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Carrier confinement and interband optical
transitions in lead chalcogenide quantum wells,
nanosheets, and nanoplatelets

Serguei V. Goupalov a,b

Analytic equation for energy dispersion of electronic states in lead chalcogenide nanosheets is derived

within an effective mass model. Selection rules for interband optical transitions are analyzed and

expressions for interband optical matrix elements are obtained. It is shown that the main effect of the

lateral confinement in nanoplatelets can be accounted for in terms of the quantized in-plane wave vector.

1. Introduction

Quasi-2D colloidal semiconductor nanosheets and nanoplate-
lets have recently attracted attention due to their promising
optoelectronic properties strongly different from their bulk,
quasi-1D, and quasi-0D counterparts.1 Lead chalcogenide
nanosheets and nanoplatelets, along with other lead chalco-
genide nanostructures, are of great interest due to their widely
size-tunable band gap and photoluminescence from the far-
infrared to the near-infrared spectral range. Synthesis and
optical spectroscopy of colloidal PbS and PbSe nanosheets and
nanoplateletes with rock-salt crystal structure have been
reported in a number of studies,2–6 and their potential for
optoelectronics7–9 and spintronics10 applications has been
demonstrated.

Theoretical investigation of electronic states in lead-salt
nanosheets within the k·p approximation was performed by
Yang and Wise.11 They started with an isotropic Hamiltonian
neglecting band anisotropy and electron–hole Coulomb inter-
action and then added them as perturbations. In their study
they relied on numerical calculations, even for the energy spec-
trum and eigenstates of the isotropic unperturbed
Hamiltonian. However, the main advantage of the k·p models
is their allowance for fully analytical solutions and possibility
to analyze various limiting cases.

In this work we will find the analytical energy dispersion
equations for electron and hole states in a PbX (X = S,Se)
nanosheet or quantum well (QW), the latter term being mainly
used for epitaxially-grown nanostructures. We will consider
states in a single L-valley of a lead chalcogenide semi-

conductor and use the isotropic k·p approximation. This
approximation is suitable for [001]-grown QWs.11 We will also
discuss interband optical transitions in PbX nanosheets and
study how lateral confinement affects electron and hole
ground states in PbX nanoplatelets. The electron–hole
Coulomb interaction and effect of valley anisotropy can be
accounted for using perturbation theory, as shown in ref. 11,
and will not be considered here.

2. Results and discussion
2.1. Dispersion equation

The conduction and valence band extrema in lead salt semi-
conductors (PbSe, PbS) occur at the L-points of the Brillouin
zone. Electron spectrum near the L-point taking into account
only the two closely lying conduction and valence bands and
neglecting band anisotropy can be described by the spherical
Dimmock model.11,12 In this model the electron wave function
is written as

Ψ ¼ ûjL6�i þ v̂jL6þi; ð1Þ
where |L6

−〉 and |L6
+〉 describe the Bloch functions while û(r)

and v̂(r) are the spinors slowly varying with coordinates and
satisfying the equations

H
û
v̂

� �
;

Eg

2
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� �
�iPðσ∇Þ

�iPðσ∇Þ � Eg

2
� αvΔ

� �
2
664

3
775 û

v̂

� �
¼ E

û
v̂

� �
: ð2Þ

Here σβ (β = x, y, z) are the Pauli matrices, αc, αv, Eg, and P
are parameters of the model and E is the electron energy. We
use the atomic system of units, where the electron charge, the
electron mass, and the Planck constant |e| = m0 = ℏ = 1. The
energy band dispersion in the bulk, resulting from eqn (2), is
shown in Fig. 1 assuming, for simplicity, that the only nonzero
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component of the electron quasi-momentum is directed along
the z axis.

We will assume that the QW is grown in the z direction, has
the width Lz, and represents a PbX slab confined between the
planes z = −Lz/2 and z = Lz/2. Similar to ref. 13, we will con-
struct solutions of eqn (2) in the form of cylindrical waves with
the in-plane wave number k and projection of the angular
momentum M. We will first consider a solution for which the
first component of the bispinor is symmetric with respect to
the change z → −z. This implies that the last component of
the bispinor is also symmetric while the second and the third
components are anti-symmetric.13 One can construct four
independent solutions of eqn (2) satisfying these conditions.
We choose the first two of them in the form (cf. ref. 13)

ûð1ÞM;k;kz
ðρ;φ; zÞ ¼ A1 cos kzz

eiðM�1=2ÞφJM�1=2ðkρÞ
0

� �
; ð3Þ

v̂ð1ÞM;k;kz
ðρ;φ; zÞ ¼ iPA1

αvk2 þ αvkz2 þ E þ Eg=2

� kz sin kzzeiðM�1=2ÞφJM�1=2ðkρÞ
k cos kzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

� �
; ð4Þ

ûð2ÞM;k;kz
ðρ;φ; zÞ ¼ B1 sin kzz

0
eiðMþ1=2ÞφJMþ1=2ðkρÞ

� �
; ð5Þ

v̂ð2ÞM;k;kz
ðρ;φ; zÞ ¼ iPB1

αvk2 þ αvkz2 þ E þ Eg=2

� �k sin kzzeiðM�1=2ÞφJM�1=2ðkρÞ
kz cos kzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð6Þ

where Jn(x) is the Bessel function of order n,

k 2 þ kz2 ¼ Ξ þ Λ; ð7Þ

Λ ¼ Eðαv � αcÞ � P2 � Egðαv þ αcÞ=2
2αcαv

;

Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Eðαv � αcÞ � Egðαv þ αcÞ=2� P2�2 þ αcαvð4E2 � Eg

2Þ
q

2αcαv
:

Note that, when P = 0, i.e. there is no coupling between the
conduction and the valence bands,

Ξ ¼ +
Eðαc þ αvÞ � Egðαv � αcÞ=2

2αcαv
: ð8Þ

In this limit we obtain k2 þ kz2 ¼ E � Eg=2
αc

; E ¼
Eg
2
þ αcðk2 þ kz2Þ; conduction band state for the upper sign in

eqn (8) and k2 þ kz2 ¼ �E � Eg=2
αv

, E ¼ � Eg
2
� αvðk2 þ kz2Þ;

valence band state for the lower sign in eqn (8), cf. dashed
lines in Fig. 1.

The remaining two solutions are

ûð3ÞM;k;κz
ðρ;φ; zÞ ¼ C1 cosh κzz

eiðM�1=2ÞφJM�1=2ðkρÞ
0

� �
; ð9Þ

v̂ð3ÞM;k;κz
ðρ;φ; zÞ ¼ iPC1

αvk2 � αv κz2 þ E þ Eg=2

� �κz sinh κzzeiðM�1=2ÞφJM�1=2ðkρÞ
k cosh κzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð10Þ

ûð4ÞM;k;κz
ðρ;φ; zÞ ¼ D1 sinh κzz

0
eiðMþ1=2ÞφJMþ1=2ðkρÞ

� �
; ð11Þ

v̂ð4ÞM;k;κz
ðρ;φ; zÞ ¼ iPD1

αvk2 � αvκz2 þ E þ Eg=2

� �k sinh κzzeiðM�1=2ÞφJM�1=2ðkρÞ
κz cosh κzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð12Þ

where

k 2 � kz2 ¼ Λ� Ξ: ð13Þ
When P = 0, we obtain k2 � κz2 ¼ �E � Eg=2

αv
;

E ¼ �Eg
2
� αvðk2 � κz

2Þ; conduction band state for the upper

sign in eqn (8) and k2 � κz2 ¼ E � Eg=2
αc

; E ¼ Eg
2
þ αcðk2 � κz

2Þ;
valence band state for the lower sign in eqn (8), cf. dashed lines
in Fig. 1.

Next we impose the boundary condition of the four-
component envelope wave function vanishing at z = Lz/2. The
four solutions we constructed are not mutually orthogonal but
they are linearly independent. If one requires that their linear
combination (with the coefficients A1, B1, C1, and D1) vanishes
at z = Lz/2 then one will obtain a system of four homogeneous
algebraic equations on these coefficients. The condition that
this system has a non-trivial solution will lead to the dis-
persion equation determining the allowed energy values of

Fig. 1 Scheme of the band energy dispersion in the bulk at zero in-
plane wave vector k = 0 resulting from eqn (2). To each value of energy
E, satisfying |E| > Eg/2, there correspond two dispersive branches: one
with real kz (red solid line) and the other with imaginary kz = iκz (blue
solid line). Dashed black lines correspond to decoupled conduction and
valence bands (P = 0).
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electrons confined in a QW. The positive (negative) values of
energy describe the states in the conduction (valence) band.
The dispersion equation takes the form

α2vk
2ðkz2 þ κz

2Þ2 þ kz2ðαvk2 � αvκz
2 þ E þ Eg=2Þ2

� κz
2ðαvk2 þ αvkz2 þ E þ Eg=2Þ2

þ kzκzðαvk2 � αvκz
2 þ E þ Eg=2Þðαvk2 þ αvkz2 þ E þ Eg=2Þ

�
tanh

κzLz
2

tan
kzLz
2

�
tan

kzLz
2

tanh
κzLz
2

2
64

3
75 ¼ 0:

ð14Þ
We note that eqn (14) has the same structure as equations

describing the dispersion of elastic Lamb waves in plates14–18

and of hole states in QWs of III–V or Ge type semiconductors19

or carrier states in QWs of gapless semiconductors of HgTe
type.19 Although we derived them for cylindrical waves, the
same dispersion equations are valid for plane waves.

If we consider solutions of the opposite symmetry with respect
to the transformation z → −z, we will obtain the same dispersion
equation due to the twofold Kramers degeneracy of the levels.19

Let us introduce

f ðkz; κz; kÞ ¼ g1ðkz; κz; kÞ
h1ðkz; κz; kÞ ; ð15Þ

g1ðkz; κz; kÞ ¼ αv
2k2ðkz2 þ κz

2Þ2 þ kz2ðαvk2 � αvκz
2 þ E þ Eg=2Þ2

� κz
2ðαvk2 þ αvkz2 þ E þ Eg=2Þ2;

h1ðkz; κz; kÞ ¼ 2kzκzðαvk2 � αvκz
2 þ E þ Eg=2Þ

� ðαvk2 þ αvkz2 þ E þ Eg=2Þ;

x ¼
tan

kzLz
2

tanh
κzLz
2

:

Then eqn (14) takes the form

x2 � 2fx� 1 ¼ 0 ð16Þ
or

x ¼ f +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 1

p
: ð17Þ

Thus, one can distinguish two different types of solutions.
In the limit k = 0 these solutions become

tan
kzLz
2

tanh
κzLz
2

¼ kzð�αvκz2 þ E þ Eg=2Þ
κzðαvkz2 þ E þ Eg=2Þ ð18Þ

and

tan
kzLz
2

tanh
κzLz
2

¼ � κzðαvkz2 þ E þ Eg=2Þ
kzð�αvκz2 þ E þ Eg=2Þ : ð19Þ

In the limit of P = 0 (and k = 0), for the conduction band
states, the right-hand side of eqn (18) becomes zero, while the

right-hand side of eqn (19) becomes infinite. Thus, for the
conduction band states, eqn (18) yields kz = 2nπ/Lz and eqn
(19) yields kz = (2n − 1)π/Lz, where n is a natural number. For
the valence-band states, in the same limit the right-hand side
of eqn (18) becomes infinite, and the right-hand side of eqn
(19) becomes zero. Thus, for the valence band states, eqn (18)
yields kz = (2n − 1)π/Lz and eqn (19) yields kz = 2nπ/Lz. Therefore,
eqn (18) gives energies of the odd (i.e. 1st, 3rd, etc.) levels in the
valence band and even (i.e. 2nd, 4th, etc.) levels in the conduc-
tion band while eqn (19) gives energies of the odd levels in the
conduction band and even levels in the valence band.

The energy dispersion for the first two subbands in the con-
duction and valence bands following from eqn (14) are shown
in Fig. 2 and 3 for 40 Å thick and 10 Å thick PbS nanosheets,
respectively. The material parameters are taken from ref. 11.

The dispersion eqn (14), (18), and (19) explicitly contain only
parameter αv and not αc. It is not always convenient when ana-
lyzing limiting cases. We will see it when we construct the
corresponding eigenstates. Therefore, let us obtain an equivalent
form of eqn (14) which would contain the parameter αc. To this
end let us consider the following solutions of eqn (2) (cf. ref. 13)

ûð5ÞM;k;kz
ðρ;φ; zÞ ¼ iPA2

αck2 þ αckz2 � E þ Eg=2

� �kz sin kzzeiðM�1=2ÞφJM�1=2ðkρÞ
�k cos kzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð20Þ

v̂ð5ÞM;k;kz
ðρ;φ; zÞ ¼ A2 cos kzz

eiðM�1=2ÞφJM�1=2ðkρÞ
0

� �
; ð21Þ

Fig. 2 Energy dispersion curves for first few subbands in a PbS
nanosheet of the thickness Lz = 40 Å (solid lines) and their fit with para-
bolic functions (dashed lines) with the effective masses mc1 = 0.163
m0, mc2 = 0.253 m0, mv1 = 0.152 m0, and mv2 = 0.225 m0. For red
curves, solid and dashed lines cannot be resolved at this scale.
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ûð6ÞM;k;kz
ðρ;φ; zÞ ¼ iPB2

αck2 þ αckz2 � E þ Eg=2

� k sin kzzeiðM�1=2ÞφJM�1=2ðkρÞ
�kz cos kzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð22Þ

v̂ð6ÞM;k;kz
ðρ;φ; zÞ ¼ B2 sin kzz

0
eiðMþ1=2ÞφJMþ1=2ðkρÞ

� �
; ð23Þ

ûð7ÞM;k;κz
ðρ;φ; zÞ ¼ iPC2

αck2 � αcκz2 � E þ Eg=2

� κz sinh κzzeiðM�1=2ÞφJM�1=2ðkρÞ
�k cosh κzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð24Þ

v̂ð7ÞM;k;κz
ðρ;φ; zÞ ¼ C2 cosh κzz

eiðM�1=2ÞφJM�1=2ðkρÞ
0

� �
; ð25Þ

ûð8ÞM;k;κz
ðρ;φ; zÞ ¼ iPD2

αck2 � αcκz2 � E þ Eg=2

� k sinh κzzeiðM�1=2ÞφJM�1=2ðkρÞ
�κz cosh κzzeiðMþ1=2ÞφJMþ1=2ðkρÞ

" #
;

ð26Þ

v̂ð8ÞM;k;κz
ðρ;φ; zÞ ¼ D2 sinh κzz

0
eiðMþ1=2ÞφJMþ1=2ðkρÞ

� �
: ð27Þ

If one requires that a linear combination of these solutions
(with the coefficients A2, B2, C2, and D2) vanishes at z = Lz = 2
then one will obtain a system of four homogeneous algebraic
equations on these coefficients. The condition that this system
has a non-trivial solution will yield an alternative form of the
function (15):

f ðkz; κz; kÞ ¼ g2ðkz; κz; kÞ
h2ðkz; κz; kÞ ; ð15aÞ

where

g2ðkz; κz; kÞ ¼αc
2k2ðkz2 þ κz

2Þ2 þ kz2ðαck2 � αcκz
2 � E þ Eg=2Þ2

� κz
2ðαck2 þ αckz2 � E þ Eg=2Þ2;

h2ðkz; κz; kÞ ¼ 2kzκzðαck2 � αcκz
2 � E þ Eg=2Þ

� ðαck2 þ αckz2 � E þ Eg=2Þ:
In the limit of k = 0 we obtain

tan
kzLz
2

tanh
κzLz
2

¼ � κzðαckz2 � E þ Eg=2Þ
kzð�αcκz2 � E þ Eg=2Þ ; ð18aÞ

tan
kzLz
2

tanh
κzLz
2

¼ kzð�αcκz2 � E þ Eg=2Þ
κzðαckz2 � E þ Eg=2Þ : ð19aÞ

2.2. Interband optical transitions

In order to account for the interband optical transitions we
note that usually, for QWs, one can neglect the dependence of
the optical matrix element on the in-plane wave number k.20

Thus, we will continue to consider the limit of k = 0. We will
construct the bispinor wave function corresponding to
eqn (18) using the solutions (20)–(27). In what follows we will
be concerned with the motion along z and neglect normaliza-
tion factors related to the in-plane motion. Taking into
account both components of the Kramers doublet, we obtain

ΨMðzÞ ¼ A2

ψðzÞδM;1=2
ψ*ðzÞδM;�1=2

χðzÞδM;1=2

χðzÞδM;�1=2

2
664

3
775; valence band; odd level ð28Þ

where

χðzÞ ¼ cos kzz �
cos

kzLz
2

cosh
κzLz
2

cosh κzz; ð29Þ

ψðzÞ ¼ � iPkz
αckz2 � E þ Eg=2

ξðzÞ; ð30Þ

ξðzÞ ¼ sin kzz �
sin

kzLz
2

sinh
κzLz
2

sinh κzz; ð31Þ

and A2 is the real normalization constant. The bispinor wave
function corresponding to eqn (19) can be constructed using
the solutions (3)–(6), (9)–(12). It is given by

ΦMðzÞ ¼ A1

χðzÞδM;1=2
χðzÞδM;�1=2
φðzÞδM;1=2
φ*ðzÞδM;�1=2

2
664

3
775; conduction band; odd level; ð32Þ

where

φðzÞ ¼ iPkz
αvkz2 þ E þ Eg=2

ξðzÞ; ð33Þ

Fig. 3 Same as Fig. 2 but for a PbS nanosheet of the thickness Lz =
10 Å. The effective masses corresponding to the first two conduction-
band and valence-band subbands are, respectively, mc1 = 0.301 m0, mc2

= 0.385 m0 and mv1 = 0.264 m0, mv2 = 0.322 m0.
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and A1 is the real normalization constant. In particular, the
ground state in the valence (conduction) band is described by
the bispinor (28) [(32)]. In the limit P = 0 it corresponds to kz =
π/Lz. Then χ(z) = cos πz/Lz, ψ(z) = 0, φ(z) = 0. We emphasize that,
for the ground states, ψ(z) and φ(z) appear as a result of the
band coupling and are linear in P. For even levels (i.e. 2nd,
4th, etc.) in the conduction or valence bands, denominators in
expressions (30), (33) diverge at P = 0 and another form of the
wave functions is more revealing. In particular, we obtain
another bispinor wave function corresponding to eqn (18)

Ψ̃MðzÞ ¼ B1

ξðzÞδM;1=2

ξðzÞδM;�1=2
ψ̃ðzÞδM;1=2

ψ̃ *ðzÞδM;�1=2

2
664

3
775; conductionband; even level

ð34Þ

where

ψ̃ðzÞ ¼ � iPkz
αvkz2 þ E þ Eg=2

χðzÞ ð35Þ

and B1 is the real normalization constant. For example, in the
limit of P = 0, the first excited state in the conduction band
corresponds to kz = 2π/Lz. Then ξ(z) = sin 2πz/Lz, ψ̃(z) = 0. When
P ≠ 0 then either of the solutions (28), (34) can be used.
Finally, another bispinor wave function corresponding to eqn
(19) is

Φ̃MðzÞ ¼ B2

φ̃ðzÞδM;1=2
φ̃*ðzÞδM;�1=2

ξðzÞδM;1=2

ξðzÞδM;�1=2

2
664

3
775; valence band; even level; ð36Þ

where

φ̃ðzÞ ¼ iPkz
αckz2 � E þ Eg=2

χðzÞ; ð37Þ

and B2 is the real normalization constant. If P → 0 then
A1;B1;A2;B2 !

ffiffiffiffiffiffiffiffiffiffi
2=Lz

p
:

Due to the parity of the functions χ(z), ξ(z), the optical tran-
sitions occur between odd or between even levels in the
valence and conduction bands (i.e. 1st to 1st, 1st to 3rd, 2nd to
2nd, etc.).

The velocity operator is given by21

v ¼ �2iαc∇ Pσ
Pσ 2iαv∇

� �
: ð38Þ

For the matrix element between the bispinor functions (32)
and (28) we obtain

Φ1;M1 vj jΨ 2;M2

� � ¼ A1A2

ðLz=2
�Lz=2

dz δM1;M2 Pχ1χ2ð	
�2iαcχ1

@ψ2

@z
þ 2iαvφ*

1
@χ2
@z

þ Pφ*
1ψ2

�
ezðδM1;1=2 � δM1 ;�1=2Þ

þδM1 ;�M2Pðχ1χ2 þ φ1ψ2ÞðδM1;1=2ðex � ieyÞ þ δM1;�1=2ðex þ ieyÞÞ


;

ð39Þ

where eβ is the Cartesian unit vector (β = x, y, z). For the in-
plane light polarization, the main contribution to the optical
matrix element, which is linear in P, stems from the term
Pχ1χ2. However, when light is polarized along the growth direc-
tion, there are two additional terms of the same order in P and
proportional to αc and αv, respectively. Let us analyze the limit
of small P and consider the transition between ground states
in the valence and conduction bands in the lowest order in P.
We obtain

hΦ1=2jvzjΨ 1=2i ¼ P
Eg � ðαc þ αvÞπ2=Lz2
Eg þ ðαc þ αvÞπ2=Lz2 ð40Þ

while taking into account only the term Pχ1χ2 would yield
〈Φ1/2|vz|Ψ1/2〉 = P. For the matrix element of the z-component
of the coordinate operator one has

hΦ1;M1 jzjΨ 2;M2i ¼ A1A2δM1;M2ðδM1;1=2 � δM1;�1=2Þ

�
ðLz=2
�Lz=2

dzðχ1zψ2 þ φ*
1zχ2Þ:

In the same limit of small P and transition between the
ground states one has

hΦ1=2jzjΨ 1=2i ¼ �iP
Eg � ðαc þ αvÞπ2=Lz2

ðEg þ ðαc þ αvÞπ2=Lz2Þ2
ð41Þ

in agreement with the general quantum-mechanical relation

vz ¼ iðHz � zHÞ:
When P → 0, the conduction and valence bands are

decoupled. For small P, the interband dipole matrix element
is proportional to P, but band coupling is also proportional to
P. As a result, the matrix element (40) is different from P. The
terms proportional to αc and αv also appear in the expression
for the interband velocity matrix element for PbX
quantum dots.21 Similar to the present case, they reduce the
interband velocity matrix element and decrease by
absolute value with increase of the quantum dot size (cf. Fig. 1
in ref. 21).

The matrix element between the bispinor functions (34)
and (36), 〈Ψ̃1,M1

|v|Φ̃2,M2
〉 can be obtained from eqn (39) by

changing χ(z) → ξ(z), ϕ(z) → ψ̃(z), ψ(z) → ϕ̃(z), A1 → B1, A2 → B2.

2.3. Lateral confinement

Finally, let us analyze the effect of the lateral confinement on
the energies of the electron and hole ground states. To this
end, instead of a quasi-2D nanosheet, we will consider a
nanoplatelet in a form of a disc with the radius R and
thickness Lz and use the numerical procedure described in
details in ref. 22. In case of a quantum box of the size L
with the confinement in one spacial dimension, one gets
quantization of the wave vector with the quantum of π/L. In
case of a disc, such characteristic length can be estimated
from the condition L2 = πR2 which yields the quantum of
the wave number of √π/R. In Fig. 4 we change the disc
radius from R = 200 Lz down to R = Lz and plot the electron
and hole ground state energies in a PbS disc of the thick-

Paper Nanoscale

1234 | Nanoscale, 2023, 15, 1230–1235 This journal is © The Royal Society of Chemistry 2023



ness Lz = 40 Å as functions of the parameter √π/R·Lz. This
allows us to compare these energies with the energy dis-
persion of the lowest conduction and uppermost valence
subbands in a quasi-2D nanosheet of the same thickness
plotted in Fig. 4 as functions of the dimensionless wave
number kLz. One can see that the effect of lateral confine-
ment beyond quantization of the in-plane wave number is
only important when the lateral size becomes comparable
with the disc thickness. Meanwhile, this comparison pro-
vides an independent verification of our analytical results.

3. Conclusions

To conclude, we have considered the k·p model describing
band structure of lead chalcogenide semiconductors and
accounting for the coupling between the conduction and
valence bands. Within this model, we have found analytic
equations for the electron and hole energy dispersion in sub-
bands resulting from the carrier confinement in a PbX
nanosheet or QW. Our treatment yields analytical expressions
for the bispinor envelope wave functions describing quantum
confinement along the quantization direction and provides in-
plane effective masses for the electrons and holes in the sub-
bands. These are key ingredients for constructing a robust
analytical theory of excitons in these materials11,20 which
would enable fully analytical solutions of many problems rele-
vant to optical spectroscopy, e.g. resonant light reflection and
transmission.20,23 We obtained selection rules for interband
optical transitions and showed that the main effect of the
lateral confinement in nanoplatelets can be accounted for in
terms of the quantized in-plane wave vector.
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