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ARTICLE INFO ABSTRACT

Keywords: An optimization algorithm is proposed for blend planning with linear mixing law and general parameter
Stochastic programming uncertainties. The objective is to make the final product satisfy all quality specifications with high probability,
Blend planning and maximize the production profit by carefully determining the feedstock ratio. Conventional approaches

Chance-constrained optimization

A ; that rely on deterministic optimization fail to account for parameter uncertainty, and thus may not generate
Gaussian mixture model

a probabilistic feasible solution. The proposed work formulates the blend planning problem as a joint chance-
constrained program (CCP). Using Boole’s inequality to decompose joint constraints and the Gaussian mixture
model to characterize uncertainty distributions, a conservative deterministic approximation of CCP can be
formulated. Through second-order cone relaxation, branch-and-bound, optimality-based bound tightening, and
reformulate-linearization techniques, the global optimum of deterministic approximation can be found. A risk
level adjustment procedure is presented to reduce the conservativeness and further improve the objective value
of the solution if posterior evaluation is allowed. Two numerical cases, including steel and gasoline productions,
are studied to show the solving time, probabilistic feasibility, and solution quality of the proposed optimization

method.

1. Introduction

The model-based blend planning and optimization is an essential
step to improve the profitability and quality of gasoline, metal, and
pharmaceutical manufacturing. However, the blendstock qualities are
usually unknown at the time of blend planning. If such parameter
uncertainties are not adequately characterized and integrated into the
optimization formula, the resulting deterministic optimum may not be
feasible in practice (Ben-Tal and Nemirovski, 2002; Ning and You,
2018). Such infeasible blending recipes may yield unqualified products
failing to meet environmental, safety, and healthy regulations. Hence,
the difference between nominal and real values of model parameters
should be considered in the optimization to guarantee the economic
efficiency, safety, and sustainability of the designed process.

The mathematical programming community has recognized the sig-
nificance of explicitly accounting for model uncertainty in the op-
timization. Some comprehensive reviews about optimization under
uncertainty and its successful applications in chemical engineering can
be found (Sahinidis, 2004; Grossmann et al., 2016). Popular approaches
include stochastic programming (SP), robust optimization (RO), and
chance-constrained programming (CCP). The SP is widely used for
long-term multi-stage scheduling because recourses actions can be
employed to compensate for undesired outcomes after the first stage
operations. RO tends to guarantee the feasibility under a pre-specified
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uncertainty set. Even though RO is less computationally expensive
than SP, its solution can be more conservative (Grossmann et al.,
2016). CCP overcomes RO’s drawback because it takes advantage of
uncertainty distributions and allows constraints to be violated at a small
level. Related applications include chemical process design (Peng et al.,
2022), power system operation (Fathabad et al., 2023), and waste solid
management (Sun et al., 2013). All operations are determined in a
single stage for blending recipe design, and the parameter distribution
can be characterized through historical data. Therefore, CCP will be the
research focus of this paper.

CCP was firstly introduced in 1959 (Charnes and Cooper, 1959)
and has become increasingly attractive to the optimization community
because of its flexibility to balance robustness and optimality (Li et al.,
2008). Due to parameter uncertainty, requiring constraints to be sat-
isfied under any scenarios could be conservative or even infeasible.
CCP allows the solution to violate constraints for a small chance,
denoted as risk level ¢, and thus is less conservative than RO. How-
ever, solving CCP is non-trivial. A single linear chance constraint with
normally distributed parameters or right-hand-side uncertainty with
log-concave distribution can be converted to a convex form (Prékoba,
1995). However, other uncertainty distributions do not enable such
an equivalent reformulation. If a program contains multiple chance
constraints, the resulting joint CCP is even more challenging to solve.
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Thus, most works of CCP focus on searching for a locally optimum
within a reasonable solution time. Scenario approximation (SA) and
sample average approximation (SAA) draw a large number of samples
to convert the CCP into a deterministic approximation. The distribution
approximation method aims to characterize uncertainty distribution in
a solvable form based on the historical data. Their details are discussed
below:

Scenario Approximation: This type of methods, consisting of two
categories, generates a scenario-based deterministic approximation of
CCP based on independent Monte Carlo samples. The first group of SA
generates a large number of scenarios (constraints) and requires 1 — ¢
of them to be satisfied (Luedtke and Ahmed, 2008; Luedtke, 2014).
As the number of scenarios increases, the solution of this method will
converge to the original CCP (Pefia-Ordieres et al., 2020). However,
because binary variables are introduced to represent the selection
of relaxed constraints, solving the resulting formula is NP-hard and
finally intractable as the number of samples becomes sufficiently large.
Another shortcoming is that the resulting solution profile is non-smooth
due to the stochastic nature of samples (Pefia-Ordieres et al., 2020).
The second group of SA focuses on the convex problem and requires
all sampled constraints to be satisfied to yield a feasible solution of
CCP with high confidence (Calafiore and Campi, 2006; Campi and
Garatti, 2008). This method is attractive because no binary variable
is introduced, and thus the formula is more scalable. Note that the
fundamental idea of this method is to determine the sample complexity,
namely, the number of samples. A series of works have been proposed
to reduce the sample complexity and achieve a less conservative so-
lution (Campi and Garatti, 2011; Alamo et al., 2015). Another effort
extends this methodology to nonconvex cases relying on the posterior
evaluation (Esfahani et al., 2015). However, the drawback of this type
of approach is also significant because there is no link between the
optimal solutions of CCP and scenario approximation (Pena-Ordieres
et al., 2020).

Sample Average Approximation: Because the expectation on indi-
cator function can be used to represent the probability of constraint sat-
isfaction, there are plenty of works to conservatively approximate indi-
cator function through sample average schemes. The conditional value-
at-risk (CVaR) approximation and the Bernstein approximation (Ne-
mirovski and Shapiro, 2006) are two typical schemes. The sigmoidal
approximation is another option as a smooth method to replace the
indicator function in the chance constraints (Tovar-Facio et al., 2018).
Alternatively, the difference-of-convex functions can be employed to
approximate the indicator function tightly (Hong et al., 2011; Shan
et al., 2014). However, the resulting optimization is difficult to solve
because its gradient information is inaccurate in the interested re-
gion (Pena-Ordieres et al., 2020). A recent work adopts the projected
stochastic subgradient algorithm to solve a convergent sequence of
smooth approximation of CCP and reports promising results (Kan-
nan and Luedtke, 2021). In summary, SAA is a general but con-
servative method for CCP without explicitly exploring the shape of
distributions (Tovar-Facio et al., 2018).

Distribution Approximation: This methodology uses historical
data to estimate the probability density function (PDF), cumulative
distribution function (CDF), or quantile function, and then converts
the probabilistic constraint to an algebraic form. The kernel smoothing
method can be applied for the PDF, CDF, or quantile function estima-
tion to solve chance constraints with right-hand side uncertainty (Calfa
et al., 2015). The kernel method is non-parametric but may lead to
a computationally intensive formula. In Ref. Jiang and Guan (2016),
y-divergence is used to describe the confidence set of an estimated
PDF, and then a perturbed risk level replaces the original one in
CCP to guarantee the robustness under ambiguous distributions. Those
references show that data-driven PDF estimation is a promising and
robust method to solve general CCP.

This paper employs a Gaussian mixture model (GMM) to charac-
terize the distribution of uncertain parameters from historical data.
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It then develops a global optimization scheme for a conservative ap-
proximation of the original joint CCP. In previous work (Yang et al.,
2017), we have established a global optimization algorithm for CCP
with linear mixing law and Gaussian-distributed uncertainties. Further
removing the restriction of Gaussian distribution enables the optimal
blend planning under more general uncertainties. Note that a recent
paper (Hu et al., 2022) also studied GMM-CCP but can only solve the
global optimum for single chance-constrained program (SCCP), because
that method only evaluates the risk level on the bound of each sub-
region, which is not applicable to joint chance-constrained cases. In our
paper, the contributions of solving joint GMM-CCP are listed below:

» Boole’s inequality is used to decompose the joint chance con-
straints.

+ An outer approximation is built to successively approach the
inverse CDF of each Gaussian component by following Cheng
et al. (2012).

+ Branch-and-bound, optimality-based bound tightening (OBBT),
reformulate-linearization techniques (RLT), and risk level adjust-
ment are presented to form the global optimization scheme.

The rest of this paper is organized as follows. The chance-constrained
program for optimal blend planning, and its reformulation under GMM
are stated in Section 2. A global optimization framework for the deter-
ministic approximation is proposed in Section 3. Two case studies are
presented in Section 4 to show comparative results and highlight the
effectiveness of the proposed method. Finally, conclusions are drawn
in Section 5.

Notation. Throughout this paper, vectors are denoted by boldface
letters. The space of symmetric positive semi-definite matrices of di-
mension # is denoted by §'|. Let e represent a vector of all ones.
Its dimension will be clear from the context. All random parameters
are Slenoted with tilde mark. Let fe and Fg denote the PDF and CDF
for &, respectively. In particular, for p¢ € R" and ¥ € §, we let
N, X) : R" - R and @(; u, X) : R” - R denote the PDF and CDF of
the n-variate normal distribution with mean vector u and covariance
matrix X, respectively. We write & ~ N'(u, X) to express that & is
normally distributed with mean pu and covariance matrix X. Similarly,
for w € RY such that e'w =1, u; € R" and X, € §, Vs € {1,..., S},
we write € ~ Y7 w, N (u,, Z,) to express that & follows the Gaussian
mixture distribution.

2. Methodology

The conventional linear CCP assumes that qualities are normally
distributed, and then chance-constraints could be reformulated equiv-
alently as deterministic conic constraints, resulting in a tractable con-
servative approximation to the joint chance-constrained blending prob-
lem. Unfortunately, in many practical settings, the assumption of nor-
mally distributed qualities is unrealistic. For example, blendstock’s
chemical or physical property usually has its lower and upper limits,
or its distribution is non-symmetric. It is thus desirable to develop
a solution approach for CCP that is applicable to a general class of
distributions. In this section, we relax the assumption of normally dis-
tributed qualities, and use the Gaussian mixture model to approximate
the true distribution based on sampled data points. Subsequently, an
efficient approach is developed to reformulate the chance-constrained
optimization problem as a second-order cone program (SOCP).

2.1. Preliminary

The blending under uncertainties can be cast as a chance-
constrained linear program (Yang et al., 2017), shown below:

min rT
xeX

s.t. ]P’(SZx < g';x, Vg e Q) >1-e,

x
(cBP)
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where e is the total risk level. Vector g, is determined by the quality
specification. Q is the set of quality. X c R is the feasible region of
blending flow x with dimension B. Note that (C/3P) may incorporate
multiple chance constraints. A common approach is to decompose the
joint chance constraints into |Q| individuals with risk level ¢,. This
yields problem:

min rT
xeX

s.t. P (EZx < gqx> >1- €4 Vg € Q,

X

(IChB)

ZqEQ € =€
Based on Boole’s inequality, (ZCJ3) is a conservative (inner) approxi-
mation to problem (CBP).

2.2. Reformulation under mixture model

Univariate Gaussian mixtures. We begin our analysis for the case when
the uncertain qualities in the various blendstocks are uncorrelated and
each follows a Gaussian mixture distribution with known weights. This
model is adequate when the blendstocks, within set B := {1,2,..., B},
come from different sources with disjoint processing procedures, im-
plying that the modes of production of the blendstocks are unrelated
to one another. Formally, this assumption can be stated as follows for
each quality:

Assumption 1. For each blendstock » € B, it holds that & ~
>3 wy N (#p5:0; ;) with known weight vector w, € RY satisfying
e'w, = 1, means y,, € R, and standard deviations o, € R,, Vs €

{L,....,S}.

Two remarks about Assumption 1 are presented. First, the distribu-
tion of each random parameter consists of the same number of Gaussian
components to simplify the notation. Such a restriction can be relaxed
without any modification on the algorithm. Second, the number of
Gaussian components S and the mixture weights w,, Vb € B, can be
identified from measurement data using the Expectation-Maximization
(EM) algorithm. If the approximation error of GMM is large, then a
posterior check is necessary to ensure the solution meeting chance
constraints.

The following proposition enables us to derive a conservative ap-
proximation of (ZC/3) in the form of a second-order cone program
under Assumption 1.

Proposition 1. Given Assumption 1, for any fixed x € R, g € R? and
e € (0, 1), we introduce the following statements:

(@) P (.fo < ng) >1—-¢ and

) ith +(D‘1(§—:) xT%, x < g"x, Yk € SB,
where S := (1,2,...,SB). Let us define S® distinct B-tuples C, :=
(€ Cr oo s ¢0) Ve € SB, where ¢ € (1,2, S}, e 2= [y 5o g 617
" . 2 R
£, = (diag(oy 1, 0p,1) ", 6 = [pes 1y, 0> and the y satisfy

27k>1_€~

kesB

Then, statement (b) above implies statement (a).

Proof. For each b € B, let z, := &x, and the probability density
function of Z, is given by

S
fzb = Z wb,SN. (xb”b,s’ (xbob,s)z)
s=1

Let us denote N (x,uy . (x,0,,)%) as N, . For z = Ex =Y, 52, its
probability density function is
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fz= (Ef:l wl,le,s) * (Ef:l WZ,SNZ,s) o (Zil wB’SNB-S)
= X T &)
X (wl’xl./\flvxl * Wy Ny, * oo % wB,XBNB’sB)
Let c,i = sl,cz =55, ... ,cf = sp, then Eq. (1) can be written as

[z = Yiest [ben wb,cZ'Afl,c/l * "‘/z,cf Hoe
= Liess N (lpx. x"Epx).

where * is the convolution operator. The last equality of Eq. (2) holds
since the convolution of the probability distributions of independent
random variables equals the distribution of their sum. Thus, ETx also
follows a Gaussian mixture distribution. Its cumulative distribution
function is expressible as F; = ¥, c g5 6,® (s ji; x,x" £, x). Then, there
are

Nigon
" ae @

fx+ db-l(;—';) xT8,x < g'x, Vke SB
S 5, @ (ng;ith,xTEkx) >y, Vke SB
> Tiess 0 @ (8% i x"E,x) > s e
> YiesB O P (ng;ﬂZx, xT)A:kx) >1-¢
o PEx<g™>1-¢
This concludes the proof. []

Proposition 1 can be applied to each quality chance constraint by
introducing index ¢ for w, fI, ¢ and £. Then, the following conser-
vative approximation to (7€) under Assumption 1 is developed as a
deterministic optimization problem

maximize rT

XEX.y, ks

st fi,x +<1>-1(g:—~i VAXTE x <glx VgeQ, Vke S,
Vg€ Q, Vk € SB,

X

Yak Z Yok = quk

ZkES'B yq,k >1- aq,Vq €0,
Y4 =6
(LCBy)

where f,, and 2%,( are defined by extending fi, and £, in Proposi-
tion 1 to each quality constraint; 6, := []yepw,,»- The individual
risk level for each quality constraint is defined as a,,Vq € Q. Here we
still use Boole’s inequality to decompose joint constraints and require
the sum of individual risk levels to be e. The lower bound on v, is set
as 0.5, to ensure that (LCBy) is a second-order cone program when
Yqx is pre-determined. Theoretically, y,, can arbitrarily approach &,
but will render d)_l(y%k /8,.) to infinity. Thus, 0.99995, , can be set as
an upper limit of y,, for practical computations.

Several comments about (LCJ;) are presented. First, the number
of conic constraints in (£LC/) is given by |Q|S®. For a moderate num-
ber of blendstocks commonly employed in practice and small S, the
problem size will be manageable. If an uncertainty distribution needs
many Gaussian components to accurately approximate, the proposed
approach may not be applicable and we recommend sampling-based or
traditional robust optimization approaches. Second, the risk level will
be determined through a branch-and-bound scheme in order to further
improve the solution quality. However, the resulting computational
complexity will increase significantly because many bilinear terms
should be addressed. Third, using Boole’s inequality to approximate
joint chance constraints brings conservativeness. However, the risk
level ¢ can be gradually increased to improve the solution quality and
evaluated via posterior samples for its probabilistic feasibility.

Multivariate Gaussian mixtures. We now investigate the case when the
qualities across blendstocks are correlated. This scenario may happen
when some blendstocks are produced by the same material flows or
process units. The set of blendstocks can be divided into I subsets,
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denoted by B; with i € T := {l,...,I}, such that random variables
within B; are correlated. Moreover, /3; should be mutually exclusive
and collectively exhaustive. Vectors & and x are reordered such that all
elements within the same B; are adjacent, and then let & 5, to represent
the random variables in the subset ;. In particular, it is assumed that
the quality of blendstocks belonging to the same subset B; follows a
multivariate Gaussian mixture model:

Assumption 2. For each i € 7, it holds that §B ~ ZY L Wi N
(Mg, s> Zp,5) with known weight vectors w; € R satisfying e w, = 1,
mean vectors g, s € RIBI and covariance matrices % 5,5 € RIB iz,

The following proposition enables us to derive a conservative ap-
proximation (ZCB) in the form of a second-order cone program un-
der Assumption 2. It naturally extends Proposition 1 to the case of
multivariate Gaussian mixture distributions.

Proposition 2. Let & := (§5,,....¢5,) € RE, with €5 e RIS, vie I
Given Assumption 2, for any fixed x € RE, g € RB and ¢ € (0, 1), define
the following statements:

(@) P (Z‘Tx < ng> >1-¢ and

®) fpx+ 7' (5)

X2, x<g'x Vkes!,

Let us define all distinct I-tuples C; = (cl,cZ,....c]), Vk € {1,2,..., S8}
on the domain {1,2,..., S}, such that i, = [py ...,y 417, £ =
1:C 1

blkdiag(Z g, ), 8 i=Ilier w; o> and the y, satisfy
< .

sI
Zyk >1-c.
i=1

Then, statement (b) above implies statement (a).

Proof. Fix x € RE, g € R® and ¢ € (0, 1). Then, the probability density
function of z; := x};, &5 is given by

fz = Zs—l —

' = JenPilldeta, 2, xp )l

1 _
X exp (—E(Z,. = x0T Ep, %) 5 - y,gi,s))

N T T
Zs:l wi,SN(xB‘. ”B[,s’ xB‘_ ZB,-,st[ )

Since the %;, Vi € I, are independent, it follows the proof of Proposi-
tion 1 to reach the conclusion. Here we replace u;, and o, by pg
and Zp.e Vs={1,2,..,8}to obtain f;, and fk, respectively. []

From Proposition 2, the following conservative approximation is
obtained under Assumption 2 as a deterministic optimization problem

min  rT
XEX,y, 1,

st oupx+ qb—l(;‘f—*), [xTZ, x<glx Vg€Q VkeS,
B q.k »
Yok = Vak = Zq’k,Vq €9Q,Vke S,

l-a, VgeOQ,

X

Yies! Yok =
g% =€
(LCBy)

In the case |B;| = 1, Vi € I, the formulation (£LC/y,) is recovered. In
the case I = 1, the formulation for general (not necessarily diagonal)
covariance matrix X, is recovered. Since I < B, (LCB),) has fewer
conic constraints compared with (£C/3y). Moreover, the number of y,
and associated bilinear terms in (£CB,,) is also smaller than that of
(LCBy). Because (LCB);) represents more general cases, its solution
method will be our focus hereafter.

The lower bound y = in (£CB,,) is required to be greater than or
equal to 0.56, such_tqhat a second-order cone relaxation and outer
approximation can be constructed in the next section. This restriction
narrows the feasible region and thus may lead to a sub-optimal solution
of the original joint CCP.

3. Global optimization method for (LCB,,)
3.1. Outer approximation

One of difficulties for optimizing (£C7,,) is that @~!(-) does not
have an analytical form. Note that 7” — l(7"") is convex when
Lk

‘1
Yok

€ [0.5,1]. An outer approx1matlon for @~!(-) can be developed by
féﬂowmg Cheng et al. (2012) and previous work (Yang et al., 2017,
2020). A graphical illustration is shown in Fig. 1. For the cutting plane
at a sampling point of y, ,, denoted as y, ,, its slope and intercept are:
—1 Yk

do~'( 5o ) |

h, = =
q.k,! ’
d(”—*) vy ¢(d>-l<—’§j: )
Vq k.l Yakil
q kg — =" ( ) - q kil o 5
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Then, the equation of cutting plans is shown in Eq. (3)

Ykl
q.k.l
Sq.k

Vg 2 h +t,0 VIEL, 3

where v, is a newly introduced auxiliary variable; L is the set of
sampling points for cutting plane construction.

Consequently, an approximation of (LCB),) is:
T

min r
XEX.Yy Vg kg

s.t. ,u;kx + Uq’k‘/xTqukx < ng Vg€ Q,Vk e S!,

Dhesl Yok 21—y Vg E€Q,
wegWey,

X

(LCBy)
Vak Z Vqk = 7

v 2 h +tqkl,Vq€Q vkes!, viec,

q.kl 5 5
Yyeo % =€
As |L| —» o, (LCB,) approaches (£LCBy,) with arbitrary accuracy. In
practice, a number of sampling points are evenly distributed in the
domain [0.5, 1] initially. The solution points y;‘ P obtained during the
branch-and-bound will be chosen as the new sampling points for cutting
plane generation to continuously tighten the outer approximation.

3.2. Convex relaxation

The formula (£CB,) is still not convex because of the term
U5/ X" X, x. However, the McCormick method (McCormick, 1976)

can be used to develop a convex relaxation. Let us introduce a new
variable for the bilinear term B, = v, ,x, such that

Vg k \/xTzq,kx = \/ﬂ;kzq,kﬂq,k
According to the McCormick relaxation, a set of inequalities should

be introduced to replace the bilinear term. Then, the resulting convex
relaxation (SOCP form) is:

min rT

XEXYg.k:Vq %Py k

s.t. yT X+ 4 /ﬁgkzq,kﬁq,k <gx Vq€Q VkeS!,

Dies! Yax 2 1 —ag. Vg €Q,
Yok 2 qu>yq Vg€ Q, Yk e S,

X

k;hqk,;'—‘+tqk,, VgeQ, Vke S, viecr,
el Ty k.

Yieo % =€

Bk 2 Vg X + Ui X — Uy X,
Bok 2 Uy X + Vg X =1 X,
ﬁq,k < Eq,kx + Uq,kz - Eq,kz’
Box Su,x+ vq,ki—gq’kf,

(LCBE)

where the upper and lower bars represent the upper and lower bounds
on variables, respectively. Solving (£LCB:) will yield a lower bound
solution, denoted as LB.

This SOCP form is the essential step of the proposed global opti-
mization scheme. It requires that constraints can be affinely relaxed
and affinely dependent on the uncertain parameters. The linear mixing
law meets these two criteria. If a nonlinear mixing law satisfies these
conditions, such as the octane model in Yang et al. (2020), it is also
solvable by the proposed approach.

3.3. Optimality-based bounds tightening

McCormick method generates the tightest convex envelop for bi-
linear terms. In general, a smaller variable interval implies tighter
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relaxation. Traditional interval analysis can be used to reduce the
bound quickly. However, previous research shows that an optimality-
based bounds tightening (OBBT) can be more efficient. In that scheme,
two convex optimization subproblems are solved for each variable
to yield its lower and upper bounds, respectively. In the blending
problem, both x and Uy are involved in bilinear terms. Thus, their
OBBT formulas are shown in (37):

min/max
XEX.Yy Vg k ,aq,ﬁq.k

s.t. Hy X+ /ﬁ;kzq,kﬁq,k <gix Vq€Q VkeS!,
Tx < UB,

Yhes! Y 21—

Yok Z Yok = quk,

Xy OF Uy

a,, Vq €09,
Vg€ Q, Vke ST,

ok > hq‘kv,% +i, V9EQ Vke S VieL,

ZqEQ &g =6

Bk 2 0pX + 0% = Uy %,
Bk 2 0y )X + Vg X — U X,
Byk S UgpX + 0gpX = Vg X,
Bok Su %+ uqkf—gq’kf,

(BT)

where UB is the upper bound solution of (£CJ3,,). The constraint r'x <
UB requires that any feasible values of x, or v, , lead to a lower solution
than UB. Because (J37) is still a SCOP, x, and Ugx Can be solved to their
valid bounds quickly.

3.4. Reformulation-linearization technique

The reformulation-linearization technique (RLT) is a way to create
extra linear constraints for tightening the convex relaxation. Let us
consider a valid, linear, and deterministic constraint for x, shown in
Eq. (4):

u'x<U, ()]

where u and U are deterministic coefficients. Eq. (4) can be multiplied
with v, to form a series of new constraints:

3 ulx,,

beB

<Upgy— uTﬂq_k SUvgy, Yk € SI,Vq € Q. (5)
Note that (5) does not introduce any new variables. It only constrains
auxiliary variable f used in the McCormick relaxation. Thus, (5) can
be integrated into (£C5:) and (/37) to tighten the convex relaxation
gap, and speed up the global optimization.

3.5. Branch-and-bound

In this sub-section, a global optimization framework for the con-
servative approximation formula (£C5),) is developed. Even though
solving (/37) can tighten the convex relaxation, a branch-and-bound
scheme is more crucial and efficient to reduce the relaxation gap
continuously. To this end, the root node of a searching tree is initialized
with the entire variable intervals. During the tree traversal, (LCB.) is
solved at each node with associated intervals, and then branching is
conducted to generate new nodes on the searching tree. According to
previous research (Yang et al., 2017), branching x is more efficient than
branching v, , for global optimization. Hence, the following criterion is
proposed for branching variable selection.

174 —drgmaxz Z |quxb :;,k,bl’ 6)
q€Q keST

where v* i x and ﬂ . ATE the solution of (£C/3) at a node. Once x, is
chosen, 1ts 1nterval 1s partltloned into two parts: [x,,, x; ] and [x},,xy],
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Fig. 2. The algorithm flowchart for solving (£CJ3,,).
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Fig. 3. The algorithm flowchart for solving (£C13;) with ¢’ adjustment. UB is the upper bound solution given a specified ¢’ in (£C3;). LB is the lower bound solution. R_UB is

the true optimal solution meeting chance constraints with the desired risk level e.

while other variables’ bounds are unchanged. The resulting two exclu-
sive feasible regions will be saved as two nodes in the searching tree
for further processing.

Once the risk level y & in the solution of (LCB:) at a node is
obtained, it can be substltuted into (LCB),) to yield an upper bounding
problem:

min rTx

XEX

/-
St x +¢—1($’;), [xTZ x<gjx VgeQ Vkes!

If (/'B,,) is infeasible, it implies that the convex envelop made from

WBy)

outer approximation and McCormick relaxation is not tight enough.
Then, the sampling point y;k should be included in set £ to yield an
additional cutting plane, and the variable bounds should be further
reduced by branching. If (U°,,) is feasible and its objective value
is smaller than the existing UB, then UB can be updated. The entire

algorithm will terminate if the relative gap, defined in Eq. (7), is smaller
than a threshold.
UB-1B

LB
A flowchart of the global optimization algorithm for the deterministic
approximation of joint CCP is shown in Fig. 2.

Relative gap = )

3.6. Risk level adjustment

(LCBy) serves as a conservative approximation of (C/37) based on
the Boole’s inequality for decomposing joint chance constraints and
enforced constraint y, , > Zq = 0.55, ;. The global optimal solution of
(LCByy) can be further 1mproved by ad_]ustlng the risk level if posterior
evaluation is allowed. Two approaches can be applied:

Method I Replace some conic constraints by their deterministic linear
part.
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Method II Directly increase ¢ in (£CB),).

Both methods can be synthesized into a new optimization formula:

min  rlx

xe)&,yq_,‘,aq
st HyX +¢*1(%)‘ [xTZ, x<gx VgeQ VkeS'\S/,
M;kx < ggx Vg€ Q, Vk € S'ql,

?q,k 2 Yok 2 Zq,k’ Vg€ Q, Vke S!,

Lrest Yo 21 —a, VgEQ,
ZqEQ &, = 6',
(LCBR)

where the index set $! incorporates eliminated second-order cone
constraints for quality ¢, defined as S q’ = {klé,x < R}1,Vg€Q. Risa
small positive threshold to limit the number of dropped second-order
cone constraints. (£C/Bg) is a further relaxation of (£C5,;) because
the square root part, as a positive protection term, is removed to
recover the deterministic linear constraint. Moreover, this relaxation
can reduce the number of bilinear terms, and thus may speed up the
global optimization algorithm. By increasing the allowable risk level
€ > e in (LCBy), the limitation of Boole’s inequality in solving joint
chance-constrained programs can be further hedged.

Both methods I and II need posterior evaluation. To this end, a large
number of independent scenarios for uncertain parameters should be
generated as a testbed to assess the constraints violation rate, given a
solution x. Then, an one-dimensional bi-section search scheme can be
used to adjust €’. Let us pre-specify a step size 4 such that ¢/ = e+4 and
€,;4 = €. When a better upper bound (feasible) solution of the resulting
(L£CBy) is found during the global optimization, it will be evaluated on
the test scenarios to determine its probabilistic feasibility in (CBP). If
the evaluated constraint violation rate is greater than e, then 4 < 4/2;
Otherwise ¢,,; = €¢’. Let ¢’ = ¢,,,+ 4 and solve (£C3y) again. The entire
procedure of the risk level adjustment is shown in Fig. 3.

It is worthwhile to note that even though the risk level adjustment
can reduce the conservativeness of the solution, the proposed method
still cannot guarantee the global optimality of the original joint CCP
due to Boole’s inequality and approximation nature of GMM.

4. Case studies

Two blending problems with non-Gaussian distributed uncertainties
are solved in this section. By observing the histogram of uncertain
parameters shown in Figs. 4-13, it is clear that GMM is needed.
We start from 2-component and gradually increase the number of
Gaussian components to improve the likelihood of data fitting. This
procedure terminates when the likelihood cannot be enhanced signifi-
cantly. Because the number of conic constraints and bilinear terms are
dependent on the quantity of Gaussian components, less component
GMM is preferred to enable fast calculation. In case studies, we find
that 2-component GMM is sufficient to approximate the true distri-
bution and does not incur considerably long computational time. The
posterior evaluation of the CCP solution consisting of 10000 inde-
pendent samples of uncertain parameters is conducted to mitigate the
approximation error.

The software platform is GAMS 32.2.0, with SOCP solver CPLEX
12.10. The hardware platform is a laptop with Intel Core i7-7500U
CPU 2.70 GHZ and 8GM RAM. The risk level ¢ is set as 5%, as
previous research (Yang et al., 2017). When the relative gap reaches
1%, the global optimization for (L£CB);) terminates. There are 200
sampling points evenly distributed in the domain [0.5, 1] of 7, , during
the initial stage of outer approximation for both cases. More sampling
points and cutting planes will be generated on-the-fly based on the
solutions of branch-and-bound. For comparison, SA is employed to
solve two cases with decreasing number of scenarios. Because SAA
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Table 1
Product quality standard of steel.

Quality Upper limit Lower limit
Carbon content 3.50% 2.50%
Chrome Content 0.45% 0.10%
Manganese Content 1.65% 1.00%
Silicon Content 4.00% 2.00%
Table 2
Raw materials nominal quality, cost, and available amount.
Raw Cost Carbon Chrome Manganese Silicon Amount
materials per Pound percent percent percent percent available
Pig Iron 1 0.0300 4.00% 0 0.90% 2.25% 1500
Pig Iron 2 0.0645 0 10.00% 4.50% 15.00% 1500
Ferro-Silicon 1  0.0650 0 0 0 45.00% 1500
Ferro-Silicon 2  0.0610 0 0 0 42.00% 1500
Alloy 1 0.1000 0 0 60.00% 18.00% 1500
Alloy 2 0.1300 0 20.00%  9.00% 30.00% 1500
Alloy 3 0.1190 0 8.00%  33.00% 25.00% 1500
Carbide 0.0800 15.00% O 0 30.00% 20
Steel 1 0.0210 0.40% 0 0.90% 0 200
Steel 2 0.0200 0.10% 0 0.30% 0 200
Steel 3 0.0195 0.10% 0 0.30% 0 200
Table 3
Mean, standard deviation, and weight of GMM component in case 1.
Quality Mean Mean  Standard Standard Weight Weight
1 2 deviation 1 deviation 2 1 2
Steel 2 Carbon 0.0851 0.1487 0.0008 0.0036 0.7653 0.2347
Steel 3 Carbon 0.0648 0.1529 0.0007 0.0054 0.6371 0.3629
Steel 2 Manganese 0.3583 0.2612 0.0091 0.0035 0.3546  0.6454
Steel 3 Manganese 0.2718 0.3515 0.0021 0.0049 0.6424 0.3576
Pig Iron 1 Silicon 2.0346 2.8375 0.1898 0.5100 0.6728 0.3272

requires special algorithms to tune step size, smoothing parameters, and
initial guesses (Kannan and Luedtke, 2021), it is not considered here.

4.1. Case 1: The pittsburgh steel company blending problem

A manufacturer plans to produce a new type of steel with the follow-
ing quality standard, shown in Table 1, and minimize the production
cost (Schrage, 2006). The nominal quality parameters &, and cost of
raw materials are shown in Table 2. All parameters are not correlated.
Except chrome content, all other three quality parameters are subject
to uncertainties. Steel 2 carbon and manganese percent, Steel 3 carbon
and manganese percent, and Pig Iron 1 silicon percent are assumed to
satisfy lognormal distribution. Their PDFs are non-symmetric, and ap-
proximated by 2-component GMMs with 1000 data samples, shown in
Figs. 4-8. The mean, standard deviation, and weights of each Gaussian
component for these properties are shown in Table 3. Other non-zero
parameters of carbon, manganese, and silicon are Gaussian distributed,
&, ~ N'(&,,diag(0.01€,)%).

From the last two columns of Table 3, the §,, can be calculated.
Because the minimal value of § for carbon 0.2347 x 0.3629 = 0.0852
is still larger than ¢, we decide not to remove any chance constraints,
and set ¢/ = € = 5%. As a result, (LCBy) recovers to (LCBy,), and it can
be solved to the global optimum. The solution time, objective value,
constraints violation rate in posterior evaluation, and 1 -y, ,/é,, are
shown in Table 4. Through the sampling-based posterior evaluation, the
solution results in 4.73% constraint violation rate, which is very close to
the desired 5%. After updating the €', a better solution cannot be found
if the relative gap is set as 1% to terminate the global optimization of
(L£CBR) given a specified €'. The final solution of blending recipe is
shown in Table 5.

For comparison, the sampling complexity in Alamo et al. (2015) is
adopted to implement SA. With 11 variables, confidence 109, and ¢ =
5%, the number of scenarios should be at least 738 (Alamo et al., 2015).
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To mitigate the randomness of sampled scenarios, SA is repeated 200
times with different batches of scenarios, and only the best solution is
reported in Table 4. Unfortunately, no feasible solution is found within
200 replicates, implying conservativeness of the sample complexity.
By allowing the posterior evaluation, we can reduce the number of
scenarios and solve the SA many times until a satisfactory solution is
obtained. Via trial-and-error, a comparable solution is found using 80
scenarios, and 200 replicates. Please note that GMM-CCP finds such a
solution without using posterior evaluation (no risk level adjustment),
whereas SA needs a significantly large number of samples to build the
formula and check the probabilistic feasibility.

4.2. Case 2: Gasoline blending problem

An oil company plans to produce 3 types of gasoline to meet quality
specification with 95% and yield high profit. The price and quality
specifications of 3 types gasoline are shown in Table 6. Each type
of gasoline has maximal production 50 and minimal production 1.
There are 10 types of intermediate blendstocks with nominal quality

Table 4
Results of case 1. Total constraint violation rate is the synthesis (not summation) of
all qualities.

Solution time (s) Objective value (Cost)

Proposed method 73.9 28.524
SA 738 69.3 Infeasible
SA 80 67.5 28.528

Violation rate L= Yo/ 8k
Carbon upper limit 0 0.01%, 0.01%, 0.01%, 0.01%
Carbon lower limit 2.35% 2.64%, 1.94%, 2.64%, 1.94%
Manganese upper limit 0 0.01%, 0.01%, 0.01%, 0.01%
Manganese lower limit 0.37% 0.39%, 0.20%,0.40%, 0.20%
Silicon upper limit 0.41% 0.01%, 0.71%
Silicon lower limit 1.69% 2.51%, 1.02%
Total 4.73% N/A

parameters shown in Table 7. We assume that RVP, octane rating, and
sulfur are subject to uncertainties. The RVP of x3, x5, x)o, sulfur of
x4, and octane of x; satisfy lognormal distribution, approximated by
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Table 5 Table 6
Blending recipe for case 1. Gasoline specifications and prices.
Raw materials Amount Percent Gasoline Density RVP Octane Sulfur Benzene Price
Pig Iron 1 586.601 58.66% (max) (max)  (min) (max)  (max)
Pig Iron 2 10.000 1.00% Type I 0.79 7.8 85 10 0.6 49.7
Ferro-Silicon 1 0.000 0 Type 1I 0.79 7.8 87 10 0.6 52.0
Ferro-Silicon 2 10.601 1.06% Type III 0.79 7.8 91 10 0.6 54.6
Alloy 1 6.234 0.62%
Alloy 2 0 0
Alloy 3 0 0
Carbide 20.000 2% are Gaussian distributed, Eq ~ N(,, Z,). The diagonal terms of X,
Steel 1 175.181 17.52% 2 . .
Steel 2 0.000 0 are (0.01£,)* and the octane rating of xg and x, are correlated with
Steel 3 191.377 19.14% covariance 0.4295.

2-component GMM with 1000 independent samples. Their PDFs and
histogram are shown in Figs. 9-13. The GMMs parameters are listed in
Table 8. Other non-zero parameters of RVP, octane rating, and sulfur

Given weight wj, in Table 8, there are 2° = 8 combinations of
Gaussian components (conic constraints) for RVP. Let us set threshold
R = 0.05. Then, three conic constraints, corresponding to égypg =
0.1891x0.2797%0.3599 = 0.0190, 6gyp ¢ = 0.1891x0.7203%0.3599 = 0.0490,
and 6pyp; = 0.1891 x 0.2797 x 0.6401 = 0.0339, can be replaced by
their linear part. We set the initial ¢ = ¢ = 5% and compare the
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Table 7 Table 8
Blendstocks nominal parameters. Mean, standard deviation, and weight of GMM components in case 2.
Blendstock Max flow Density RVP Octane Sulfur Benzene Price Stock Quality Mean Mean Standard Standard Weight ~ Weight
X 8 0.565 60 84.8 10 0 36 8.0 1 2 deviation 1  deviation 2 1 2
Xy 2.6 0.656 10.4 69.8 0 3.8 40 2.6 x; RVP 1.4932 1.9487 0.0569 0.1202 0.8109  0.1891
X3 12.0 0.772 1.6 719 6 0.4 39 12 x5 RVP 2.5357 3.1574 0.2108 0.4262 0.7203  0.2797
X4 20.1 0.618 11.2 821 1 0 41 20.1 X9 RVP 0.3583 0.2612 0.0091 0.0035 0.6401  0.3599
X5 15.6 0.855 2.7 929 0 0 52 15.6 x4 sulfur 1.1332 0.9433 0.0530 0.0228 0.2950 0.7050
Xg 2.3 0.693 46 68 0 0 42 2.3 x5 octane  98.2102  98.7116  0.1807 0.0602 0.4459  0.5541
X5 26.3 0.679 10.6 91.6 41 0.6 47 26.3
Xg 17.5 0.757 4.4 86.7 111 0 44 17.5
Xy 9.2 0.803 33 851 30 0 45 9.2
X10 18 0.713 21 937 20 0 55 18.0

solution with and without conic constraints relaxation, in Table 9.
Their objective values are similar, but the solution time is significantly
reduced by relaxing several conic constraints. This relaxation yields the
less conservative formula (£C3;) and makes the on-spec rate of the

10

solution closer to the desired level, 95%. It is worthwhile to note that
the resulting solution is infeasible to the conservative approximation
(LCByy), but can be feasible to the original joint CCP if posterior
evaluation can validate it.

To speed up the global optimization, we can introduce RLT based on
any linear and deterministic constraints by multiplying v, , with them.
Besides existing density and Benzene quality constraints, the following
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total flow constraint is also considered for each product:

U,< X xi,<Up p=123, ®

=S £
where the subscript p represents each product. Although the default
upper bound value ﬁp is 50 and lower bound value U » is zero, they can
be further tightened through OBBT. Then, two extra RLTs are generated
for each gasoline. Table 9 shows that introducing these extra RLTs can
substantially reduce the solution time.

To further improve the objective value, we use Algorithm 2 to
adjust ¢’ and show the final solutions in Table 10. The conic constraint
relaxation leads to a slightly better solution and shorter computation
time again. However, even though €’ is increased, the objective value
is only slightly improved. This is reasonable because the on-spec rate
is already nearly 95% when €’ = 5%.

To compare the proposed method with SA, we still employ the
sample complexity proposed by Alamo et al. (2015). Even though there
are 30 variables in total, the problem requires each type of gasoline to
meet specifications with 95% chance, respectively. Thus, there should

11

be 702 scenarios based on 10 variables, confidence 107, and ¢ = 5%.
Then, the number of scenarios is gradually reduced if the posterior
evaluation shows the probabilistic feasibility of the resulting solution.
To mitigate the randomness of sampled scenarios, SA is repeated 200
times with different batches of scenarios, and only the best solution is
reported in Table 10. These results show that the sample complexity
bound proposed in Alamo et al. (2015) is valid but conservative. By
reducing the number of scenarios to 50, a near-optimal solution is
achieved. However, SA does not provide the theoretical bound on
optimality. There is no guarantee that the solution can be improved
monotonically as the number of scenarios is reduced. Thus, a trial-and-
error scheme should be used to determine the number of scenarios.
Moreover, the number of replicates (200 in our study) for SA is purely
determined heuristically without any justification, which cannot be
generalized.

The calculated blending recipes for 3 types of gasoline are shown
in Fig. 14. Clearly, type II is the most profitable gasoline, and thereby
it reaches the maximum production 50. Type III is the least profitable
gasoline due to its high octane rating, and thus its production is nearly
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With constraint

Without constraint

relaxation relaxation
Time with flow RLT (s) 1514.0 2427.5
Time without flow RLT (s) 2108.1 3447.9
Objective value (Profit) 378.00 377.26

On-spec rate (I, II, III)

95.48%, 95.22%, 96.11%

95.80%, 95.54%, 96.15%

Table 10
Final results of case 2 by increasing ¢’.
With constraint Without constraint SA SA
relaxation relaxation 702 50
Solution time (s) 6668.5 11049.7 101.9 69.7
Objective value (Profit) 378.49 378.44 354.6 377.86
On-spec rate (I) 95.36% 95.42% 98.34% 95.56%
On-spec rate (II) 95.05% 95.12% 98.75% 95.84%
On-spec rate (III) 96.32% 97.75% 99.29%  95.66%
€ 5.50% 6.25% N/A N/A

12

zero. In the blending recipe, x5 is selected because of its low RVP and
price. x, is selected because of its low sulfur content and density. xs
has low RVP, low sulfur content, and high octane, but its sale price is
high. x¢ has low RVP, but its sulfur is high, and thus cannot be heavily
used. Finally, x,, is chosen to lower the density and keep the octane
rating high.

5. Conclusion

This paper presents a chance-constrained program and its optimiza-
tion method to plan the blending process under general uncertainties.
The distribution of uncertain parameter is estimated by Gaussian
mixture models using sampled data. Then, we show that a proba-
bilistic constraint can be converted into a set of conic constraints
for each combination of Gaussian components. After decomposing
joint constraints based on Boole’s inequality and building cutting
planes of the inverse cumulative distribution function, the resulting
conservative approximation formula is bi-convex. The McCormick re-
laxation, branch and bound, optimality-based bound tightening, and
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reformulate-linearization techniques are employed to continuously re-
duce the gap between upper and lower bounds until a global optimum
is achieved. The risk level is adjusted through bi-section search and
posterior evaluation to further reduce the conservativeness of approx-
imation. Finally, two case studies demonstrate the moderate solution
time and optimality of the proposed method, which achieves better
objective value than SA even without posterior evaluation.
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