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Abstract
Type constructors in functional programming languages are

total: a Haskell programmer can equally readily construct

lists of any element type. In practice, however, not all appli-

cations of type constructors are equally sensible: collections

may only make sense for orderable elements, or embedded

DSLs might only make sense for serializable return types.

Jones et al. proposed a theory of partial type constructors,
which guarantees that type applications are sensible, and

extends higher-order abstractions to apply equally well to

partial and total type constructors. This paper evaluates the

practicality of partial type constructors, in terms of both

language design and implementation. We extend GHC, the

most widely used Haskell compiler, with support for partial

type constructors, and test our extension on the compiler

itself and its libraries. We show that introducing partial type

constructors has a minimal impact on most code, but raises

important questions in language and library design.

CCS Concepts: • Theory of computation→ Type theory; •
Software and its engineering → Functional languages;
Data types and structures.

Keywords: Type constructors, Type families, Parametric

polymorphism
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1 Introduction
In languages with parameterized types, some type expres-

sions ([] or [Int], say) are more meaningful than others

([Maybe] or Maybe Map). In Haskell, kind checking distin-

guishes meaningful type expressions. If we know that Int
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has kind ★ (that is: a type) and [] has kind ★ → ★ (that is:

it constructs types from types), we can conclude that Int
and [Int] are well-kinded and [[]] is not. However, kind-
checking is not by itself enough to identify all meaningless

types. For example:

• The UArray type constructor describes arrays of unbox-

able elements; type UArray Int (Int → Int) does not

make sense, as functions cannot be unboxed.

• The type Ratio describes exact fractions; while Ratio
Char has inhabitants, none of the expected Ratio opera-
tions apply to them.

Jones et al. [8] propose a theory of partial type constructors
to identify such seemingly well-kinded but actually meaning-

less type expressions. In their approach, type constructors

not only have kinds, but also participate in a definedness
relation (written @). For the Ratio type constructor, Ratio
@ awould be equivalent to Num a, ensuring that ratios were
of numeric types; or, for unboxed arrays, we would expect

UArray @ a to be equivalent to a constraint Unboxable a,
ensuring that elements of unboxed arrays could be unboxed.

Jones et al. extend kinding with definedness: a type appli-

cation k t is well-kinded only when the constraint k @ t
is satisfiable. In their system, a type like Ratio Char →
Ratio Char is only well-kinded if Num Char is satisfiable.

This paper explores whether the theory of partial type

constructors could be practical in modern Haskell, as realized

by GHC. There are several challenges:

• Haskell’s datatypes are more complicated than those con-

sidered by Jones et al., including features like kind poly-

morphism, existential types, and generalized algebraic data

types (GADTs).

• Haskell includes type expressions not built from type con-

structors, such as type families and type synonyms.

• Modern Haskell code depends on highly polymorphic li-

braries, so partial type constructors might introduce un-

sustainable annotation burdens.

To evaluate these challenges, we have implemented par-

tial type constructors as a prototype extension of GHC 9.3
1

(the version in development as we wrote this paper). Our

implementation elaborates source programs—with all the

features of modern Haskell, including GADTs, type families,

and generic programs, as well as partial type constructors—to

GHC’s existing core calculus, System FC. Type constructors

1https://github.com/IaFP/ghc
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in System FC are total, so our implementation inserts con-

straints in the elaborated code to capture the meaning of

source programs with partial type constructors. We have

used our extended version of GHC to compile a number of

realistic examples of Haskell programs, including the com-

piler itself, several motivating examples of partial type con-

structors, and a number of popular packages from Hackage.

We found that, while partial type constructors are not en-

tirely backwards compatible, minimal programmer effort is

required to adapt most existing Haskell code to compile with

partial type constructors. However, we found several signifi-

cant examples of library design that (unintentionally) relies

on totality of type constructors. Perhaps most prominently,

while the Functor and Monad classes adapt perfectly well to

partial type constructors, the Applicative class does not.

Contributions. This paper contributes an extension of

partial type constructors to modern Haskell, and an evalua-

tion of their impact on practical code. In particular:

• We adapt partial type constructors to GHC’s datatypes (§3),

including GADTs, kind polymorphism, and newtype dec-

larations, capturing definedness using constraint families.

• We extend partial type constructors to capture partiality in

type families (§4), and compare the resulting design with

constrained type families [13].

• We evaluate the language design and usability impacts of

these changes (§5), based on the compiler itself and its

underlying libraries.

We begin by reviewing partial types in Haskell (§2), and

conclude by discussing related and future work (§6).

2 Partial Types in Haskell
We begin by reviewing partial type constructors in Haskell:

motivating examples of partiality in practical Haskell pro-

gramming, two sources of partiality in Haskell types, and

challenges to making partial types usable in practice.

2.1 Examples of Partial Type Constructors
One immediate question is the prevalence of partial type

constructors: if cases like UArray or Ratio are very rare,

then any amount of language change to better support them

may be unjustified. Jones et al. catalog a variety of examples

of partial type constructors drawn from Haskell and other

typed functional languages.

Haskell 1.0. The first version of the Haskell Report [5]

allows constraints to appear in data type and type synonym

declarations. As an example, the report gives the type syn-

onym declaration

type (Num a) ⇒ Point a = (a, a)

which would allow a type signature like

scale :: (Num a) ⇒ a → Point a → Point a

but reject type signatures like

scale :: a → Point a → Point a

as type variable a could be instantiated with non-numeric

types. Only one year later, lacking a satisfactory account of

the semantics of those constraints, Peyton Jones [16] pro-

posed that constraints on type synonyms be dropped from

the language entirely and constraints on datatypes weakened

to constraints on the types of individual data constructors.

Monad transformers. The mtl2 package defines a collec-
tion of monad transformers, allowing for a modular account

of introducing and using side-effecting code. For example, if

type m is a monad, then type ExceptT e m adds to m excep-
tions of type e. The latter type is only meaningful if m itself

is a monad—for example, ExceptT e Ratio is well-kinded
but not meaningful, as the Ratio type is not monadic. How-

ever, Haskell cannot exclude this type. As a result, many

of the functions in mtl need seemingly extraneous Monad
constraints, simply to exclude such pathological examples.

Collection types. The Haskell type Set describes sets

of objects, implemented as size-balanced binary trees. To

maintain its tree invariants, most operations on values of

Set a require that elements be ordered:

member :: Ord a ⇒ a → Set a → Bool

union :: Ord a ⇒ Set a → Set a → Set a

The most basic constructors of sets, in contrast, do not have

such a requirement:

empty :: Set a

singleton :: a → Set a

This makes it possible to construct “useless” sets, such as

singleton id. Further, the Set type cannot participate in
many of Haskell’s higher-order abstractions. For example,

while the Set type has a mapping operation, it requires that

the element types be ordered:

setMap :: (Ord a, Ord b)

⇒ (a → b) → Set a → Set b

Because of the Ord constraints in the type of setMap, it is
not general enough to add Set to the Functor class, and

collection-generic code cannot be applied to Sets.

2.2 A Constraint for Definedness
The theory of partial type constructors extends the theory

of qualified types [7] with two key ideas:

• A definedness constraint k @ t, which holds only when

type constructor k is applicable to argument t; and,
• An extended kinding relation, ensuring that type applica-

tions k t are allowed only when the constraint k @ t is

satisfiable.

Their kinding judgment P | Δ ⊢ 𝜏 : 𝜅 denotes that under

kinding environment Δ and predicate environment P , type 𝜏
has kind 𝜅 . The novelty is the incorporation of predicates in

2https://hackage.haskell.org/package/mtl
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kinding: P will be used to justify that any type applications in

𝜏 are well-defined. In their kinding rule for type application:

P | Δ ⊢ 𝜏1 : 𝜅1 → 𝜅2 P | Δ ⊢ 𝜏2 : 𝜅1 P ⊢⊢ 𝜏1 @ 𝜏2

P | Δ ⊢ 𝜏1 𝜏2 : 𝜅2
the shaded hypothesis requires that the predicate environ-

ment P entail that 𝜏1 is applicable to 𝜏2. With their kind

system, we could not derive

⊢ ∀fab.(a → b) → f a → f b : ★

as we cannot derive either ⊢⊢ f @ a or ⊢⊢ f @ b. However,
we could derive

⊢ ∀fab.(f @ a, f @ b) ⇒ (a → b) → f a → f b : ★

Practically speaking, with partial type constructors, the

type of fmap would have to be adjusted to assure that its

type applications are well-defined:

class Functor f where

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

This change to the typing of fmap is essential to the idea

of partial type constructors. Because fmap is polymorphic

in f , we cannot know in advance whether or not f will be

instantiated with a partial type constructor. Moreover, by the

time that we know—say, when we are attempting to write a

Functor instance for the Set type—it is already too late: the

type of fmap was determined in the class declaration, not

at its instances. With this definition of fmap, assuming that

the definedness condition Set @ a is Ord a, the Functor
instance for Set would be accepted and Functor-generic
code could be applied to Sets. For total type cosntructors,
like [], the constraints [] @ a add no new information

in defining the instance, and no additional burden when

using it, and so is equivalent to the current treatment of type

constructors.

2.3 Elaborating Definedness in Types
The theory of partial type constructors requires a significant

number of additional constraints in even mildly polymorphic

programs. This would make using partial type constructors

onerous to programmers, and not backwards compatible

with most existing Haskell code. Moreover, many of these

constraints seem obvious from their context. Given that the

type of fmap explicitly mentions type applications f a and
f b, why should the programmer have to additionally state

the assumption that they be well-defined?

To address this verbosity, Jones et al. introduce an elabora-

tion relation on type schemes 𝜎 ↩→ 𝜎 ′
. Elaboration extends

a type scheme with those constraints needed to assure that it

is well-defined. They show that, for all 𝜎 that are well-kinded

without taking partial type constructors into account, 𝜎 can

be augmented to a 𝜎 ′
that is well-kinded with partial type

constructors. For example, applying the elaboration relation

to the original type signature for fmap would give the type

signature appropriate for partial type constructors. Applied

uniformly, elaboration would seem to allow existing Haskell

code to be used, without modification, in Haskell extended

with partial type constructors.

To evaluate the effectiveness of elaboration, Jones et al. ex-

tended Hugs, a Haskell compiler, with the kinding restric-

tions and automatic type elaboration of partial type con-

structors. They tested the extended compiler on the Hugs

libraries, an extension of the Haskell 98 standard libraries.

They found that the majority of code compiled without mod-

ification. They did identify some functions that were rejected

with partial type constructors, such as mapAndUnzipM:

mapAndUnzipM :: (Monad m)

⇒ (a → m (b,c)) → [a] → m ([b], [c])

mapAndUnzipM f xs =

sequence (map f xs) >>= return ◦ unzip

The problem is that mapAndUnzipM constructs an m [(b,c)]
list during the computation, but the constraints produced

by elaboration are not sufficient to guarantee that such a

type is defined. Jones et al. propose two solutions: either the

function can be rewritten to use foldM, in which case the

original type is again valid. or the type can be changed to

reflect the intermediate data structure:

mapAndUnzipM :: (Monad m, m @ [(b, c)])

⇒ (a → m (b,c)) → [a] → m ([b], [c])

In all, they found 16 definitions that required changed type

signatures.

2.4 Adopting Partial Type Constructors
The elaboration experiment of Jones et al. leaves us hopeful

that partial type constructors might be not just theoretically

appealing but also practically viable. However, several signif-

icant questions remain in extending partial type constructors

to modern Haskell.

Other Haskell features. Jones et al. consider a simple

core language. Practical Haskell programs, however, use

a variety of features that might interact with partial type

constructors, including newtype definitions and derived in-

stances, type synonyms, generalized algebraic data types,

and type families. How do partial type constructors interact

with each of these features?

Practical applications. Jones et al. did not extend Hugs

to allow programs to introduce new partial type constructors,

so their experiment could not extend to uses of partial type

constructors. Can practical examples of partiality in Haskell

be expressed more simply using partial type constructors?

Backward compatibility. The Hugs standard libraries,
while they include interesting examples of polymorphic code,

may not be representative of modern Haskell. Furthermore, it

is unclear how common examples like mapAndUnzipM would
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be over a larger sample of Haskell code. Is elaboration actu-

ally sufficient for backward compatibility in practice?

3 Implementing Partial Type Constructors
In this paper, we evaluate the impacts of partial type con-

structors on modern Haskell language and library design. To

do so, we have built a version of GHC extended with sup-

port for partial type constructors. We have modified GHC’s

type inference algorithm to automatically introduce the con-

straints that would be required by the kinding relation of

partial type constructors, following the elaboration relation

of Jones et al. Our implementation supports (and enforces)

the use of partial type constructors in the source language,

preserving unchanged the existing compilation machinery

(and metatheory) of System FC.

3.1 A Constraint Family for Definedness
The crux of the theory of partial type constructors is the de-

finedness relation k @ t. When implementing partial type

constructors in Haskell, then, we might hope to just intro-

duce (@) as a new type class, and reuse all of the compiler’s

existing support for automatically deriving and using type

classes. However, this is not the case. Recall the Set example:

• If we have a term x of type T, such that Ord T holds, then

we should be able to conclude Set @ T, as we might need

to build a set singleton x.
• If we have assumed Set @ T, such as in the body of fmap,
we should be able to conclude Ord T, allowing us to call
setMap.

In short, we expect that Set @ a ⇐⇒ Ord a. However,
this is not how type classes work in Haskell. While we could

define a type class (@) and populate it with instances like

Ord a ⇒ Set @ a, those instances would only allow us to

conclude Set @ a from Ord a, not the other way around.

To capture the intended behavior of the definedness con-

straint, we instead introduce it as an indexed constraint

family [14, 17]:

type family (@) (k :: a → b) (t :: a) ::

Constraint

Instances of this family, such as Set @ a, are not treated as
new predicates with their own instances and superclasses,

but instead are equated to existing predicates. For example,

type instance Set @ a = Ord a

introduces a type equation Set @ a ∼ Ord a, which GHC

will use symmetrically either to rewrite Set @ a assump-

tions to Ord a assumptions (as needed for the Functor Set
implementation) or to turn proofs of Ord a into proof of

Set @ a (as needed for the typing singleton x).

3.2 Extending Elaboration to Modern Haskell
With the (@) family defined, our compiler extension applies

elaboration to all types that appear in source files, whether

in type signatures, annotations within expressions, or class

declarations. Figure 1 recasts the elaboration relation of Jones

et al. to encompass a representative subset of the features of

GHC. Our kind language includes the kinds of types★ and of

constraints Constraint. Our type language includes type

constructors, type synonyms, and type families; we assume

that type family applications and type synonym instances

appear fully saturated. We include data type declarations

(where K stands for term-level data constructors) and open

type family instances; other declaration constructs will be

handled similarly.

Our elaboration relation 𝜏 ↩→ P |𝜏 ′ denotes that type 𝜏 elab-
orates to type 𝜏 ′, and is well-defined given constraints P . By
applying elaboration to all sources of types (type signatures,

type of data constructors, and so forth), we can guarantee

that types are well-defined without having to modify GHC’s

kind checking or kind inference.

Type applications 𝜏1 𝜏2 are well-defined if 𝜏1 and 𝜏2 are in-

dividually well-defined, and if the application itself is mean-

ingful. We must be careful about that final condition. In a

type class constraint Ord T, while we want to make sure

that T is well-defined, we do not want to introduce the addi-

tional constraint Ord @ T (as this would simply duplicate

the existing role of type classes). To capture this distinction,

we have two elaboration rules for type applications 𝜏1 𝜏2,

conditional on the kind of the operator 𝜏1. If the (eventual)

result of 𝜏1 is of kind Constraint, then we do not emit an

additional 𝜏1 @ 𝜏2 constraint. We do, of course, still require

that 𝜏1 and 𝜏2 be individually well-defined. If the (eventual)

result of 𝜏1 is not of kind Constraint, then we do emit the

definedness constraint.

In elaborating a quantified type (e∀), we distinguish be-

tween those constraints (P1) that limit the bound type vari-

able, and those (P2) that only refer to free type variables. The
result of elaboration is both a new quantified type captur-

ing (the reduction of, see the next section) P1, and a set of

constraints P2 to propagate farther.

3.3 Reducing Definedness Constraints
Elaboration can (frequently) generate constraints that we

know are satisfiable. For example, in elaborating the type of

map, we would generate constraints (→) @ a, (a →) @

b, [] @ a among many others. What should we do about

these constraints?

The first answer is that we should eliminate as many con-

straints as possible when elaborating, by invoking GHC’s

existing predicate solver. Unfortunately, it can happen that

we elaborate the same signature in different contexts. In

particular, to break cyclic module dependency, GHC uses

.hs-boot files that contain (limited subsets of) the type sig-

natures from each module. We need to elaborate signatures

in .hs-boot files. However, we may not have access to all

the instances when elaborating the .hs-boot file that we
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Syntax

Type variables 𝛼

Type constructors C
Type families F
Type synonyms S

Kinds 𝜅 ::= ★ | Constraint | 𝜅 → 𝜅

Types 𝜏 ::= 𝛼 | C | 𝜏1 𝜏2 | F 𝜏 | S 𝜏 | 𝜏1 ⇒ 𝜏2 | ∀𝛼 :𝜅.𝜏
Declarations D ::= data P ⇒ T 𝛼 = ∀𝛽.Pi ⇒ Ki 𝜏ij

| type instance F 𝜏1 . . . 𝜏n = 𝜏

𝜏 ↩→ P | 𝜏

(evar)

𝛼 ↩→ 𝜖 | 𝛼
(econst)

C ↩→ 𝜖 | C
𝜏i ↩→ Pi | 𝜏 ′i

(eapp) (𝜏1 : 𝜅, last(𝜅) ≠ Constraint)
𝜏1 𝜏2 ↩→ P1, P2, 𝜏1 @ 𝜏2 | 𝜏 ′1 𝜏 ′2

𝜏i ↩→ Pi | 𝜏 ′i
(e𝜋 ) (𝜏1 : 𝜅, last(𝜅) = Constraint)

𝜏1 𝜏2 ↩→ P1, P2 | 𝜏 ′1 𝜏 ′2

𝜏i ↩→ Pi | 𝜏 ′i
(efamapp)

F 𝜏i ↩→ Pi,WDF 𝜏
′
i | F 𝜏 ′i

𝜏i ↩→ Pi | 𝜏 ′i 𝜏 [𝜏i/𝛼i] ↩→ P | 𝜏 ′
(esyninst) (S 𝛼i = 𝜏)

S 𝜏i ↩→ P, Pi | 𝜏 ′
𝜏 ↩→ P1, P2 | 𝜏 ′ P1 ⇝★ P ′

1
⇝̸

(e∀) (𝛼 ∉ ftv(P2))∀𝛼 :𝜅.𝜏 ↩→ P2 | ∀𝛼 :𝜅.P ′1 ⇒ 𝜏 ′

𝜏i ↩→ Pi | 𝜏 ′i
⋃

i Pi = Q,Q′ Q′ ⇝★ Q′′ ⇝̸
(e⇒) (ftv(Q) ∩ ftv(𝜏1) = ∅)

𝜏1 ⇒ 𝜏2 ↩→ Q | Q′′ ⇒ 𝜏 ′
1
⇒ 𝜏 ′

2

D ↩→ D

𝜏ij ↩→ Qij | 𝜏 ′ij
⋃

j Qij ⇝
★ Qi ⇝̸

(edata)

data P ⇒ T 𝛼 = ∀𝛽.Pi ⇒ Ki 𝜏ij ↩→ data P ⇒ T 𝛼 = ∀𝛽.(Pi,Qi) ⇒ Ki 𝜏
′
ij

𝜏 ↩→ P | 𝜏 ′
(efaminst)

type instance F 𝜏1 . . . 𝜏n = 𝜏 ↩→ type instance F 𝜏1 . . . 𝜏n = 𝜏 ′ ; type instance WDF 𝜏1 . . . 𝜏n = P

last(𝜅)

last(𝜅′ → 𝜅) = last(𝜅)
last(𝜅) = 𝜅

P ⇝ Q

C @ 𝜏, P ⇝ P if C ∈ K
𝜋, P ⇝ 𝜋,Q if P ⇝ Q

where K = {IO, Maybe, [], Ratio, StablePtr, Ptr,→, 𝜐 →}

Figure 1. Elaboration for a representative subset of modern Haskell features.

would when elaborating the full module; applying those in-

stances in elaboration would result in a module that does

not match its .hs-boot file.
The second, less satisfactory answer, is that we should

leave all constraints generated in elaboration. While we

would expect this to have run-time consequences (we would

be adding many unnecessary arguments to even the sim-

plest functions), it would be stable and would surely not

reject well-typed code. Again, however, this is not the case.

In FFI declarations, type signatures serve both to specify the

Haskell side and the expected C side of a function’s type. For

example:

foreign import ccall unsafe "HsBase.h link"

c_link :: CString → CString → IO CInt

Here, if we elaborated the type of c_link, we would generate
a type that no longer aligned with the number of arguments

expected by its C implementation.

Our unhappy middle ground is to maintain a list of type

constructors that we know are total—such as (→), IO, and so
forth—and to eliminate definedness constraints for those, and

only those, types. The resulting process is stable (because our

list of known-total types does not change) and does not break

the run-time system (because we have included the types

that appear in its FFI calls). It does, however, still result in

generating inefficient code, as we will generate definedness

constraints for many total type constructors, including all

user-defined total type constructors.
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3.4 Datatype Definitions
Contexts in datatype definitions generate equations for the

(@) constraint family. For example, the definition

data Ord a ⇒ BST a =

Leaf | Branch a (BST a) (BST a)

generates the type family instance

type instance BST @ a = Ord a

For datatypes with multiple parameters, we introduce con-

straints as soon as all the relevant type variables are available.

For example, a definition

data (C a, C b, D a b) ⇒ T a b = . . .

generates the type family instances

type instance T @ a = C a

type instance T a @ b = (C b, D a b)

This is very much not the same as augmenting the original

data type definition with Ord constraints:

data BST a where

Leaf :: Ord a ⇒ BST a

Branch :: Ord a ⇒ a → BST a → BST a → BST a

With such a definition, BST a is defined for all a, but its
constructors each carry Ord a dictionaries. With partial type

constructors, any usage of BST a must be in a context in

which Ord a holds; incidentally, this means that we do not

need to carry evidence for Ord a in the data type itself.

Inferring Datatype Contexts. In the context of the previ-

ous examples, consider the definition:

data Settish a = One a | Many (BST a)

Should the Settish datatype itself be partial? For Jones et
al., the answer is yes: a datatype is only considered defined

in those cases in which all of its constructors are defined.

They define an elaboration relation for data types which

augments a datatype’s declared constraints with the con-

straints from each constructor’s argument types. This simpli-

fies their core calculus: as Settish @ amust guarantee the

well-definedness of each of its constructors, no constructor

needs to carry additional dictionaries to justify the well-

definedness of its arguments. However, it requires care for

recursive data types, particularly non-regular recursive data

types. They account for this declaratively, by requiring that

the elaborated constraints are sufficient to entail the required

constraints.

That is not the only sensible approach, however. An alter-

nate interpretation of the Settish datatype is that it should

be total, inhabited by the One constructor at all types, and

the One and Many constructors at types in Ord. Nor is the
One constructor necessary for this interpretation: Haskell

includes empty types (modulo divergence) and, via GADTs,

type constructors that are empty at only some of their instan-

tiations. Under this interpretation, the constraint Settish
@ a guarantees nothing; in particular, it does not guarantee

that BST @ a holds. Instead, the Many constructor must it-

self carry the evidence that its argument is well-defined,

and so has type BST @ a ⇒ BST a → Settish a. Even
in this case, we store one Ord a dictionary for the entire

BST a value, not one Ord a dictionary at each node. This

approach is also more flexible: the programmer is free to

define Settish as a partial type constructor as well, if that
is their intention.

This is a language design trade-off: the first approach can

surprise programmers with types that are more partial than

they expect, while the second can surprise programmers

with types that are less populated than they expect. For our

implementation, we have chosen the second approach (see

(edata) in Figure 1). That is: while our elaboration procedure

automatically accounts for uses of partial type constructors,
we do not automatically introduce partial type constructors.
The (reduced) set of constraints needed to justify the typing

of a particular constructor is captured locally in its type.

This approach extends naturally to GADTs. For example,

given the data type

data T a where MkT :: Int → T Int

we compute the elaboration of MkT based on the “Henry Ford

encoding” [10] of its type:

MkT :: forall a. a ∼ Int ⇒ Int → T a

Totality. Consider the now-canonical definition of the free

monad over a functor f:

data Free f a = Pure a | Impure (f (Free f a))

What constraints should we have on this type? Without fur-

ther annotation, our implementation would only constrain

the Impure constructor to guarantee that f is applicable to
Free f a. This constraint is, however, insufficient to prove

that Free f a is a Monad: in the implementation of the bind

operator, we need to generate a proof that f @ Free f b
from the assumption that f @ Free f a. If we could in-

stead make Free a partial type constructor (such that Free
f @ a is f @ (Free f a)), we would then be able to write
the Monad instance. But this constraint is self-referential: to

show that Free f a is a meaningful type, we must make

a statement about Free f a. (Jones et al. interpret @ con-

straints coinductively, so this would not be problematic in

their approach.) Instead, we might prefer to simply require

that f be defined everywhere—that is to say, that f is total;
then, its use in Free f a would be uncontroversial.

Jones et al. suggest that we could use quantified construc-

tors [1] to capture totality. For example, we might define:

type Total f = forall a. f @ a

and then set Free @ f to require Total f. In current GHC,

this approach almost works; unfortunately, while GHC is
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happy with quantified constraints, it is less happy with quan-

tified constraint families. Eisenberg (personal communica-

tion) showed us a workaround:

class f @ a ⇒ At f a

instance f @ a ⇒ At f a

type Total f = forall a. At f a

The compiler is skeptical about class At but will accept it,

and so this is sufficient to express totality. We can then add

the constraint Total f to the definition of Free, and define

its instances as expected.

Kind Polymorphism and Datatype Promotion. GHC’s
type system includes two more features that complicate type

definition: kind polymorphism [23] and datatype promotion

[24]. In our implementation, these features turn out to be

essentially orthogonal to partial type constructors, although

they each offer interesting potential for future work.

GHC allows datatype declarations to freely mix kind and

type parameters; for an artificial example:

data T (a :: ★) k (b :: k) (c :: k → ★ → ★)

where K :: c b a → T a k b c

GHC has a Type : Type type theory, so one might think that

the kind parameter (k) would behave no differently from

(other) type parameters. However, because k can appear

in the kind signatures of the remaining type arguments,

it is actually a limited form of (type) dependency. This is

expressed using forall in kind signatures

T : ★ → forall k → k → (k → ★ → ★) → ★

We do not extend partial type constructors to such depen-

dent type constructors; we expect that we have lost little

expressiveness here, as class constraints over kinds are, while

theoretically no different from class constraints over types,

uncommon (to say the least) in current practice.

Datatype promotion allows datatypes to automatically be

promoted to kinds, with their (value) constructors automati-

cally promoted to type constructors; for example, a datatype

of length-indexed lists could be indexed by the promoted

datatype of natural numbers. GHC does not promote con-

structors with constraints—as indeed it must not, as (with-

out partial type constructors) such constraints could not be

enforced once promoted; Correspondingly, we extend elab-

oration of type applications (eapp) to emit no definedness

constraints for applications of promoted type constructors.

We could imagine extending datatype promotion to promote

partial type constructors to partial kind constructors, and

data constructors with constraints to partial type construc-

tors, but as our goal is evaluating how existing code adapts

to partial type constructors, we leave this to future work.

3.5 Unexpected Existentials and Inert Constraints
There is, unfortunately, one significant downside to attach-

ing definedness constraints to constructors. Consider a case

block that scrutinizes a value of the Settish type. In the

Many branch, the pattern match will introduce not only a

value of type BST a, but also a constraint BST @ a. That
constraint is rewritten to Ord a, which causes no further

problem. The same is not true in more general cases:

data Ap f a = MkAp (f a)

k (MkAp m) = m

This code seems simple enough; indeed, without partial type

constructors, GHC is happy to conclude that k is well-typed

at Ap f a → f a. With partial type constructors, the story

is more complicated. Now, we interpret the constructor MkAp
as additionally carrying the well-definedness constraint f @

a. As before, GHC generates a fresh unification variable 𝛽

for the result type of k, and wants to unify 𝛽 with f a to type

the right-hande side of the equation. However, because this

is the case for MkAp, which has provided f @ a, GHC must

actually generate an implication constraint [17] f @ a ⊃ 𝛽 ∼
f a. Being unable to further simplify the antecedent, GHC

is unable to solve the implication constraint and so cannot

infer a type for k.
Our first reaction was that GHCwas being overly cautious:

while we could not (yet) resolve the antecedent, we knew that

it was a definedness constraint. Surely such constraints could

not threaten principality, and so the implication constraint

ought to be solvable. Unfortunately, things are not so simple:

data a ∼ b ⇒ D a b = MkD a

Now constraint Ap (D a) @ b equivalent to a ∼ b, and
(returning to the previous example) k could equally well

be given the types Ap (D a) b → D a b and Ap (D a)
b → D a a. So GHC is right to decline to solve equations

guarded by such constraints.

Our solution is to capture our original intuition: defined-

ness constraints ought not give rise to type equalities, and

then solving implication constraints with antecedent defined-

ness constraints would be no problem. We term constraints

that do not give rise to type equalities inert:
• A constraint C t u . . . , for some class C, is inert if all of
C’s superclass constraints are inert

• A type family application F t u . . . , for some type family

F, is inert if the right-hand sides of all of F’s equations are
inert.

We require datatype contexts be inert.

We can check whether classes and their superclasses are

inert. Inertness for a type family, however, must be guaran-

teed from the start: for open type families, we cannot be sure

what equations will be added in the future. As we are only in-

terested in a limited number of inert constraints (definedness

constraints f @ a and those for type families introduced

in the next section), building in knowledge of inert type

families was sufficient. For more general usage, however,

programmers would likely require a way to prescribe that
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certain type families be inert, and for the compiler to check

this condition for equations of those type families.

Our definition of inertness rejects some conditions that

might be useful. For example, given some metric Size on

types, we could imagine a restricted form of Either:

data Size t ∼ Size u ⇒
REither t u = RLeft t | RRight u

This constraint is clearly not inert. On the other hand, so long

as Size is not injective, it could not give rise to equalities

on either type t or u. Without having more experience with

partial type constructors in practice, it is difficult to guess

how much of a limitation this would be.

3.6 Newtype Definitions
Newtype declarations give new names to existing types. In

GHC, this is realized using coercions, allowing a value of

a newtype to be converted to and from its underlying type

without introducing boxing or runtime cost. For partial type

constructors, however, this poses a problem. Contrast the

following declarations:

data Cmp1 f g a = Mk1 {unCmp1 :: f (g a)}

newtype Cmp2 f g a = Mk2 {unCmp2 :: f (g a)}

Each represents the composition of type operators f and g,
and in each case the constructor’s type is only well-defined

when the constraints g @ a, f @ g a hold. However, even
when those constraints do not hold, Cmp1 can still be well-

defined and inhabited by ⊥. The same is not true of Cmp2:
every value of Cmp2, even ⊥, corresponds to a value of f
(g a), so if the latter is ill-defined, we cannot have any of

the former.

We still choose not to try to infer the constraints on new-

type declarations, however. First, newtype declarations sup-

port arbitrary, including non-regular, recursion, so infer-

ring constraints could introduce non-termination. Second,

it would make the programmer’s experience of newtypes—

which might be more partial than their declarations seemed—

inconsistent with that of datatypes. Instead, we introduce

additional validation for newtype declarations: such a decla-

ration is only well-formed if the declared constraints entail

the well-definedness of the right-hand side. Concretely, we

reject the declaration of Cmp2 above, but accept

newtype (g @ a, f @ g a) ⇒
Cmp2 f g a = Mk2 {unCmp2 :: f (g a)}

4 Implementing Partial Type Families
Partial type constructors are not the only source of partiality

in Haskell types. Indexed type families [2, 17] are open map-

pings from types to types; they provide Haskell programs

with modular type-level computation. For example, we could

define a type family that maps collection types, such as lists

or sets, to their element types:

type family Elem (a :: ★) :: ★

type instance Elem [a] = a

type instance Elem (Set a) = a

With only these instances in scope, type family applications

like Elem Bool or Elem (Tree a) (given some parametric

type Tree) do not reduce. However, as type families are open,

such instances could be added to the family later. In other

cases, type family applications can never reduce to a type:

type family Loop :: ★

type instance Loop = [Loop]

With this definition, the type Loop can never rewrite to a

type free of type family applications. Nevertheless, avoiding

potential unsoundness arising from types like Loop intro-

duces significant complexities to other features of Haskell’s

type system, such as closed type families [4] and injective

type families [19].

To account for non-terminating type families applications,

Morris and Eisenberg [13] proposed constrained type families.
In their proposal, type families F could only be defined asso-

ciated to type classes C, and applications of F would have to

be guarded by C constraints. Because GHC cannot generate

infinite type class dictionaries, any uses of diverging type

families would be guarded by unsatisfiable constraints. They

show that, as a result, features like closed type families could

be made simpler and more intuitive without compromising

type soundness.

Partial type constructors introduce another way type fam-

ily applications may be undefined.

type family Underlying (a :: ★) :: ★

type instance Underlying [a] = Set a

type instance Underlying (Tree a) = Set a

The type family application Underlying [Int] sensibly

rewrites to Set Int. On the other hand, the type family

application Underlying [Int → Int] is problematic: the

equations suggest it should rewrite to Set (Int → Int),
but the latter is not well-defined.

4.1 Constraint Families for Definedness
We might hope to apply our existing machinery to type

families as well: perhaps we could introduce an equation

Underlying @ t ∼ Set @ t, for example. At themoment,

however, type family applications must always be fully ap-

plied: we cannot refer to Underlying without an argument.

Instead of a single definedness constraint for type family

applications, we generate a new definedness family mirror-

ing each source type family. For each type family F , with
parameters 𝛼i : 𝜅i and result kind 𝜅 we define a new type

family WDF
3
with identical parameters 𝛼i : 𝜅i and result

kind Constraint. To avoid namespace pollution, the names

of definedness families are not programmer-visible. We can

3
. . . actually named $wd:F, but that’s a bit of a mouthful.
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then elaborate type family applications, generating refer-

ences to the appropriateWD constraint—see (efamapp) in

Figure 1.

While the majority of uses of type families are reflected

in their types, this is not always the case. For example, GHC

includes the following utility function for pattern AST nodes:

hsConPatArgs :: (UnXRec p)

⇒ HsConPatDetails p → [LPat p]

hsConPatArgs (PrefixCon _ ps) = ps

hsConPatArgs (RecCon fs) =

map (hfbRHS ◦ unXRec @p) (rec_flds fs)

hsConPatArgs (InfixCon p1 p2) = [p1,p2]

The use of unXRec in the second equation is at type

XRec p (HsFieldBind (XRec p (FieldOcc p))

(XRec p (Pat p))))

whose definedness is not guaranteed by elaboration of the

type of hsConPatArgs.
We introduce a class forwell-defined types; aswell-defined-

ness is guaranteed by elaboration, it includes all types:

class WDT a

instance WDT a

We can then use WDT constraints to induce elaboration, with-

out requiring access to the underlying definedness families:

hsConPatArgs :: (UnXRec p,

WDT (XRec p (HsFieldBind (XRec p (FieldOcc p))

(XRec p (Pat p)))))

⇒ HsConPatDetails p → [LPat p]

This approach is not just applicable to type families; for

example, we could replace the (@) constraint in the type of

mapAndUnzipM (§2.3) with:

mapAndUnzipM :: (Monad m, WDT (m [(b, c)]))

⇒ (a → m (b,c)) → [a] → m ([b], [c])

4.2 Type Family Definitions
We elaborate type family instances to derive instances of

their well-definedness families (see (efaminst) in Figure 1).

We do not need to elaborate the types on the left-hand side

of the equation—their definition will be guaranteed at the

type family application. If the right-hand side of a type fam-

ily equation 𝜏 elaborates to 𝜏 ′ with constraints P , then we

replace the right-hand side of the original equation with

the new type 𝜏 ′ and create an equation forWDF with right-

hand side P . (As type family argument and results cannot be

quantified, we know that 𝜏 and 𝜏 ′ will be the same.)

Our treatment of closed type families is parallel. A closed

type family definition of family F gives rise to a closed type

definition of family WDF , in which the ith equation corre-

sponds to the elaboration of the ith equation of the original

definition. This can lead to requiring constraints that are not

strictly speaking necessary. The following example comes

from GHC’s internal encoding of extensible data types:

data Pass = Parsed | Renamed | Typechecked

type family IdGhcP pass where

IdGhcP 'Parsed = RdrName

IdGhcP 'Renamed = Name

IdGhcP 'Typechecked = Id

We generate a mirroring definedness family:

type family $wd:IdGhcP pass :: Constraint where

$wd:IdGhcP 'Parsed = ()

$wd:IdGhcP 'Renamed = ()

$wd:IdGhcP 'Typechecked = ()

Unfortunately, even though $wd:IdGhcP rewrites to the emp-

ty context for every argument, GHC cannot discharge the

generic constraint $wd:IdGhcP p. If we changed the last

equation to IdGhcP t = Id (and thus the generated equa-

tion as well), the generic constraint would rewrite.

Associated types are treated as if they were stand-alone

open type families. The associated type

class Collect c where

type Elem c

insert :: Elem c → c → c

is elaborated to

class Collect c where

type Elem c

type $wd:Elem c :: Constraint

insert :: Elem c → c → c

and uses of Elem are elaborated to be guarded by $wd:Elem
constraints. It might seem more natural to use the constraint

C t to guarantee the well-definedness of Elem c; unfortu-
nately, associated types are not required to mention all the

type variables of their parent classes:

class C t u where type F t :: ★

Now we could not elaborate type signatures that mention

F t to have constraints C t u, as u would be ambiguous.

Data families behave like ordinary type constructors: they

can appear partially applied and have → kinds. This means

that we can treat data families as other type constructors.

Data family applications are elaborated as type constructor

applications and data family instances are elaborated as data

type declarations.

4.3 Type Synonyms
Type synonyms, despite their long pedigree, have more in

commonwith type families than they do with Haskell’s other

type constructors. In particular, type synonyms are not first-

class entities, but can only appear fully applied. We could

almost think about a type synonym as a kind of degenerate

type family: a synonym declaration type S a1 .. an = t
would be interpreted as

type family S a1 . . . an where S a1 . . . an = t
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This does not work in practice; for example, type synonyms

can have quantified types on their right-hand sides, but type

family equations cannot. It does suggests one way that we

could extend elaboration to type synonyms. Each type syn-

onym S would give rise to another type synonym WDS , cap-

turing its definedness constraints; each use of S would be

guarded by a use of WDS . For our implementation, however,

the generality of this approach is not necessary. At the time

that we elaborate type synonym applications, we have ac-

cess to the right-hand side of the synonym definition. Rather

than introducing new definitions, we simply elaborate type

synonyms instances to the elaboration of their right-hand

sides directly (see (esyninst) in Figure 1).

4.4 Constrained Type Families
The key idea that Morris and Eisenberg [13] develop in con-

strained type families is that many of the current complexi-

ties in type families could be simplified if we could guarantee

that diverging or otherwise undefined type family applica-

tions could never be used. They guarantee this by requir-

ing that every type family application F 𝜏i be guarded by

a constraint XF 𝜏i, satisfiable exactly when the type family

application reduces to a ground type. In their approach, al-

though they do not provide any guarantee that type family

applications appearing in a program terminate, they assure

that any code whose typing depends on a non-terminating

type family application is unreachable. This allows them to

relax restrictions on closed type families (particularly the

use of infinitary unification in closed type family matching)

without compromising the type safety of the resulting sys-

tem. Two questions arise in relation to our work. First, in

guaranteeing that type family applications are well-defined,

have we actually established the same conditions required

by Morris and Eisenberg? Second, if so, does that mean that

we can gain the same benefits?

We conjecture that the answer to the first question is yes.

A type family declaration like

type family Loopy :: ★

type instance Loopy = [Loopy]

gives rise to a well-definedness family

type family $wd:Loopy :: Constraint

type instance $wd:Loopy = $wd:Loopy

and every use of Loopy is guarded by a constraint $wd:Loopy.
But the constraint $wd:Loopy cannot be discharged (because
its rewriting can never reach a ground constraint), and so

code that types using Loopy is unreachable.
We have not, however, relaxed the restrictions on closed or

injective type families as proposed by Morris and Eisenberg.

Unlike in their work, in which looping type famiy applica-

tions are guarded by unsatisfiable constraints, we only guard

looping type family applications by other looping type fam-

ily applications. Showing safety properties comparable to

theirs in our context would require a fine characterization of

the meaning and role of well-definedness constraints, which

we leave to future work.

4.5 Partially-Applied Type Families
Recently, Kiss et al. [9] developed a generalization of type

families that permits their partial application. They intro-

duce a new kind constructor↠, used for “unmatchable” type

constructors like type families and type synonyms. In their

proposal, the Elem type family would have kind Type ↠
Type; this would permit its partial application, but would

not allow, for example, a Functor instance for Elem. Kiss
et al. further propose matchability polymorphism, allowing

definitions to range over both ordinary (in their terms: match-

able) constructors and unmatchable constructors. With this

feature, we could have defined a single constraint family

applicable to both type constructors and type families:

type family Ap (m :: Matchability)

(k :: a →m b) (t :: a) :: Constraint

This would have eliminated the need for introducing (and

tracking) a new definedness family for each source type

family, but would not, we conjecture, otherwise significantly

change our elaboration approach. Support for unsaturated

type family applications and matchability polymorphism

had not yet landed in GHC when we wrote this paper, but

we look forward to exploring this in future work.

5 Impact of Partial Type Constructors
Having an implementation of partial type constructors in

GHC allows us to start answering two questions: first, if

our implementation realizes practical uses of (intuitively)

partial type constructors; second, what impact introducing

partial type constructors would have on existing Haskell

code. To begin answering these questions, we have rebuilt

GHC itself (and the packages upon which it depends, such as

Cabal) with the partial type constructors extension enabled

for all code, and measured the necessary changes. In our

initial measurements, we have not taken advantage of partial

type constructors; this is an attempt to measure the worst-

case overhead for programmers who would have to adapt

to a language with partial type constructors. Our results

are shown in Figure 2; we separate out annotations added

to instances and superclasses from annotations appearing

in ordinary type signatures. For both the compiler and its

libraries, we list both the total changes needed and those

top-level directories or libraries which contained non-zero

numbers of changes. Most of the compiler required very little

annotation—we changed about 7% of classes and instances,

and about 2% of function signatures.

We have also re-engineered several of these libraries to

begin capturing the potential benefits of partial type con-

structors. Our applications of partial type constructors were



Partial Type Constructors in Practice Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

effective at capturing invariants, as measured by reduction

in the number of constraints needed to enforce invariants.

5.1 What Makes an Applicative?
The Applicative class [11] characterizes effectful program-

ming with pure flow of control:

class Functor f ⇒ Applicative f where

pure :: a → f a

(<∗>) :: f (a → b) → f a → f b

liftA2 :: (a → b → c) → f a → f b → f c

We know that, with partial type constructors, we canmake

the BST type an instance of Functor. It is not clear whether
we ought make it an instance of the Applicative class as

well. The challenge is indicated by the elaborated type of

(<∗>), here specific to BST:

(<∗>) :: (Ord (a → b), Ord a, Ord b)

⇒ BST (a → b) → BST a → BST b

While GHC cannot be sure that it will never come across

an instance of Ord for functions, we may be fairly certain

of difficulty in using this operator. One difficulty appears

almost immediately; the default implementation of liftA2

liftA2 f fa fb = pure f <∗> fa <∗> fb

requires additional f @ a → b → c, f @ b → c con-

straints not present in its type signature.

To be clear: the difficulty we are identifying here is not

with the foundational account of applicative functors and bi-

nary search trees, but with our ability to realize that account.

If types a and b are ordered, we can describe an ordering of

a to b functions suitable for <∗>. However, implementing

this ordering in a practical language would introduce not

insignificant computational overhead. We also cannot hope

to limit ourselves to singleton search trees of functional type:

in the implementation of liftA2, for example, while we start

with a singleton tree of functions, the result of the first <∗>
is no longer a singleton.

We can observe a similar situation if we compare the

elaborated types for the Monad instance of BST:

(>>=) :: (Ord a, Ord b)

⇒ BST a → (a → BST b) → BST b

join :: (Ord a, Ord (BST a))

⇒ BST (BST a) → BST a

As with the type of <∗>, the type of join requires an awk-

ward definedness constraint, which would be inherited by

>>= were it defined in terms of join. However, as Monad
instances are defined in terms of >>=, the extra definedness

constraint only appears in cases where join is used directly.

McBride and Paterson [11] propose just such an alternate

account of applicative as well:

class Functor f ⇒ Applicative f where

pure :: a → f a

(★) :: f a → f b → f (a, b)

The type of★ poses no problem for partial type constructors;

for example, it is trivial to implement such an operation for

binary search trees. And, the operations of Applicative—
including the n-ary liftA functions—are all definable in

terms of ★while introduce no unexpected constraints.

Changing the Applicative class in this way is a more sig-

nificant change than we intended to make for our evaluation.

It requires rewriting all existing instances of Applicative.
More significantly, however, to benefit from a version of

Applicative friendly to partial type constructors, uses of
<∗> need to be changed to★, or to a liftA function. To com-

plete our evaluation, we have adopted a more light-weight,

if less satisfactory, approach: adding Total constraints to

many of the Applicative instances in GHC and its libraries.

Of course, this burden is felt mostly in libraries that define

monadic abstractions; this explains the high change counts

in libraries/transformers and libraries/mtl.

5.2 Opportunities for Partial Type Constructors
In adapting GHC, we also discovered several possible ap-

plications of partial type constructors within the compiler

and its libraries. These examples demonstrate the potential

of partial type constructors to simplify and generalize even

well-engineered and time-tested Haskell programs.

The containers package contains a number of data struc-

tures that rely on ordered elements. By adding Ord con-

straints to these datatypes, we were able to reduce the num-

ber of Ord constraints appearing in instances from 16 to 3,

and the number of Ord constraints appearing in top-level

signatures from 132 to 11.

The data-partition and PSQueue packages provide data
structures with similar invariants. By making their type con-

structors partial, we were able to eliminate all the Ord con-
straints from type signatures in data-partition, and all

but 2 in PSQueue.
The fingertree package provides a type FingerTree v

a which (semantically) requires a Measured v a constraint.

Bymaking the FingerTree type constructor partial, wewere
able to reduce the number of Measured constraints in in-

stances and signatures from 85 to 15. We were also able to

add a Functor instance for FingerTree v, which would not

previously have been possible.

Monad transformers were one of the original motivating

examples for partial type constructors. By modifying the

transformers library to make the transformers partial, we

eliminated 35 of the 39 Monad constraints in instances, and

all of the 117 Monad constraints in type signatures.

6 Conclusion
The theory of partial type constructors wants to have its cake

and eat it too: despite entailing a foundational reconception

of how we think about types and type constructors, it seems
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Source Classes/instances Signatures
Changed Total Changed Total

compiler/GHC 133 1931 218 16129

compiler/GHC/CmmToAsm 1 72 3 971

compiler/GHC/Driver 21 58 6 658

compiler/GHC/Types 3 264 3 1616

compiler/GHC/Utils 1 120 10 622

compiler/GHC/Unit 2 67 0 329

compiler/GHC/Data 11 77 29 372

compiler/GHC/Hs 71 106 108 452

compiler/GHC/Iface 19 298 7 517

compiler/GHC/HsToCore 0 52 9 851

compiler/GHC/Parser 1 83 0 251

compiler/GHC/Tc 3 208 6 2735

compiler/GHC/Core 0 279 3 2868

compiler/GHC/Cmm 0 94 4 611

compiler/GHC/ByteCode 0 12 4 54

compiler/GHC/Rename 0 21 2 539

compiler/GHC/StgToCmm 0 17 5 505

compiler/GHC/Runtime 0 7 6 233

compiler/GHC/Stg 0 18 12 220

Source Classes/instances Signatures
Changed Total Changed Total

compiler/GHC/Settings 0 0 1 12

libraries 495 5442 412 17337

libraries/transformers 167 444 33 271

libraries/ghc-prim 4 101 0 32

libraries/Cabal 30 1962 49 5698

libraries/deepseq 12 192 0 15

libraries/haskeline 24 56 92 371

libraries/mtl 69 80 3 6

libraries/array 2 65 8 73

libraries/template-haskell 3 124 5 429

libraries/time 1 203 2 541

libraries/base 78 1108 26 2815

libraries/terminfo 4 16 44 93

libraries/containers 28 419 72 2759

libraries/binary 10 154 0 353

libraries/parsec 12 28 70 153

libraries/exceptions 51 71 5 27

libraries/bytestring 0 85 2 899

libraries/libiserv 0 0 1 21

Figure 2. Impact of partial type constructors on GHC.

(via elaboration) to be applicable to existing functional pro-

grams without change. Our exploration suggests that we can

only eat about 90% of our cake, and currently must leave

some of the best looking parts on the plate. We still think

this is a not-discouraging result: while a transition to partial

type constructors would hardly be seamless, it need not be

more onerous than abandoning inferred polymorphism for

local binding or the adoption of applicative functors (which

required changing all existing Monad instances).

6.1 Related Work
We summarize related work in two categories: partiality in

types and practical evaluation of language design.

Partiality in types. The Haskell 1.0 report [5] permits con-

texts in datatype and type synonym definitions, and gives

an informal description of their intended semantics that

aligns closely with partial type constructors. However, with-

out a satisfactory formal description, the interpretation of

datatype contexts was changed and type synonym contexts

were dropped from subsequent versions of the report [16].

Hughes [6] proposed encoding many of the use cases of

partial type constructors using multiparameter classes; Or-

chard and Schrijvers [14] described a language extension

that made it possible to realize Hughes’ encodings with as-

sociated types. Unlike with partial type constructors, these

approaches require classes to be adapted to the possibility of

partial types, and requires total types to announce their total-

ity in each of their class instances. Several authors [15, 18, 20]

have used free monads to separate writing monadic code

from checking definedness constraints. This approach trades

off expressiveness for efficiency—as Sculthorpe et al. point

out, using a deep embedding of a Set monad will not result

in eliminating duplicates in any intermediate results. With

language support for partial type constructors, this trade-off

is no longer necessary.

Empirical evaluation of language design. There are sev-
eral previous examples of empirical evaluation of signifi-

cant language changes in functional programming languages.

Wright [22] studied a selection of prominent ML programs to

argue for a limitation of polymorphism in bindings. Coutts

[3] described using Hackage to perform regression testing

on foundational parts of the Haskell ecosystem. Morris [12]

used a survey of Hackage to evaluate the practical uses of

overlapping instances. Vytiniotis et al. [21] used a study of

Hackage to estimate the impact of a restriction of inferred

polymorphism.

6.2 Future Work
We identify two key areas of future work: rethinking current

higher-order abstractions, and the performance impacts of

elaboration.

Rethinking libraries. The Applicative class is only one

example (albeit the most significant we have discovered so

far) of an existing higher-order abstraction that could be

tweaked to better interact with partial type constructors.

While we have measured the local benefits of partial type

constructors in libraries such as mtl and transformers, we
have not evaluated the wider-ranging possibilities of intro-

ducing partial type constructors—such as adding types like

Set to classes like Functor and Traversable, and the cor-

responding reduction in code duplication. Building on our
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success with GHC itself, we hope to develop a more compre-

hensive set of libraries suited to, and taking advantage of,

partial type constructors.

Elaboration overhead. Another challenge of our approach
is that our elaboration step introduces numerous additional

constraints in the types of polymorphic functions. For total

type constructors, these additional arguments provide no

value, but can still make optimization more difficult. In our

current implementation, this causes significant performance

loss in some test cases. While eliminating all unnecessary

function arguments in general is obviously infeasible, we

have some hope that the controlled nature of our introduc-

tion of definedness constraints will allow us to make signifi-

cant progress in eliminating empty constraint parameters.
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