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Abstract

Let D = (V, A) be a digraph. A vertex set K C V is a quasi-kernel of D if K is an
independent set in D and for every vertex v € V' \ K, v is at most distance 2 from K. In
1974, Chvéatal and Lovasz proved that every digraph has a quasi-kernel. P. L. Erd6s and
L. A. Székely in 1976 conjectured that if every vertex of D has a positive indegree, then
D has a quasi-kernel of size at most |V|/2. This conjecture is only confirmed for narrow
classes of digraphs, such as semicomplete multipartite, quasi-transitive, or locally semicom-
plete digraphs. In this note, we state a similar conjecture for all digraphs, show that the
two conjectures are equivalent, and prove that both conjectures hold for a class of digraphs
containing all orientations of 4-colorable graphs (in particular, of all planar graphs).
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1 Introduction and notation

The digraphs in this note may have antiparallel arcs, but do not have loops. Let D be a
digraph. We denote by V(D) and A(D) the vertex set and the arc set of D, respectively. We
say D is weakly connected if the underlying graph of D is connected. Let = € V(D). The open
(closed) outneighborhood and inneighborhood of z in D, denoted Nj(z) (Nj[z]) and Np ()
(Np[z]) are defined as follows.

Npj(@) = {y € V(D) |ay € AD)}, Njlal = Nj(2) U {a},
Np(x) = {y € V(D) |yz € AD)}, Npla] = Np(a) U{z}.

The outdegree of z in D is df,(xz) = [N} ()|, and the indegree of z in D is dj(z) = |Np()|.
Vertices of indegree zero in D are called sources of D and vertices of outdegree zero in D are called
sinks of D. By §1(D) (respectively, §~ (D)) we denote the minimum outdegree (respectively,
indegree) in D among all vertices of D. For each X C V(D), we let

NH(X) = | Nj@)\ X, NjX]=Np(X)UX,
reX

Np(X)=|J Np@)\ X, Np[X]=N,(X)UX.
rzeX

Let u,v € V(D) and K C V(D). The distance from u to v in D, denoted distp(u,v),
is the length of a shortest directed path from w to v. The distance from K to v in D, is
dist p(K,v) = min{distp(z,v) |z € K}. Wesay K is a kernel of D if K is independent in D and
for every v € V(D) \ K, distp(K,v) = 1. We say K is a quasi-kernel of D if K is independent
in D and for every v € V(D) \ K, distp(K,v) < 2. 1

A digraph D is kernel-perfect if every induced subdigraph of it has a kernel. Richardson

proved the following result.

Theorem 1 (Richardson [10]). Every digraph without directed odd cycles is kernel-perfect.

The proof gives rise to an algorithm to find one. On the other hand, Chvétal [4] showed
that in general it is NP-complete to decide whether a digraph has a kernel, and by a result of
Fraenkel [6] it is NP-complete even in the class of planar digraphs of degree at most 3. While not
every digraph has a kernel, Chvatal and Lovész [5] proved that every digraph has a quasi-kernel.
In 1976, P.L. Erdés and S. A. Székely made the following conjecture on the size of a quasi-kernel
in a digraph.

Conjecture 1 (Erdés—Székely [1]). Every n-vertex digraph D with §7(D) > 1 has a quasi-kernel

of size at most %

'Our definition of a kernel is the digraph dual of what was originally defined in [6], and it is “consistent” with

the definition of a quasi-kernel.
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If D is an n-vertex digraph consisting of the disjoint union of directed 2- and 4-cycles, then

every kernel or quasi-kernel of D has size exactly 5. Thus, Conjecture 1 is sharp.

In 1996, Jacob and Meyniel [9] showed that a digraph without a kernel contains at least
three distinct quasi-kernels. Gutin et al. [7] characterized digraphs with exactly one and two
quasi-kernels, thus provided necessary and sufficient conditions for a digraph to have at least
three quasi-kernels. However, these results do not discuss the sizes of the quasi-kernels. Heard
and Huang [8] in 2008 showed that each digraph D with §(D) > 1 has two disjoint quasi-kernels
if D is semicomplete multipartite (including tournaments), quasi-transitive (including transitive
digraphs), or locally semicomplete. As a consequence, Conjecture 1 is true for these three classes

of digraphs.

We propose a conjecture which formally implies Conjecture 1. It suggests a bound for
digraphs that may have sources. Note that each quasi-kernel of a digraph contains all of its

source vertices and hence contains no outneighbors of the source vertices.
Congecture 2. Let D be an n-vertex digraph, and let S be the set of sources of D. Then D
has a quasi-kernel K such that
n+ |S] = [Np (S|
5 :

K| <
To show that the upper bound above is best possible, consider the following examples.

e Let S be a nonempty set of isolated vertices, and let D be a digraph obtained from
a directed triangle by adding an arc from every vertex in S to the same vertex in the

triangle. Then every quasi-kernel of D has size |S| + 1 = %

e Let D be an orientation of a connected bipartite graph with parts S and 7" where each arc
|S|+IT\)2+\S\—|T|.

goes from S to T. Then S forms a quasi-kernel of D of size |S| = (
In this paper, we support Conjectures 1 and 2 by showing the following results.

Theorem 2. Let D be an n-vertex digraph and S be the set of sources of D. Suppose that

V(D) \ N} [S] has a partition V; U V4 such that D[V;] is kernel-perfect for each i = 1,2. Then
JINt

D has a quasi-kernel of size at most M.

Since by Theorem 1, every digraph without directed odd cycles is kernel-perfect, Theorem 2

immediately yields:

Corollary 3. Conjectures 1 and 2 hold for every orientation of each graph with chromatic

number at most 4.

By the Four Color Theorem [2, 3], Corollary 3 yields that Conjectures 1 and 2 hold for every
digraph whose underlying graph is planar.
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Theorem 4. If Conjecture 2 fails and D is a counterexample to it with the minimum number
of vertices, then D has no source.

Since Conjecture 2 implies Conjecture 1, Theorem 4 implies that the two conjectures are

equivalent.

In the next section we prove Theorem 2 and in Section 3 prove Theorem 4.

2 Proof of Theorem 2

Let D' = D — N$ [S] be the digraph obtained by removing the source vertices and their
outneighbors, and V3 U Vo = V(D') be a partition of V(D’) such that D[V;] is kernel-perfect
for each ¢ = 1,2. In addition, we choose such a partition so that |V5| is as small as possible.
Observe that adding a source vertex v to a kernel-perfect digraph H results in a new kernel-
perfect digraph: let H' be the resulting digraph, and let F' be a subdigraph of H' that contains
v. Then K U {v} is a kernel of F' where K is any kernel of F' — N7, [v] in H.

If there exists some v € V5 with no inneighbors in V7, then we may move v from V5 to V7, and
obtain a new partition of V(D’) into kernel-perfect subgraphs with a smaller V5 by Theorem 1.
Thus, by the choice of V5,

Ny (w)yNVi #0  for every v € Va. (1)

For a digraph F' and an independent set R C V(F'), we say Ry C R is a concise set of R
in F if Nf(Rg) = Nf(R) and |Ro| < [N/ (Rp)|. Indeed, every independent set has a concise
set—iteratively add vertices v from R to Ry if and only if [N (Ro U {v})| > | N (Ro)|.

Since D[V1] is kernel-perfect, it has a kernel R. Let Ry be a concise set of R in D'. Let
D" =D'— (RyUN},(R)) = D' — Nj,[Ro]. We partition R\ Ry into sets S” and T of sources
and non-sources in D” respectively. Note that since each v € S” was not a source in the original
digraph D, v must have an inneighbor in V(D) — V(D").

Set K = SURyUT. We will show that K is a quasi-kernel of D. We first show that it is
independent. Indeed, K N R is independent, since R was a kernel of D[V;]. There are no arcs

from KN R to K\ R = S because each vertex in S is a source in D. Similarly, there are no arcs
from S to S. Finally, there are no arcs from S to K\ S because K\ S C V(D') = V(D) — N} [S].

Now we check that each vertex is at distance at most 2 from K. For any v € N$ [K], we have
distp(K,v) < 1. Consider v € V4 \ Nj[K]. Recall that R is a kernel of D[Vi], so Vi C N} [R].
It follows that since Ry is a concise set of R, the vertex v must be contained in R\ K = 5”.
Therefore v has an inneighbor in N7 [S] U N}, [Ro] € NJ[K], hence distp (K, v) < 2.
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Now suppose v € V2 \ NA[K]. By (1), v has an inneighbor u € Vi. If u € N [K], then
distp(K,v) < 2. So we may assume u € V3 \ NAH[K] = S”. Since S” C R, v € N}, [R]. But Ry
is a concise set of R, so v € N}, (Ro) C Nj[K]. We get distp(K,v) < 1.

Therefore, K is a quasi-kernel of D. If |[T| < |[V(D")\T| (so 2|T| < |V/(D")uT| = |V (D"))]),
then using the fact that Ry is a concise set,

1 1
K| = 18|+ [Ro| + |T| < 8] + 5| Ro U N (R)| + 5 [V(D")]

<11+ SIV(D)\ NSIS] < S0+ 15|~ INA(S)),

and the theorem holds. Thus, assume that |T| > |V(D")\ T| (so [V(D")\ T| < |[V(D")|/2).
Note that V(D")\ T = (Vo \ N},(R)) US”. Since D[V5] is kernel-perfect and adding source
vertices preserves kernel-perfectness, the digraph D” — T is also kernel-perfect. Let W be a
kernel of D” — T and set K’ = (SURyU W)\ N (W).

Similarly to K, the set K’ is independent in D. Since |T| > |V/(D")\ T},

n+[8| = NS (S)]
5 :

1 1
K1 <181+ |Rol + W] < 18] + 1 [Ro U NB(R)| + L V(") <
We now show that distp(K’,v) < 2 for every v € V(D) \ K.

Observe that S” C W since the vertices in S” are sources in D” — T. Clearly, we have that
each vertex v € V(D" — T) has distp(K’,v) < 1. Now suppose v € T. Since v is not a source
in D", it has an inneighbor in V(D”), and this neighbor cannot be in T" because T C R is
independent. Hence distp(K’,v) < 2.

We have distp(K’,v) < 1 for all v € NA[S]. It remains to consider v € V(D) \ V(D") =
N} [Ro). If v € Ry, then either v € K’ or v € N (W). Hence distp(K’,v) < 1. It follows that
distp(K’,v) < 2 for all v € N}, (Rp). Therefore K’ is a quasi-kernel of D. O

3  Proof of Theorem 4

Assume Conjecture 2 fails and D is a counterexample to it with the fewest vertices. Let
n = |V(D)|. We assume n > 4 as the cases n < 3 are verifiable by hand. By the minimality
of n, D is weakly connected. Let S be the set of sources of D. We show that S = ). Assume
instead that S # ().

Case 1: [N/[S]| > 3. Let Dy be obtained from D by deleting all vertices in N [5], adding
two new vertices x and y, adding an arc from y to every vertex of D — NZS[S] that is an
outneighbor of some vertex of Ng(S ) in D, and adding an arc from x to y. Then x is the only
source vertex of Dj, and Na (z) = {y}. Since |V(Dy)| = |V(D)| — INAS]| +2 < |[V(D)| — 1,
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n—|NA[S]|+2+1-1
5 .

the minimality of n implies that D; has a quasi-kernel K of size at most Then

K = (K; \ {z})US is a quasi-kernel of G that has size at most

n—|NpS| +2+1-1
2

n+ S| - INS(S)]
2 Y

14|95 =
as desired.

Case 2: |[NJ[S]| < 2. Since D is weakly connected, and |S| > 1, we get |S| = 1 and
INA(S)| =1. Let D1 = D — N} [S]. If Dy has no sources, then by the minimality of D, digraph
D, has a quasi-kernel K; with |K;| < ”772 Then K = K7 U S is a desired quasi-kernel of D.
Therefore, we assume that D; has a source. Let

i = {v e V(D1)|dp, (v) = 0}.

If \NBI(Sl)] < |S1], we let Dy = Dy — S7. By the minimality of D, Dy has a quasi-kernel K of
size at most n_2_|sl|—g|ND1 (1)l < ”T_Q Then K = K1US is a desired quasi-kernel of D. Thus, we
assume that |Np, (S1)| > |S1|. Let D be obtained from D; by deleting all vertices in Ngl [S1],

adding two new vertices z and y, adding an arc from y to every vertex of Dy — Ngl [S1] that is

an outneighbor of some vertex of Nzgl (S1) in D1, and adding an arc from z to y. Note that z is

the only source of Ds, and NZ;Q (x) = {y}. Again, by the minimality of D, Dy has a quasi-kernel

—2—|N} [S1][+2+1-1
K of size at most — | D1[2 il . Then K = (Kj \ {z}) USUS; is a quasi-kernel of D

that has size at most

n—2—|Nt[Si]|+2+1—1 1
G, (51 vistes <

as desired. O
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