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A B S T R A C T

An optimization algorithm is proposed for blend planning with linear mixing law and general parameter
uncertainties. The objective is to make the final product satisfy all quality specifications with high probability,
and maximize the production profit by carefully determining the feedstock ratio. Conventional approaches
that rely on deterministic optimization fail to account for parameter uncertainty, and thus may not generate
a probabilistic feasible solution. The proposed work formulates the blend planning problem as a joint chance-
constrained program (CCP). Using Boole’s inequality to decompose joint constraints and the Gaussian mixture
model to characterize uncertainty distributions, a conservative deterministic approximation of CCP can be
formulated. Through second-order cone relaxation, branch-and-bound, optimality-based bound tightening, and
reformulate-linearization techniques, the global optimum of deterministic approximation can be found. A risk
level adjustment procedure is presented to reduce the conservativeness and further improve the objective value
of the solution if posterior evaluation is allowed. Two numerical cases, including steel and gasoline productions,
are studied to show the solving time, probabilistic feasibility, and solution quality of the proposed optimization
method.
1. Introduction

The model-based blend planning and optimization is an essential
step to improve the profitability and quality of gasoline, metal, and
pharmaceutical manufacturing. However, the blendstock qualities are
usually unknown at the time of blend planning. If such parameter
uncertainties are not adequately characterized and integrated into the
optimization formula, the resulting deterministic optimum may not be
feasible in practice (Ben-Tal and Nemirovski, 2002; Ning and You,
018). Such infeasible blending recipes may yield unqualified products
ailing to meet environmental, safety, and healthy regulations. Hence,
he difference between nominal and real values of model parameters
hould be considered in the optimization to guarantee the economic
fficiency, safety, and sustainability of the designed process.
The mathematical programming community has recognized the sig-

ificance of explicitly accounting for model uncertainty in the op-
imization. Some comprehensive reviews about optimization under
ncertainty and its successful applications in chemical engineering can
e found (Sahinidis, 2004; Grossmann et al., 2016). Popular approaches
nclude stochastic programming (SP), robust optimization (RO), and
hance-constrained programming (CCP). The SP is widely used for
ong-term multi-stage scheduling because recourses actions can be
mployed to compensate for undesired outcomes after the first stage
perations. RO tends to guarantee the feasibility under a pre-specified

E-mail address: yu.yang@csulb.edu.

uncertainty set. Even though RO is less computationally expensive
than SP, its solution can be more conservative (Grossmann et al.,
2016). CCP overcomes RO’s drawback because it takes advantage of
uncertainty distributions and allows constraints to be violated at a small
level. Related applications include chemical process design (Peng et al.,
2022), power system operation (Fathabad et al., 2023), and waste solid
management (Sun et al., 2013). All operations are determined in a
single stage for blending recipe design, and the parameter distribution
can be characterized through historical data. Therefore, CCP will be the
research focus of this paper.

CCP was firstly introduced in 1959 (Charnes and Cooper, 1959)
and has become increasingly attractive to the optimization community
because of its flexibility to balance robustness and optimality (Li et al.,
2008). Due to parameter uncertainty, requiring constraints to be sat-
isfied under any scenarios could be conservative or even infeasible.
CCP allows the solution to violate constraints for a small chance,
denoted as risk level 𝜖, and thus is less conservative than RO. How-
ever, solving CCP is non-trivial. A single linear chance constraint with
normally distributed parameters or right-hand-side uncertainty with
log-concave distribution can be converted to a convex form (Prékoba,
1995). However, other uncertainty distributions do not enable such
an equivalent reformulation. If a program contains multiple chance
constraints, the resulting joint CCP is even more challenging to solve.
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Thus, most works of CCP focus on searching for a locally optimum
within a reasonable solution time. Scenario approximation (SA) and
sample average approximation (SAA) draw a large number of samples
to convert the CCP into a deterministic approximation. The distribution
approximation method aims to characterize uncertainty distribution in
a solvable form based on the historical data. Their details are discussed
below:

Scenario Approximation: This type of methods, consisting of two
categories, generates a scenario-based deterministic approximation of
CCP based on independent Monte Carlo samples. The first group of SA
generates a large number of scenarios (constraints) and requires 1 − 𝜖
f them to be satisfied (Luedtke and Ahmed, 2008; Luedtke, 2014).
As the number of scenarios increases, the solution of this method will
converge to the original CCP (Peña-Ordieres et al., 2020). However,
because binary variables are introduced to represent the selection
of relaxed constraints, solving the resulting formula is NP-hard and
finally intractable as the number of samples becomes sufficiently large.
Another shortcoming is that the resulting solution profile is non-smooth
due to the stochastic nature of samples (Peña-Ordieres et al., 2020).
The second group of SA focuses on the convex problem and requires
all sampled constraints to be satisfied to yield a feasible solution of
CCP with high confidence (Calafiore and Campi, 2006; Campi and
Garatti, 2008). This method is attractive because no binary variable
is introduced, and thus the formula is more scalable. Note that the
fundamental idea of this method is to determine the sample complexity,
namely, the number of samples. A series of works have been proposed
to reduce the sample complexity and achieve a less conservative so-
lution (Campi and Garatti, 2011; Alamo et al., 2015). Another effort
xtends this methodology to nonconvex cases relying on the posterior
valuation (Esfahani et al., 2015). However, the drawback of this type
f approach is also significant because there is no link between the
ptimal solutions of CCP and scenario approximation (Peña-Ordieres
t al., 2020).
Sample Average Approximation: Because the expectation on indi-

ator function can be used to represent the probability of constraint sat-
sfaction, there are plenty of works to conservatively approximate indi-
ator function through sample average schemes. The conditional value-
t-risk (CVaR) approximation and the Bernstein approximation (Ne-
irovski and Shapiro, 2006) are two typical schemes. The sigmoidal
pproximation is another option as a smooth method to replace the
ndicator function in the chance constraints (Tovar-Facio et al., 2018).
Alternatively, the difference-of-convex functions can be employed to
approximate the indicator function tightly (Hong et al., 2011; Shan
et al., 2014). However, the resulting optimization is difficult to solve
because its gradient information is inaccurate in the interested re-
gion (Peña-Ordieres et al., 2020). A recent work adopts the projected
stochastic subgradient algorithm to solve a convergent sequence of
smooth approximation of CCP and reports promising results (Kan-
nan and Luedtke, 2021). In summary, SAA is a general but con-
servative method for CCP without explicitly exploring the shape of
distributions (Tovar-Facio et al., 2018).

Distribution Approximation: This methodology uses historical
ata to estimate the probability density function (PDF), cumulative
istribution function (CDF), or quantile function, and then converts
he probabilistic constraint to an algebraic form. The kernel smoothing
ethod can be applied for the PDF, CDF, or quantile function estima-
ion to solve chance constraints with right-hand side uncertainty (Calfa
t al., 2015). The kernel method is non-parametric but may lead to
computationally intensive formula. In Ref. Jiang and Guan (2016),
-divergence is used to describe the confidence set of an estimated
DF, and then a perturbed risk level replaces the original one in
CP to guarantee the robustness under ambiguous distributions. Those
eferences show that data-driven PDF estimation is a promising and
obust method to solve general CCP.
This paper employs a Gaussian mixture model (GMM) to charac-
2

erize the distribution of uncertain parameters from historical data.
It then develops a global optimization scheme for a conservative ap-
proximation of the original joint CCP. In previous work (Yang et al.,
2017), we have established a global optimization algorithm for CCP
with linear mixing law and Gaussian-distributed uncertainties. Further
removing the restriction of Gaussian distribution enables the optimal
blend planning under more general uncertainties. Note that a recent
paper (Hu et al., 2022) also studied GMM-CCP but can only solve the
global optimum for single chance-constrained program (SCCP), because
that method only evaluates the risk level on the bound of each sub-
region, which is not applicable to joint chance-constrained cases. In our
paper, the contributions of solving joint GMM-CCP are listed below:

• Boole’s inequality is used to decompose the joint chance con-
straints.

• An outer approximation is built to successively approach the
inverse CDF of each Gaussian component by following Cheng
et al. (2012).

• Branch-and-bound, optimality-based bound tightening (OBBT),
reformulate-linearization techniques (RLT), and risk level adjust-
ment are presented to form the global optimization scheme.

The rest of this paper is organized as follows. The chance-constrained
rogram for optimal blend planning, and its reformulation under GMM
re stated in Section 2. A global optimization framework for the deter-
inistic approximation is proposed in Section 3. Two case studies are
resented in Section 4 to show comparative results and highlight the
ffectiveness of the proposed method. Finally, conclusions are drawn
n Section 5.
Notation. Throughout this paper, vectors are denoted by boldface

etters. The space of symmetric positive semi-definite matrices of di-
ension 𝑛 is denoted by S𝑛+. Let 𝐞 represent a vector of all ones.
ts dimension will be clear from the context. All random parameters
re denoted with tilde mark. Let 𝑓𝝃̃ and 𝐹𝝃̃ denote the PDF and CDF
or 𝝃̃, respectively. In particular, for 𝝁 ∈ R𝑛 and 𝜮 ∈ S𝑛+, we let
(𝝁,𝜮) ∶ R𝑛 → R and 𝛷(⋅;𝝁,𝜮) ∶ R𝑛 → R denote the PDF and CDF of

the 𝑛-variate normal distribution with mean vector 𝝁 and covariance
atrix 𝜮, respectively. We write 𝝃̃ ∼  (𝝁,𝜮) to express that 𝝃̃ is
ormally distributed with mean 𝝁 and covariance matrix 𝜮. Similarly,
or 𝒘 ∈ R𝑆+ such that 𝐞⊤𝒘 = 1, 𝝁𝑠 ∈ R𝑛 and 𝜮𝑠 ∈ S𝑛+, ∀𝑠 ∈ {1,… , 𝑆},
e write 𝝃̃ ∼

∑𝑆
𝑠=1𝑤𝑠

(

𝝁𝑠,𝜮𝑠
)

to express that 𝝃̃ follows the Gaussian
ixture distribution.

. Methodology

The conventional linear CCP assumes that qualities are normally
istributed, and then chance-constraints could be reformulated equiv-
lently as deterministic conic constraints, resulting in a tractable con-
ervative approximation to the joint chance-constrained blending prob-
em. Unfortunately, in many practical settings, the assumption of nor-
ally distributed qualities is unrealistic. For example, blendstock’s
hemical or physical property usually has its lower and upper limits,
r its distribution is non-symmetric. It is thus desirable to develop
solution approach for CCP that is applicable to a general class of
istributions. In this section, we relax the assumption of normally dis-
ributed qualities, and use the Gaussian mixture model to approximate
he true distribution based on sampled data points. Subsequently, an
fficient approach is developed to reformulate the chance-constrained
ptimization problem as a second-order cone program (SOCP).

.1. Preliminary

The blending under uncertainties can be cast as a chance-
onstrained linear program (Yang et al., 2017), shown below:

in
𝒙∈

𝒓T𝒙

s.t. P
(

𝝃̃T𝒙 ⩽ 𝒈T𝒙, ∀𝑞 ∈ 
)

⩾ 1 − 𝜖,
()
𝑞 𝑞
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where 𝜖 is the total risk level. Vector 𝒈𝑞 is determined by the quality
specification.  is the set of quality.  ⊂ R𝐵 is the feasible region of
blending flow 𝒙 with dimension 𝐵. Note that () may incorporate
multiple chance constraints. A common approach is to decompose the
joint chance constraints into || individuals with risk level 𝜖𝑞 . This
yields problem:

min
𝒙∈

𝒓T𝒙

s.t. P
(

𝝃̃T𝑞 𝒙 ⩽ 𝒈𝑞𝒙
)

⩾ 1 − 𝜖𝑞 , ∀𝑞 ∈ ,
∑

𝑞∈ 𝜖𝑞 = 𝜖.

()

Based on Boole’s inequality, () is a conservative (inner) approxi-
ation to problem ().

.2. Reformulation under mixture model

nivariate Gaussian mixtures. We begin our analysis for the case when
he uncertain qualities in the various blendstocks are uncorrelated and
ach follows a Gaussian mixture distribution with known weights. This
odel is adequate when the blendstocks, within set  ∶= {1, 2,… , 𝐵},
ome from different sources with disjoint processing procedures, im-
lying that the modes of production of the blendstocks are unrelated
o one another. Formally, this assumption can be stated as follows for
ach quality:

ssumption 1. For each blendstock 𝑏 ∈ , it holds that 𝜉𝑏 ∼
𝑆
𝑠=1𝑤𝑏,𝑠

(

𝜇𝑏,𝑠, 𝜎2𝑏,𝑠
)

with known weight vector 𝒘𝑏 ∈ R𝑆+ satisfying
T𝒘𝑏 = 1, means 𝜇𝑏,𝑠 ∈ R, and standard deviations 𝜎𝑏,𝑠 ∈ R+, ∀𝑠 ∈
1,… , 𝑆}.

Two remarks about Assumption 1 are presented. First, the distribu-
ion of each random parameter consists of the same number of Gaussian
omponents to simplify the notation. Such a restriction can be relaxed
ithout any modification on the algorithm. Second, the number of
aussian components 𝑆 and the mixture weights 𝒘𝑏, ∀𝑏 ∈ , can be
dentified from measurement data using the Expectation-Maximization
EM) algorithm. If the approximation error of GMM is large, then a
osterior check is necessary to ensure the solution meeting chance
onstraints.
The following proposition enables us to derive a conservative ap-

roximation of () in the form of a second-order cone program
nder Assumption 1.

roposition 1. Given Assumption 1, for any fixed 𝒙 ∈ R𝐵 , 𝒈 ∈ R𝐵 and
∈ (0, 1), we introduce the following statements:

(a) P
(

𝝃̃T𝒙 ≤ 𝒈T𝒙
)

⩾ 1 − 𝜖, and

(b) 𝝁̂T
𝑘𝒙 +𝛷−1( 𝛾𝑘𝛿𝑘

)
√

𝒙T𝜮̂𝑘𝒙 ⩽ 𝒈T𝒙, ∀𝑘 ∈ 𝐵 ,

here 𝐵 ∶= {1, 2,… , 𝑆𝐵}. Let us define 𝑆𝐵 distinct B-tuples 𝑘 ∶=
𝑐1𝑘 , 𝑐

2
𝑘 ,… , 𝑐𝐵𝑘 ),∀𝑘 ∈ 𝐵 , where 𝑐𝑏𝑘 ∈ {1, 2,… , 𝑆}, 𝝁̂𝑘 ∶= [𝜇1,𝑐1𝑘

,… , 𝜇𝐵,𝑐𝐵𝑘
]T,

̂ 𝒔 ∶=
(

diag(𝜎1,𝑐1𝑘
,… , 𝜎𝐵,𝑐𝐵𝑘

)
)2, 𝛿𝑘 ∶=

∏

𝑏∈𝑤𝑏,𝑐𝑏𝑘
, and the 𝛾𝒌 satisfy

∑

∈𝐵
𝛾𝑘 ⩾ 1 − 𝜖.

Then, statement (b) above implies statement (a).

roof. For each 𝑏 ∈ , let 𝑧̃𝑏 ∶= 𝜉𝑏𝑥𝑏 and the probability density
unction of 𝑧̃𝑏 is given by

𝑧̃𝑏 =
𝑆
∑

𝑠=1
𝑤𝑏,𝑠

(

𝑥𝑏𝜇𝑏,𝑠, (𝑥𝑏𝜎𝑏,𝑠)2
)

et us denote 
(

𝑥𝑏𝜇𝑏,𝑠, (𝑥𝑏𝜎𝑏,𝑠)2
)

as 𝑏,𝑠. For 𝑧̃ = 𝝃̃T𝒙 =
∑

𝑏∈ 𝑧̃𝑏, its
3

robability density function is
𝑧̃ =
(

∑𝑆
𝑠=1𝑤1,𝑠1,𝑠

)

∗
(

∑𝑆
𝑠=1𝑤2,𝑠2,𝑠

)

∗ ⋯ ∗
(

∑𝑆
𝑠=1𝑤𝐵,𝑠𝐵,𝑠

)

=
∑𝑆
𝑠1=1

∑𝑆
𝑠2=1

⋯
∑𝑆
𝑠𝐵=1

×
(

𝑤1,𝑠11,𝑠1 ∗ 𝑤2,𝑠22,𝑠2 ∗ ⋯ ∗ 𝑤𝐵,𝑠𝐵𝐵,𝑠𝐵

)

(1)

Let 𝑐1𝑘 = 𝑠1, 𝑐2𝑘 = 𝑠2,… , 𝑐𝐵𝑘 = 𝑠𝐵 , then Eq. (1) can be written as

𝑓𝑧̃ =
∑

𝑘∈𝐵
∏

𝑏∈𝑤𝑏,𝑐𝑏𝑘
1,𝑐1𝑘

∗ 2,𝑐2𝑘
∗ ⋯ ∗ 𝐵,𝑐𝐵𝑘

=
∑

𝑘∈𝐵 𝛿𝒌
(

𝝁̂T
𝒌𝒙,𝒙

T𝜮̂𝒌𝒙
)

,
(2)

where ∗ is the convolution operator. The last equality of Eq. (2) holds
since the convolution of the probability distributions of independent
random variables equals the distribution of their sum. Thus, 𝝃̃T𝒙 also
follows a Gaussian mixture distribution. Its cumulative distribution
function is expressible as 𝐹𝑧̃ =

∑

𝑘∈𝐵 𝛿𝒌𝛷
(

⋅; 𝝁̂T
𝒌𝒙,𝒙

T𝜮̂𝒌𝒙
)

. Then, there
are

𝝁̂T
𝑘𝒙 +𝛷−1( 𝛾𝑘𝛿𝑘

)
√

𝒙T𝜮̂𝑘𝒙 ⩽ 𝒈T𝒙, ∀𝑘 ∈ 𝐵

⇔ 𝛿𝑘 𝛷
(

𝒈T𝒙; 𝝁̂T
𝑘𝒙,𝒙

T𝜮̂𝑘𝒙
)

⩾ 𝛾𝑘, ∀𝑘 ∈ 𝐵

⇒
∑

𝑘∈𝐵 𝛿𝑘 𝛷
(

𝒈T𝒙; 𝝁̂T
𝑘𝒙,𝒙

T𝜮̂𝑘𝒙
)

⩾
∑

𝑘∈𝐵 𝛾𝑘
⇒

∑

𝑘∈𝐵 𝛿𝑘 𝛷
(

𝒈T𝒙; 𝝁̂T
𝑘𝒙,𝒙

T𝜮̂𝑘𝒙
)

⩾ 1 − 𝜖

⇔ P(𝝃̃T𝒙 ⩽ 𝒈T𝒙) ⩾ 1 − 𝜖

This concludes the proof. □

Proposition 1 can be applied to each quality chance constraint by
ntroducing index 𝑞 for 𝒘, 𝝁̂, 𝝈 and 𝜮̂. Then, the following conser-
ative approximation to () under Assumption 1 is developed as a
deterministic optimization problem

maximize
𝒙∈ ,𝛾𝑞,𝑘 ,𝛼𝑞

𝒓T𝒙

s.t. 𝝁̂T
𝑞,𝑘𝒙 +𝛷−1( 𝛾𝑞,𝑘𝛿𝑞,𝑘

)
√

𝒙T𝜮̂𝑞,𝑘𝒙 ⩽ 𝒈T𝑞 𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐵 ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
,∀𝑞 ∈ , ∀𝑘 ∈ 𝐵 ,

∑

𝑘∈𝐵 𝛾𝑞,𝑘 ⩾ 1 − 𝛼𝑞 ,∀𝑞 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖,

(U)

where 𝝁̂𝑞,𝑘 and 𝜮̂𝑞,𝑘 are defined by extending 𝝁̂𝑘 and 𝜮̂𝑘 in Proposi-
tion 1 to each quality constraint; 𝛿𝑞,𝑘 ∶=

∏

𝑏∈𝑤𝑞,𝑏,𝑐𝑏𝑘
. The individual

risk level for each quality constraint is defined as 𝛼𝑞 ,∀𝑞 ∈ . Here we
still use Boole’s inequality to decompose joint constraints and require
the sum of individual risk levels to be 𝜖. The lower bound on 𝛾𝑞,𝑘 is set
as 0.5𝛿𝑞,𝑘 to ensure that (U) is a second-order cone program when
𝛾𝑞,𝑘 is pre-determined. Theoretically, 𝛾𝑞,𝑘 can arbitrarily approach 𝛿𝑞,𝑘,
but will render 𝛷−1(𝛾𝑞,𝑘∕𝛿𝑞,𝑘) to infinity. Thus, 0.9999𝛿𝑞,𝑘 can be set as
an upper limit of 𝛾𝑞,𝑘 for practical computations.

Several comments about (U) are presented. First, the number
of conic constraints in (U) is given by ||𝑆𝐵 . For a moderate num-
ber of blendstocks commonly employed in practice and small 𝑆, the
problem size will be manageable. If an uncertainty distribution needs
many Gaussian components to accurately approximate, the proposed
approach may not be applicable and we recommend sampling-based or
traditional robust optimization approaches. Second, the risk level will
be determined through a branch-and-bound scheme in order to further
improve the solution quality. However, the resulting computational
complexity will increase significantly because many bilinear terms
should be addressed. Third, using Boole’s inequality to approximate
joint chance constraints brings conservativeness. However, the risk
level 𝜖 can be gradually increased to improve the solution quality and
evaluated via posterior samples for its probabilistic feasibility.

Multivariate Gaussian mixtures. We now investigate the case when the
qualities across blendstocks are correlated. This scenario may happen
when some blendstocks are produced by the same material flows or
process units. The set of blendstocks can be divided into 𝐼 subsets,
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denoted by 𝑖 with 𝑖 ∈  ∶= {1,… , 𝐼}, such that random variables
within 𝑖 are correlated. Moreover, 𝑖 should be mutually exclusive
and collectively exhaustive. Vectors 𝝃̃ and 𝒙 are reordered such that all
elements within the same 𝑖 are adjacent, and then let 𝝃̃𝑖 to represent
the random variables in the subset 𝑖. In particular, it is assumed that
the quality of blendstocks belonging to the same subset 𝑖 follows a
multivariate Gaussian mixture model:

Assumption 2. For each 𝑖 ∈ , it holds that 𝝃̃𝑖 ∼
∑𝑆
𝑠=1𝑤𝑖,𝑠

(𝝁𝑖 ,𝑠,𝜮𝑖 ,𝑠) with known weight vectors 𝒘𝑖 ∈ R𝑆+ satisfying 𝐞⊤𝒘𝑖 = 1,
mean vectors 𝝁𝑖 ,𝑠 ∈ R|𝑖| and covariance matrices 𝜮𝑖 ,𝑠 ∈ R|𝑖|×|𝑖|.

The following proposition enables us to derive a conservative ap-
roximation () in the form of a second-order cone program un-
er Assumption 2. It naturally extends Proposition 1 to the case of
ultivariate Gaussian mixture distributions.

roposition 2. Let 𝝃̃ ∶= (𝝃̃1
,… , 𝝃̃𝐼 ) ∈ R𝐵 , with 𝝃̃𝑖 ∈ R|𝑖|, ∀𝑖 ∈ .

Given Assumption 2, for any fixed 𝒙 ∈ R𝐵+ , 𝒈 ∈ R𝐵 and 𝜖 ∈ (0, 1), define
the following statements:

(a) P
(

𝝃̃T𝒙 ⩽ 𝒈T𝒙
)

⩾ 1 − 𝜖, and

(b) 𝝁̂T
𝑘𝒙 +𝛷−1( 𝛾𝑘𝛿𝑘

)
√

𝒙T𝜮̂𝑘𝒙 ⩽ 𝒈T𝒙 ∀𝑘 ∈ 𝐼 ,

et us define all distinct I-tuples 𝑘 ∶= (𝑐1𝑘 , 𝑐
2
𝑘 ,… , 𝑐𝐼𝑘 ), ∀𝑘 ∈ {1, 2,… , 𝑆𝐼}

n the domain {1, 2,… , 𝑆}, such that 𝝁̂𝑘 ∶= [𝝁1 ,𝑐1𝑘
,… ,𝝁𝐼 ,𝑐𝐼𝑘

]T, 𝜮̂𝑘 ∶=

blkdiag
(

𝜮1 ,𝑐1𝑘
,… ,𝜮𝐼 ,𝑐𝐼𝑘

)

, 𝛿𝑘 ∶=
∏

𝑖∈ 𝑤𝑖,𝑐𝑖𝑘 , and the 𝛾𝒌 satisfy

𝑆𝐼

𝑖=1
𝛾𝑘 ⩾ 1 − 𝜖.

Then, statement (b) above implies statement (a).

roof. Fix 𝒙 ∈ R𝐵+ , 𝒈 ∈ R𝐵 and 𝜖 ∈ (0, 1). Then, the probability density
unction of 𝑧̃𝑖 ∶= 𝒙T𝑖 𝝃̃𝑖 is given by

𝑓𝑧̃𝑖 =
∑𝑆
𝑠=1

𝑤𝑖,𝑠
√

(2𝜋)|𝑖 ||det(𝒙T𝑖𝛴𝑖 ,𝑠𝒙𝑖 )|

× exp
(

− 1
2 (𝒛𝑖 − 𝒙T𝑖𝝁𝑖 ,𝑠)

T(𝒙T𝑖𝜮𝑖 ,𝑠𝒙𝑖 )
−1(𝒛𝑖 − 𝒙T𝑖𝝁𝑖 ,𝑠)

)

=
∑𝑆
𝑠=1𝑤𝑖,𝑠 (𝒙T𝑖𝝁𝑖 ,𝑠,𝒙

T
𝑖
𝜮𝑖 ,𝑠𝒙𝑖 ).

Since the 𝑧̃𝑖, ∀𝑖 ∈ , are independent, it follows the proof of Proposi-
tion 1 to reach the conclusion. Here we replace 𝜇𝑏,𝑠 and 𝜎𝑏,𝑠 by 𝝁𝑖 ,𝑠

̂ ̂
4

and 𝜮𝑖 ,𝑠, ∀𝑠 = {1, 2,… , 𝑆} to obtain 𝝁𝑘 and 𝜮𝑘, respectively. □
From Proposition 2, the following conservative approximation is
obtained under Assumption 2 as a deterministic optimization problem

min
𝒙∈ ,𝛾𝑞,𝑘 ,𝛼𝑞

𝒓T𝒙

s.t. 𝝁T
𝑞,𝑘𝒙 +𝛷−1( 𝛾𝑞,𝑘𝛿𝑞,𝑘

)
√

𝒙T𝜮𝑞,𝑘𝒙 ⩽ 𝒈T𝑞 𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
,∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

∑

𝑘∈𝐼 𝛾𝑞,𝑘 ⩾ 1 − 𝛼𝑞 , ∀𝑞 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖.

(M)

In the case |𝑖| = 1, ∀𝑖 ∈ , the formulation (U) is recovered. In
the case 𝐼 = 1, the formulation for general (not necessarily diagonal)
covariance matrix 𝜮𝑞 is recovered. Since 𝐼 < 𝐵, (M) has fewer
conic constraints compared with (U). Moreover, the number of 𝛾𝑞,𝑘
and associated bilinear terms in (M) is also smaller than that of
(U). Because (M) represents more general cases, its solution
method will be our focus hereafter.

The lower bound 𝛾
𝑞,𝑘

in (M) is required to be greater than or
equal to 0.5𝛿𝑞,𝑘 such that a second-order cone relaxation and outer
approximation can be constructed in the next section. This restriction
narrows the feasible region and thus may lead to a sub-optimal solution
of the original joint CCP.

3. Global optimization method for (𝐌)

3.1. Outer approximation

One of difficulties for optimizing (M) is that 𝛷−1(⋅) does not
ave an analytical form. Note that 𝛾𝑞,𝑘

𝛿𝑞,𝑘
↦ 𝛷−1( 𝛾𝑞,𝑘𝛿𝑞,𝑘

) is convex when
𝛾𝑞,𝑘
𝛿𝑞,𝑘

∈ [0.5, 1]. An outer approximation for 𝛷−1(⋅) can be developed by
following Cheng et al. (2012) and previous work (Yang et al., 2017,
2020). A graphical illustration is shown in Fig. 1. For the cutting plane
at a sampling point of 𝛾𝑞,𝑘, denoted as 𝛾𝑞,𝑘,𝑙, its slope and intercept are:

ℎ𝑞,𝑘,𝑙 =
𝑑𝛷−1( 𝛾𝑞,𝑘𝛿𝑞,𝑘

)

𝑑( 𝛾𝑞,𝑘𝛿𝑞,𝑘
)

|

|

|

|

𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

= 1
𝜙(𝛷−1( 𝛾𝑞,𝑘,𝑙𝛿𝑞,𝑘

))
,

𝑡𝑞,𝑘,𝑙 = 𝛷−1(
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

) − ℎ𝑞,𝑘,𝑙
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

.
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Then, the equation of cutting plans is shown in Eq. (3)

𝑣𝑞,𝑘 ⩾ ℎ𝑞,𝑘,𝑙
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

+ 𝑡𝑞,𝑘,𝑙 , ∀𝑙 ∈ , (3)

here 𝑣𝑞,𝑘 is a newly introduced auxiliary variable;  is the set of
ampling points for cutting plane construction.
Consequently, an approximation of (M) is:

min
∈ ,𝛾𝑞,𝑘 ,𝑣𝑞,𝑘 ,𝛼𝑞

𝒓T𝒙

s.t. 𝝁T
𝑞,𝑘𝒙 + 𝑣𝑞,𝑘

√

𝒙T𝜮𝑞,𝑘𝒙 ≤ 𝒈T𝑞 𝒙 ∀𝑞 ∈ ,∀𝑘 ∈ 𝐼 ,
∑

𝑘∈𝐼 𝛾𝑞,𝑘 ⩾ 1 − 𝛼𝑞 , ∀𝑞 ∈ ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
,∀𝑞 ∈ ,∀𝑘 ∈ 𝐼 ,

𝑣𝑞,𝑘 ⩾ ℎ𝑞,𝑘,𝑙
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

+ 𝑡𝑞,𝑘,𝑙 , ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 , ∀𝑙 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖.

(A)

s || → ∞, (A) approaches (M) with arbitrary accuracy. In
ractice, a number of sampling points are evenly distributed in the
omain [0.5, 1] initially. The solution points 𝛾∗𝑞,𝑘 obtained during the
ranch-and-bound will be chosen as the new sampling points for cutting
lane generation to continuously tighten the outer approximation.

.2. Convex relaxation

The formula (A) is still not convex because of the term
𝑞,𝑘

√

𝒙T𝜮𝑞,𝑘𝒙. However, the McCormick method (McCormick, 1976)

an be used to develop a convex relaxation. Let us introduce a new
ariable for the bilinear term 𝜷𝑞,𝑘 = 𝑣𝑞,𝑘𝒙, such that

𝑞,𝑘

√

𝒙T𝜮𝑞,𝑘𝒙 =
√

𝜷T
𝑞,𝑘𝜮𝑞,𝑘𝜷𝑞,𝑘

According to the McCormick relaxation, a set of inequalities should
be introduced to replace the bilinear term. Then, the resulting convex
relaxation (SOCP form) is:

min
𝒙∈ ,𝛾𝑞,𝑘 ,𝑣𝑞,𝑘 ,𝛼𝑞 ,𝜷𝑞,𝑘

𝒓T𝒙

s.t. 𝝁T
𝑞,𝑘𝒙 +

√

𝜷T
𝑞,𝑘𝜮𝑞,𝑘𝜷𝑞,𝑘 ⩽ 𝒈T𝑞 𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

∑

𝑘∈𝐼 𝛾𝑞,𝑘 ⩾ 1 − 𝛼𝑞 , ∀𝑞 ∈ ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
,∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

𝑣𝑞,𝑘 ⩾ ℎ𝑞,𝑘,𝑙
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

+ 𝑡𝑞,𝑘,𝑙 , ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 , ∀𝑙 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖,

𝜷𝑞,𝑘 ⩾ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩾ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩽ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩽ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

(C)

here the upper and lower bars represent the upper and lower bounds
n variables, respectively. Solving (C) will yield a lower bound
solution, denoted as LB.

This SOCP form is the essential step of the proposed global opti-
mization scheme. It requires that constraints can be affinely relaxed
and affinely dependent on the uncertain parameters. The linear mixing
law meets these two criteria. If a nonlinear mixing law satisfies these
conditions, such as the octane model in Yang et al. (2020), it is also
solvable by the proposed approach.

3.3. Optimality-based bounds tightening

McCormick method generates the tightest convex envelop for bi-
linear terms. In general, a smaller variable interval implies tighter
5

relaxation. Traditional interval analysis can be used to reduce the
bound quickly. However, previous research shows that an optimality-
based bounds tightening (OBBT) can be more efficient. In that scheme,
two convex optimization subproblems are solved for each variable
to yield its lower and upper bounds, respectively. In the blending
problem, both 𝒙 and 𝑣𝑞,𝑘 are involved in bilinear terms. Thus, their
OBBT formulas are shown in ( ):

min∕max
∈ ,𝛾𝑞,𝑘 ,𝑣𝑞,𝑘 ,𝛼𝑞 ,𝜷𝑞,𝑘

𝑥𝑏 or 𝑣𝑞,𝑘

s.t. 𝝁T
𝑞,𝑘𝒙 +

√

𝜷T
𝑞,𝑘𝜮𝑞,𝑘𝜷𝑞,𝑘 ≤ 𝒈T𝑞 𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

𝒓T𝒙 ⩽ UB,
∑

𝑘∈𝐼 𝛾𝑞,𝑘 ≥ 1 − 𝛼𝑞 , ∀𝑞 ∈ ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
, ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

𝑣𝑞,𝑘 ⩾ ℎ𝑞,𝑘,𝑙
𝛾𝑞,𝑘,𝑙
𝛿𝑞,𝑘

+ 𝑡𝑞,𝑘,𝑙 , ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 , ∀𝑙 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖,

𝜷𝑞,𝑘 ⩾ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩾ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩽ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

𝜷𝑞,𝑘 ⩽ 𝑣𝑞,𝑘𝒙 + 𝑣𝑞,𝑘𝒙 − 𝑣𝑞,𝑘𝒙,

( )

where UB is the upper bound solution of (M). The constraint 𝒓T𝒙 ⩽
UB requires that any feasible values of 𝑥𝑏 or 𝑣𝑞,𝑘 lead to a lower solution
than UB. Because ( ) is still a SCOP, 𝑥𝑏 and 𝑣𝑞,𝑘 can be solved to their
valid bounds quickly.

3.4. Reformulation-linearization technique

The reformulation-linearization technique (RLT) is a way to create
extra linear constraints for tightening the convex relaxation. Let us
consider a valid, linear, and deterministic constraint for 𝒙, shown in
Eq. (4):

𝒖T𝒙 ⩽ 𝑈, (4)

where 𝒖 and 𝑈 are deterministic coefficients. Eq. (4) can be multiplied
with 𝑣𝑞,𝑘 to form a series of new constraints:
∑

𝑏∈
𝒖T𝒙𝑣𝑞,𝑘 ⩽ 𝑈𝑣𝑞,𝑘 → 𝒖T𝜷𝑞,𝑘 ⩽ 𝑈𝑣𝑞,𝑘, ∀𝑘 ∈ 𝐼 ,∀𝑞 ∈ . (5)

Note that (5) does not introduce any new variables. It only constrains
auxiliary variable 𝜷 used in the McCormick relaxation. Thus, (5) can
be integrated into (C) and ( ) to tighten the convex relaxation
gap, and speed up the global optimization.

3.5. Branch-and-bound

In this sub-section, a global optimization framework for the con-
servative approximation formula (M) is developed. Even though
solving ( ) can tighten the convex relaxation, a branch-and-bound
scheme is more crucial and efficient to reduce the relaxation gap
continuously. To this end, the root node of a searching tree is initialized
with the entire variable intervals. During the tree traversal, (C) is
solved at each node with associated intervals, and then branching is
conducted to generate new nodes on the searching tree. According to
previous research (Yang et al., 2017), branching 𝒙 is more efficient than
branching 𝑣𝑞,𝑘 for global optimization. Hence, the following criterion is
proposed for branching variable selection.

𝑏′ = argmax
𝑏∈

∑

𝑞∈

∑

𝑘∈𝐼
|𝑣∗𝑞,𝑘𝑥

∗
𝑏 − 𝛽

∗
𝑞,𝑘,𝑏|, (6)

where 𝑣∗𝑞,𝑘, 𝑥
∗
𝑏 and 𝛽

∗
𝑞,𝑘,𝑏 are the solution of (C) at a node. Once 𝑥𝑏′ is

, 𝑥∗ ] and [𝑥∗ , 𝑥 ],
chosen, its interval is partitioned into two parts: [𝑥𝑏′ 𝑏′ 𝑏′ 𝑏′
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Fig. 2. The algorithm flowchart for solving (M).
Fig. 3. The algorithm flowchart for solving (R) with 𝜖′ adjustment. UB is the upper bound solution given a specified 𝜖′ in (R). LB is the lower bound solution. R_UB is
the true optimal solution meeting chance constraints with the desired risk level 𝜖.
t
e

hile other variables’ bounds are unchanged. The resulting two exclu-
ive feasible regions will be saved as two nodes in the searching tree
or further processing.
Once the risk level 𝛾∗𝑞,𝑘 in the solution of (C) at a node is

btained, it can be substituted into (M) to yield an upper bounding
problem:

min
𝒙∈

𝒓T𝒙

s.t. 𝝁T
𝑞,𝑘𝒙 +𝛷−1(

𝛾∗𝑞,𝑘
𝛿𝑞,𝑘

)
√

𝒙T𝜮𝑞,𝑘𝒙 ⩽ 𝒈T𝑞 𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 .
(M)

f (M) is infeasible, it implies that the convex envelop made from
uter approximation and McCormick relaxation is not tight enough.
hen, the sampling point 𝛾∗𝑞,𝑘 should be included in set  to yield an
dditional cutting plane, and the variable bounds should be further
educed by branching. If (M) is feasible and its objective value
6

s smaller than the existing UB, then UB can be updated. The entire
algorithm will terminate if the relative gap, defined in Eq. (7), is smaller
than a threshold.

Relative gap = UB − LB
|LB| (7)

A flowchart of the global optimization algorithm for the deterministic
approximation of joint CCP is shown in Fig. 2.

3.6. Risk level adjustment

(M) serves as a conservative approximation of () based on
he Boole’s inequality for decomposing joint chance constraints and
nforced constraint 𝛾𝑞,𝑘 ⩾ 𝛾

𝑞,𝑘
= 0.5𝛿𝑞,𝑘. The global optimal solution of

(M) can be further improved by adjusting the risk level if posterior
evaluation is allowed. Two approaches can be applied:

Method I Replace some conic constraints by their deterministic linear

part.
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Method II Directly increase 𝜖 in (M).

Both methods can be synthesized into a new optimization formula:

min
𝒙∈ ,𝛾𝑞,𝑘 ,𝛼𝑞

𝒓T𝒙

s.t. 𝝁T
𝑞,𝑘𝒙 +𝛷−1( 𝛾𝑞,𝑘

𝛿𝑞,𝑘
)
√

𝒙T𝜮𝑞,𝑘𝒙 ⩽ 𝒈T𝑞𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ⧵ ̃𝐼
𝑞 ,

𝝁T
𝑞,𝑘𝒙 ⩽ 𝒈T𝑞𝒙 ∀𝑞 ∈ , ∀𝑘 ∈ ̃𝐼

𝑞 ,

𝛾𝑞,𝑘 ⩾ 𝛾𝑞,𝑘 ⩾ 𝛾
𝑞,𝑘
, ∀𝑞 ∈ , ∀𝑘 ∈ 𝐼 ,

∑

𝑘∈𝐼 𝛾𝑞,𝑘 ⩾ 1 − 𝛼𝑞 , ∀𝑞 ∈ ,
∑

𝑞∈ 𝛼𝑞 = 𝜖′,

(R)

here the index set ̃𝐼𝑞 incorporates eliminated second-order cone
onstraints for quality 𝑞, defined as ̃𝐼𝑞 ∶= {𝑘|𝛿𝑞,𝑘 < 𝑅},∀𝑞 ∈ . 𝑅 is a
mall positive threshold to limit the number of dropped second-order
one constraints. (R) is a further relaxation of (M) because
he square root part, as a positive protection term, is removed to
ecover the deterministic linear constraint. Moreover, this relaxation
an reduce the number of bilinear terms, and thus may speed up the
lobal optimization algorithm. By increasing the allowable risk level
′ > 𝜖 in (R), the limitation of Boole’s inequality in solving joint
hance-constrained programs can be further hedged.
Both methods I and II need posterior evaluation. To this end, a large

umber of independent scenarios for uncertain parameters should be
enerated as a testbed to assess the constraints violation rate, given a
olution 𝒙. Then, an one-dimensional bi-section search scheme can be
sed to adjust 𝜖′. Let us pre-specify a step size 𝛥 such that 𝜖′ = 𝜖+𝛥 and
𝑜𝑙𝑑 = 𝜖. When a better upper bound (feasible) solution of the resulting
R) is found during the global optimization, it will be evaluated on
he test scenarios to determine its probabilistic feasibility in (). If
he evaluated constraint violation rate is greater than 𝜖, then 𝛥 ← 𝛥∕2;
therwise 𝜖𝑜𝑙𝑑 = 𝜖′. Let 𝜖′ = 𝜖𝑜𝑙𝑑 +𝛥 and solve (R) again. The entire
rocedure of the risk level adjustment is shown in Fig. 3.
It is worthwhile to note that even though the risk level adjustment

an reduce the conservativeness of the solution, the proposed method
till cannot guarantee the global optimality of the original joint CCP
ue to Boole’s inequality and approximation nature of GMM.

. Case studies

Two blending problems with non-Gaussian distributed uncertainties
re solved in this section. By observing the histogram of uncertain
arameters shown in Figs. 4–13, it is clear that GMM is needed.
e start from 2-component and gradually increase the number of
aussian components to improve the likelihood of data fitting. This
rocedure terminates when the likelihood cannot be enhanced signifi-
antly. Because the number of conic constraints and bilinear terms are
ependent on the quantity of Gaussian components, less component
MM is preferred to enable fast calculation. In case studies, we find
hat 2-component GMM is sufficient to approximate the true distri-
ution and does not incur considerably long computational time. The
osterior evaluation of the CCP solution consisting of 10 000 inde-
endent samples of uncertain parameters is conducted to mitigate the
pproximation error.
The software platform is GAMS 32.2.0, with SOCP solver CPLEX

2.10. The hardware platform is a laptop with Intel Core i7-7500U
PU 2.70 GHZ and 8GM RAM. The risk level 𝜖 is set as 5%, as
revious research (Yang et al., 2017). When the relative gap reaches
%, the global optimization for (M) terminates. There are 200
ampling points evenly distributed in the domain [0.5, 1] of 𝛾𝑞,𝑘 during
he initial stage of outer approximation for both cases. More sampling
oints and cutting planes will be generated on-the-fly based on the
olutions of branch-and-bound. For comparison, SA is employed to
7

olve two cases with decreasing number of scenarios. Because SAA
Table 1
Product quality standard of steel.
Quality Upper limit Lower limit

Carbon content 3.50% 2.50%
Chrome Content 0.45% 0.10%
Manganese Content 1.65% 1.00%
Silicon Content 4.00% 2.00%

Table 2
Raw materials nominal quality, cost, and available amount.
Raw Cost Carbon Chrome Manganese Silicon Amount
materials per Pound percent percent percent percent available

Pig Iron 1 0.0300 4.00% 0 0.90% 2.25% 1500
Pig Iron 2 0.0645 0 10.00% 4.50% 15.00% 1500
Ferro-Silicon 1 0.0650 0 0 0 45.00% 1500
Ferro-Silicon 2 0.0610 0 0 0 42.00% 1500
Alloy 1 0.1000 0 0 60.00% 18.00% 1500
Alloy 2 0.1300 0 20.00% 9.00% 30.00% 1500
Alloy 3 0.1190 0 8.00% 33.00% 25.00% 1500
Carbide 0.0800 15.00% 0 0 30.00% 20
Steel 1 0.0210 0.40% 0 0.90% 0 200
Steel 2 0.0200 0.10% 0 0.30% 0 200
Steel 3 0.0195 0.10% 0 0.30% 0 200

Table 3
Mean, standard deviation, and weight of GMM component in case 1.
Quality Mean Mean Standard Standard Weight Weight

1 2 deviation 1 deviation 2 1 2

Steel 2 Carbon 0.0851 0.1487 0.0008 0.0036 0.7653 0.2347
Steel 3 Carbon 0.0648 0.1529 0.0007 0.0054 0.6371 0.3629
Steel 2 Manganese 0.3583 0.2612 0.0091 0.0035 0.3546 0.6454
Steel 3 Manganese 0.2718 0.3515 0.0021 0.0049 0.6424 0.3576
Pig Iron 1 Silicon 2.0346 2.8375 0.1898 0.5100 0.6728 0.3272

requires special algorithms to tune step size, smoothing parameters, and
initial guesses (Kannan and Luedtke, 2021), it is not considered here.

4.1. Case 1: The pittsburgh steel company blending problem

A manufacturer plans to produce a new type of steel with the follow-
ing quality standard, shown in Table 1, and minimize the production
cost (Schrage, 2006). The nominal quality parameters 𝝃𝑞 and cost of
raw materials are shown in Table 2. All parameters are not correlated.
Except chrome content, all other three quality parameters are subject
to uncertainties. Steel 2 carbon and manganese percent, Steel 3 carbon
and manganese percent, and Pig Iron 1 silicon percent are assumed to
satisfy lognormal distribution. Their PDFs are non-symmetric, and ap-
proximated by 2-component GMMs with 1000 data samples, shown in
Figs. 4–8. The mean, standard deviation, and weights of each Gaussian
component for these properties are shown in Table 3. Other non-zero
parameters of carbon, manganese, and silicon are Gaussian distributed,
𝝃̃𝑞 ∼  (𝝃𝑞 ,diag(0.01𝝃𝑞)2).

From the last two columns of Table 3, the 𝛿𝑞,𝑘 can be calculated.
Because the minimal value of 𝛿 for carbon 0.2347 × 0.3629 = 0.0852
is still larger than 𝜖, we decide not to remove any chance constraints,
and set 𝜖′ = 𝜖 = 5%. As a result, (R) recovers to (M), and it can
be solved to the global optimum. The solution time, objective value,
constraints violation rate in posterior evaluation, and 1 − 𝛾𝑞,𝑘∕𝛿𝑞,𝑘 are
shown in Table 4. Through the sampling-based posterior evaluation, the
solution results in 4.73% constraint violation rate, which is very close to
the desired 5%. After updating the 𝜖′, a better solution cannot be found
if the relative gap is set as 1% to terminate the global optimization of
(R) given a specified 𝜖′. The final solution of blending recipe is
shown in Table 5.

For comparison, the sampling complexity in Alamo et al. (2015) is
adopted to implement SA. With 11 variables, confidence 10−6, and 𝜖 =
5%, the number of scenarios should be at least 738 (Alamo et al., 2015).
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Fig. 4. Steel 2 carbon percent lognormal PDF, GMM approximation, and histogram (1000 data points).
Fig. 5. Steel 3 carbon percent lognormal PDF, GMM approximation, and histogram (1000 data points).
s
𝑥

o mitigate the randomness of sampled scenarios, SA is repeated 200
imes with different batches of scenarios, and only the best solution is
eported in Table 4. Unfortunately, no feasible solution is found within
00 replicates, implying conservativeness of the sample complexity.
y allowing the posterior evaluation, we can reduce the number of
cenarios and solve the SA many times until a satisfactory solution is
btained. Via trial-and-error, a comparable solution is found using 80
cenarios, and 200 replicates. Please note that GMM-CCP finds such a
olution without using posterior evaluation (no risk level adjustment),
hereas SA needs a significantly large number of samples to build the
ormula and check the probabilistic feasibility.

.2. Case 2: Gasoline blending problem

An oil company plans to produce 3 types of gasoline to meet quality
pecification with 95% and yield high profit. The price and quality
pecifications of 3 types gasoline are shown in Table 6. Each type
f gasoline has maximal production 50 and minimal production 1.
here are 10 types of intermediate blendstocks with nominal quality
8

Table 4
Results of case 1. Total constraint violation rate is the synthesis (not summation) of
all qualities.

Solution time (s) Objective value (Cost)
Proposed method 73.9 28.524
SA 738 69.3 Infeasible
SA 80 67.5 28.528

Violation rate 1 − 𝛾𝑞,𝑘∕𝛿𝑞,𝑘
Carbon upper limit 0 0.01%, 0.01%, 0.01%, 0.01%
Carbon lower limit 2.35% 2.64%, 1.94%, 2.64%, 1.94%
Manganese upper limit 0 0.01%, 0.01%, 0.01%, 0.01%
Manganese lower limit 0.37% 0.39%, 0.20%,0.40%, 0.20%
Silicon upper limit 0.41% 0.01%, 0.71%
Silicon lower limit 1.69% 2.51%, 1.02%
Total 4.73% N/A

parameters shown in Table 7. We assume that RVP, octane rating, and
ulfur are subject to uncertainties. The RVP of 𝑥3, 𝑥5, 𝑥10, sulfur of
4, and octane of 𝑥5 satisfy lognormal distribution, approximated by
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Fig. 6. Steel 2 manganese percent lognormal PDF, GMM approximation, and histogram (1000 data points).
Fig. 7. Steel 3 manganese percent lognormal PDF, GMM approximation, and histogram (1000 data points).
G
𝑅
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Table 5
Blending recipe for case 1.
Raw materials Amount Percent

Pig Iron 1 586.601 58.66%
Pig Iron 2 10.000 1.00%
Ferro-Silicon 1 0.000 0
Ferro-Silicon 2 10.601 1.06%
Alloy 1 6.234 0.62%
Alloy 2 0 0
Alloy 3 0 0
Carbide 20.000 2%
Steel 1 175.181 17.52%
Steel 2 0.000 0
Steel 3 191.377 19.14%

2-component GMM with 1000 independent samples. Their PDFs and
histogram are shown in Figs. 9–13. The GMMs parameters are listed in
Table 8. Other non-zero parameters of RVP, octane rating, and sulfur
9

t

Table 6
Gasoline specifications and prices.
Gasoline Density RVP Octane Sulfur Benzene Price

(max) (max) (min) (max) (max)

Type I 0.79 7.8 85 10 0.6 49.7
Type II 0.79 7.8 87 10 0.6 52.0
Type III 0.79 7.8 91 10 0.6 54.6

are Gaussian distributed, 𝝃̃𝑞 ∼  (𝝃𝑞 ,𝜮𝑞). The diagonal terms of 𝜮𝑞
are (0.01𝝃𝑞)2 and the octane rating of 𝑥8 and 𝑥9 are correlated with
covariance 0.4295.

Given weight 𝑤𝑏,𝑠 in Table 8, there are 23 = 8 combinations of
aussian components (conic constraints) for RVP. Let us set threshold
= 0.05. Then, three conic constraints, corresponding to 𝛿RVP,8 =

.1891×0.2797×0.3599 = 0.0190, 𝛿RVP,6 = 0.1891×0.7203×0.3599 = 0.0490,
nd 𝛿RVP,7 = 0.1891 × 0.2797 × 0.6401 = 0.0339, can be replaced by
heir linear part. We set the initial 𝜖′ = 𝜖 = 5% and compare the
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Fig. 8. Pig Iron 1 silicon percent lognormal PDF, GMM approximation, and histogram (1000 data points).
Fig. 9. 𝑥5 octane rating lognormal PDF, GMM approximation, and histogram (1000 data points).
Table 7
Blendstocks nominal parameters.
Blendstock Max flow Density RVP Octane Sulfur Benzene Price Stock

𝑥1 8 0.565 60 84.8 10 0 36 8.0
𝑥2 2.6 0.656 10.4 69.8 0 3.8 40 2.6
𝑥3 12.0 0.772 1.6 71.9 6 0.4 39 12
𝑥4 20.1 0.618 11.2 82.1 1 0 41 20.1
𝑥5 15.6 0.855 2.7 99 0 0 52 15.6
𝑥6 2.3 0.693 4.6 68 0 0 42 2.3
𝑥7 26.3 0.679 10.6 91.6 41 0.6 47 26.3
𝑥8 17.5 0.757 4.4 86.7 111 0 44 17.5
𝑥9 9.2 0.803 3.3 85.1 30 0 45 9.2
𝑥10 18 0.713 2.1 93.7 20 0 55 18.0

solution with and without conic constraints relaxation, in Table 9.
heir objective values are similar, but the solution time is significantly
educed by relaxing several conic constraints. This relaxation yields the
ess conservative formula (R) and makes the on-spec rate of the
10
Table 8
Mean, standard deviation, and weight of GMM components in case 2.
Quality Mean Mean Standard Standard Weight Weight

1 2 deviation 1 deviation 2 1 2

𝑥3 RVP 1.4932 1.9487 0.0569 0.1202 0.8109 0.1891
𝑥5 RVP 2.5357 3.1574 0.2108 0.4262 0.7203 0.2797
𝑥10 RVP 0.3583 0.2612 0.0091 0.0035 0.6401 0.3599
𝑥4 sulfur 1.1332 0.9433 0.0530 0.0228 0.2950 0.7050
𝑥5 octane 98.2102 98.7116 0.1807 0.0602 0.4459 0.5541

solution closer to the desired level, 95%. It is worthwhile to note that
the resulting solution is infeasible to the conservative approximation
(M), but can be feasible to the original joint CCP if posterior
evaluation can validate it.

To speed up the global optimization, we can introduce RLT based on
any linear and deterministic constraints by multiplying 𝑣𝑞,𝑘 with them.
Besides existing density and Benzene quality constraints, the following
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Fig. 10. 𝑥3 RVP lognormal PDF, GMM approximation, and histogram (1000 data points).
Fig. 11. 𝑥5 RVP lognormal PDF, GMM approximation, and histogram (1000 data points).
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total flow constraint is also considered for each product:

𝑈 𝑝 ⩽
∑

𝑖
𝑥𝑖,𝑝 ⩽ 𝑈𝑝, 𝑝 = 1, 2, 3, (8)

where the subscript 𝑝 represents each product. Although the default
upper bound value 𝑈 𝑝 is 50 and lower bound value 𝑈 𝑝 is zero, they can
e further tightened through OBBT. Then, two extra RLTs are generated
or each gasoline. Table 9 shows that introducing these extra RLTs can
ubstantially reduce the solution time.
To further improve the objective value, we use Algorithm 2 to

djust 𝜖′ and show the final solutions in Table 10. The conic constraint
elaxation leads to a slightly better solution and shorter computation
ime again. However, even though 𝜖′ is increased, the objective value
s only slightly improved. This is reasonable because the on-spec rate
s already nearly 95% when 𝜖′ = 5%.
To compare the proposed method with SA, we still employ the

ample complexity proposed by Alamo et al. (2015). Even though there
are 30 variables in total, the problem requires each type of gasoline to
meet specifications with 95% chance, respectively. Thus, there should
11

g

be 702 scenarios based on 10 variables, confidence 10−6, and 𝜖 = 5%.
Then, the number of scenarios is gradually reduced if the posterior
evaluation shows the probabilistic feasibility of the resulting solution.
To mitigate the randomness of sampled scenarios, SA is repeated 200
times with different batches of scenarios, and only the best solution is
reported in Table 10. These results show that the sample complexity
bound proposed in Alamo et al. (2015) is valid but conservative. By
educing the number of scenarios to 50, a near-optimal solution is
chieved. However, SA does not provide the theoretical bound on
ptimality. There is no guarantee that the solution can be improved
onotonically as the number of scenarios is reduced. Thus, a trial-and-
rror scheme should be used to determine the number of scenarios.
oreover, the number of replicates (200 in our study) for SA is purely
etermined heuristically without any justification, which cannot be
eneralized.
The calculated blending recipes for 3 types of gasoline are shown

n Fig. 14. Clearly, type II is the most profitable gasoline, and thereby
t reaches the maximum production 50. Type III is the least profitable
asoline due to its high octane rating, and thus its production is nearly
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Fig. 12. 𝑥10 RVP lognormal PDF, GMM approximation, and histogram (1000 data points).
Fig. 13. 𝑥4 sulfur lognormal PDF, GMM approximation, and histogram (1000 data points).
Table 9
Results of case 2 with 𝜖′ = 𝜖 = 5%.

With constraint Without constraint
relaxation relaxation

Time with flow RLT (s) 1514.0 2427.5
Time without flow RLT (s) 2108.1 3447.9
Objective value (Profit) 378.00 377.26
On-spec rate (I, II, III) 95.48%, 95.22%, 96.11% 95.80%, 95.54%, 96.15%

Table 10
Final results of case 2 by increasing 𝜖′.

With constraint Without constraint SA SA
relaxation relaxation 702 50

Solution time (s) 6668.5 11049.7 101.9 69.7
Objective value (Profit) 378.49 378.44 354.6 377.86
On-spec rate (I) 95.36% 95.42% 98.34% 95.56%
On-spec rate (II) 95.05% 95.12% 98.75% 95.84%
On-spec rate (III) 96.32% 97.75% 99.29% 95.66%
𝜖′ 5.50% 6.25% N/A N/A
12
zero. In the blending recipe, 𝑥3 is selected because of its low RVP and
price. 𝑥4 is selected because of its low sulfur content and density. 𝑥5
has low RVP, low sulfur content, and high octane, but its sale price is
high. 𝑥9 has low RVP, but its sulfur is high, and thus cannot be heavily
used. Finally, 𝑥10 is chosen to lower the density and keep the octane
rating high.

5. Conclusion

This paper presents a chance-constrained program and its optimiza-
tion method to plan the blending process under general uncertainties.
The distribution of uncertain parameter is estimated by Gaussian
mixture models using sampled data. Then, we show that a proba-
bilistic constraint can be converted into a set of conic constraints
for each combination of Gaussian components. After decomposing
joint constraints based on Boole’s inequality and building cutting
planes of the inverse cumulative distribution function, the resulting
conservative approximation formula is bi-convex. The McCormick re-
laxation, branch and bound, optimality-based bound tightening, and
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Fig. 14. Recipes of three types of gasoline.
reformulate-linearization techniques are employed to continuously re-
duce the gap between upper and lower bounds until a global optimum
is achieved. The risk level is adjusted through bi-section search and
posterior evaluation to further reduce the conservativeness of approx-
imation. Finally, two case studies demonstrate the moderate solution
time and optimality of the proposed method, which achieves better
objective value than SA even without posterior evaluation.
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