Partial Type Constructors in Practice

Apoorv Ingle
Department of Computer Science
The University of Iowa
Iowa City, Iowa, USA
apoorv-ingle@uiowa.edu

Abstract

Type constructors in functional programming languages are
total: a Haskell programmer can equally readily construct
lists of any element type. In practice, however, not all appli-
cations of type constructors are equally sensible: collections
may only make sense for orderable elements, or embedded
DSLs might only make sense for serializable return types.
Jones et al. proposed a theory of partial type constructors,
which guarantees that type applications are sensible, and
extends higher-order abstractions to apply equally well to
partial and total type constructors. This paper evaluates the
practicality of partial type constructors, in terms of both
language design and implementation. We extend GHC, the
most widely used Haskell compiler, with support for partial
type constructors, and test our extension on the compiler
itself and its libraries. We show that introducing partial type
constructors has a minimal impact on most code, but raises
important questions in language and library design.

CCS Concepts: » Theory of computation — Type theory; «
Software and its engineering — Functional languages;
Data types and structures.

Keywords: Type constructors, Type families, Parametric
polymorphism

ACM Reference Format:

Apoorv Ingle, Alex Hubers, and J. Garrett Morris. 2022. Partial Type
Constructors in Practice. In Proceedings of the 15th ACM SIGPLAN
International Haskell Symposium (Haskell *22), September 15-16,
2022, Ljubljana, Slovenia. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3546189.3549923

1 Introduction

In languages with parameterized types, some type expres-
sions ([] or [Int], say) are more meaningful than others
(CMaybe] or Maybe Map). In Haskell, kind checking distin-
guishes meaningful type expressions. If we know that Int

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Haskell 22, September 15-16, 2022, Ljubljana, Slovenia

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9438-3/22/09.
https://doi.org/10.1145/3546189.3549923

Alex Hubers
Department of Computer Science
The University of Iowa
Iowa City, Iowa, USA
alexander-hubers@uiowa.edu

J. Garrett Morris
Department of Computer Science
The University of Iowa
Iowa City, Iowa, USA
garrett-morris@uiowa.edu

has kind x (that is: a type) and [] has kind * — * (that is:

it constructs types from types), we can conclude that Int

and [Int] are well-kinded and [[]] is not. However, kind-
checking is not by itself enough to identify all meaningless
types. For example:

e The UArray type constructor describes arrays of unbox-
able elements; type UArray Int (Int — Int) does not
make sense, as functions cannot be unboxed.

o The type Ratio describes exact fractions; while Ratio
Char has inhabitants, none of the expected Ratio opera-
tions apply to them.

Jones et al. [8] propose a theory of partial type constructors
to identify such seemingly well-kinded but actually meaning-
less type expressions. In their approach, type constructors
not only have kinds, but also participate in a definedness
relation (written @). For the Ratio type constructor, Ratio
@ awould be equivalent to Num a, ensuring that ratios were
of numeric types; or, for unboxed arrays, we would expect
UArray @ a to be equivalent to a constraint Unboxable a,
ensuring that elements of unboxed arrays could be unboxed.
Jones et al. extend kinding with definedness: a type appli-
cation k t is well-kinded only when the constraintk @ t
is satisfiable. In their system, a type like Ratio Char —
Ratio Char is only well-kinded if Num Char is satisfiable.

This paper explores whether the theory of partial type
constructors could be practical in modern Haskell, as realized
by GHC. There are several challenges:

o Haskell’s datatypes are more complicated than those con-
sidered by Jones et al., including features like kind poly-
morphism, existential types, and generalized algebraic data
types (GADTs).

e Haskell includes type expressions not built from type con-
structors, such as type families and type synonyms.

o Modern Haskell code depends on highly polymorphic li-
braries, so partial type constructors might introduce un-
sustainable annotation burdens.

To evaluate these challenges, we have implemented par-
tial type constructors as a prototype extension of GHC 9.3!
(the version in development as we wrote this paper). Our
implementation elaborates source programs—with all the
features of modern Haskell, including GADTs, type families,
and generic programs, as well as partial type constructors—to
GHC'’s existing core calculus, System FC. Type constructors

https://github.com/laFP/ghc

https://orcid.org/0000-0002-7399-9762
https://orcid.org/0000-0002-6237-3326
https://orcid.org/0000-0002-3992-1080
https://doi.org/10.1145/3546189.3549923
https://doi.org/10.1145/3546189.3549923
https://doi.org/10.1145/3546189.3549923
https://github.com/IaFP/ghc

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

in System FC are total, so our implementation inserts con-
straints in the elaborated code to capture the meaning of
source programs with partial type constructors. We have
used our extended version of GHC to compile a number of
realistic examples of Haskell programs, including the com-
piler itself, several motivating examples of partial type con-
structors, and a number of popular packages from Hackage.
We found that, while partial type constructors are not en-
tirely backwards compatible, minimal programmer effort is
required to adapt most existing Haskell code to compile with
partial type constructors. However, we found several signifi-
cant examples of library design that (unintentionally) relies
on totality of type constructors. Perhaps most prominently,
while the Functor and Monad classes adapt perfectly well to
partial type constructors, the Applicative class does not.

Contributions. This paper contributes an extension of
partial type constructors to modern Haskell, and an evalua-
tion of their impact on practical code. In particular:

e We adapt partial type constructors to GHC’s datatypes (§3),
including GADTs, kind polymorphism, and newtype dec-
larations, capturing definedness using constraint families.

e We extend partial type constructors to capture partiality in
type families (§4), and compare the resulting design with
constrained type families [13].

e We evaluate the language design and usability impacts of
these changes (§5), based on the compiler itself and its
underlying libraries.

We begin by reviewing partial types in Haskell (§2), and

conclude by discussing related and future work (§6).

2 Partial Types in Haskell

We begin by reviewing partial type constructors in Haskell:
motivating examples of partiality in practical Haskell pro-
gramming, two sources of partiality in Haskell types, and
challenges to making partial types usable in practice.

2.1 Examples of Partial Type Constructors

One immediate question is the prevalence of partial type
constructors: if cases like UArray or Ratio are very rare,
then any amount of language change to better support them
may be unjustified. Jones et al. catalog a variety of examples
of partial type constructors drawn from Haskell and other
typed functional languages.

Haskell 1.0. The first version of the Haskell Report [5]
allows constraints to appear in data type and type synonym
declarations. As an example, the report gives the type syn-
onym declaration

type (Num a) = Point a = (a, a)
which would allow a type signature like
scale :: (Num a) = a — Point a — Point a

but reject type signatures like

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

scale :: a — Point a — Point a

as type variable a could be instantiated with non-numeric
types. Only one year later, lacking a satisfactory account of
the semantics of those constraints, Peyton Jones [16] pro-
posed that constraints on type synonyms be dropped from
the language entirely and constraints on datatypes weakened
to constraints on the types of individual data constructors.

Monad transformers. The mt1? package defines a collec-
tion of monad transformers, allowing for a modular account
of introducing and using side-effecting code. For example, if
type m is a monad, then type ExceptT e madds to m excep-
tions of type e. The latter type is only meaningful if m itself
is a monad—for example, ExceptT e Ratio is well-kinded
but not meaningful, as the Ratio type is not monadic. How-
ever, Haskell cannot exclude this type. As a result, many
of the functions in mtl need seemingly extraneous Monad
constraints, simply to exclude such pathological examples.

Collection types. The Haskell type Set describes sets
of objects, implemented as size-balanced binary trees. To
maintain its tree invariants, most operations on values of
Set a require that elements be ordered:

member :: Ord a = a — Set a — Bool
union :: Ord a = Set a — Set a — Set a

The most basic constructors of sets, in contrast, do not have
such a requirement:

empty :: Set a
singleton :: a — Set a

This makes it possible to construct “useless” sets, such as
singleton id. Further, the Set type cannot participate in
many of Haskell’s higher-order abstractions. For example,
while the Set type has a mapping operation, it requires that
the element types be ordered:

setMap :: (Ord a, Ord b)
= (a > b) —» Set a — Set b

Because of the Ord constraints in the type of setMap, it is
not general enough to add Set to the Functor class, and
collection-generic code cannot be applied to Sets.

2.2 A Constraint for Definedness

The theory of partial type constructors extends the theory

of qualified types [7] with two key ideas:

o A definedness constraint k @ t, which holds only when
type constructor k is applicable to argument t; and,

o An extended kinding relation, ensuring that type applica-
tions k t are allowed only when the constraintk @ t is
satisfiable.

Their kinding judgment P | A + 7 : k denotes that under

kinding environment A and predicate environment P, type 7

has kind k. The novelty is the incorporation of predicates in

Zhttps://hackage.haskell.org/package/mtl

https://hackage.haskell.org/package/mtl

Partial Type Constructors in Practice

kinding: P will be used to justify that any type applications in
7 are well-defined. In their kinding rule for type application:

P|Arr:ki >k P|Arm:k; PHT @n

P|A+1i15: Ko
the shaded hypothesis requires that the predicate environ-

ment P entail that 7; is applicable to 7,. With their kind
system, we could not derive

FVYfab.(a— b) > fa— fb:x

as we cannot derive either + f @ aor + f @ b. However,
we could derive

FVYfab(f @af@b) = (a—>b) > fa—fb:%

Practically speaking, with partial type constructors, the
type of fmap would have to be adjusted to assure that its
type applications are well-defined:

class Functor f where
fmap :: (f@a, f@hb) > (@a—>Db) >fa—-fFfb

This change to the typing of fmap is essential to the idea
of partial type constructors. Because fmap is polymorphic
in f, we cannot know in advance whether or not f will be
instantiated with a partial type constructor. Moreover, by the
time that we know—say, when we are attempting to write a
Functor instance for the Set type—it is already too late: the
type of fmap was determined in the class declaration, not
at its instances. With this definition of fmap, assuming that
the definedness condition Set @ ais Ord a, the Functor
instance for Set would be accepted and Functor-generic
code could be applied to Sets. For total type cosntructors,
like [], the constraints [] @ a add no new information
in defining the instance, and no additional burden when
using it, and so is equivalent to the current treatment of type
constructors.

2.3 Elaborating Definedness in Types

The theory of partial type constructors requires a significant
number of additional constraints in even mildly polymorphic
programs. This would make using partial type constructors
onerous to programmers, and not backwards compatible
with most existing Haskell code. Moreover, many of these
constraints seem obvious from their context. Given that the
type of fmap explicitly mentions type applications f a and
f b, why should the programmer have to additionally state
the assumption that they be well-defined?

To address this verbosity, Jones et al. introduce an elabora-
tion relation on type schemes o < ¢’. Elaboration extends
a type scheme with those constraints needed to assure that it
is well-defined. They show that, for all o that are well-kinded
without taking partial type constructors into account, o can
be augmented to a ¢’ that is well-kinded with partial type
constructors. For example, applying the elaboration relation
to the original type signature for fmap would give the type

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

signature appropriate for partial type constructors. Applied
uniformly, elaboration would seem to allow existing Haskell
code to be used, without modification, in Haskell extended
with partial type constructors.

To evaluate the effectiveness of elaboration, Jones et al. ex-
tended Hugs, a Haskell compiler, with the kinding restric-
tions and automatic type elaboration of partial type con-
structors. They tested the extended compiler on the Hugs
libraries, an extension of the Haskell 98 standard libraries.
They found that the majority of code compiled without mod-
ification. They did identify some functions that were rejected
with partial type constructors, such as mapAndUnzipM:

mapAndUnzipM :: (Monad m)

= (a > m (b,c)) — [al — m ([b]1, [c])
mapAndUnzipM f xs =

sequence (map f xs) >= return o unzip

The problem is that mapAndUnzipM constructsanm [(b,c)]
list during the computation, but the constraints produced
by elaboration are not sufficient to guarantee that such a
type is defined. Jones et al. propose two solutions: either the
function can be rewritten to use foldM, in which case the
original type is again valid. or the type can be changed to
reflect the intermediate data structure:

mapAndUnzipM :: (Monad m, m @ [(b, c)])
= (a » m (b,c)) — [a]l] — m ([bl, [c])

In all, they found 16 definitions that required changed type
signatures.

2.4 Adopting Partial Type Constructors

The elaboration experiment of Jones et al. leaves us hopeful
that partial type constructors might be not just theoretically
appealing but also practically viable. However, several signif-
icant questions remain in extending partial type constructors
to modern Haskell.

Other Haskell features. Jones et al. consider a simple
core language. Practical Haskell programs, however, use
a variety of features that might interact with partial type
constructors, including newtype definitions and derived in-
stances, type synonyms, generalized algebraic data types,
and type families. How do partial type constructors interact
with each of these features?

Practical applications. Jones et al. did not extend Hugs
to allow programs to introduce new partial type constructors,
so their experiment could not extend to uses of partial type
constructors. Can practical examples of partiality in Haskell
be expressed more simply using partial type constructors?

Backward compatibility. The Hugs standard libraries,
while they include interesting examples of polymorphic code,
may not be representative of modern Haskell. Furthermore, it
is unclear how common examples like mapAndUnzipM would

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

be over a larger sample of Haskell code. Is elaboration actu-
ally sufficient for backward compatibility in practice?

3 Implementing Partial Type Constructors

In this paper, we evaluate the impacts of partial type con-
structors on modern Haskell language and library design. To
do so, we have built a version of GHC extended with sup-
port for partial type constructors. We have modified GHC’s
type inference algorithm to automatically introduce the con-
straints that would be required by the kinding relation of
partial type constructors, following the elaboration relation
of Jones et al. Our implementation supports (and enforces)
the use of partial type constructors in the source language,
preserving unchanged the existing compilation machinery
(and metatheory) of System FC.

3.1 A Constraint Family for Definedness

The crux of the theory of partial type constructors is the de-
finedness relation k @ t. When implementing partial type
constructors in Haskell, then, we might hope to just intro-
duce (@) as a new type class, and reuse all of the compiler’s
existing support for automatically deriving and using type
classes. However, this is not the case. Recall the Set example:
o If we have a term x of type T, such that Ord T holds, then
we should be able to conclude Set @ T, as we might need
to build a set singleton x.

o If we have assumed Set @ T, such as in the body of fmap,
we should be able to conclude Ord T, allowing us to call
setMap.

In short, we expect that Set @ a &= Ord a. However,

this is not how type classes work in Haskell. While we could

define a type class (@) and populate it with instances like

Ord a = Set @ a, those instances would only allow us to

conclude Set @ afrom Ord a, not the other way around.
To capture the intended behavior of the definedness con-

straint, we instead introduce it as an indexed constraint

family [14, 17]:

type family @) (k ::
Constraint

a—b) (t::a)::

Instances of this family, such as Set @ a, are not treated as
new predicates with their own instances and superclasses,
but instead are equated to existing predicates. For example,

type instance Set @ a = Ord a

introduces a type equation Set @ a ~ Ord a, which GHC
will use symmetrically either to rewrite Set @ a assump-
tions to Ord a assumptions (as needed for the Functor Set
implementation) or to turn proofs of Ord a into proof of
Set @ a (as needed for the typing singleton x).

3.2 Extending Elaboration to Modern Haskell

With the (@) family defined, our compiler extension applies
elaboration to all types that appear in source files, whether

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

in type signatures, annotations within expressions, or class
declarations. Figure 1 recasts the elaboration relation of Jones
et al. to encompass a representative subset of the features of
GHC. Our kind language includes the kinds of types * and of
constraints Constraint. Our type language includes type
constructors, type synonyms, and type families; we assume
that type family applications and type synonym instances
appear fully saturated. We include data type declarations
(where K stands for term-level data constructors) and open
type family instances; other declaration constructs will be
handled similarly.

Our elaboration relation 7 < P|z’ denotes that type 7 elab-
orates to type 7/, and is well-defined given constraints P. By
applying elaboration to all sources of types (type signatures,
type of data constructors, and so forth), we can guarantee
that types are well-defined without having to modify GHC’s
kind checking or kind inference.

Type applications 7; 7, are well-defined if 7; and 7, are in-
dividually well-defined, and if the application itself is mean-
ingful. We must be careful about that final condition. In a
type class constraint Ord T, while we want to make sure
that T is well-defined, we do not want to introduce the addi-
tional constraint Ord @ T (as this would simply duplicate
the existing role of type classes). To capture this distinction,
we have two elaboration rules for type applications 77 72,
conditional on the kind of the operator 7;. If the (eventual)
result of 7; is of kind Constraint, then we do not emit an
additional 7; @ 7, constraint. We do, of course, still require
that ; and 7, be individually well-defined. If the (eventual)
result of 7; is not of kind Constraint, then we do emit the
definedness constraint.

In elaborating a quantified type (EV), we distinguish be-
tween those constraints (P;) that limit the bound type vari-
able, and those (P,) that only refer to free type variables. The
result of elaboration is both a new quantified type captur-
ing (the reduction of, see the next section) P;, and a set of
constraints P, to propagate farther.

3.3 Reducing Definedness Constraints

Elaboration can (frequently) generate constraints that we
know are satisfiable. For example, in elaborating the type of
map, we would generate constraints (—) @ a, (a =) @

b, [] @ aamong many others. What should we do about
these constraints?

The first answer is that we should eliminate as many con-
straints as possible when elaborating, by invoking GHC’s
existing predicate solver. Unfortunately, it can happen that
we elaborate the same signature in different contexts. In
particular, to break cyclic module dependency, GHC uses
.hs-boot files that contain (limited subsets of) the type sig-
natures from each module. We need to elaborate signatures
in . hs-boot files. However, we may not have access to all
the instances when elaborating the .hs-boot file that we

Partial Type Constructors in Practice

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

Type variables a Kinds K u= % | Constraint | Kk —
Type constructors C Types Tu=a|C|lnn|FT|ST| 1= | Yak.t
Type families F Declarations D := dataP = Ta = Vﬁ.Pi = K7
Type synonyms 5 | type instance Fry...1p =71
T > Pi| 1]
(EVAR) (ECONST) ———— (EAPP) (71 : K, last(k) # Constraint)
a—e|la C—el|C 1T > PP @17,
TiHPill'i’ Tic_)Pi|Ti/
(E7) (11 : k, last(kx) = Constraint) (EramArP) — P————
11T = PP 1T, F7; < P, WD, | F1]
= Pilr rln/a] > Pl T PP |t Py ~* P ~b
(ESYNINST) _l — Sa;=1) (EV) Loe ! ! (a & fiv(Py))
ST, — P, P | Yak.t < Py |Vak.P| = 7’
o Pl UiPi=QQ Q@ ~w* Q'+
(£=) L - (fiv(Q) N fiv(zy) = 0)
n=>n>=0|0"=1>=>r71
o Oyl UpQy” Qb
(EDATA)
data P= Ta@ =Vp.P;= K;Tj <> data P = Ta = V.(P, Q) = K7,
T—P|7T
(EFAMINST)
type instance F 7y...7, =7 <> type instance F 1y ...7, = 7’ ; type instance WDp 7y ...7, = P
0
last(k’ — k) = last(k) C@r,PwP ifCeX
last(k) = k P~ o, Q if P Q

where K = {I0,Maybe, [],Ratio, StablePtr,Ptr, —,v —}

Figure 1. Elaboration for a representative subset of modern Haskell features.

would when elaborating the full module; applying those in-
stances in elaboration would result in a module that does
not match its . hs-boot file.

The second, less satisfactory answer, is that we should
leave all constraints generated in elaboration. While we
would expect this to have run-time consequences (we would
be adding many unnecessary arguments to even the sim-
plest functions), it would be stable and would surely not
reject well-typed code. Again, however, this is not the case.
In FFI declarations, type signatures serve both to specify the
Haskell side and the expected C side of a function’s type. For
example:

foreign import ccall unsafe "HsBase.h link"
c_link :: CString — CString — IO CInt

Here, if we elaborated the type of c_link, we would generate
a type that no longer aligned with the number of arguments
expected by its C implementation.

Our unhappy middle ground is to maintain a list of type
constructors that we know are total—such as (—), 10, and so
forth—and to eliminate definedness constraints for those, and
only those, types. The resulting process is stable (because our
list of known-total types does not change) and does not break
the run-time system (because we have included the types
that appear in its FFI calls). It does, however, still result in
generating inefficient code, as we will generate definedness
constraints for many total type constructors, including all
user-defined total type constructors.

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

3.4 Datatype Definitions

Contexts in datatype definitions generate equations for the
(@) constraint family. For example, the definition

data Ord a = BST a =
Leaf | Branch a (BST a) (BST a)

generates the type family instance
type instance BST @ a = Ord a

For datatypes with multiple parameters, we introduce con-
straints as soon as all the relevant type variables are available.
For example, a definition

data (Ca, Ch, Dab) >Tab=...
generates the type family instances

type instance T@a =C a
type instance T a@b = (C b, D a b)

This is very much not the same as augmenting the original
data type definition with Ord constraints:

data BST a where
Leaf :: Ord a = BST a

Branch :: Ord a = a — BST a — BST a — BST a

With such a definition, BST a is defined for all a, but its
constructors each carry Ord a dictionaries. With partial type
constructors, any usage of BST a must be in a context in
which Ord a holds; incidentally, this means that we do not
need to carry evidence for Ord a in the data type itself.

Inferring Datatype Contexts. In the context of the previ-
ous examples, consider the definition:

data Settish a = One a | Many (BST a)

Should the Settish datatype itself be partial? For Jones et
al., the answer is yes: a datatype is only considered defined
in those cases in which all of its constructors are defined.
They define an elaboration relation for data types which
augments a datatype’s declared constraints with the con-
straints from each constructor’s argument types. This simpli-
fies their core calculus: as Settish @ a must guarantee the
well-definedness of each of its constructors, no constructor
needs to carry additional dictionaries to justify the well-
definedness of its arguments. However, it requires care for
recursive data types, particularly non-regular recursive data
types. They account for this declaratively, by requiring that
the elaborated constraints are sufficient to entail the required
constraints.

That is not the only sensible approach, however. An alter-
nate interpretation of the Settish datatype is that it should
be total, inhabited by the One constructor at all types, and
the One and Many constructors at types in Ord. Nor is the
One constructor necessary for this interpretation: Haskell
includes empty types (modulo divergence) and, via GADTs,

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

type constructors that are empty at only some of their instan-
tiations. Under this interpretation, the constraint Settish
@ a guarantees nothing; in particular, it does not guarantee
that BST @ a holds. Instead, the Many constructor must it-
self carry the evidence that its argument is well-defined,
and so has type BST @ a = BST a — Settish a.Even
in this case, we store one Ord a dictionary for the entire
BST a value, not one Ord a dictionary at each node. This
approach is also more flexible: the programmer is free to
define Settish as a partial type constructor as well, if that
is their intention.

This is a language design trade-off: the first approach can
surprise programmers with types that are more partial than
they expect, while the second can surprise programmers
with types that are less populated than they expect. For our
implementation, we have chosen the second approach (see
(EDATA) in Figure 1). That is: while our elaboration procedure
automatically accounts for uses of partial type constructors,
we do not automatically introduce partial type constructors.
The (reduced) set of constraints needed to justify the typing
of a particular constructor is captured locally in its type.

This approach extends naturally to GADTs. For example,
given the data type

data T a where MKT :: Int —» T Int

we compute the elaboration of MkT based on the “Henry Ford
encoding” [10] of its type:

MKT :: forall a. a~ Int = Int » T a

Totality. Consider the now-canonical definition of the free
monad over a functor f:

data Free f a = Pure a | Impure (f (Free f a))

What constraints should we have on this type? Without fur-
ther annotation, our implementation would only constrain
the Impure constructor to guarantee that f is applicable to
Free f a. This constraint is, however, insufficient to prove
that Free f aisaMonad: in the implementation of the bind
operator, we need to generate a proof that f @ Free f b
from the assumption that f @ Free f a. If we could in-
stead make Free a partial type constructor (such that Free
f @ aisf @ (Free f a)), we would then be able to write
the Monad instance. But this constraint is self-referential: to
show that Free f a is a meaningful type, we must make
a statement about Free f a. (Jones et al. interpret @ con-
straints coinductively, so this would not be problematic in
their approach.) Instead, we might prefer to simply require
that f be defined everywhere—that is to say, that f is total;
then, its use in Free f a would be uncontroversial.

Jones et al. suggest that we could use quantified construc-
tors [1] to capture totality. For example, we might define:

type Total f = forall a. f@ a

and then set Free @ f to require Total f.In current GHC,
this approach almost works; unfortunately, while GHC is

Partial Type Constructors in Practice

happy with quantified constraints, it is less happy with quan-
tified constraint families. Eisenberg (personal communica-
tion) showed us a workaround:

class f @ a = At f a
instance f @ a = At f a
type Total f = forall a. At f a

The compiler is skeptical about class At but will accept it,
and so this is sufficient to express totality. We can then add
the constraint Total f to the definition of Free, and define
its instances as expected.

Kind Polymorphism and Datatype Promotion. GHC’s
type system includes two more features that complicate type
definition: kind polymorphism [23] and datatype promotion
[24]. In our implementation, these features turn out to be
essentially orthogonal to partial type constructors, although
they each offer interesting potential for future work.

GHC allows datatype declarations to freely mix kind and
type parameters; for an artificial example:

data T (a :: %) k (b :: k) (c ::
where K ::

k = % > %)
cba—>Takbc

GHC has a Type : Type type theory, so one might think that
the kind parameter (k) would behave no differently from
(other) type parameters. However, because k can appear
in the kind signatures of the remaining type arguments,
it is actually a limited form of (type) dependency. This is
expressed using forall in kind signatures

T:%x—> forall k 5 k - (k > x > %) > %

We do not extend partial type constructors to such depen-
dent type constructors; we expect that we have lost little
expressiveness here, as class constraints over kinds are, while
theoretically no different from class constraints over types,
uncommon (to say the least) in current practice.

Datatype promotion allows datatypes to automatically be
promoted to kinds, with their (value) constructors automati-
cally promoted to type constructors; for example, a datatype
of length-indexed lists could be indexed by the promoted
datatype of natural numbers. GHC does not promote con-
structors with constraints—as indeed it must not, as (with-
out partial type constructors) such constraints could not be
enforced once promoted; Correspondingly, we extend elab-
oration of type applications (EAPP) to emit no definedness
constraints for applications of promoted type constructors.
We could imagine extending datatype promotion to promote
partial type constructors to partial kind constructors, and
data constructors with constraints to partial type construc-
tors, but as our goal is evaluating how existing code adapts
to partial type constructors, we leave this to future work.

3.5 Unexpected Existentials and Inert Constraints

There is, unfortunately, one significant downside to attach-
ing definedness constraints to constructors. Consider a case

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

block that scrutinizes a value of the Settish type. In the
Many branch, the pattern match will introduce not only a
value of type BST a, but also a constraint BST @ a. That
constraint is rewritten to Ord a, which causes no further
problem. The same is not true in more general cases:

data Ap f a = MkAp (f a)
k (MkAp m) = m

This code seems simple enough; indeed, without partial type
constructors, GHC is happy to conclude that k is well-typed
atAp f a — f a. With partial type constructors, the story
is more complicated. Now, we interpret the constructor MkAp
as additionally carrying the well-definedness constraint f @

a. As before, GHC generates a fresh unification variable f
for the result type of k, and wants to unify with £ a to type
the right-hande side of the equation. However, because this
is the case for MkAp, which has provided f @ a, GHC must
actually generate an implication constraint [17]f @ a D f ~
f a. Being unable to further simplify the antecedent, GHC
is unable to solve the implication constraint and so cannot
infer a type for k.

Our first reaction was that GHC was being overly cautious:
while we could not (yet) resolve the antecedent, we knew that
it was a definedness constraint. Surely such constraints could
not threaten principality, and so the implication constraint
ought to be solvable. Unfortunately, things are not so simple:

data a~b = D ab =MD a

Now constraint Ap (D a) @ b equivalent to a ~ b, and
(returning to the previous example) k could equally well
be given the types Ap (D @) b — D a band Ap (D a)
b — D a a.So GHC is right to decline to solve equations
guarded by such constraints.

Our solution is to capture our original intuition: defined-
ness constraints ought not give rise to type equalities, and
then solving implication constraints with antecedent defined-
ness constraints would be no problem. We term constraints
that do not give rise to type equalities inert:

e A constraintC t u ..., for some class C, is inert if all of

C’s superclass constraints are inert
o A type family application F t u ..., for some type family

F, is inert if the right-hand sides of all of F’s equations are

inert.

We require datatype contexts be inert.

We can check whether classes and their superclasses are
inert. Inertness for a type family, however, must be guaran-
teed from the start: for open type families, we cannot be sure
what equations will be added in the future. As we are only in-
terested in a limited number of inert constraints (definedness
constraints f @ a and those for type families introduced
in the next section), building in knowledge of inert type
families was sufficient. For more general usage, however,
programmers would likely require a way to prescribe that

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

certain type families be inert, and for the compiler to check
this condition for equations of those type families.

Our definition of inertness rejects some conditions that
might be useful. For example, given some metric Size on
types, we could imagine a restricted form of Either:

data Size t ~ Size u =
REither t u = RLeft t | RRight u

This constraint is clearly not inert. On the other hand, so long
as Size is not injective, it could not give rise to equalities
on either type t or u. Without having more experience with
partial type constructors in practice, it is difficult to guess
how much of a limitation this would be.

3.6 Newtype Definitions

Newtype declarations give new names to existing types. In
GHC, this is realized using coercions, allowing a value of
a newtype to be converted to and from its underlying type
without introducing boxing or runtime cost. For partial type
constructors, however, this poses a problem. Contrast the
following declarations:

data Cmp1 f g a = Mkl {unCmpl1 :: f (g a)}
newtype Cmp2 f g a = Mk2 {unCmp2 :: f (g a)}

Each represents the composition of type operators f and g,
and in each case the constructor’s type is only well-defined
when the constraintsg @ a, f @ g ahold. However, even
when those constraints do not hold, Cmp1 can still be well-
defined and inhabited by L. The same is not true of Cmp2:
every value of Cmp2, even L, corresponds to a value of f
(g a), so if the latter is ill-defined, we cannot have any of
the former.

We still choose not to try to infer the constraints on new-
type declarations, however. First, newtype declarations sup-
port arbitrary, including non-regular, recursion, so infer-
ring constraints could introduce non-termination. Second,
it would make the programmer’s experience of newtypes—
which might be more partial than their declarations seemed—
inconsistent with that of datatypes. Instead, we introduce
additional validation for newtype declarations: such a decla-
ration is only well-formed if the declared constraints entail
the well-definedness of the right-hand side. Concretely, we
reject the declaration of Cmp2 above, but accept

newtype (g@a, f@g a) =

Cmp2 f g a =Mk2 {unCmp2 :: f (g a)}

4 Implementing Partial Type Families

Partial type constructors are not the only source of partiality
in Haskell types. Indexed type families [2, 17] are open map-
pings from types to types; they provide Haskell programs
with modular type-level computation. For example, we could
define a type family that maps collection types, such as lists
or sets, to their element types:

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

type family Elem (a :: %) :: %
type instance Elem [a] = a
type instance Elem (Set a) = a

With only these instances in scope, type family applications
like Elem Bool or Elem (Tree a) (given some parametric
type Tree) do not reduce. However, as type families are open,
such instances could be added to the family later. In other
cases, type family applications can never reduce to a type:

type family Loop :: x
type instance Loop = [Loop]

With this definition, the type Loop can never rewrite to a
type free of type family applications. Nevertheless, avoiding
potential unsoundness arising from types like Loop intro-
duces significant complexities to other features of Haskell’s
type system, such as closed type families [4] and injective
type families [19].

To account for non-terminating type families applications,
Morris and Eisenberg [13] proposed constrained type families.
In their proposal, type families F could only be defined asso-
ciated to type classes C, and applications of F would have to
be guarded by C constraints. Because GHC cannot generate
infinite type class dictionaries, any uses of diverging type
families would be guarded by unsatisfiable constraints. They
show that, as a result, features like closed type families could
be made simpler and more intuitive without compromising
type soundness.

Partial type constructors introduce another way type fam-
ily applications may be undefined.

type family Underlying (a :: %) :: %
type instance Underlying [a] = Set a
type instance Underlying (Tree a) = Set a

The type family application Underlying [Int] sensibly
rewrites to Set Int. On the other hand, the type family
application Underlying [Int — Int] is problematic: the
equations suggest it should rewrite to Set (Int — Int),
but the latter is not well-defined.

4.1 Constraint Families for Definedness

We might hope to apply our existing machinery to type
families as well: perhaps we could introduce an equation
Underlying @ t ~ Set @ t,forexample. Atthe moment,
however, type family applications must always be fully ap-
plied: we cannot refer to Underlying without an argument.
Instead of a single definedness constraint for type family
applications, we generate a new definedness family mirror-
ing each source type family. For each type family F, with
parameters «; : k; and result kind k we define a new type
family WDr® with identical parameters a; : x; and result
kind Constraint. To avoid namespace pollution, the names
of definedness families are not programmer-visible. We can

3...actually named $wd:F, but that’s a bit of a mouthful.

Partial Type Constructors in Practice

then elaborate type family applications, generating refer-
ences to the appropriate WD constraint—see (EFAMAPP) in
Figure 1.

While the majority of uses of type families are reflected
in their types, this is not always the case. For example, GHC
includes the following utility function for pattern AST nodes:

hsConPatArgs :: (UnXRec p)

= HsConPatDetails p — [LPat p]
hsConPatArgs (PrefixCon _ ps) = ps
hsConPatArgs (RecCon fs) =

map (hfbRHS o unXRec @p) (rec_flds fs)
hsConPatArgs (InfixCon p1 p2) = [p1,p2]

The use of unXRec in the second equation is at type

XRec p (HsFieldBind (XRec p (FieldOcc p))
(XRec p (Pat p))))

whose definedness is not guaranteed by elaboration of the
type of hsConPatArgs.

We introduce a class for well-defined types; as well-defined-
ness is guaranteed by elaboration, it includes all types:

class WDT a
instance WDT a

We can then use WDT constraints to induce elaboration, with-
out requiring access to the underlying definedness families:

hsConPatArgs :: (UnXRec p,
WDT (XRec p (HsFieldBind (XRec p (FieldOcc p))

(XRec p (Pat p)))))
= HsConPatDetails p — [LPat p]

This approach is not just applicable to type families; for
example, we could replace the (@) constraint in the type of
mapAndUnzipM (§2.3) with:

mapAndUnzipM :: (Monad m, WDT (m [(b, c)1))
= (a » m (b,c)) — [al — m ([b], [cD)

4.2 Type Family Definitions

We elaborate type family instances to derive instances of
their well-definedness families (see (EFAMINST) in Figure 1).
We do not need to elaborate the types on the left-hand side
of the equation—their definition will be guaranteed at the
type family application. If the right-hand side of a type fam-
ily equation 7 elaborates to 7’ with constraints P, then we
replace the right-hand side of the original equation with
the new type 7’ and create an equation for WD with right-
hand side P. (As type family argument and results cannot be
quantified, we know that 7 and 7’ will be the same.)

Our treatment of closed type families is parallel. A closed
type family definition of family F gives rise to a closed type
definition of family WD, in which the ih equation corre-
sponds to the elaboration of the i equation of the original
definition. This can lead to requiring constraints that are not
strictly speaking necessary. The following example comes
from GHC’s internal encoding of extensible data types:

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

data Pass = Parsed | Renamed | Typechecked
type family IdGhcP pass where

IdGhcP 'Parsed = RdrName

IdGhcP 'Renamed = Name

IdGhcP 'Typechecked = Id

We generate a mirroring definedness family:

type family $wd:IdGhcP pass :: Constraint where
$wd:IdGhcP 'Parsed =0
$wd: IdGhcP 'Renamed O

$wd: IdGhcP 'Typechecked = ()

Unfortunately, even though $wd: IdGhcP rewrites to the emp-
ty context for every argument, GHC cannot discharge the
generic constraint $wd: IdGhcP p. If we changed the last
equation to IdGhcP t = Id (and thus the generated equa-
tion as well), the generic constraint would rewrite.

Associated types are treated as if they were stand-alone
open type families. The associated type

class Collect c where
type Elem c

insert :: Elemc - ¢ —> ¢
is elaborated to

class Collect c where

type Elem ¢
type $wd:Elem c :: Constraint
insert :: Elemc - ¢ — ¢

and uses of Elem are elaborated to be guarded by $wd:Elem
constraints. It might seem more natural to use the constraint
C t to guarantee the well-definedness of Elem c; unfortu-
nately, associated types are not required to mention all the
type variables of their parent classes:

class C t u where type F t :: %

Now we could not elaborate type signatures that mention
F t to have constraints C t u, as u would be ambiguous.

Data families behave like ordinary type constructors: they
can appear partially applied and have — kinds. This means
that we can treat data families as other type constructors.
Data family applications are elaborated as type constructor
applications and data family instances are elaborated as data
type declarations.

4.3 Type Synonyms

Type synonyms, despite their long pedigree, have more in
common with type families than they do with Haskell’s other
type constructors. In particular, type synonyms are not first-
class entities, but can only appear fully applied. We could
almost think about a type synonym as a kind of degenerate
type family: a synonym declaration type S al .. an =t
would be interpreted as

type family S al an where S a1 an = t

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

This does not work in practice; for example, type synonyms
can have quantified types on their right-hand sides, but type
family equations cannot. It does suggests one way that we
could extend elaboration to type synonyms. Each type syn-
onym S would give rise to another type synonym WD, cap-
turing its definedness constraints; each use of S would be
guarded by a use of WD;. For our implementation, however,
the generality of this approach is not necessary. At the time
that we elaborate type synonym applications, we have ac-
cess to the right-hand side of the synonym definition. Rather
than introducing new definitions, we simply elaborate type
synonyms instances to the elaboration of their right-hand
sides directly (see (EsYNINST) in Figure 1).

4.4 Constrained Type Families

The key idea that Morris and Eisenberg [13] develop in con-
strained type families is that many of the current complexi-
ties in type families could be simplified if we could guarantee
that diverging or otherwise undefined type family applica-
tions could never be used. They guarantee this by requir-
ing that every type family application F7; be guarded by
a constraint Xr 7;, satisfiable exactly when the type family
application reduces to a ground type. In their approach, al-
though they do not provide any guarantee that type family
applications appearing in a program terminate, they assure
that any code whose typing depends on a non-terminating
type family application is unreachable. This allows them to
relax restrictions on closed type families (particularly the
use of infinitary unification in closed type family matching)
without compromising the type safety of the resulting sys-
tem. Two questions arise in relation to our work. First, in
guaranteeing that type family applications are well-defined,
have we actually established the same conditions required
by Morris and Eisenberg? Second, if so, does that mean that
we can gain the same benefits?

We conjecture that the answer to the first question is yes.
A type family declaration like

type family Loopy :: %
type instance Loopy = [Loopy]

gives rise to a well-definedness family

type family $wd:Loopy :: Constraint

type instance $wd:Loopy = $wd:Loopy

and every use of Loopy is guarded by a constraint $wd: Loopy.
But the constraint $wd: Loopy cannot be discharged (because
its rewriting can never reach a ground constraint), and so
code that types using Loopy is unreachable.

We have not, however, relaxed the restrictions on closed or
injective type families as proposed by Morris and Eisenberg.
Unlike in their work, in which looping type famiy applica-
tions are guarded by unsatisfiable constraints, we only guard
looping type family applications by other looping type fam-
ily applications. Showing safety properties comparable to

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

theirs in our context would require a fine characterization of
the meaning and role of well-definedness constraints, which
we leave to future work.

4.5 Partially-Applied Type Families

Recently, Kiss et al. [9] developed a generalization of type
families that permits their partial application. They intro-
duce a new kind constructor —», used for “unmatchable” type
constructors like type families and type synonyms. In their
proposal, the Elem type family would have kind Type —»
Type; this would permit its partial application, but would
not allow, for example, a Functor instance for Elem. Kiss
et al. further propose matchability polymorphism, allowing
definitions to range over both ordinary (in their terms: match-
able) constructors and unmatchable constructors. With this
feature, we could have defined a single constraint family
applicable to both type constructors and type families:

type family Ap (m :: Matchability)
(k :: a—>™b) (t :: a) :: Constraint

This would have eliminated the need for introducing (and
tracking) a new definedness family for each source type
family, but would not, we conjecture, otherwise significantly
change our elaboration approach. Support for unsaturated
type family applications and matchability polymorphism
had not yet landed in GHC when we wrote this paper, but
we look forward to exploring this in future work.

5 Impact of Partial Type Constructors

Having an implementation of partial type constructors in
GHC allows us to start answering two questions: first, if
our implementation realizes practical uses of (intuitively)
partial type constructors; second, what impact introducing
partial type constructors would have on existing Haskell
code. To begin answering these questions, we have rebuilt
GHC itself (and the packages upon which it depends, such as
Cabal) with the partial type constructors extension enabled
for all code, and measured the necessary changes. In our
initial measurements, we have not taken advantage of partial
type constructors; this is an attempt to measure the worst-
case overhead for programmers who would have to adapt
to a language with partial type constructors. Our results
are shown in Figure 2; we separate out annotations added
to instances and superclasses from annotations appearing
in ordinary type signatures. For both the compiler and its
libraries, we list both the total changes needed and those
top-level directories or libraries which contained non-zero
numbers of changes. Most of the compiler required very little
annotation—we changed about 7% of classes and instances,
and about 2% of function signatures.

We have also re-engineered several of these libraries to
begin capturing the potential benefits of partial type con-
structors. Our applications of partial type constructors were

Partial Type Constructors in Practice

effective at capturing invariants, as measured by reduction
in the number of constraints needed to enforce invariants.

5.1 What Makes an Applicative?

The Applicative class [11] characterizes effectful program-
ming with pure flow of control:

class Functor f = Applicative f where

pure :ra— fa
(<) 1 f(@a—-b)—>Ffa—-fb
1liftA2 :: (@ > b —>c¢c) >fa—-fb-ofc

We know that, with partial type constructors, we can make
the BST type an instance of Functor. It is not clear whether
we ought make it an instance of the Applicative class as
well. The challenge is indicated by the elaborated type of
(<#*>), here specific to BST:

(<+>) :: (Ord (@ — b), Ord a, Ord b)
= BST (a > b) —» BST a —» BST b

While GHC cannot be sure that it will never come across
an instance of Ord for functions, we may be fairly certain
of difficulty in using this operator. One difficulty appears
almost immediately; the default implementation of 1iftA2

1liftA2 f fa fb = pure f <> fa <x> fb

requires additional f @ a > b - ¢, f @ b — ccon-
straints not present in its type signature.

To be clear: the difficulty we are identifying here is not
with the foundational account of applicative functors and bi-
nary search trees, but with our ability to realize that account.
If types a and b are ordered, we can describe an ordering of
a to b functions suitable for <#>. However, implementing
this ordering in a practical language would introduce not
insignificant computational overhead. We also cannot hope
to limit ourselves to singleton search trees of functional type:
in the implementation of 1iftA2, for example, while we start
with a singleton tree of functions, the result of the first <>
is no longer a singleton.

We can observe a similar situation if we compare the
elaborated types for the Monad instance of BST:

(>=) :: (Ord a, Ord b)

= BST a — (a » BST b) —» BST b
join :: (Ord a, Ord (BST a))

= BST (BST a) — BST a

As with the type of <>, the type of join requires an awk-
ward definedness constraint, which would be inherited by
>= were it defined in terms of join. However, as Monad
instances are defined in terms of >=, the extra definedness
constraint only appears in cases where join is used directly.

McBride and Paterson [11] propose just such an alternate
account of applicative as well:

class Functor f = Applicative f where
pure :: a —» f a
*x) :: fa—->fb-—-f(a b

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

The type of * poses no problem for partial type constructors;
for example, it is trivial to implement such an operation for
binary search trees. And, the operations of Applicative—
including the n-ary 1iftA functions—are all definable in
terms of % while introduce no unexpected constraints.

Changing the Applicative class in this way is a more sig-
nificant change than we intended to make for our evaluation.
It requires rewriting all existing instances of Applicative.
More significantly, however, to benefit from a version of
Applicative friendly to partial type constructors, uses of
<x> need to be changed to x, or to a 1i ftA function. To com-
plete our evaluation, we have adopted a more light-weight,
if less satisfactory, approach: adding Total constraints to
many of the Applicative instances in GHC and its libraries.
Of course, this burden is felt mostly in libraries that define
monadic abstractions; this explains the high change counts
in libraries/transformers and libraries/mtl.

5.2 Opportunities for Partial Type Constructors

In adapting GHC, we also discovered several possible ap-
plications of partial type constructors within the compiler
and its libraries. These examples demonstrate the potential
of partial type constructors to simplify and generalize even
well-engineered and time-tested Haskell programs.

The containers package contains a number of data struc-
tures that rely on ordered elements. By adding Ord con-
straints to these datatypes, we were able to reduce the num-
ber of Ord constraints appearing in instances from 16 to 3,
and the number of Ord constraints appearing in top-level
signatures from 132 to 11.

The data-partition and PSQueue packages provide data
structures with similar invariants. By making their type con-
structors partial, we were able to eliminate all the Ord con-
straints from type signatures in data-partition, and all
but 2 in PSQueue.

The fingertree package provides a type FingerTree v
a which (semantically) requires a Measured v a constraint.
By making the FingerTree type constructor partial, we were
able to reduce the number of Measured constraints in in-
stances and signatures from 85 to 15. We were also able to
add a Functor instance for FingerTree v, which would not
previously have been possible.

Monad transformers were one of the original motivating
examples for partial type constructors. By modifying the
transformers library to make the transformers partial, we
eliminated 35 of the 39 Monad constraints in instances, and
all of the 117 Monad constraints in type signatures.

6 Conclusion

The theory of partial type constructors wants to have its cake
and eat it too: despite entailing a foundational reconception
of how we think about types and type constructors, it seems

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

Apoorv Ingle, Alex Hubers, and J. Garrett Morris

Source Classes/instances Signatures Source Classes/instances Signatures
Changed | Total | Changed | Total Changed | Total | Changed | Total
compiler/GHC 133 1931 218 | 16129 compiler/GHC/Settings 0 0 1 12
compiler/GHC/CmmToAsm 1 72 3 971 libraries 495 | 5442 412 | 17337
compiler/GHC/Driver 21 58 6 658 libraries/transformers 167 444 33 271
compiler/GHC/Types 3 264 3 1616 libraries/ghc-prim 4 101 0 32
compiler/GHC/Utils 1 120 10 622 libraries/Cabal 30 1962 49 5698
compiler/GHC/Unit 2 67 0 329 libraries/deepseq 12 192 0 15
compiler/GHC/Data 11 77 29 372 libraries/haskeline 24 56 92 371
compiler/GHC/Hs 71 106 108 452 libraries/mtl 69 80 3 6
compiler/GHC/Iface 19 298 7 517 libraries/array 2 65 8 73
compiler/GHC/HsToCore 0 52 9 851 libraries/template-haskell 3 124 5 429
compiler/GHC/Parser 1 83 0 251 libraries/time 1 203 2 541
compiler/GHC/Tc 3 208 6 2735 libraries/base 78 | 1108 26 2815
compiler/GHC/Core 0 279 3 2868 libraries/terminfo 4 16 44 93
compiler/GHC/Cmm 0 94 4 611 libraries/containers 28 419 72 2759
compiler/GHC/ByteCode 0 12 4 54 libraries/binary 10 154 0 353
compiler/GHC/Rename 0 21 2 539 libraries/parsec 12 28 70 153
compiler/GHC/StgToCmm 0 17 5 505 libraries/exceptions 51 71 5 27
compiler/GHC/Runtime 0 7 6 233 libraries/bytestring 0 85 2 899
compiler/GHC/Stg 0 18 12 220 libraries/libiserv 0 0 1 21

Figure 2. Impact of partial type constructors on GHC.

(via elaboration) to be applicable to existing functional pro-
grams without change. Our exploration suggests that we can
only eat about 90% of our cake, and currently must leave
some of the best looking parts on the plate. We still think
this is a not-discouraging result: while a transition to partial
type constructors would hardly be seamless, it need not be
more onerous than abandoning inferred polymorphism for
local binding or the adoption of applicative functors (which
required changing all existing Monad instances).

6.1 Related Work

We summarize related work in two categories: partiality in
types and practical evaluation of language design.

Partiality in types. The Haskell 1.0 report [5] permits con-
texts in datatype and type synonym definitions, and gives
an informal description of their intended semantics that
aligns closely with partial type constructors. However, with-
out a satisfactory formal description, the interpretation of
datatype contexts was changed and type synonym contexts
were dropped from subsequent versions of the report [16].
Hughes [6] proposed encoding many of the use cases of
partial type constructors using multiparameter classes; Or-
chard and Schrijvers [14] described a language extension
that made it possible to realize Hughes’ encodings with as-
sociated types. Unlike with partial type constructors, these
approaches require classes to be adapted to the possibility of
partial types, and requires total types to announce their total-
ity in each of their class instances. Several authors [15, 18, 20]
have used free monads to separate writing monadic code
from checking definedness constraints. This approach trades
off expressiveness for efficiency—as Sculthorpe et al. point
out, using a deep embedding of a Set monad will not result

in eliminating duplicates in any intermediate results. With
language support for partial type constructors, this trade-off
is no longer necessary.

Empirical evaluation of language design. There are sev-
eral previous examples of empirical evaluation of signifi-
cant language changes in functional programming languages.
Wright [22] studied a selection of prominent ML programs to
argue for a limitation of polymorphism in bindings. Coutts
[3] described using Hackage to perform regression testing
on foundational parts of the Haskell ecosystem. Morris [12]
used a survey of Hackage to evaluate the practical uses of
overlapping instances. Vytiniotis et al. [21] used a study of
Hackage to estimate the impact of a restriction of inferred
polymorphism.

6.2 Future Work

We identify two key areas of future work: rethinking current
higher-order abstractions, and the performance impacts of
elaboration.

Rethinking libraries. The Applicative class is only one
example (albeit the most significant we have discovered so
far) of an existing higher-order abstraction that could be
tweaked to better interact with partial type constructors.
While we have measured the local benefits of partial type
constructors in libraries such as mt1 and transformers, we
have not evaluated the wider-ranging possibilities of intro-
ducing partial type constructors—such as adding types like
Set to classes like Functor and Traversable, and the cor-
responding reduction in code duplication. Building on our

Partial Type Constructors in Practice

success with GHC itself, we hope to develop a more compre-
hensive set of libraries suited to, and taking advantage of,
partial type constructors.

Elaboration overhead. Another challenge of our approach
is that our elaboration step introduces numerous additional
constraints in the types of polymorphic functions. For total
type constructors, these additional arguments provide no
value, but can still make optimization more difficult. In our
current implementation, this causes significant performance
loss in some test cases. While eliminating all unnecessary
function arguments in general is obviously infeasible, we
have some hope that the controlled nature of our introduc-
tion of definedness constraints will allow us to make signifi-
cant progress in eliminating empty constraint parameters.

Acknowledgments

We gratefully acknowledge the help and encouragement of
the anonymous reviewers in preparing this work. This ma-
terial is based upon work supported by the National Science
Foundation under Grant No. CCF-2044815.

References

[1] Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S.
Oliveira, and Philip Wadler. 2017. Quantified Class Constraints. In
Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell (Haskell 2017). ACM, New York, NY, USA, 148-161.

[2] Manuel M. T. Chakravarty, Gabriele Keller, and Simon L. Peyton Jones.
2005. Associated type synonyms. In Proceedings of the 10th ACM SIG-
PLAN International Conference on Functional Programming, ICEP 2005,
Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C.
Pierce (Eds.). ACM, Tallinn, Estonia, 241-253.

[3] Duncan Coutts. 2009. Regression testing with Hackage. https://well-

typed.com/blog/24/. Last accessed June 2, 2022.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and

Stephanie Weirich. 2014. Closed Type Families with Overlapping Equa-

tions. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’14). ACM, San Diego,

California, USA, 671-683.

Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph

Fasel, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz,

Rishiyur Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, and

Jonathan Young. 1990. Report on the Programming Language Haskell,

A Non-strict Purely Functional Language. https://www.haskell.org/

definition/haskell-report-1.0.tar.gz.

John Hughes. 1999. Restricted Data Types in Haskell. In Proceedings

of the 1999 Haskell Workshop. University of Utrecht, Technical Report

UU-CS-1999-28, Paris, France, 83-100.

[7] Mark P. Jones. 1994. Qualified Types: Theory and Practice. Cambridge
University Press, Cambridge, UK.

[8] MarkP. Jones, J. Garrett Morris, and Richard A. Eisenberg. 2020. Partial

type constructors: or, making ad hoc datatypes less ad hoc. Proc. ACM

Program. Lang. 4, POPL (2020), 40:1-40:28.

Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones.

2019. Higher-order type-level programming in Haskell. Proc. ACM

Program. Lang. 3, ICFP (2019), 102:1-102:26.

[10] Conor McBride. 1999. Dependently Typed Programs and their Proofs.

Ph.D. Dissertation. University of Edinburgh.
[11] Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. J. Funct. Program. 18, 1 (2008), 1-13.

—
S
flaa?

—
w
—

—_
(=
—

—
A=)
—

Haskell °22, September 15-16, 2022, Ljubljana, Slovenia

[12] J. Garrett Morris. 2010. Experience Report: Using Hackage to In-
form Language Design. In Proceedings of the third ACM symposium on
Haskell (Haskell ’10). ACM, Baltimore, Maryland, USA.

[13] J. Garrett Morris and Richard A. Eisenberg. 2017. Constrained Type
Families. Proc. ACM Program. Lang. 1, ICFP, Article 42 (Aug. 2017),
28 pages. https://doi.org/10.1145/3110286

[14] Dominic Orchard and Tom Schrijvers. 2010. Haskell Type Constraints
Unleashed. In Proceedings of the 10th International Conference on Func-
tional and Logic Programming (Sendai, Japan) (FLOPS’10). Springer-
Verlag, Berlin, Heidelberg, 56-71. https://doi.org/10.1007/978-3-642-
12251-4_6

[15] Anders Persson, Emil Axelsson, and Josef Svenningsson. 2011. Generic
Monadic Constructs for Embedded Languages. In Implementation and
Application of Functional Languages - 23rd International Symposium,
IFL 2011, Lawrence, KS, USA, October 3-5, 2011, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 7257), Andy Gill and Jurriaan
Hage (Eds.). Springer, 85-99.

[16] Simon Peyton Jones. 1991. Contexts in data and type. http://code.
haskell.org/~dons/haskell-1990-2000/msg00072.html.

[17] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. 2008. Type checking with open type functions. In Proceed-
ing of the 13th ACM SIGPLAN international conference on Functional
programming (IFCP °08). ACM, Victoria, BC, Canada, 51-62.

[18] Neil Sculthorpe, Jan Bracker, George Giorgidze, and Andy Gill. 2013.
The Constrained-monad Problem. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming (Boston,
Massachusetts, USA) (ICFP ’13). ACM, New York, NY, USA, 287-298.
https://doi.org/10.1145/2500365.2500602

[19] Jan Stolarek, Simon L. Peyton Jones, and Richard A. Eisenberg. 2015.
Injective type families for Haskell. In Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,
September 3-4, 2015, Ben Lippmeier (Ed.). ACM, Vancouver, BC, Canada,
118-128.

[20] Josef Svenningsson and Bo Joel Svensson. 2013. Simple and composi-
tional reification of monadic embedded languages. In ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston,
MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu
(Eds.). ACM, 299-304.

[21] Dimitrios Vytiniotis, Simon L. Peyton Jones, and Tom Schrijvers. 2010.
Let should not be generalized. In Proceedings of TLDI 2010: 2010 ACM
SIGPLAN International Workshop on Types in Languages Design and
Implementation, Madrid, Spain, January 23, 2010, Andrew Kennedy
and Nick Benton (Eds.). ACM, 39-50.

[22] Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and
Symbolic Computation 8, 4 (1995), 343-355.

[23] Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. 2020.
Kind inference for datatypes. Proc. ACM Program. Lang. 4, POPL (2020),
53:1-53:28.

[24] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon L. Peyton
Jones, Dimitrios Vytiniotis, and José Pedro Magalhées. 2012. Giving
Haskell a promotion. In Proceedings of TLDI 2012: The Seventh ACM
SIGPLAN Workshop on Types in Languages Design and Implementation,
Philadelphia, PA, USA, Saturday, January 28, 2012, Benjamin C. Pierce
(Ed.). ACM, Philadelphia, PA, USA, 53-66.

https://well-typed.com/blog/24/
https://well-typed.com/blog/24/
https://www.haskell.org/definition/haskell-report-1.0.tar.gz
https://www.haskell.org/definition/haskell-report-1.0.tar.gz
https://doi.org/10.1145/3110286
https://doi.org/10.1007/978-3-642-12251-4_6
https://doi.org/10.1007/978-3-642-12251-4_6
http://code.haskell.org/~dons/haskell-1990-2000/msg00072.html
http://code.haskell.org/~dons/haskell-1990-2000/msg00072.html
https://doi.org/10.1145/2500365.2500602

	Abstract
	1 Introduction
	2 Partial Types in Haskell
	2.1 Examples of Partial Type Constructors
	2.2 A Constraint for Definedness
	2.3 Elaborating Definedness in Types
	2.4 Adopting Partial Type Constructors

	3 Implementing Partial Type Constructors
	3.1 A Constraint Family for Definedness
	3.2 Extending Elaboration to Modern Haskell
	3.3 Reducing Definedness Constraints
	3.4 Datatype Definitions
	3.5 Unexpected Existentials and Inert Constraints
	3.6 Newtype Definitions

	4 Implementing Partial Type Families
	4.1 Constraint Families for Definedness
	4.2 Type Family Definitions
	4.3 Type Synonyms
	4.4 Constrained Type Families
	4.5 Partially-Applied Type Families

	5 Impact of Partial Type Constructors
	5.1 What Makes an Applicative?
	5.2 Opportunities for Partial Type Constructors

	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	Acknowledgments
	References

