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Optical transitions, exciton radiative decay, and valley coherence in lead chalcogenide quantum dots
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We propose the concept of valley coherence and superradiance in the reciprocal space and show that it leads to
an N-fold decrease of the bright exciton radiative lifetime in quantum dots (QDs) of an N-valley semiconductor.
Next we explain why, despite this, the exciton radiative lifetimes in PbX (X = S, Se, Te) QDs, measured from
the photoluminescence decay are in the microsecond range. We also address peculiarities of the light-matter
interaction in nanostructures made of narrow-gap materials with strong interband coupling.
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I. INTRODUCTION

Lead chalcogenide PbX (X = S, Se, Te) quantum dots
(QDs) have found numerous applications in optoelectronics
[1-5] and in vivo fluorescence imaging [6—8] due to tunabil-
ity of their fundamental optical transition with the QD size
within the near-infrared and mid-infrared ranges. Although
lead chalcogenides are N-valley semiconductors with N = 4,
the simplest models widely used for their description are
restricted to the carrier states in a single valley. In the model
proposed by Kang and Wise [9] electron states in a PbX QD
are described by the isotropic two-band Dirac Hamiltonian
with a gap term and additional massive terms accounting for
the contributions of remote bands. For systems with such a
Hamiltonian, the correct form of the light-matter interaction is
critical for an adequate description of interband optical transi-
tions and exciton physics. While the velocity and momentum
operators for a nonrelativistic electron in vacuum are simply
related by v = p/mg (mg being the free-electron mass), for
Bloch electrons in a crystal this relation is no longer true
and, in the two-band effective Hamiltonian method with the
massive terms, one cannot use the interaction in the form of
P - A, as proposed in Ref. [9]. In the first part of our work, the
correct form of the light-matter interaction is used to explicitly
demonstrate, for the case of a single valley, that the results
for the exciton resonant frequency renormalization and the
exciton radiative lifetime can be derived using two different
approaches which are consistent between each other. In par-
ticular, we demonstrate that, for a single valley, the exciton
radiative lifetime can be obtained either by Fermi’s golden
rule or as an imaginary part of the exciton resonant frequency
renormalization resulting from the solution of the Maxwell
equations. Calculation of the optical matrix elements in the
k - p theory is further elucidated in Appendix A.

Next, we go beyond the single-valley approximation.
When the intervalley coupling is neglected, the exciton spin
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degeneracy is lifted by the electron-hole exchange interaction
leading to a splitting between the exciton bright and dark
states which remain valley degenerate. Recently, it has been
shown [10] that the intervalley electron-hole exchange inter-
action leads to a formation of the valley-symmetric ultrabright
spin-triplet state of the direct exciton (i.e., exciton with the
electron and the hole sharing a valley) and renders all other
exciton states optically inactive. The splitting between the
ultrabright triplet and all the other states is N = 4 times as
large as the spin splitting between the bright and dark states
obtained in the model of independent valleys.

There are different ways to describe excitons in semicon-
ductors [11-15]. An exciton with only direct electron-hole
Coulomb interaction taken into account is known as mechan-
ical exciton [11]. When electron-hole exchange interaction
is included, the resulting two-particle excitation is called
the Coulomb exciton [11]. If the short-range part of the
electron-hole exchange is neglected, then interaction of the
Coulomb exciton with the transverse electromagnetic field
of light is equivalent to interaction of the mechanical ex-
citon with the full Maxwell field including the longitudinal
long-wavelength electric field induced by the macroscopic
polarization [11-14]. In Ref. 10 emergence of the ultrabright
state was described for a Coulomb exciton. Now the question
arises as to how formation of the ultrabright state can be de-
scribed in terms of the mechanical exciton interacting with the
longitudinal electric field. The advantage of this treatment is
that the interaction with the transverse field of light, associated
with radiation effects, can be included in a natural way [12,15]
and the effect of valley coherence on the exciton radiative
lifetime can be accounted for. Thus, this approach will be used
throughout our paper. In the second part of this work we will
show that the valley coherence resulting in formation of the
ultrabright state is akin to superradiance and that the radiative
lifetime 7, of the ultrabright state is related to the radiative
lifetime 7 calculated taking into account only one valley as
7, = 19/N.

We conclude our work by taking into account effects of the
valley mixing which is present in realistic QDs. The lack of
translational symmetry allows for the mixing of electron and
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hole states from different valleys which results in a complex
fine structure of exciton (see Fig. 1 in Ref. [10]). In particu-
lar, valley mixing distorts the ultrabright state. We show that
resulting exciton radiative lifetimes in PbX QDs are in the
microsecond range in agreement with experimental studies on
the photoluminescence decay.

II. ELECTRONIC STATES IN A SINGLE VALLEY

Bulk PbX compounds are direct-gap semiconductors with
rocksalt crystal structure and band extrema at the four inequiv-
alent L points of the Brillouin zone. Neglecting the valley
anisotropy, conduction- and valence-band electronic states
near L points are described by the Hamiltonian [9]

% —a. A
—ihvg(o - V)

—i hvy(o - V)i| )

—% + o, A

where E, is the energy gap, og (8 = x, y, z) are the 2 x 2 Pauli
matrices, vy is the Fermi velocity in the gapless limit, the co-
efficients o and «, stem from the contributions of the remote
bands to the conduction and valence bands’ energy dispersion,
and A is the three-dimensional Laplace operator. Formally,
the Hamiltonian (1) differs from the Dirac Hamiltonian by the
diagonal terms. This work reveals the role of these terms in
the optical properties of quantum dots made of narrow-gap
semiconductors.

The Schrodinger equation for the single-particle quantum
states in a spherical QD of the radius R has the form

A o) | L adr)
H |:f)(r):| =E |:ﬁ(r):|’ @)

with the boundary conditions
a(rf =R) =0(Ir| =R)=0. 3

Here i(r) and d(r) are conduction- and valence-band spinor
components forming a bispinor envelope function. It is con-
venient to rewrite Eq. (2) as an equivalent set of two
equations for the spinor envelopes:

<% —E—a, A)ﬁ(r) —ihvy(o - V)i(r) =0, (4a)
: . E, .
—ihvg(o - V)i(r) + ( -5~ E+ o, A)v(r) =0. (4b)

Electronic states in a spherically symmetric system can be
characterized by the total angular momentum F, its projection
M onto an arbitrary axis, and parity. The ground state of the
conduction-band electron confined in a spherical PbX QD has
the total angular momentum F, = % and the odd parity [9].

J

Z;;‘—l/z(r) == AC [jF[—l/z(kLr) (1)

The corresponding solution of Eq. (2) can be constructed as
follows. We first look for a solution of Eq. (2) in the form

i(r) = A jr (k) 40 (5). (5

0(r) = B jr. k) @ 13 (). (5b)

where QF‘ M 2 is the spherical spinor [16] and jg +1,2(kr) is
the spherlcal Bessel function. Using

(0« V)je+1/2(kr) QFil/z = Tk jrz10(kr) Q?Tvyz 6)
we obtain from Eq. (4a)

E +2a.k* —
B = A=ipk)A,
2 fivg k ip(k)
while Eq. (4b) yields
k=+~I+%, @)
where
s E (ay — o) — 02 — Eg (o, +ac)/2
- 20
E? — (E,/2)?
o0y

Another solution of the bispinor equation (2) is given by
i) =i, 0en) 2 (5 ): (8a)
r

8(r) = D), (k) Q”“z(r), (8b)

where i(F‘l)il ;2(kr) is the modified spherical Bessel function.
Using

(o - V)IMEI/Z(KV)QFﬂ/2 —k it (KV)QF:FUZ O]

F.F1/2
we obtain from Eq. (4a)

Eg—ZOlCKz —2F

D=i C=i C,
! 2 hvg K Fpic)
while Eq. (4b) yields
=11 -X. (10)

From the condition that a linear combination of the solutions
(5) and (8) vanishes at r = R, we obtain the dispersion equa-
tion for k = k., k = k. [9]

i)y ;o (keR) jr-1/2(keR) paicc)
— g p(keR) jri1p(keR) plhe) =0, (11)

which yields the energy of the confined conduction-band elec-
tron state (E > 0). The radial wave functions are [9]

k.R
LZ() ;}) 1/2(Kcr):|, (1221)
lp— 1/2( K.R)
(kR)
Jr1p () Sil/zmr)}, (12b)
Ig— 1/2( Kk.R)

Z;C.‘.]/z(r) =Ac |:p(kc)jﬁ+l/2(kcr) — ulke) D
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where A, is a normalization constant determined by the con-
dition

R
/ drr?[Z2 ) p(r) + 257, (0] = 1. (13)
0

In this work we will need these functions only for F, = %
Thus, for the ground state of the conduction-band electron
confined in a spherical PbX QD we have a bispinor wave

function

N c A r
W o m,(X) = 20(r) Q?/Z,M( (;), (14a)

acC . _Cc Al r
B2, (0 = 1) Qo (5)- (14b)

Similarly to the conduction electrons, the ground state of the
valence-band hole confined in a spherical PbX QD has the
total angular momentum Fj, = % and the even parity. We will
again construct two solutions of Eq. (2) in a free space and
impose a boundary condition on their linear combination. This
time for the first solution of Eq. (2) we use the substitution

a(r) = A jp 41 p(kr) szf;;}f( ) (15a)

B(r) = B ji_10(kr) Q12 ) (15b)

J

Z—12(r) =

Fh+l/2( Ky R)

[Io(k )-]Fh 1/2(k r)+/’(’( l)) (1

and get
B =—ip(k)A. (16)

For the second solution of Eq. (2) we try

a(r) = Cild 5 (cr) Q;;';;f(r), (17a)
3(r) =Dl er) ,V}h/z(r), (17b)

and we again obtain
D =inuk)C. (18)

From the condition that a linear combination of these two so-
lutions vanishes at » = R we obtain the dispersion equation for
k =k, and x =k, [9]
i1 o (uR) jr 12 (kuR) picy)
+ i1 p R jro1p(keR) p(ky) =0, (19)

which yields the energy of the confined valence-band hole
state (E < 0). The radial wave functions are [9]

(kvR)
JE+1/2 ;l)+1/2( KT ):| (20a)
kyR
Jr+12(koR) i v,)] (20b)
Fh+1/2( kuR)

where B, is a normalization constant determined by the con-
dition

R
f drri[zp2 ) () + 255 p(n] = 1. 1)
0

The resulting bispinor wave function for the ground state of
the valence-band hole confined in a spherical PbX QD takes
the form

o o A r
"‘1/2,Mh(1') =z;(r) Q{/Z,Mh (;), (22a)

r
—izg(r) Q1/2 Mh( )

The corresponding valence-band electron states can be ob-
tained applying the time-reversal operator:

0o, (1) = (22b)

. M b A r
Kul/z’Mh = (—1)3/2 My 17, (l") Q%/Z,—M;, <;), (233)

r
Kol =~ 30 @0, <r) (23b)

III. OPTICAL EXCITATION OF AN EXCITON
IN A SINGLE VALLEY

Neglecting the electron-hole exchange interaction, the
ground exciton level in a given valley of a PbX QD is fourfold

(

spin degenerate. The four exciton states can be labeled by the
total exciton angular momentum F and its projection J, onto
the z axis which, in the isotropic case, can be chosen arbitrar-
ily. The optically active states have F = 1. Using Wigner 3 jm
symbols [16] these states can be written as

X, 1F,) = (=)= /3

1
<3 (M K }Z)w, Molv. My). (24)

M. .M,
where |c, M.) and |v, M) refer to the states of the conduction-
band electron and valence-band hole whose bispinor wave
functions are given by Eqgs. (14) and (22), respectively.

In the linear optical regime, the state of the optically ex-
cited QD can be represented as its ground state |0) and a small
correction:

1) = 10) + Cr.(0)IX, 1F,)e™™ ", (25)
where wy is the resonance frequency of the mechanical exci-

ton. The coefficient Cx () can be found from the Schrodinger
equation

ih%m =H+V©)), (26)
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where H is the unperturbed two-particle Hamiltonian describ-
ing the electron-hole pair and

V(t) = —%/j(r)A(r,t)dr
. | '
= i / D in®) 3 Y E" (@, 1) dr
iz q

= D J—E @) 27)
g

is the perturbation describing the light-matter interaction with
the plane electromagnetic wave characterized by the vector
potential A(r, t), electric field E(r, 1) = V! > E(q.1) erar,
and frequency w, V is the normalization volume, j(r) is
the current density operator, and we distinguish between co-
variant and contravariant cyclic components of vectors. In
writing Eq. (27) we assumed A(r, ) o< e~ and neglected
the complex-conjugated term leading to a nonresonant contri-
bution to the polarization. Substituting Eq. (25) into (26) and
multiplying by (X, 1.7;| from the left we obtain

aC —i(w—wp)t
=% = ¢ A, (28)
w

© k
EM(q) = E"Véqx —

where

1
M=o Y XARLCOODE @. (29

nq
Integrating Eq. (28) we get

iA e*i(wfwo)t

Cr(1) = (30)

ho(w — wy + i0)

Then for the Fourier component of polarization we obtain

_ 017 (@IX, 1.F)
hw*(w — wy + i0)

Pl (q, ) = é(ru"(q)mw =
31)

Thus, the linear susceptibility of the QD has a tensor character.
It would become scalar only if (0] (q)|X, 1.F;) o 85, F,.

Assuming the system to be nonmagnetic, one can write the
Maxwell equations as

[V x [V x E(r)]] = &D(r), (32a)

V.D(r)=V_:[gE()+ 4nPy.] =0, (32b)

where ky = w/c and ¢, is the background permittivity. Then
it follows

(—¢* + K E"(q) = —k} 4Pl (q, »)

1
+ " D 4oPl(q.0).  (33)

where k = /&, ko. Equation (33) yields'

4
O} (@IX, 1F7)A

q* — k? ho*(w — wg + i0)
- 4n

&b % — k2 T (w — wg + i0)

Multiplying this equation by (X, 17| j,.(—q)|0) and summing
over q and  we arrive at

=

A=A yA— = 35
+ w — wy + 10 (33)
or
AO
A= ——"r0, (36)
w— Wy — &
where
A =X, 1Fju(—K)I0E®, (37a)
"
47 q"qs — k28ﬂ .
E= 2 PIFpo(q),
eh?V Xq: ; 22— @
F7(q) = (X, 171 ju (—@)0)(0] 7 (@)IX, 1.F;) . (37b)

"We postpone the discussion of the effect of dielectric contrast
between QD and surrounding medium to Sec. VII.

A 4s(01/° (@)X, 1F). (34)

(

One can see from Eq. (36) that the real and imaginary parts
of E determine, respectively, the resonant frequency renor-
malization §w due to the electron-hole long-range exchange
interaction and the radiative lifetime 7 as follows:

i
E=0w——. 38
1) 7 (38)

IV. INTERBAND MATRIX ELEMENTS OF COORDINATE,
VELOCITY, AND CURRENT

The current density operator for a particle at the point r is
defined as

e

ir) = > [Ved(r —re) +8(r —r.)ve], (39)

where v, is the velocity operator

i
V. =

= E(Hre —rH). (40)
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From this definition we get an expression for the Fourier
transform of the current entering Eq. (37b):

i@ = g (Ve 0e 4 o7 Tey, ) (1)

First we discuss the longitudinal current component paral-
lel to q. For the Fourier transform of V - j we get from the
continuity equation V - j(r) = —3% o(r)

d . e .
.3 —; —iqr,y _ _ ~ H, —iq-r, . 42
q-jq) fe— (e ) h[ e ] 42)
For its matrix elements we have

N E;—E; —igr. |+
(flq - j@)li) = —e— 7 (fle™"T]i)

= —ew (fle” Vi), (43)

where |i) and |f) stand for the initial and final states, respec-
tively. Replacing q by —q in Eq. (43) we find

Using for the final and initial states the bispinors of Eqgs. (14)
and (23), respectively, we obtain

(¢, M e |v, KMy,

= K(q) V37 ¥}y oun (g)

1 1 1
—1 MM, 2 2
x (=D (—Mh -M, M.+M,) 5)

where
R
K(g) = / drr?[z5(rz} (r) — 25Nz (N] jigr).  (46)
0
It follows From Eq. (24) that

. 8
(X, 1| |0) = /?’T /C(q)yl*EG). (47)

Then from Egs. (43) and (44) one obtains

8
0lg - J@IX. 1F) = e,/ ?” K@) f(g) (48a)

8
(X, 1F1q- 50} = ew [ = K(q)Yl*fz(g). (48b)

Now we will proceed to calculate the matrix elements of the
Jj(q) operator. From Egs. (1) and (41) and the definition of the

flq-j(—q)|i) = ew (f|e"q'rﬂ' 7). (44) velocity operator (40) we get an explicit form of j(q):
|
o€ —a.qe T — 27Ty, hvgoe T
.](q) - £|: hvoae_iq'rf avqe—iq-r( + Zl.(Xue_iq'r”Ve s (49)
where V, = 9/0r,.
Its matrix element has the form
. 1 1 2 q
0 X, 1F) = ~1)7 85 7 + b(q) (—1 frﬂ“( )Y <—) 50
where
K 2| ¢ v 1 c v . q K 2 c v v c .
alq) =ev2 vo/ drr| (N 75(r) = 32 A ) | Jolar) — ﬁ/ drr*[ee z5(r) 2§ (r) — oy 25 (r) 25(r)] 1 (gr)
0 0
2 (R azs(r) azy(r) .
+3r A drr2|:ozc E())r zl(r)—av#q(r)]]o(qr)}, (51)
b(g) =4e T {—ﬂ CarPEm 2 jagn - L / " dr a5 ) — a0 ) 5] jr(ar)
15 Jo 1 1 35 ), cZp 1 v <o 1
2 (R az§(r) az5(r) . .
—3 i drrz[ac gr () — ay gr zl(r)i| jz(qr)}. (52)

If only the first term were present in the right-hand side of Eq. (50), then the linear susceptibility of the QD would be scalar. If
we now calculate matrix elements of q - j(q) using Eq. (50) and compare it to Eq. (48a) we come to

R R ¢ v :
hoK(g) = —¢* / dr rz[otc 25N 2] (r) — oy 25 (r) 25(r)] ji(gr) +2 / drr? |:OlL- 9(r) () —ay 920(r) zf(r):| dji(gr)
0 0 or ar dr
R 1 4 R
+uwliq f dVVZ[ZS(V)ZS(’”)— ng(V)Z'f(”)] jo(qr)+vohq§ / drr* Z{(r) 2} (r) ja(qr). (53)
0 0
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FIG. 1. Size dependencies of the terms in the left- and right-hand
sides of Eq. (54) for PbS QDs.

In the lowest order in ¢ we have jo(gr) ~ 1, ji(gr) ~ qr/3
and Eq. (53) yields

h_wer = zlla + vy i 1, (54)
3 3R
where we defined the following integrals:
1 (R
= /0 dr P*[z(r) 2 (r) — (1) (1)), (55a)

R az§ 0z8 .
L—R f drrz[ac D) 0y — g, 200 zi(r)}, (55b)
0 or or

R
I, = / drr? [zg(r)zg(r) - lzf(r)z'f(r)i|. (55¢)
0

3
In the left-hand side of Eq. (54) there is an expression
proportional to the interband matrix element of the coordinate
operator while the right-hand side is proportional to the inter-
band matrix element of the velocity operator. The appearance
of the first term in the right-hand side of Eq. (54) reflects
specifics of this problem. Although we derived Eq. (54) from
the matrix elements of the Fourier transform of V - j, it can
also be derived from the matrix elements of the velocity opera-
tor. The explicit expressions for the interband matrix elements
of the velocity and coordinate operators are

(e, M|0g|v, KMp)

1 1 1 21
V6= ([ 2 2 I,+—=1I,¢, (56
Vo1 (MC M, —ﬁ){v°‘+3h1€ } (56)
(e, Mc|rglv, KMp)

_-\/E( 1)1+/3 % % 1 RI
~'V3 M, M, -B)""

To emphasize the importance of the first term in the right-
hand side of Eq. (54), in Fig. 1 we show the term in the left-
hand side of this equation (LH) and the two terms in the right-
hand side (RH1 and RH2) calculated separately as functions
of the QD size for the parameters corresponding to PbS [9].
For the QD diameter about 1 nm, the absolute value of the
term RHI1 is about one half of the LH term, it decreases with
increasing QD size. However, its value is still appreciable even
for QDs with the diameter of 10 nm.

(57)

V. RADIATIVE LIFETIME: SINGLE-VALLEY CASE

The matrix elements entering Eq. (37b) are related to
Eq. (50) via

O/ (@IX, 1F) = (=D (0lj_p(q)IX, 1.F,),

(X, 1F.|js(—@)I0) = (=DF [(0] j_p(—q)IX, LF)]*.  (58)
Substituting Eqs. (48), (50), and (58) into (37) we obtain
2 00
o 2
e | dak@
2 - B e+ PO
—Hsbh{SeIC (k) wz[a (k) + x| (59)

The first term in the right-hand side of Eq. (59) gives the
resonant frequency renormalization due to the electron-hole
long-range exchange interaction [10]. For the imaginary part
of Eq. (59) we will take the long-wavelength limit g — 0:

1 2k 1 1 21 7°
_ —— [RL)? + —|vol,+——1I,| {. (60
2t e { 77 R+ wz[vo”+3hR“]} .

Taking into account Eq. (54) we finally obtain
1 8 k3e?

= _R212

0 27 eh T
We note that, in the long-wavelength limit, the radiative life-
time can be obtained using the Fermi golden rule replacing

j(q) by ev,. In this limit

(61)

(flilg = 0)17)

= e (Ey —E) (fIrcli)
= —iew (fIr.li), (62)

in agreement with Eq. (61) [cf. Eq. (§7)]. It should be noted
that, in Ref. [9], the optical matrix element between the elec-
tron states W.(r) and W,(r) was taken to be proportional to
(W.(r)|e - p|W,(r)), where p is the momentum operator —iiV
and e is the light polarization unit vector. It is incorrect as
soon as the contributions of the remote bands described by
coefficients . and «, in Eq. (1) are taken into account. The
comparison of the correct optical matrix element and that used
in Ref. [9] is presented in Appendix A.

VI. EMERGENCE OF THE ULTRABRIGHT STATE

In this section we will generalize our results for the multi-
valley case. When exciton states in different valleys are taken
into account, we need to replace Eq. (25) by

N
) =10) + Y CriIX, 1F.. i) e,

i=1

(63)

where i is the valley index and we took into account that only
the states of direct excitons, with the electron and the hole
from the same valley, can interact with light. Possible mixing
with the indirect excitonic states is discussed in Sec. VIII.
Then, instead of Eqs. (31) and (35), we get, respectively,

N

Pc(;c(q’ w) = _Z

i=1

017 (@IX, 1.F;, i)
ho*(w — w; +i0)

A (64)
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and
N gl
Aj=AY - Zl M (65)
where
A =X, 1 jlju(—K)I0E*® (66a)
u

B = e ebha)ZV qu = ;2 MUFON( 2

F7 @) = (X, 17, jlju(=I0){01j7 (@)X, 17, i).

Note that the matrix E/ is symmetric but not Hermitian.
Considering Eq. (65) as an inhomogeneous system of linear
equations on

(66b)

A (67)
w; —w —i0’
we can formally resolve it using Cramer’s rule. This gives the
following equation for the resonant frequencies:

det ||(w; — w)8;; + B[] = 0. (68)

Because of the symmetry, all the matrix elements B/ =
E are the same. The same refers to the unperturbed resonant
frequencies: w; = w; = wy. Therefore, in the left-hand side of
Eq. (68) we have a determinant of the matrix

M/‘,‘ = (0)0 — CL))(SJ‘,' + 8. (69)
This allows one to rewrite Eq. (68) as
o)Vl =0. (70)

In other words, out of N = 4 valley-degenerate states excited
by the light of given polarization only one gets frequency
and radiative damping renormalizations, corresponding to the
real and imaginary parts of N &, respectively. They are both
N times as large as their single-valley counterparts. All the
remaining N — 1 states have no radiative decay and become
subradiant. For the decay rate of the ultrabright state in a PbX
QD (N = 4) we obtain
1 328K ,,

— = —R°I". 71
T, 27eph " 7

(wo —w+ N E)(wo —

The ratio e’k3/eyfi can be conveniently replaced by
aw’ /g,/c*, where « is the fine-structure constant e®/cfi. In
Appendix B we show that the result 77! = N Ty ! holds with
allowance for the valley anisotropy.

Now the following question arises: Is the ultrabright state
in a QD of multivalley semiconductor superradiant? The
pairwise interactions between emitters are known to destroy
superradiance [17], unless the system possesses additional
symmetry leading to equivalence of the interaction energy for
all the emitters. For example, in a Gedanken experiment pro-
posed in Ref. [17] this was achieved by arranging emitters to
form a ring. At first glance, if interactions are allowed between
the valleys considered as emitters, then the interaction energy
should be equal for all the valleys. However, if the shape of the
QD has symmetry not lower than the symmetry of the crystal
lattice, then the latter dictates that exciton states from different

—— PbS

2.0t
15}
[22]
£
= 1.0

0.5¢ =

exchange
0-0 5 10 15 20

D (nm)

FIG. 2. Size dependence of the radiative decay time 7, [Eq. (71)]
for the ultrabright state in PbS (blue line) and PbSe (orange
line) QDs. For the calculations we use the parameters from
Ref. [9]. For PbS they are E, = 0.41 eV, fivg = 3.09 eV A, o, =
11.4 eVA2 o, =9.52 eVA?, g, = 17; for PbSe: E, = 0.28 eV,
g =3.15eV A, =26.3eV A% o, = 14.9eV A2, g, = 23. Inset:
exciton states in the four L valleys, blue ellipsoids, serve as four
emitters in the reciprocal space; they are coupled via the electromag-
netic field forming an ultrabright state with a radiative decay rate
four times faster than that of an individual emitter. The longitudinal
component of the Maxwell field boosts the energy of the ultrabright
state to the value which is four times larger than the intravalley
long-range exchange splitting into the bright and dark states.

valleys form combinations representing basis functions of ir-
reducible representations of the symmetry group. In Ref. [10]
the mechanism ensuring obedience to the lattice symmetry
was called “valley mixing.” While the Maxwell field tries to
arrange emitters (valleys in our case) in a fully symmetric
combination, valley mixing favors combinations prescribed
by the lattice symmetry. Furthermore, while the only “conven-
tional” superradiant state accessible in the linear regime is the
lowest radiative state of N emitters and the electromagnetic
field promoting this state affects only its radiative decay rate,
the ultrabright state is boosted by the longitudinal component
of the Maxwell field and has energy higher than the energy
of degenerate subradiant states as well as that of dark states
of the direct and indirect excitons. Valley mixing distorts the
ultrabright state and leads to brightening of subradiant and
some dark states (originating from indirect excitons) via their
admixture, while the state inheriting most properties of the
ultrabright state is the highest state of the exciton multiplet
[10].

VII. CALCULATION OF THE RADIATIVE LIFETIME
FOR THE ULTRABRIGHT STATE

The size dependencies of the radiative lifetimes for the
ultrabright states in PbS and PbSe QDs obtained according
to Eq. (71) and using material parameters of Ref. [9] are
shown in Fig. 2. They are in the nanosecond range. These
lifetimes should be compared to the experimentally observed
photoluminescence decay times [18—20] which are in the mi-
crosecond range. Several factors should be taken into account
while performing such comparison.
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First, if the difference in background dielectric permittivi-
ties of the QD and its environment is taken into account then
the radiative decay rate should be multiplied by the factor [15]

2
9 eout

(8b + 2 gout)z '

where &, is the dielectric constant of the environment, which
reduces the radiative decay rate due to the large dielectric
constants of PbX. The resulting radiative decay rate of the
ultrabright state takes the form

1_R/ae0’ | e R, (72)
T, 3¢z (&b +2&0u)?

This dielectric contrast also leads to an additional contribution
to the exchange splitting [10]

4 e —Eom
9 R eplep + 260m)

This contribution for PbX QDs surrounded by a low dielectric
constant medium is only few times smaller than the main
contribution [cf. Egs. (38) and (59)] and cannot be neglected.
For PbS QDs embedded in the BK7 optical glass (eqys = 2.3)
the radiative lifetime is multiplied by a factor of ~9.8 and
the exchange splitting gets an about 20% increase. For the
colloidal QDs in hexane (g4, = 1.94) or in the air one could
expect similar or larger factors. Note that both Eqgs. (72) and
(73) can be derived within the formalism explained in Sec. III.

Second, the experimental photoluminescence dynamics
can be influenced by more than one emitting state and involve
nominally dark states with long lifetimes [19,21].

Finally, as mentioned at the end of Sec. VI, the exciton
states are greatly influenced by the valley mixing which leads
to a redistribution of the oscillator strength of the ultrabright
state among several available optically active states allowed
by the symmetry [10]. In the next section this issue will be
addressed in more details.

héwdc = (73)

VIII. ROLE OF VALLEY MIXING

In the isotropic model we considered thus far, the electron
and hole ground states in a PbX QD, described in Sec. II, were
eightfold spin and valley degenerate. The cubic symmetry of
the crystal lattice dictates that the corresponding electron and
hole energy levels should split into sublevels corresponding
to irreducible representations of the point symmetry group of
the QD. This symmetry group can coincide with the point
group of the underlying rocksalt crystal lattice O), or have
a lower symmetry. We will restrict our consideration by the
QDs which have the same rotational symmetry as the crystal
lattice but do not possess a center of inversion [22]. Then the
symmetry group of the QD is 7; and both the electron and
the hole ground levels split into two doublets corresponding
to the irreducible representations I'¢ and I'; (below we use
notation from Ref. [23]) and one quadruplet corresponding to
the irreducible representation I'g [10,22,24]. As the resulting
wave functions contain contributions from different valleys,
we refer to these splittings as being caused by valley mixing.

When it comes to the exciton states, they cannot any longer
be separated into the states of direct and indirect excitons.
Instead, the exciton states can also be classified with respect to
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FIG. 3. Radiative lifetimes calculated taking into account both
the valley mixing and the dielectric contrast for the lowest-energy
(solid diamonds) and highest-energy (open diamonds) optically ac-
tive exciton states as functions of the QD effective diameter for
octahedron-shaped PbS QDs embedded in BK7 optical glass. Inset:
energy splitting between the lowest-energy (solid diamonds) and
highest-energy (open diamonds) optically active exciton states and
the lowest dark exciton state as a function of the QD effective diame-
ter for octahedron-shaped PbS QDs embedded in BK7 optical glass.

the irreducible representations of the 7; group [10,25]. It turns
out that the 64-fold-degenerate ground exciton level splits into
27 sublevels, 8 of which are optically active triplets corre-
sponding to the irreducible representations I's of the group
T, [10,25,26]. Thus, the oscillator strength of the ultrabright
triplet of the isotropic model gets redistributed among all the
eight triplets of I's symmetry.

Technically, one can include the eight states optically ac-
tive in the JF, polarization with the energies not affected by the
long-range electron-hole exchange interaction into Eq. (63)
and modify the derivation accordingly. Note that one can
distinguish two sets of basis states. The first one is the ba-
sis of independent valleys which has been used to calculate
the matrix elements (66b). The second one is the basis of
direct products of irreducible representations of the group
T,, accounting for transformations of the single-particle wave
functions. The latter basis diagonalizes the Hamiltonian of
noninteracting electron-hole pairs. For practical calculations
it is convenient to transform this Hamiltonian to the basis of
independent valleys. The explicit form of the transformation
matrix is given in Ref. [10].

In Fig. 3 we show the calculated radiative lifetimes for the
highest- and lowest-energy sublevels out of the eight optically
active triplets as functions of the QD effective diameter. For
small QDs, the lifetime of the lowest-energy optically active
state, contributing to the low-temperature photoluminescence,
is comparable with the lifetime of the highest-energy state
inheriting most properties of the ultrabright state. With the
increase of QD size (and decrease of valley mixing) this
lifetime rapidly grows and reaches the us range. Calculations
were performed in the framework of the extended k - p model,
where the splittings induced by the valley mixing were taken
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from the tight-binding results [10]. For this particular calcu-
lation the QDs were chosen in the shape of the octahedron.
Similar calculations of radiative lifetimes for QDs of various
shapes show that, while the behavior of the lowest optical
transition time as a function of the QD size is smooth for QDs
of the same shape, this time significantly varies when going
from one QD shape to another. In particular, for a 10-nm QD
it is of the order of 0.3 us for a cuboctahedral QD, 2 us for a
cubic QD, and 50 us for an octahedral QD (see Appendix C).

IX. CONCLUSIONS

When addressing optical transitions in nanostructures
made of narrow-gap materials with strong interband coupling
described by the nondiagonal part of the Dirac-type Hamil-
tonian (1), one is tempted to expect that the optical matrix
element is proportional to the Fermi velocity vy of the gap-
less limit. We have demonstrated that this expectation is not
right and one has to take into account the contribution of the
massive terms to the interband matrix elements of the velocity
operator.

Taking into account multiple valleys leads to emergence
of valley coherence when different valleys act as indepen-
dent emitters in the reciprocal space and their symmetric
combination becomes superradiant. The resulting ultrabright
state of a PbX QD has a reduced radiative lifetime. We have
demonstrated that the radiative time of the ultrabright exciton
is defined by the transition from single exciton state, amplified
by the superradiance, in contrast to the model of the uncorre-
lated transitions in four uncoupled valleys.

We have also explained the experimental data on long
radiative times observed in these nanocrystals by the bright-
ening of low-lying dark excitonic states. The mixing with the
ultrabright exciton state leads to redistribution of its oscillator
strength among eight radiative triplets allowed by the symme-
try. The radiative triplet having lowest energy is responsible
for low-temperature photoluminescence and has radiative life-
time in the microsecond range in agreement with experimental
findings.
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APPENDIX A: OPTICAL MATRIX ELEMENTS
IN THE k-p THEORY

1. Multiband k-p model neglecting remote bands

Let P(r) (n =1, ..., N) be a set of the Bloch functions
at the extremum point of the Brillouin zone. The effective
Hamiltonian # in the k-p theory is an N x N matrix with the

components

k2 B

7'[n/n(k) = _Sn’n +—k- Puwn » (Al)
2m0 my

where Kk is the electron wave vector for the Bloch free-electron
states or the operator —iV acting on the electron envelopes.
The higher and lower bands different from the chosen ones
are neglected.

We consider the optical matrix elements taken between two
eigenstates

We(r) =Y FmyO@); W)=Y F @y,

(A2)
where F(r), F,’(r) are smooth envelopes.
For the calculation, one can use one of two equivalent
methods.

a. Multiband model neglecting remote bands: Method A

In this method the matrix element is proportional to

Vep = 1 / Wi(r)e-p W, (r)dr, (A3)
my

where e is the light polarization unit vector and p = —ihV.
Taking into account the smooth character of the envelopes we
can transform Eq. (A3) to

Vey = Vey;1 + Vevi2,

1
il = — e Py | EF*(r)F (r)dr, A4
Ve mOZ P /,A),,() (A4)

n'n

Vew = —imio Z f F*(r)(e - V)E'(r)dr. (A5)

b. Multiband model neglecting remote bands: Method B

In method B the matrix element is written as follows:

Vey = ) / ES*(r) e -V, EV(r)dr, (A6)
where the velocity operator is a matrix
1 0H(k
V= —J (A7)
h ok
with the matrix elements
hk Pun
Von = _‘Sn’n + . (A8)
my mgo

Substituting Eq. (A8) into (A6) we obtain
Uey = VUep;l + VUcv;2s

1
Vep:] = - Ze . pn,n/Eﬁ*(r)Fn”(r)dr, (A9)

Vevr = n% Z / E*(r)(e-k)E'(r)dr.  (Al0)

One can see that Eqs. (A4) and (AS5) coincide with Eqs. (A9)
and (A10) and the two methods, indeed, are equivalent.

As we show below the situation is quite different in the
two-band k-p model where higher and lower bands are taken
in the second-order approximation.
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2. Two-band k-p effective mass model with k-quadratic
terms due to remote bands

In the two-band model the wave functions are presented as

Y ey Y Emyd ),

(A11)
where F,.(r), F,/(r) are smooth envelopes, and the index m
runs over the conduction- and valence-band states at the ex-
tremum point. For example, the functions W can have the form
= Fi(r)|Lg 1) +Fa(r)[Lg ) + F3(0)[L{ 1)

+Em)ILg ).

e (r) = Wy (r) =

W (r))

The effective Hamiltonian is a matrix 2 x 2 with the com-
ponents

Hm’m (k) (Alz)

_k Pmm +Zy"(123“1

where coefﬁ01ents me ;; include contribution of the remote

2)

bands; y = Vormsjic

mmt/

a. Two-band model including k* terms: Method A

In method A, by analogy with Eq. (A3), the matrix element
Vey 18 Written as

:
— L c 0)
Ve = / [Em, Fy (@), (r)}

X e- p[z Fn';(r)l/f;?)(r)]dr. (A13)

The smooth character of the envelopes allows one to rewrite
Eq. (A13) into

Uy = Vew;1 + Vev:2,
Vey;1 (twWo-band, A) = — Ze Pw'm / F.r(r)F, (r)dr ,

m'm

(Al4)

h
Vepa (two-band, A) = —i— Z ES(r)(e - V)E'(r)dr .
mgy .

(A15)
b. Two-band model including k* terms: Method B
Similarly to Eq. (A6) we write
Vey = Z ESA(r) € - Vo FU(r)dr (A16)

m'm

where v is the two-band velocity operator with the compo-
nents

Prvmsi 2) ..

Upimyi = ——= + = Zymmm i, wherei, j =x,y,z.

(A17)

Therefore, we obtain instead of Eq. (A16)
Vey = VUep:l + Ucv;2s

1
Vey:1(two-band, B) = — Ze “Pmrm / F(r)F, (r)dr,
Mo

(A18)
Vepp(two-band, B) = —i— Z/FC*(I,) (Z y® o e )

Comparing Eqs. (A14) and (A15) with Egs. (A18) and
(A19) we see that Eq. (A14) coincides with Eq. (A18) whereas
Egs. (A15) and (A19) are different. Equations (A15) and
(A19) coincide only if the remote bands are ignored in which
case

@ = —8mbij. (A20)

yﬂ‘l m; lj 2m0
From the comparison we conclude that Eq. (A19) accurately
reflects the effect of the remote bands in the optical matrix
elements and Eq. (A 15) neglects the remote bands completely.

APPENDIX B: SUPERRADIANCE IN THE k SPACE:
THE CASE OF ANISOTROPIC VALLEYS

Here we show that the superradiant regime is retained when
the valley anisotropy is taken into account. Following Secs. III
and VI, we consider a state of the exciton confined in a QD
originating from the valley oriented along [111]. Let us use
the Cartesian coordinate system with

x| U2 po I IT10L, 2 (1110 (BI)

The exciton ground state is formed by the optically inac-
tive sublevel |exc, 0), two sublevels of the doublet |X, 1.F,,),
|X, 1.F,,) optically active in polarizations e || x; and e || yj,
and the sublevel |X, 1.F,) active in polarization e || z;.

Due to the axial symmetry of a single valley, the matrix
elements for the photoexcitation of the active sublevels may
be written as

Mx 17, i=1 = Viex,

My 17, i=1 = viey,,

Mx 17, i=1 = vjez, (B2)
or, in the crystallographic system of coordinates x || [100], y ||

[010], z || [001],

1
Mx 17, .i=1 = UL%(&: +e, —2e,),

1

Mx 17,.i=1 = UJ_E(_ex +ey), (B3)
1

Mx 17, ,i=1 = v ﬁ(ex +ey+e),

where v, v are the optical matrix elements.
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FIG. 4. Left panel shows the radiative lifetimes calculated taking into account both the valley mixing and the dielectric contrast for the
lowest-energy (solid symbols) and highest-energy (open symbols) optically active exciton states as functions of the QD effective diameter for
PbS QDs of different shape embedded in BK7 optical glass. Right panel shows the energy splitting between the lowest-energy (solid symbols)
and highest-energy (open symbols) optically active exciton states and the lowest dark exciton state as a function of the QD effective diameter
for PbS QDs embedded in BK7 optical glass. Different symbol shapes and colors encode the QD shape: red diamonds, green octagons, and
blue squares show the data for octahedral, cuboctahedral, and cubic QDs, respectively.

Linear combination of the three excitonic states |X, 1.F,), The three states
|X, 1.F,,), |X, 1.F,,) polarized along z axis has the form .
IX, 17, T5) = 5(X, 17, 1) — X, 1.F, 2)

3 6
X, 1F.) = c<£|x, 1F,) — £|X, 1f,ﬂ>>, —1X, 17, 3) + 1X, 1F,, 4)), (BY)
L] V]
S T B4) IX, 17, T3) = 30X, 1F,, 1) + X, 1.F, 2)
ﬁ vi-|—2vﬁ7 —|X, 1~sz3)_|Xﬂ 1fm4)),
. . (B9)
where we used the relation between the valley coordinate
system (B1) and the crystallographic coordinate system. One 1 _
may check that X172 Ts) = (X 17, D) = 1X 17, 2)
+I1X, 17, 3) — IX, 1.F;,4))  (B10)
M C[ﬁ ! (ex+ey+e) Z Z
=1 =C|—vj—=(ex+e,+e ; nacti
X1 F..i=1 v I /3 y T € are optically inactive.

The action of the operations C; and C7 on the state
|X, 1F,, I'1) gives the states |X, 1.F, 1) and |X, 1.5y, I'y),
polarized along x and y, respectively.

To conclude, out of the 16 states of the direct exciton
only three are optically active: |X, 1F,,I'y), |X, 15, Ty),
and |X, 1F,, I'1). These states transform according to the
I's ® I'y = I's representation of the group 7.

NI
——v,—(ex + e, —2e )i| =3Ce,. (BS)
vy 1 \/6 y z z
Exciton states |X, 1.F;, i) in the three other valleys i =
2,3, 4 are obtained by applying the operations of Cy, C3, C;
to the state |X, 1F,,i = 1). Since z is invariant under these
three operations, from (B5) one may obtain that, for all four

excitons |X, 1.F,,i) (i = 1,2, 3,4), the matrix elements are
APPENDIX C: RADIATIVE TIMES FOR QDs

equal:
OF DIFFERENT SHAPE.
Mx 1 7. = 3Ce;. (B6) . e
; . ) ) In Fig. 4 we show the calculated radiative lifetimes for
It follows from the above considerations that the combina-  the highest- and lowest-energy sublevels out of the eight opti-
tion optically active in polarization e || z is cally active triplets as functions of the QD effective diameter.
X, 15, T)) = % (X, 1F,, 1) + X, 1F,, 2) Calculations were performed in. the fr.amework of the ex-
tended k - p model, where the splittings induced by the valley
+ |1X, 17, 3) + 1X, 1.F,, 4)), mixing were taken from the tight-binding results [10]. Here
My 7.1, = 6Ce,. (B7)  We present the calculations of radiative lifetimes for QDs of

various shapes.
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