

A sharp lower bound for the spectral radius in K_4 -saturated graphs

Jaehoon Kim*, Alexandr V. Kostochka†, Suil O‡, Yongtang Shi§ and Zhiwen Wang¶

Abstract

For a graph H , a graph G is H -saturated if G does not contain H as a subgraph but for any $e \in E(\overline{G})$, $G + e$ contains H . In this note, we prove that if G is an n -vertex K_{r+1} -saturated graph such that for each vertex $v \in V(G)$,

$$\sum_{s \in N(v)} d_G(s) \geq (r-2)d(v) + (r-1)(n-r+1),$$

then $\rho(G) \geq \rho(S_{n,r})$, where $S_{n,r}$ is the graph obtained from a copy of K_{r-1} with vertex set S by adding $n-r+1$ vertices, each of which has neighborhood S . With this result, for $r = 2, 3$, we prove a sharp lower bound for the spectral radius in an n -vertex K_{r+1} -saturated graph; for $r = 2$, equality holds only when G is $S_{n,2}$ or a Moore graph, and for $r = 3$, equality holds only when G is $S_{n,3}$.

Keywords: Saturated graphs, complete graphs, spectral radius

AMS subject classification 2010: 05C35, 05C50

1 Introduction

We consider finite undirected graphs with no loops or multiple edges. For a graph H , a graph G is H -saturated if H is not a subgraph of G but for any $e \in E(\overline{G})$, H is a subgraph of $G + e$. For a positive integer n and a graph H , the *extremal number*, written $ex(n, H)$, is the maximum number of edges in an n -vertex graph not containing H . On the

*Mathematical Sciences Department, KAIST, jaehoon.kim@kaist.ac.kr

†Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia, kostochk@math.uiuc.edu. Research of this author is supported in part by NSF RTG Grant DMS-1937241.

‡Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985, suil.o@sunykorea.ac.kr. Research supported by NRF-2020R1F1A1A01048226, NRF-2021K2A9A2A06044515, and NRF-2021K2A9A2A1110161711.

§Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

¶School of Mathematics Sciences and LPMC, Nankai University, Tianjin, 300071, China

other hand, the *saturation number* of H , written $\text{sat}(n, H)$, is the least number of edges in an n -vertex H -saturated graph. Clearly, if G is an n -vertex H -saturated graph, then $\text{sat}(n, H) \leq |E(G)| \leq \text{ex}(n, H)$.

In 1941, Turán [13] determined the extremal number $\text{ex}(n, K_{r+1})$ initiating the study of extremal graph theory. He also proved that there is a unique extremal graph, $T_{n,r}$, the n -vertex complete r -partite graph whose partite sets differ in size by at most one. The first result on saturation numbers was proved in 1964 [4]. Let $S_{n,r}$ denote the n -vertex graph obtained from a copy of K_{r-1} with vertex set S by adding $n - r + 1$ vertices, each of which has neighborhood S . In particular, $S_{n,2}$ is an n -vertex star. Erdős, Hajnal and Moon [4] determined the saturation number of K_{r+1} and described the extremal graphs.

Theorem A [4]. *If $2 \leq r < n$, then $\text{sat}(n, K_{r+1}) = (r-1)(n-r+1) + \binom{r-1}{2}$. The only n -vertex K_{r+1} -saturated graph with $\text{sat}(n, K_{r+1})$ edges is the graph $S_{n,r}$.*

We refer the reader to Faudree, Faudree, and Schmitt [5] for an excellent survey on saturation numbers.

For a graph G , let $A(G)$ denote its adjacency matrix, and *spectral radius* $\rho(G)$ be the spectral radius of $A(G)$, that is, $\rho(G) = \max\{|\lambda_i| : 1 \leq i \leq n\}$, where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of $A(G)$. Since $A(G)$ is real-valued and symmetric, all λ_i s are real numbers, so we may assume $\lambda_1(G) \geq \dots \geq \lambda_n(G)$. By the Perron-Frobenius Theorem (see [7, 8]), we have $\rho(G) = \lambda_1(G)$.

Nikiforov [11] proved that if G is an n -vertex a K_{r+1} -free graph, then $\rho(G) \leq \rho(T_{n,r})$. Since each K_{r+1} -saturated graph is K_{r+1} -free, his theorem implies the following.

Theorem B [10]. *If G is a K_{r+1} -saturated graph with n vertices, then*

$$\rho(G) \leq \rho(T_{n,r}).$$

The Perron-Frobenius Theorem implies that for a connected graph G and $e \in \overline{G}$, we have $\rho(G + e) > \rho(G)$. Thus it is natural to ask what can be said about a lower bound for $\rho(G)$ if we replace “ K_{r+1} -free” in Theorem B by “ K_{r+1} -saturated”. Kim, Kim, Kostochka, and O [9] gave a new lower bound for the spectral radius of an n -vertex K_{r+1} -saturated graph. The bound is tight for $r = 2$, but not for $r \geq 3$. For $r = 2$ the result is as follows.

Theorem C [9]. *If G is an n -vertex K_3 -saturated graph, then $\rho(G) \geq \rho(S_{n,2})$; equality holds only when G is $S_{n,2}$ or a Moore graph.*

In this note, we prove that if G is an n -vertex K_{r+1} -saturated graph such that for each vertex $v \in V(G)$, $\sum_{w \in N(v)} d(w) \geq (r-2)d(v) + (r-1)(n-r+1)$, then $\rho(G) \geq \rho(S_{n,r})$. By using this result, we give a simpler proof of Theorem C and prove a new sharp lower bound for $\rho(G)$ in an n -vertex K_4 -saturated graph G .

For undefined terms of graph theory, see West [14]. For basic properties of spectral graph theory, see Brouwer and Haemers [2] or Godsil and Royle [7].

2 Results and proofs

We first prove Theorem 2.2. Note that the spectral radius of $S_{n,r}$ is as follows.

Proposition 2.1. [6, 9, 12] *For integers $2 \leq r < n$,*

$$\rho(S_{n,r}) = \frac{r-2 + \sqrt{(r-2)^2 + 4(r-1)(n-r+1)}}{2}.$$

Theorem 2.2. *If G is an n -vertex K_{r+1} -saturated graph such that for each vertex $v \in V(G)$, $\sum_{w \in N(v)} d(w) \geq (r-2)d(v) + (r-1)(n-r+1)$, then $\rho(G) \geq \rho(S_{n,r})$.*

Proof. Let A be the adjacency matrix of G and let x be the perron vector corresponding to the spectral radius of G , say ρ . Note that x has all positive entries. Without loss of generality, we may assume that $\sum_{i=1}^n x_i = 1$. Suppose that $p(x) = x^2 - (r-2)x - (r-1)(n-r+1)$. Then we have

$$p(A)x = [A^2 - (r-2)A - (r-1)(n-r+1)I]x = p(\rho)x. \quad (1)$$

Thus we have

$$\begin{aligned} p(\rho) &= p(\rho) \left(\sum_{v \in V(G)} x_v \right) = \sum_{v \in V(G)} p(\rho)x_v = \sum_{v \in V(G)} \sum_{u \in V(G)} p(A)_{vu}x_u = \sum_{v \in V(G)} x_v \sum_{u \in V(G)} p(A)_{vu} \\ &\geq \min_{v \in V(G)} \sum_{u \in V(G)} p(A)_{uv} = \min_{v \in V(G)} \sum_{u \in V(G)} (A^2 - (r-2)A - (r-1)(n-r+1)I)_{uv} \\ &= \min_{v \in V(G)} \left[\left(\sum_{w \in N(v)} d(w) \right) - (r-2)d(v) - (r-1)(n-r+1) \right] \geq 0, \end{aligned} \quad (2)$$

which yields that $\rho(G) \geq \rho(S_{n,r})$. \square

With Theorem 2.2, we now give a simpler proof of Theorem C.

Proof of Theorem C. By Theorem 2.2, it suffices to show that for each vertex $v \in V(G)$,

$$\sum_{w \in N(v)} d(w) \geq n-1.$$

Since the diameter of G equals 2 and G is K_3 -free, the Breadth First Search yields $\sum_{w \in N(v)} d(w) = d(v) + (n-1-d(v)) \geq n-1$. Equality in the bound holds only when for every vertex $v \in V(G)$, and every vertex $x \in V(G) \setminus N[v]$, we have $|N(v) \cap N(x)| = 1$. If $V(G) \setminus N[v] = \emptyset$, then G is $S_{n,2}$. Otherwise, the girth of G is at least 5, which implies that G is a Moore graph. \square

Next, we prove a sharp lower bound for the spectral radius in an n -vertex K_4 -saturated graph.

Theorem 2.3. *If G is an n -vertex K_4 -saturated graph, then $\rho(G) \geq \rho(S_{n,3})$; equality holds only when G is $S_{n,3}$.*

Proof. By Theorem 2.2, it suffices to show that for each vertex $v \in V(G)$,

$$\sum_{w \in N(v)} d(w) \geq d(v) + 2(n - 2).$$

Let v be an arbitrary vertex in $V(G)$.

Case 1. *The graph induced by the closed neighborhood $N[v]$ is K_4 -saturated.* Since $N[v]$ is K_4 -saturated, $N(v)$ is K_3 -saturated. Thus by Theorem A,

$$\begin{aligned} \sum_{w \in N(v)} d(w) &\geq d(v) + 2|E(G[N(v)])| + 2(n - d(v) - 1) \\ &\geq d(v) + |E(G[N(v)])| + (d(v) - 1) + 2(n - d(v) - 1) \\ &= 2(n - 2) + 1 + |E(G[N(v)])| \geq 2(n - 2) + 1 + (d(v) - 1) = d(v) + 2(n - 2). \end{aligned} \tag{3}$$

Case 2. *The graph induced by the closed neighborhood $N[v]$ is not K_4 -saturated.* In this case, we may assume that $\Delta(G) \leq n - 2$, which implies that $\delta(G) \geq 4$. Also, since G is K_4 -saturated, for each vertex $x \in V(G) - N[v] \neq \emptyset$, we have $|N(x) \cap N(v)| \geq 2$ and also $E(G[N(v)]) \neq \emptyset$. Thus if $|E(G[N(v)])| \geq d(v) - 1$, then we have

$$\begin{aligned} \sum_{w \in N(v)} d(w) &\geq d(v) + 2|E(G[N(v)])| + 2(n - d(v) - 1) \\ &\geq d(v) + 2(d(v) - 1) + 2(n - d(v) - 1) = d(v) + 2(n - 2). \end{aligned} \tag{4}$$

Now we may assume that $|E(G[N(v)])| \leq d(v) - 2$. Let G_1, \dots, G_t be the nontrivial components in $G[N(v)]$ and let $N_1 = V(G_1 \cup \dots \cup G_t)$, $N_2 = N(v) - N_1$, and $N_3 = V(G) - N[v]$. Note that $N(v) = N_1 \cup N_2$ and $G[N_2]$ is a non-empty trivial graph. Since $|E(G[N(v)])| \geq 1$, we have $t \geq 1$.

Let $e = u_1v_1 \in E(G[N_1])$. If two different vertices u_3, v_3 in N_3 are adjacent to both u_1 and v_1 , then they are not adjacent. For a vertex v_2 in N_2 , by adding an edge u_1v_2 or v_1v_2 , we have a copy of K_4 in $G[\{u_1, v_2\} \cup N_3]$ or $G[\{v_1, v_2\} \cup N_3]$, respectively. Thus we can say that $|[N_1, N_3]| \geq 2(n - d(v) - 1) + 2t$, so we have

$$\begin{aligned} \sum_{w \in N(v)} d(w) &= d(v) + 2|E(G[N_1])| + |[N_1, N_3]| + |[N_2, N_3]| \\ &\geq d(v) + 2(d(v) - |N_2| - t) + 2(n - d(v) - 1) + 2t + 3|N_2| \\ &= d(v) + |N_2| + 2(n - 1) > d(v) + 2(n - 1). \end{aligned}$$

Equality in the bound requires equality in each step of the computation. To have equality in (3), we must have $G[N[v]] = S_{d(v)+1,3}$ and every vertex in $V(G) - N[v]$ is adjacent to exactly two vertices. Since $G[N[v]] = S_{d(v)+1,3}$, we must have a vertex w in $N(v)$, which

is adjacent to all other vertices in $N[v]$. For any edge $e \in G[N(v)]$, exactly two vertices in N_3 are adjacent to the end-vertices of the edge, so we have $\Delta(G) = n - 1$. Thus we have $d(v) = n - 1$, which implies $G = S_{n,3}$.

To have equality in (4), we must have $d(v) \leq n - 2$, $|E[G[N(v)]]| = d(v) - 1$, and $|[N(v), N_3]| = 2(n - d(v) - 1)$ for each vertex $v \in V(G)$. Thus for each vertex $x \in N_3$, we have $|N(x) \cap N(v)| = 2$, and $G[N(v)]$ is a tree by following the proof of $t \geq 2$. If $G[N(v)]$ contains a copy of P_4 as a subgraph, then by adding an edge between the two end-vertices of the path, we must have a copy of K_4 , which implies that some vertex in N_3 must have three neighbors in $N(v)$. This is a contradiction. Thus we may assume that $G[N(v)]$ is a star, which implies that $G[N[v]]$ is a star. For each edge $e \in G[N(v)]$, every vertex in N_3 is adjacent to the end-vertices of e . Thus $\Delta(G) = n - 1$, which is a contradiction. \square

References

- [1] B. Bollobás, V. Nikiforov, Graphs and Hermitian matrices: eigenvalue interlacing, *Discrete Math.* **289** (2004) 119–127.
- [2] A. Brouwer and W. Haemers, *Spectra of Graphs*, Springer, New York, (2011).
- [3] F.R.K. Chung, R.L. Graham, R.M. Wilson, Quasi-random graphs, *Combinatorica* **9** (1989) 345–362.
- [4] P. Erdős, A. Hajnal, and J. W. Moon, A problem in graph theory, *Amer. Math. Monthly* **71** (1964) 1107–1110.
- [5] J.R. Faudree, R.J. Faudree, J.R. Schmitt, A survey of minimum saturated graphs, *Electron. J. Combin.* **18** (2011), Dynamic Survey 19, 36 pages.
- [6] H. Finck and G. Grohmann, Vollständiges Produkt, chromatische Zahl und charakteristisches Polynom regulärer Graphen. I. (German) *Wiss. Z. Tech. Hochsch. Ilmenau* **11** (1965), 1–3.
- [7] C. Godsil and G. Royle, *Algebraic Graph Theory*, Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.
- [8] M. Hofmeister, Spectral radius and degree sequence, *Math. Nachr.* **139** (1988), 37–44.
- [9] J. Kim, S. Kim, A.V. Kostochka, and S. O, The minimum spectral radius of K_{r+1} -saturated graphs, *Discrete Math.* **343** (2020), 112068.
- [10] V. Nikiforov, The smallest eigenvalue of K_r -free graphs, *Discrete Math.* **306** (2006), no. 6, 612–616.
- [11] V. Nikiforov, Bounds on graph eigenvalues. II. *Linear Algebra Appl.* **427** (2007), no. 2–3, 183–189.

- [12] Z. Stanić, Regular graphs: A Spectral Approach, De Gruyter, 2017.
- [13] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, *Mat. Fiz. Lapok* **48** (1941) 436–452.
- [14] D.B. West, *Introduction to Graph Theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.