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Abstract
For a graph H, a graph G is H-saturated if G does not contain H as a subgraph

but for any e € E(G), G+ e contains H. In this note, we prove that if G is an n-vertex
K, 1-saturated graph such that for each vertex v € V(G),

> do(w) > (r=2)d(v) + (r=1)(n—r+1),
SEN(v)

then p(G) > p(Sp,), where S, , is the graph obtained from a copy of K,_; with vertex
set S by adding n — r + 1 vertices, each of which has neighborhood S. With this
result, for r = 2,3, we prove a sharp lower bound for the spectral radius in an n-vertex
K, 1-saturated graph; for » = 2, equality holds only when G is S, 2 or a Moore graph,
and for r = 3, equality holds only when G is Sy, 3.
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1 Introduction

We consider finite undirected graphs with no loops or multiple edges. For a graph H,
a graph G is H-saturated if H is not a subgraph of G but for any e € E(G), H is a
subgraph of G + e. For a positive integer n and a graph H, the extremal number, written

ex(n, H), is the maximum number of edges in an n-vertex graph not containing H. On the
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other hand, the saturation number of H, written sat(n, H), is the least number of edges
in an n-vertex H-saturated graph. Clearly, if GG is an n-vertex H-saturated graph, then
sat(n, H) < |E(G)| < ex(n, H).

In 1941, Turén [13] determined the extremal number ex(n, K,,) initiating the study
of extremal graph theory. He also proved that there is a unique extremal graph, T,,,, the
n-vertex complete r-partite graph whose partite sets differ in size by at most one. The first
result on saturation numbers was proved in 1964 [4]. Let S,,, denote the n-vertex graph
obtained from a copy of K,_; with vertex set S by adding n — r + 1 vertices, each of which
has neighborhood S. In particular, S, 5 is an n-vertex star. Erdés, Hajnal and Moon [4]
determined the saturation number of K, i and described the extremal graphs.

Theorem A [4]. If2 <r <n, then sat(n,K,11) = (r —1)(n—r+1)+ (";"). The only
n-vertex K, 1-saturated graph with sat(n, K,.1) edges is the graph Sy,.

We refer the reader to Faudree, Faudree, and Schmitt [5] for an excellent survey on
saturation numbers.

For a graph G, let A(G) denote its adjacency matrix, and spectral radius p(G) be the
spectral radius of A(G), that is, p(G) = max{|\;| : 1 < i < n}, where \j,..., )\, are the
eigenvalues of A(G). Since A(G) is real-valued and symmetric, all \;s are real numbers, so
we may assume A\(G) > --- > \,(G). By the Perron-Frobenius Theorem (see [7, 8]), we
have p(G) = M\ (G).

Nikiforov [11] proved that if G is an n-vertex a K, -free graph, then p(G) < p(T,,,).
Since each K, q-saturated graph is K, ,i-free, his theorem implies the following.

Theorem B [10]. If G is a K, 1-saturated graph with n vertices, then

p(G) < p(Tor).

The Perron-Frobenius Theorem implies that for a connected graph G and e € G, we have
p(G + €) > p(G). Thus it is natural to ask what can be said about a lower bound for p(G)
if we replace “K, i-free” in Theorem B by “K,;-saturated”. Kim, Kim, Kostochka, and
O [9] gave a new lower bound for the spectral radius of an n-vertex K, i-saturated graph.
The bound is tight for » = 2, but not for » > 3. For r = 2 the result is as follows.

Theorem C [9]. If G is an n-vertex Ks-saturated graph, then p(G) > p(Sh.2); equality
holds only when G is S, 2 or a Moore graph.

In this note, we prove that if G is an n-vertex K, -saturated graph such that for each
vertex v € V(G), 3 enp dw) = (r—2)d(v) + (r —1)(n —r + 1), then p(G) > p(S,r). By
using this result, we give a simpler proof of Theorem C and prove a new sharp lower bound
for p(G) in an n-vertex Ky-saturated graph G.

For undefined terms of graph theory, see West [14]. For basic properties of spectral graph
theory, see Brouwer and Haemers [2] or Godsil and Royle [7].



2 Results and proofs

We first prove Theorem 2.2. Note that the spectral radius of S, , is as follows.

Proposition 2.1. [6, 9, 12| For integers 2 <r < n,

r—24+/(r—22+4(r—1)(n—r+1)
5 :

P(Snr) =
Theorem 2.2. If G is an n-vertex K, -saturated graph such that for each vertex v € V(G),
D weN(w) Hw) = (r=2)d(v) + (r = 1)(n —r+1), then p(G) = p(Snr)-

Proof. Let A be the adjacency matrix of G and let x be the perron vector corresponding to
the spectral radius of G, say p. Note that x has all positive entries. Without loss of generality,
we may assume that Y . x; = 1. Suppose that p(z) = a? — (r —2)a — (r = 1)(n —r — 1).
Then we have

p(A)z =[A* — (r—=2)A— (r—1)(n —r+1)I] z = p(p)z. (1)

Thus we have

pp)=pp) | D | =D pre= > > pAuwra= > w > bl

veV(G) veV(G) veV(G) ueV(G) veV(Q) ueV(G)
> mi A)yy = mi A? —2)A —D(n =71+ 1))y,
Jmin 7 p(Aw = min D7 (47— (r=2A = (r = D(n—r+ 1))
eV(G) ueV(G)
= mj d —(r—2)d —Dn—-r+1)| >0, 2
i ;Nj() (w) | = (r =2)d(v) = (r = D)(n -7 +1) (2)

which yields that p(G) > p(S,,). O

With Theorem 2.2, we now give a simpler proof of Theorem C.
Proof of Theorem C. By Theorem 2.2, it suffices to show that for each vertex v € V(G),

Zd )>n—1.

weN (v)

Since the diameter of G equals 2 and G is Kj-free, the Breadth First Search yields ), ¢ y(,) d(w) =
d(v)+(n—1—d(v)) > n—1. Equality in the bound holds only when for every vertex v € V(G),
and every vertex x € V(G)\N[v], we have |[N(v) N N(z)| = 1. If V(G)\N[v] = 0, then G is
Sh,2. Otherwise, the girth of G is at least 5, which implies that G is a Moore graph. [

Next, we prove a sharp lower bound for the spectral radius in an n-vertex K -saturated
graph.



Theorem 2.3. If G is an n-vertex Ky-saturated graph, then p(G) > p(Sn3); equality holds
only when G is Sy 3.

Proof. By Theorem 2.2, it suffices to show that for each vertex v € V(G),

> dw v) +2(n — 2).

weN (v)

Let v be an arbitrary vertex in V(G).
Case 1. The graph induced by the closed neighborhood N[v] is Ky-saturated. Since N[v] is
Ky-saturated, N(v) is Ks-saturated. Thus by Theorem A,

> dw v) +2|E(GIN(0)])] +2(n — d(v) — 1)

weN (v)

d(v) + |[E(G[N(0)])| + (d(v) = 1) +2(n — d(v) — 1) (3)

=2(n—2)+ 14+ |E(GINW)])| > 2(n—=2)+ 1+ (d(v) — 1) = d(v) +2(n — 2).
Case 2. The graph induced by the closed neighborhood Nv] is not K,-saturated. In this
case, we may assume that A(G) < n — 2, which implies that 6(G) > 4. Also, since G is

K y-saturated, for each vertex x € V(G) — N[v] # 0, we have |N(z) N N(v)| > 2 and also
E(G[N(v)]) # 0. Thus if |E(G[N(v)])| > d(v) — 1, then we have

Y dw v) +2|E(GIN(0)])] +2(n — d(v) — 1)

wEN (v)

> d(v) 4+ 2(d(v) = 1) +2(n —d(v) — 1) = d(v) + 2(n — 2). (4)

Now we may assume that |[E(G[N(v)])| < d(v) — 2. Let Gy,...,G; be the nontrivial com-
ponents in G[N(v)] and let Ny = V(G U---G;), Ny = N(v) — Ny, and N3 = V(G) — N[v].
Note that N(v) = Ny U Ny and G[Ns] is a non-empty trivial graph. Since |E(G[N(v)])| > 1,
we have t > 1.

Let e = wjv; € E(G[Nq]). If two different vertices us,vs in N3 are adjacent to both uy
and vy, then they are not adjacent. For a vertex v, in Ny, by adding an edge u;vs or vyvs,
we have a copy of Ky in G[{uy,v2} U N3] or G[{v1,v2} U N3], respectively. Thus we can say
that |[IV1, N3]| > 2(n — d(v) — 1) + 2t, so we have

> d(w v) + 2| E(GIN1])| + [[N1, Ns]| + [[IN2, Na]|

weN (v)
> d(v) + 2(d(v) — |[Na| —t) + 2(n — d(v) — 1) + 2t + 3| Ny|
=d(v) + |Na| +2(n —1) > d(v) +2(n — 1).

Equality in the bound requires equality in each step of the computation. To have equality
in (3), we must have G[N[v]] = Sqw)+1,3 and every vertex in V(G) — N[v] is adjacent to
exactly two vertices. Since G[N[v]] = Sgw)41,3, we must have a vertex w in N(v), which
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is adjacent to all other vertices in N[v]. For any edge e € G[N(v)], exactly two vertices in
N3 are adjacent to the end-vertices of the edge, so we have A(G) = n — 1. Thus we have
d(v) =n — 1, which implies G = S, 3.

To have equality in (4), we must have d(v) < n — 2, |E[GIN(v)]]|] = d(v) — 1, and
I[N (v), Ns3]| = 2(n — d(v) — 1) for each vertex v € V(G). Thus for each vertex z € N3, we
have |N(z) N N(v)| = 2, and G[N(v)] is a tree by following the proof of t > 2. If G[N(v)]
contains a copy of P, as a subgraph, then by adding an edge between the two end-vertices
of the path, we must have a copy of K4, which implies that some vertex in N3 must have
three neighbors in N(v). This is s a contradiction. Thus we may assume that G[N(v)] is a
star, which implies that G[N[v]] is a star. For each edge e € G[N(v)], every vertex in N3 is
adjacent to the end-vertices of e. Thus A(G) = n — 1, which is a contradiction. [
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