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Abstract

For a graph H, a graph G is H-saturated if G does not contain H as a subgraph
but for any e ∈ E(G), G+e contains H. In this note, we prove that if G is an n-vertex
Kr+1-saturated graph such that for each vertex v ∈ V (G),∑

s∈N(v)

dG(w) ≥ (r − 2)d(v) + (r − 1)(n− r + 1),

then ρ(G) ≥ ρ(Sn,r), where Sn,r is the graph obtained from a copy of Kr−1 with vertex
set S by adding n − r + 1 vertices, each of which has neighborhood S. With this
result, for r = 2, 3, we prove a sharp lower bound for the spectral radius in an n-vertex
Kr+1-saturated graph; for r = 2, equality holds only when G is Sn,2 or a Moore graph,
and for r = 3, equality holds only when G is Sn,3.
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1 Introduction

We consider finite undirected graphs with no loops or multiple edges. For a graph H,
a graph G is H-saturated if H is not a subgraph of G but for any e ∈ E(G), H is a
subgraph of G + e. For a positive integer n and a graph H, the extremal number, written
ex(n,H), is the maximum number of edges in an n-vertex graph not containing H. On the
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other hand, the saturation number of H, written sat(n,H), is the least number of edges
in an n-vertex H-saturated graph. Clearly, if G is an n-vertex H-saturated graph, then
sat(n,H) ≤ |E(G)| ≤ ex(n,H).

In 1941, Turán [13] determined the extremal number ex(n,Kr+1) initiating the study
of extremal graph theory. He also proved that there is a unique extremal graph, Tn,r, the
n-vertex complete r-partite graph whose partite sets differ in size by at most one. The first
result on saturation numbers was proved in 1964 [4]. Let Sn,r denote the n-vertex graph
obtained from a copy of Kr−1 with vertex set S by adding n− r + 1 vertices, each of which
has neighborhood S. In particular, Sn,2 is an n-vertex star. Erdős, Hajnal and Moon [4]
determined the saturation number of Kr+1 and described the extremal graphs.

Theorem A [4]. If 2 ≤ r < n, then sat(n,Kr+1) = (r− 1)(n− r+ 1) +
(
r−1
2

)
. The only

n-vertex Kr+1-saturated graph with sat(n,Kr+1) edges is the graph Sn,r.

We refer the reader to Faudree, Faudree, and Schmitt [5] for an excellent survey on
saturation numbers.

For a graph G, let A(G) denote its adjacency matrix, and spectral radius ρ(G) be the
spectral radius of A(G), that is, ρ(G) = max{|λi| : 1 ≤ i ≤ n}, where λ1, . . . , λn are the
eigenvalues of A(G). Since A(G) is real-valued and symmetric, all λis are real numbers, so
we may assume λ1(G) ≥ · · · ≥ λn(G). By the Perron-Frobenius Theorem (see [7, 8]), we
have ρ(G) = λ1(G).

Nikiforov [11] proved that if G is an n-vertex a Kr+1-free graph, then ρ(G) ≤ ρ(Tn,r).
Since each Kr+1-saturated graph is Kr+1-free, his theorem implies the following.

Theorem B [10]. If G is a Kr+1-saturated graph with n vertices, then

ρ(G) ≤ ρ(Tn,r).

The Perron-Frobenius Theorem implies that for a connected graph G and e ∈ G, we have
ρ(G + e) > ρ(G). Thus it is natural to ask what can be said about a lower bound for ρ(G)
if we replace “Kr+1-free” in Theorem B by “Kr+1-saturated”. Kim, Kim, Kostochka, and
O [9] gave a new lower bound for the spectral radius of an n-vertex Kr+1-saturated graph.
The bound is tight for r = 2, but not for r ≥ 3. For r = 2 the result is as follows.

Theorem C [9]. If G is an n-vertex K3-saturated graph, then ρ(G) ≥ ρ(Sn,2); equality
holds only when G is Sn,2 or a Moore graph.

In this note, we prove that if G is an n-vertex Kr+1-saturated graph such that for each
vertex v ∈ V (G),

∑
w∈N(v) d(w) ≥ (r− 2)d(v) + (r− 1)(n− r + 1), then ρ(G) ≥ ρ(Sn,r). By

using this result, we give a simpler proof of Theorem C and prove a new sharp lower bound
for ρ(G) in an n-vertex K4-saturated graph G.

For undefined terms of graph theory, see West [14]. For basic properties of spectral graph
theory, see Brouwer and Haemers [2] or Godsil and Royle [7].
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2 Results and proofs

We first prove Theorem 2.2. Note that the spectral radius of Sn,r is as follows.

Proposition 2.1. [6, 9, 12] For integers 2 ≤ r < n,

ρ(Sn,r) =
r − 2 +

√
(r − 2)2 + 4(r − 1)(n− r + 1)

2
.

Theorem 2.2. If G is an n-vertex Kr+1-saturated graph such that for each vertex v ∈ V (G),∑
w∈N(v) d(w) ≥ (r − 2)d(v) + (r − 1)(n− r + 1), then ρ(G) ≥ ρ(Sn,r).

Proof. Let A be the adjacency matrix of G and let x be the perron vector corresponding to
the spectral radius of G, say ρ. Note that x has all positive entries. Without loss of generality,
we may assume that

∑n
i=1 xi = 1. Suppose that p(x) = x2 − (r − 2)x − (r − 1)(n − r − 1).

Then we have

p(A)x =
[
A2 − (r − 2)A− (r − 1)(n− r + 1)I

]
x = p(ρ)x. (1)

Thus we have

p(ρ) = p(ρ)

 ∑
v∈V (G)

xv

 =
∑

v∈V (G)

p(ρ)xv =
∑

v∈V (G)

∑
u∈V (G)

p(A)vuxu =
∑

v∈V (G)

xv
∑

u∈V (G)

p(A)vu

≥ min
v∈V (G)

∑
u∈V (G)

p(A)uv = min
v∈V (G)

∑
u∈V (G)

(A2 − (r − 2)A− (r − 1)(n− r + 1)I)uv

= min
v∈V (G)

 ∑
w∈N(v)

d(w)

− (r − 2)d(v)− (r − 1)(n− r + 1)

 ≥ 0, (2)

which yields that ρ(G) ≥ ρ(Sn,r). �

With Theorem 2.2, we now give a simpler proof of Theorem C.
Proof of Theorem C. By Theorem 2.2, it suffices to show that for each vertex v ∈ V (G),∑

w∈N(v)

d(w) ≥ n− 1.

Since the diameter ofG equals 2 andG isK3-free, the Breadth First Search yields
∑

w∈N(v) d(w) =

d(v)+(n−1−d(v)) ≥ n−1. Equality in the bound holds only when for every vertex v ∈ V (G),
and every vertex x ∈ V (G)\N [v], we have |N(v) ∩N(x)| = 1. If V (G)\N [v] = ∅, then G is
Sn,2. Otherwise, the girth of G is at least 5, which implies that G is a Moore graph. �

Next, we prove a sharp lower bound for the spectral radius in an n-vertex K4-saturated
graph.
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Theorem 2.3. If G is an n-vertex K4-saturated graph, then ρ(G) ≥ ρ(Sn,3); equality holds
only when G is Sn,3.

Proof. By Theorem 2.2, it suffices to show that for each vertex v ∈ V (G),∑
w∈N(v)

d(w) ≥ d(v) + 2(n− 2).

Let v be an arbitrary vertex in V (G).
Case 1. The graph induced by the closed neighborhood N [v] is K4-saturated. Since N [v] is
K4-saturated, N(v) is K3-saturated. Thus by Theorem A,∑

w∈N(v)

d(w) ≥ d(v) + 2|E(G[N(v)])|+ 2(n− d(v)− 1)

≥ d(v) + |E(G[N(v)])|+ (d(v)− 1) + 2(n− d(v)− 1) (3)

= 2(n− 2) + 1 + |E(G[N(v)])| ≥ 2(n− 2) + 1 + (d(v)− 1) = d(v) + 2(n− 2).

Case 2. The graph induced by the closed neighborhood N [v] is not K4-saturated. In this
case, we may assume that ∆(G) ≤ n − 2, which implies that δ(G) ≥ 4. Also, since G is
K4-saturated, for each vertex x ∈ V (G) − N [v] 6= ∅, we have |N(x) ∩ N(v)| ≥ 2 and also
E(G[N(v)]) 6= ∅. Thus if |E(G[N(v)])| ≥ d(v)− 1, then we have∑

w∈N(v)

d(w) ≥ d(v) + 2|E(G[N(v)])|+ 2(n− d(v)− 1)

≥ d(v) + 2(d(v)− 1) + 2(n− d(v)− 1) = d(v) + 2(n− 2). (4)

Now we may assume that |E(G[N(v)])| ≤ d(v) − 2. Let G1, . . . , Gt be the nontrivial com-
ponents in G[N(v)] and let N1 = V (G1 ∪ · · ·Gt), N2 = N(v)−N1, and N3 = V (G)−N [v].
Note that N(v) = N1 ∪N2 and G[N2] is a non-empty trivial graph. Since |E(G[N(v)])| ≥ 1,
we have t ≥ 1.

Let e = u1v1 ∈ E(G[N1]). If two different vertices u3, v3 in N3 are adjacent to both u1
and v1, then they are not adjacent. For a vertex v2 in N2, by adding an edge u1v2 or v1v2,
we have a copy of K4 in G[{u1, v2} ∪N3] or G[{v1, v2} ∪N3], respectively. Thus we can say
that |[N1, N3]| ≥ 2(n− d(v)− 1) + 2t, so we have∑

w∈N(v)

d(w) = d(v) + 2|E(G[N1])|+ |[N1, N3]|+ |[N2, N3]|

≥ d(v) + 2(d(v)− |N2| − t) + 2(n− d(v)− 1) + 2t+ 3|N2|

= d(v) + |N2|+ 2(n− 1) > d(v) + 2(n− 1).

Equality in the bound requires equality in each step of the computation. To have equality
in (3), we must have G[N [v]] = Sd(v)+1,3 and every vertex in V (G) − N [v] is adjacent to
exactly two vertices. Since G[N [v]] = Sd(v)+1,3, we must have a vertex w in N(v), which
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is adjacent to all other vertices in N [v]. For any edge e ∈ G[N(v)], exactly two vertices in
N3 are adjacent to the end-vertices of the edge, so we have ∆(G) = n − 1. Thus we have
d(v) = n− 1, which implies G = Sn,3.

To have equality in (4), we must have d(v) ≤ n − 2, |E[G[N(v)]]| = d(v) − 1, and
|[N(v), N3]| = 2(n − d(v) − 1) for each vertex v ∈ V (G). Thus for each vertex x ∈ N3, we
have |N(x) ∩ N(v)| = 2, and G[N(v)] is a tree by following the proof of t ≥ 2. If G[N(v)]
contains a copy of P4 as a subgraph, then by adding an edge between the two end-vertices
of the path, we must have a copy of K4, which implies that some vertex in N3 must have
three neighbors in N(v). This is s a contradiction. Thus we may assume that G[N(v)] is a
star, which implies that G[N [v]] is a star. For each edge e ∈ G[N(v)], every vertex in N3 is
adjacent to the end-vertices of e. Thus ∆(G) = n− 1, which is a contradiction. �
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