.

Theorem 3.14. [FKSZ| There is a one-to-one correspondence between the set of non-
degenerate Z-twisted Miura-Plicker (G, q)-opers and the set of nondegenerate polynomial
solutions of the QQ-system (3.17).

The proof of this theorem relies on solving explicitly the conditions in (3.14), using the
reduction to the B-invariant two-dimensional subspaces W;, which makes the element v(z)
diagonalizing A(z) look as follows:
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r - or QL (»)

(3.19) o) =] [Q@(z)} e et

i=1 i=1
where in(z) are the solutions of the Q@Q-system and the dots stand for the exponentials
of higher commutator terms in n_ = Lie N_. As a result, the g-connection A(z) for the
Miura-Pliicker (G, g)-oper can be expressed as follows:

—&; A% ()

_ Q4 (a2) G
(3.20) Az) = [][ !g] o ] e
Y ————— A=) ——e; . (o7
(3.21) =TT [6@h(a2)] e [Qr ()]
j

3.7. Bethe ansatz equations. The QQ-system (3.17) gives rise to a system of equations
only involving the @', (z)’s. Let {wf}kzlmz be the set of roots of the polynomial Q° (w).
We call the system of equations

Qg

ey Qo) o AT Qb)) s Q)]

i (y—1,1k J . ; N T ; .
Qo) M) T (@] ™ T [@ha )
fori =1,...,r, k = 1,...,m; the Bethe Ansatz equations for the group G and the set
(A=) e,

For simply laced G, this system is equivalent to the system of Bethe Ansatz equations
that appear in the U,g XXZ-type model [OW,RW,R]. In case of non-simply laced G, we
obtain a different system of Bethe Ansatz equations, which, as far as we know, has not
yet been studied in the literature on quantum integrable systems. An additive version of
this system appeared earlier in [MV]. As will be explained in [FHR], these Bethe Ansatz
equations correspond to a novel quantum integrable model in which the spaces of states are
representations of the twisted quantum affine Kac-Moody algebra UqLﬁ, where g is the

Langlands dual Lie algebra of g.
The following Theorem is true (see [FKSZ] for details).

—aj;

Theorem 3.15. There is a bijection between two sets: the nondegenerate polynomial solu-
tions of the QQ-system (3.17) and the nondegenerate solutions of Bethe Ansatz equations
(3.22).

3.8. Béacklund transformations, Z-twisted condition and the full QQ-system. Now
we will relate Miura-Pliicker to Z-twisted (G, q)-opers provided some conditions on the QQ-
system are satisfied.

First, we introduce a set of certain transformations on Miura-Pliicker (G, ¢)-opers, which
we refer to as Bdcklund transformations.

Proposition 3.16. Consider the q-gauge transformation of the q-connection A given by
formula (3.20):
. —aji
Il Q4]
(3.23) A AW = erila)e g(p)em e where  pi(z) =2 ZZ. -
Q4 (2)Q1(2)
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Then AW (z2) can be obtained from A(z) by substituting in formula (3.20) (or (3.21))
(3:24) Q)= QL) J#i,
(3.25) Q' (2) = Q(2), Z v si(2).

By construction, A®(z) is an s;(Z)-twisted Miura-Pliicker (G, q)-oper, which corresponds

to the polynomials {Qvi(z)}jzl,m,r, where ij(z) = Qj(z) for j # 7 and @j(z) = Q; (2).
The conditions for it to be nondegenerate are spelled out in the following lemma (see
[FKSZ)).

Lemma 3.17. Suppose that the roots of the polynomial Q' (z) constructed in the proof of

Theorem 3.15 are q-distinct from the roots of A (2) for a;. # 0 and from the roots of Qi (2)
for j # i and aj, # 0. Then, the data

(3.26) (@ et ={QL, ..., QT Q1 Q.. )
{Glimtr ={C0 - G TG G0
J#i

give rise to a nondegenerate solution of the Bethe Ansatz equations (3.22) correspond-
ing to s;(Z) € H. Furthermore, there exist polynomials {Q’ };=1 ., that together with

{@,{.‘—}j:LM’T give rise to a nondegenerate solution of the QQ-system (3.17) corresponding
to si(Z).

Thus, if the conditions of Lemma 3.17 are satisfied, we can associate to every nondegener-
ate Z-twisted Miura-Pliicker (G, ¢)-oper a nondegenerate s;(Z)-twisted Miura-Pliicker oper
via A(z) — A®(z). We call this procedure a Bicklund-type transformation associated to
the 7th simple reflection of the Weyl group Ws. We now generalize this transformation to
other Weyl group elements. We denote the elements of the Q@Q-system corresponding to
the reflection w as

(3.27) {in(z)}izl,...,r

Definition 3.18. We call the system of equations generated by {in(z)}izl,mm for all
w € Weg the full QQ-system. A solution of the QQ-system (3.17) is called Wg-generic
if by consecutively applying the procedure described in Lemma 3.17 for w = s;, ...5;,,
we obtain a system of nondegenerate solutions of the Q@Q-systems corresponding to the
elements w;(Z) € H, where wy = s, ...8;, with j = 1,... k. A Z-twisted Miura-
Pliicker (G, q)-oper is called Wg-generic if it corresponds to a Wg-generic solution of the
QQ-system via the bijection in Theorem 3.14.

One can show that for Wg-generic Miura-Pliicker (G, q)-oper there exists b_(z) € B_(z)
such that:

(3.28) A(z) =b_(qz)Zb_(2)"".
Then the following Theorem holds (see [FKSZ]).

Theorem 3.19. Every Wg-generic Z-twisted Miura-Plicker (G, q)-oper is a nondegenerate
Z-twisted Miura (G, q)-oper.

Remark 3.20. One should note that for a given Z-twisted (G, g)-oper, the corresponding
{Q%"(2)}i=1,..r-systems are in 1-to-1 correspondence with the corresponding Z-twisted
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Z-twisted Miura (G, q)-opers for regular semisimple G (see Proposition 3.11). That imme-
diately leads to the fact that the transformations (3.26) preserve Weyl group relations.

In the case of G = SL(r + 1), there is an alternative construction of Z-twisted Miura
opers using the determinant formulae: see e.g. [KSZ| and more complete description in
[KZ1]. Using this approach one can show that nondegenerate Z-twisted Miura-Pliicker
(SL(r+ 1), q)-oper is Z-twisted Miura (SL(r + 1), g)-oper.

In [BSZ], by following an analogous prescription, the differential version of G-opers was
considered. It was shown that non-degenerate Z-twisted Miura-Pliicker G-opers are in fact
Z-twisted Miura G-opers as long as the degrees of polynomials {A;(z), Q4" (2) —1wew the
full QQ-system allow for polynomial solutions of the ()Q-system. The argument follows
the expansion of solutions of the Q@Q-system around & = 0 in (3.18). In this regime, the
QQ-system reduces to a system of elementary polynomial relations, which is non-degenerate
for distinct roots of A;. Then one analytically continues with respect to &. The argument
suits both the differential and g¢-difference cases equally well.

Therefore, we formulate the following statement.

Theorem 3.21. Any nondegenerate Z-twisted Miura-Plicker (G, q)-oper is Z-twisted Miura
(G, q)-oper if the degrees of the full QQ-system {A;(z), Q4" (2) i—1.wew allow the polynomial
solution.

4. Z-TWISTED ¢-OPERS AND (G, q)-WRONSKIANS

4.1. Generalized Minors and Pliicker coordinates. In the next section, we will discuss
another approach to Miura (G, q)-opers. This approach is based on the datum of the
corresponding connection in the set of fundamental representations. There is a way to
encode this datum in terms of certain explicit “coordinates” one can associate to a group
element. These coordinates are the generalizations of minors for SL(N). They were used
by Berenstein, Fomin and Zelevinsky in the study of Schubert cells and double Bruhat cells
in the combinatorial context of cluster algebras. In the seminal paper, [FZ1] the generalized
minors appeared as a set of parameters the sign of which determines the total positivity of
elements from double Bruhat cells.

Let us define what generalized minors are. Consider the big cell in Bruhat decomposition:
Go = N_HN,, where we remind that G is a simple simply-connected Lie group. For a
given element g € Gy we can write it as

(4.1) g=n_hng.

Let Vf be the irreducible representation of G with highest weight w; and highest weight
vector v which is the eigenvector for any h € H, i.e. hyl = [h]“v}, [h]“" € C*. Note
that ViJr is isomorphic to one space from the family {V;”}7_,. Let us introduce the following
definition:

Definition 4.1. [FZ1] The following regular functions {A“};—; _, on G, whose values on
a dense set G are given

(4.2) A¥(g) = [B]*, i=1,...,r

will be referred to as principal minors of a group element g.
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In the case of G = SL(N) these functions stand for principal minors of the standard
matrix realization of SL(N).

Other generalized minors are obtained by the action of the Weyl group elements on the
left and the right of g and then applying the appropriate lifts of Weyl group elements u, v
on the right and the left and then applying principal minors to the result.

Namely, we have the following

Definition 4.2. For u,v € W¢, we define a regular function Ay, vw; on G by setting
(4.3) Awio; o (9) = A (T ).

Notice that in this notation A, ., (g) = A% (g). Consider the orbit Ow, = Wg - Cif,
This way we have the following Proposition.

Proposition 4.3. The action of the group element g on the highest weight vector V;_’)—i € V,L-+
s given by:
(4.4) g- l/ji = Z Ao 0 ()W - l/ji +...,
weW

where dots stand for the vectors, which do not belong to the orbit Oy .

The set of generalized minors { Ay, w; bwewii=1,..r creates a set of coordinates on G/B™,
known as generalized Pliicker coordinates. In particular, the set of zeroes of each of Ay,
is a uniquely and unambiguously defined hypersurface in G/B. This feature is important

for characterizing Schubert cells as quasi-projective subvarieties of a generalized flag variety,
see [FZ2] for details. We will need the following Corollary.

Corollary 4.4. If the collection {Ay.w; w;(9) }wewi=1,...r does not have vanishing elements,
then g € ByrwoBy.

One of the first consequences of the formalism of generalized minors is the following
Theorem.

Theorem 4.5. For a nondegenerate Z-twisted Miura-Pliicker (G, q)-oper with q-connection
A(z) = v(gz)Zv(2) 7L, where v(z) € B_(z) we have the following relation:

(4.5) Ao (v7(2) = Q" (2)
for anyw e W.
Proof. Notice that A (v™1(2)) = Q" (). Indeed, following (3.19), we have:

r QL®, r 3
a;

v H(z) = HeQi(ﬂfi H [Qi(z)} e
i=1

i=1

where dots stand for exponentials of higher commutators of {f;}, we obtain that

(46) N, = Qi + QL+
where dots stand for the vectors of lower weights.

Now take into account that v(2)w ™! = uy(2)ve(z), where ui(2) € Ny(2), vu(z) €
B_(z). Here v,(2) is the trivializing element for A% (z) = vy (2)w(Z)v,'(z). This means
that A% (v,'(2)) = Q}"(z), which is obtained by Biéicklund transformations. Therefore,
generalized minors satisfy the relation Aqy.q, ., (v 1(2)) = Q" (2). O
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Following Theorem 1.12 of [FZ1] we obtain the following Corollary:
Corollary 4.6. The minors Ay, w; uniquely determine the element v=1(z).

We started this section with the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 4.7. An element g € G admits the Gaussian decomposition if and only if
A% (g) #0 foranyi=1,...,r.

Finally, we end this section with the fundamental relation ([FZ1], Theorem 1.17) between
generalized minors, which we will relate to the QQ-systems.

Proposition 4.8. Let, u,v € W, such that fori € {1,...,r}, l(uw;) = L(u) + 1, {(vw;) =
l(v)+ 1. Then

(47) Au-w,‘,v-wi Auwi-wi,vwi-wi - Auwi-wi,v-wi Au-wi,vwi-wi = H A;-Cogi,v-wja

J#i
4.2. (G, q)-Wronskians and Generalized Minors. First, we introduce a notion of (G, q)-
Wronskian which, as we will see later, under certain nondegeneracy conditions, is equivalent
to the definition of Z-twisted Miura (G, ¢)-oper.

Let Vf be the irreducible representation of G with highest weight w; with respect to
By. Tt comes equipped with a line L;r C Vf of the highest weight vectors stable under
the action of By. Let V:Z, be a generator of the line LZ"-F C Vi+. It is a vector of weight w;
of V; of weight ¢! - w; is

with respect to our maximal torus H C B_. The subspace LZZ-

one-dimensional and is spanned by 3*11/;_ .
Suppose we have a principal G-bundle F¢ and its B -reduction Fp, and thus an H-
reduction Fy; as well. Therefore for each ¢ = 1,...,r, the vector bundle

Vi =9p. x ViT =T6x V'
+

associated to Vi+ contains an H-line subbundles

+_ + + _ +
Lf =TFux Lf, L5 =9n x L,

associated to L;.", L:i C V;+.

Consider a meromorphic section ¥ of Fg. It is a section of Fg on U, a Zariski dense
set of P1. Given the fact that one can always choose U, so that restriction of Fg to U is a
trivial G-bundle, one can express this section as an element ¥(z) € G(z).

Definition 4.9. The (G, q)- Wronskian on P! is the quadruple (g, IB..,9,7), where ¢4 is
a meromorphic section of a principle bundle Fg, Fp, is a reduction of Fg to By, Z € H =
B, /[B+, B4], satisfying the following condition. There exist a Zariski open dense subset

U C P! together with the trivialization 1p, of Fp,, so that for certain {v;”,v;}i:lw,r

which are the sections of line bundles {Lj,ﬁ;}izl,_._m on U N M1 (U) we have ¢4 as an
element of G(z) satisfy the following condition:

(4.8) g1 vt =279 v}

)
where the superscript ¢ stands for the pull-back of the corresponding section with respect
to the map M.
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Effectively, the definition implies that there exists a Zariski open dense subset U C P!
together with a trivialization 1p, of Fp, such that the restriction of &4 to U N Mq_l(U)
written as an element of G(z) satisfies the following conditions

(4.9) 779 (qz) v =9(2) se(z) v

w w;?

where s4(2) =[], #; “*s; is a lift of the Coxeter element ¢ € W to G(2), which is fixed for
allie{1,...,r}.
It is clear that the structure of the (G, ¢)-Wronskian depends on the generalized minors

of ¢(z) through the action of ¢(z) on v;" and the choice of the lift s,(2), which through

the coefficients {¢;(z)}i=1,. » depends on the choice of the sections {U;r, v:i}i:17,,,7r.

The following two definitions clarify the type of objects will restrict the type of (G, q)-
Wronskians we will study in this paper.

Definition 4.10. (G, q)-Wronskian has regular singularities if

(4.10) sa(z)t = H sih™,

where {A;};=1,, are polynomials, and the superscript “inv” stands for the inverse order
to the ordering in the Coxeter element c.

Let us give a simple example of (G, q)-Wronskian in the lowest rank case and give the
relation to the QQ-system.
Example. Let G = SL(2) then (4.9) reads
(4.11) G(qz2)v = Z9(2)s H(2)v] .

In this case

(412)  sM(z) = 5 IA(2)F = (A?Z) A(ZO)_1> R (é) . z= (g 491> .

One can immediately see that

_ [ Buiwi(@(2)) Dy, s10,(9(2))
(1) Y@= (20D A )
satisfies (4.11) provided that the following relations take place:
(4.14)

Awi,wi (g(qz)) = CA(Z)ASMM«; (g(z)) ) Awi7s—1wi (g(qz)) = CilA(Z)Aswi,s—lwi (g(z)) .
Using the identification A, ., (9(2)) = Q7 (2), Asw;w: (9(2)) = @ (2), we obtain

_ (Q"(2) ¢T'A(2) QT (g2)
(419 90= (G0 ‘ateun)
where we put Q4(z) = Q¥(2) and Q_(z) = Q*“(z) according to the notations from our
previous papers. Notice that the condition that ¥(z) € SL(2), i.e. det4(z) = 1 leads to
the QQ-equation:
QT (2)Q (¢2) = ¢T'QT(42)Q (2) = A(2).

This example justifies the name (G, ¢)-Wronskian as a generalization of the q-Wronskian
matrix. However, we will see that in this form it is not uniquely defined for higher rank.
Also, to get in touch with nondegenerate Q@Q-systems, we have to put relevant nondegen-
eracy conditions on (G, q)-Wronskians.
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Definition 4.11. We say that (G, ¢)-Wronskian with regular singularities is nondegenerate
if Ay w; (9(2)) are nonzero polynomials for all w € W and ¢ = 1,...,r. For all ¢, j, k with
i # j and ai, aji # 0, the zeros of A, o, and A, ., are g-distinct from each other, and
also zeroes of Ay, o, are g-distinct from the zeros of {Ay(2)}x=1,. , for all i.

These definitions lead to the following Corollary.

Corollary 4.12. The nondegeneracy condition of (G, q)- Wronskian with regular singulari-
ties implies:

(1) 9(2) admits Gaussian decomposition: 4(z) € N_(z)H(z)N4(z),

(2) 9(z) belongs to the largest Bruhat cell: 4 (z) € By (z)woB4(2).

Proof. Condition (2) implies first of all that A, «,(¥(z)) # 0. That implies Gaussian de-
composition according to Corollary 2.5 of [FZ1]. The second property follows from Propo-
sition 3.3 of [FZ2]. O

An important property is a non-uniqueness of the (G, q)-Wronskian as defined by the
generalized minors.

Proposition 4.13. Given a solution 4(z) of the equation (4.9), 4(z)n*(z) is a solution
of (4.9) if and only if
(4.16) sny(z) s~ € Ny(2).

Later we will eliminate this ambiguity and add more constraints than (4.9), but first we
investigate its lower triangular part and relate it to QQ-system and g-opers.
Let us list another important property of (G, ¢)-Wronskian:

Proposition 4.14. For any w € W and the (G, q)-Wronskian (Fq,Fp, 9, Z) with regular
singularities, the element w-9(z) stands for (G,q)-Wronskian (Fq,Fp, , 9, w(Z)) with the
same reqular singularities.

Proof. The proof is obtained by the direct application of W to ¥4(z) in (4.9). O

4.3. Extended QQ-system for (G,q)-Wronskian. In this subsection, we find the re-
lation between (G, q)-Wronskians and the Q@Q-systems via the fundamental relation (4.7)
applied to ¥(z).

First, we formulate a Proposition, which allows to reformulate a specific subset in the
family of relations (4.7).

Proposition 4.15. Minors Ay, o, A Awwiwir Dy 1w, satisfy the following

wiw;,cw;

relation:
Awi,wi Awi-wi,c*1 w; _Awi'wi,wi Awi,c*1 “w;
(4.17) = 1] A;ﬁil_wj 11 25%;. i=1,...,r
j<i=i j>i=i
where the ordering is taken with respect to the decomposition of ¢ = w;, ..., Wiy, ..., w;,.

Proof. To prove that let us apply the relation (4.7) to the case whenu = 1, v = w;, wi, . .. w;,_,,
so that w;, = w;. Then v - w; :c_l-wj if j <4 =iand v-wj; =w;if j >4 =i and the
statement of the Proposition follows immediately. O

To apply this set of relations to ¢(z) and make full use of the difference equation it
satisfies, we will need the following technical Lemma.
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Lemma 4.16. Let ¢! = H;nv Wi = W, W, - .. wj, corresponds to the lift of the inverse
Cozeter element to G. Then sy (z) = [[I™ (s; AJ") can be expressed as follows:

(4.18) sil(z)=s" TN,
7
where d; = Y7, dijc; and
i—j—1
= Qj5—5 — Zamlazlzj+zazzlazlzlmazlmZJ
I>m
(4.19) +(=1)"a;i-1-ai—15-2- " ai—j-1i—j,

for j <i andd; =1.

For instance, for SL(r+ 1) with a standard ordering along the Dynkin diagram we have

di =", &
7j=1"7"
Now let us apply that to the group element ¢4(z) and obtain the following Proposition.

Proposition 4.17. Let 9(z) be a non-degenerate (G, q)- Wronskian with reqular singulari-
ties parametrized by the polynomials {A;(2)}i=1,. r. Then we have:

-----

1) The fundamental relation (4.9) for 4(z) is equivalent to the relation

H C{dj,w-wi>
J
J

for any w € W, where the proportionality coefficients F;(z) depend on Z and the lift of the
Cozeter element to G(z) only:

(4.21) Fi(2) = Li(2)™",  Li(2) = Mi(2)%0 - Ay (2) 810 - Ay (2) P

2) The relations between minors (4.17) can be written as follows in terms of { Ay, w,; Yi=1,...rs
{Awwiw; fi=1,..r only:

& Ay, w; (9 (Z))Awiwi,wi(g(qz))_&'Awiwi,wi(g(z))Awi,wi(g(qz))
(4.22) 2) [ A%,@(q2) ] Aci(@(2),

J<i=1; J>i=i

(4.20) A

Fi(2) Aww; wi (¥(q2))

w-w;,c Lw;

where & and 5 are given in (3.18) and the ordering is inherited from the inverse Coxeter
element ¢!

Proof. With the help of (4.18) the right hand side of (4.35) reads
G(2)e () = Lil2) 9(2)5 1 ()l = Lal2)9 (=)o

clw;

where L;(z) = [[; A% (z). From (4.35) we get
(4.23) Z_lg(qz)v:i = Li(2)9(z)v"

clw; *
From this relation we can deduce how g-shifted generalized minors are related to unshifted
ones:

(429 AWMCuﬁ%w»:[IIQ%”W1'AM?f§W”
j 2
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(4.25)

Awi,cflwi(g(z)) = CZ A

-1 H Cfajl wl wl,wl(if(qzn ,
J#i

wi-wi,s*1w1

and so on. Thus the quadratic relation reads

- H C ;o Ay (9(2) By w; (9(a2)) = G Away w0 (9(2)) Au, 0, (9 (g2))
J#i
(4.26)

6 ) 50 I sgmoen T1 s

i<t i—1 (z J<i=ft41 j>z =141

which after dividing by common factors yields

GG | Ao (@(2) Ao (@ (02) — | G TS | Aurwrios(@(2)) Ay (9(q2))

J>i j<i
(4.27)

LZ aji; ajq
f") [ ass @) [ Ak @),

pu— al
Lz 1 (Z J<i=t41 J>i=ip41

Finally, using (4.21) we can demonstrate by explicit calculation that

4.28 ——— =Ai(2).
2 L1 (2) )

Thus, identifying
(4.29) Ay wi(9(2)) — fo—(z)a A (9 (2)) — Qz—(z)a

we obtain that the familiar nondegenerate Q@ system (3.17) is equivalent to (4.22).
Moreover, the following Theorem holds.

Theorem 4.18. 1) Let (F¢,Fpy,9,Z) be a non-degenerate (G, q)-Wronskian with regu-
lar singularities parametrized by the polynomials {A;(2)}i=1,.. r. The lower-triangular part
v(z) € B_(2) of the Gaussian decomposition 4 = v(z)u(z), u(z) € N4(z) defines a non-
degenerate Z-twisted Miura (G, q)-oper connection with reqular singularities by the formula
A(z) = v (qz) Zv(2).

2) There is a one-to-one correspondence between classes of nondegenerate (G, q)- Wronskians
with reqular singularities as stated in the Proposition /.13 and nondegenerate Z-twisted
Miura (G, q)-opers with reqular singularities parametrized by the same {A;}i=1,. r, Such
that zeroes of the polynomials in the extended QQ-system are q-distinct from {A;}i=1,. r.

Proof. (¥¢,Fp+,9,7Z) be a non-degenerate (G, q)-Wronskian with regular singularities
parametrized by the polynomials {A;(2)}i=1,.,. Let us apply the relation (4.22) from
the Proposition 4.17 to @ - ¥(z) for all w € W. By Proposition 4.14 we know that @ - 4(z)
is a (G, q)-Wronskian (Fg,Fp+,9,w(Z)). Thus Proposition 4.17 implies that generalized
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minors Ay, w; generate the full Q@Q-system through the generalization of identification
(4.29):

(4.30) A wi (9 (2)) = A, w; (w_lg(z)) — Qi’l('z)

The resulting minors Ay, o, (4(2)) determine v(z) entirely and thus produce an element
which defines Z-twisted Miura (G, q)-oper as stated in the theorem. That proves part 1).
To prove part 2) let us construct ¢(z) explicitly given Z-twisted Miura (G, g)-oper, so that
its ¢ -connection is given by the formula

(4.31) A(z) = v Y g2) Zv(2),

where v(z) € B_(z). Note, that

(4.32) AT 2) = ny(2)sy ()R (), na(2), 714 (2) € Ny (2).
Thus, combining (4.31), (4.32) we obtain

(4.33) Z7 (gz) = v(z)na (2)s3 1 (2)i4 (2)

and

(4.34) Y(z) =v(z)ns(z)

satisfies the familiar equation

(4.35) 279 (qz)v} =9 (2)sy ()t

Notice, that the constructed ¢(z) is defined modulo the transformations from the Propo-
sition 4.13. This is related to the fact that the choice of ny(z) in the gauge class of
A7Y(z) = n4(2)sy ' (2)74(2) is non-unique but again is up to the multiplication on the
elements from Proposition 4.13. This proves the second part of the Theorem. ]

In the next section, we will introduce the unique element in the family of (G, ¢)-Wronskians

corresponding to a given Miura (G, q)-oper, which is a generalization of a standard ¢-
Wronskian considered in [KSZ] for any simply-connected simple group G.

4.4. Universal quantum Wronskian for Miura (G, ¢)-oper. In this section, we assume
that the Lie group G has an even Coxeter number h and a choice of a Coxeter element is
such that ¢"/2 = wy. That only excludes SL(N) case for N odd, which was studied in detail
in [KSZ,KZ1].

The Z-twisted condition for (G, g)-oper, which was instrumental in our considerations
can be restated in the following way:

Z7g(g2) = 9(2) A7 (2).
One could iterate this relation to introduce a collection of relations of the following form:
(4.36) Z7*g(g"2) = g(2) A (2) A7 (g2) ... A7 (d"2)

The following Lemma is true and a direct consequence of the property of the multiplica-
tion of Bruhat cells.

Lemma 4.19. The product
AN 2)A Y qz) ... A7 Y ¢F2)

belongs to the Bruhat cell BY(2)s™*B*(z) as long as 0 < k < h/2, where h is the Cozeter
number of G.
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Let us use now the system of equations (4.36) to construct a universal (G, g)-Wronskian
element associated with a given Z-twisted Miura (G, ¢)-oper in a similar way we did with
the first of them in the proof of Theorem 4.18. Namely, the following Theorem is true.

Proposition 4.20. For a given Z-twisted (G, q)-Miura oper, there exists a unique (G, q)-
Wronskian
W (z) € B_(z)woB_(z) N By (2)woB1(z) C G(z),
satisfying the system of equations
V(@ 2h = 2 (2)s 7 (2)s M az) s ),
(4.37) izl,...,, k=0,1,...,h/2 1,
where h is the Coxeter number of G.

Proof. Let us use gauge transformations to reduce A=1(2) to the following form:
A7Hz) = ni(2)s (=),
where s(z)nl (2)s7!(z) € N_(z) by applying the version of Theorem 3.2 to A~!(z). We
remind, that it is a unique element in the N (z)-gauge class of (G, g)-opers. Therefore, the
element #'!(z) = g(z)nl (z) satisfies (4.37).
Now let us have a look at the product AN (2) A7 (gz) = nl(2)s7 (2)n} ( 2)
is an element from N+( )s71(2)s71(g2) N+ (2) and thus can be written as A~!
nt (z)n%(2)s7(2)s (gz)n% (), so that

s(q)s( )2 (2)s~1(2)s 1 (g2) € N_(2),

for some n? (z), 72 (z) € Ni(2)

(438) ST ()l (g2)s~ M (g2) = 2 (2)s~ (2)s ™ (g2)2 (2)
Multiplying by s(¢z)s(z) on both sides, we obtain:

(439)  sla2)nk(a2)s (a2) = s(a2)s(2nd (2)s (=) (q2)i (=),

so that 7% (z) = 1 and nl (¢z) = s(2)n%(2)s ! (). Thus we obtain that #%(z) = g(2)n (2)n? (2)
satisfies the second equation from (4.37).

s7Y(q )Th1s
(2)AH(qz) =

, and

We can now proceed with the inductive step. Assume #*~1(z) = g(z)nk(z)...n" 7 (2)
satisfies (4.37). According to Lemma 4.19

A A gz) - AT (G 22) € Ny (2)s ()57 (g2) -+ s (@ 22N (2).

Consider
[T Ad') = b (@nd (2)-- k() - 57 (@) (g2) -+ 570 22) - mk (61 2)s (o).

This product should belong to N H;C 01 s>’*1(ql,z)l\hr SO we can rewrite it as
—1

k—1
[[7@) -n’i(z s (d'z) - 7 (=),
=1 =

1=0
provided that H?,k L 8(q'z) -nk (2) - Hf;ol s71(q'2) € N_(2) and
- k—1
H ni (" '2)sT g ) = 0k (2) - [ s ) A (2)

= =0
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Multiplying both parts by H?:k_l s5(¢'z) we get

0 k—1
s(" 2k (¢ 2)sT ) = [ s(d'e) - nf2) - ] s () A (),
I=k—1 1=0
which implies that 7% (z) = 1 and
0 k—2
(4.40) H s(g'z) - nk(2) [T s d'2),
I=k— =0

which completes the inductive step so that #*(z) = g(z)nl (2)...n% (2) satisfies (4.37).
In particular, the element

W (z) = g(2)nk (2)n2 (2) 0l (2),

satisfies all h/2 equations (4.37). Its uniqueness follows from the uniqueness of the decom-
position of the g-oper A(z).
O

Remark 4.21. Note that we use the relation (4.40) to get
k—2 0

= H s_l(qlz) H s(

=0 l=k—2

for k > 2 and express the (G, ¢)-Wronskian in terms of g(z),n} (z) and s(z) only:

k—2 0
(4.41) #*(2) = g(z) nk(2) (s (2)nk (g2)s(2)) - - (Hs (@2t (@2 [] s(qlz)> .

=0 I=k—-2

4.5. Example. Let G = SL(r + 1). The quantum Wronskian consists of r 4+ 1 columns
(4.42) 7 (2) = (Bww A ) (#(2)),

where We have v = (10...0), Z = diag(&y,...,&), where & = (1,& = (/¢ for
i=2,...,rand &1 = 1/(.. According to (4.18) if we pick standard ordering along the
Dynkin diagram we have

syt(z) =571 HA

ww,s—lw| -+

where d; = >7%_; &; and

00 ... 0 1
10 0 0
si_|o0 1 0 o],
00 ... 1 0

so that §_ll/j,_ =(0,...,0,10 ... 0), where 1 is on the Ith place. Thus, according to Propo-
sition 4.17 the ¢-Wronskian reads

(443)  #() = (@G| ZAEQ@)|. . |27 Bl Q) |
where Fj(z) = H§:1 Aj(2)71
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The conditions for the dual (SL(r + 1), g¢)-oper, according to Theorem 4.18 can be for-
mulated using the above matrix and they were first formulated in [KSZ], (see equation (4.8)
albeit written in a slightly different convention and normalization). The condition corre-
sponding to the whole g-Wronskian reads det”# (z) = 1, whereas the others can be readily
written using minors of matrix # (z).

For the type A root system the relation (4.7) reads

(444) Auwi,vwiAusiwi,vsiwi - Ausiwi,vwiAuwi,vsiwi = Auwi,l,vwiflAuwi+1,vw¢+1 )

which as we have shown previously are equivalent to the corresponding Q@Q-system. As
was discussed in [KPSZ,KSZ] these equations can be reduced to the following determinant
identity known from the 19th century (Desnanot-Jacobi-Lewis Carroll Identity) using matrix
of the form (4.43).

(4.45) M{M? — MM}E = MIZM,
where M is the determinant of the quantum Wronskian matrix #(z) with the ath row
and bth column removed and M = det#/ (z).

The identification between (4.44) and (4.45) works as follows. We put u = 1 and v =
$1+89+--8;—1. This way vs; = s1---s; is the element that permutes the first the last column
of matrix M as well as
(4.46)
M=A

In other words, after acting with element v on the columns the Lewis Carroll identity
can be presented in terms of principal minors

(4.47) MIM2 — M3M? = M2M ,
where M = M - v.

1 _ 2 _ 2 _ 1 _
Wit1,0Wit1 9 Ml - Awivai ’ Mi - Asz‘wiwsiwi ) Ml - Asiwiﬂ)wi ’ Mi - Awiwsiwi
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