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Multiscale heterogeneous optimal 
lockdown control for COVID‑19 
using geographic information
Cyrus Neary1*, Murat Cubuktepe1, Niklas Lauffer2, Xueting Jin3, Alexander J. Phillips1, 
Zhe Xu3, Daoqin Tong3 & Ufuk Topcu1

We study the problem of synthesizing lockdown policies—schedules of maximum capacities for 
different types of activity sites—to minimize the number of deceased individuals due to a pandemic 
within a given metropolitan statistical area (MSA) while controlling the severity of the imposed 
lockdown. To synthesize and evaluate lockdown policies, we develop a multiscale susceptible, 
infected, recovered, and deceased model that partitions a given MSA into geographic subregions, 
and that incorporates data on the behaviors of the populations of these subregions. This modeling 
approach allows for the analysis of heterogeneous lockdown policies that vary across the different 
types of activity sites within each subregion of the MSA. We formulate the synthesis of optimal 
lockdown policies as a nonconvex optimization problem and we develop an iterative algorithm that 
addresses this nonconvexity through sequential convex programming. We empirically demonstrate 
the effectiveness of the developed approach by applying it to six of the largest MSAs in the United 
States. The developed heterogeneous lockdown policies not only reduce the number of deceased 
individuals by up to 45 percent over a 100 day period in comparison with three baseline lockdown 
policies that are less heterogeneous, but they also impose lockdowns that are less severe.

!e COVID-19 pandemic has caused over 180 million con"rmed cases and over 3.96 million deaths globally as 
of June 30, 2021. Since the outbreak of COVID-19, various public health control strategies have been proposed 
and tested against the coronavirus SARS-CoV-2. However, existing COVID-19 control synthesis approaches 
typically either apply optimal control techniques using models that largely neglect interactions between indi-
viduals living in di#erent geographic regions, or focus on evaluating relatively simple control strategies with no 
optimality guarantees.

Approaches that apply optimal control techniques largely rely on models that neglect important spatial-
temporal dynamics associated with regional di#erences in the pandemic’s spread, and with people’s  movement1–9. 
However, studies of the spread of COVID-19 in India, France, and Italy have demonstrated the important role 
that heterogeneity between geographic regions plays in attempts to predict and to control the  pandemic10–12. It 
is essential that any interventions to slow the spread of the COVID-19 distinguish between di#erent geographic 
regions, which may have di#ering demographics, available medical equipment, and rates of transmission. !e 
exclusion of such geographic information in the modeling and analysis of control policies may result in signi"-
cant discrepancies between the model-predicted outcomes, and the practical results observed when the control 
policies are deployed.

Conversely, the research that incorporates detailed spatial-temporal geographic information does not focus 
on the synthesis of optimal control  policies13–16. Instead, these works evaluate given control policies without any 
consideration of their optimality. Note that such optimality becomes very important when our objective is not 
only to minimize deaths, but also to reduce the severity of the imposed lockdown.

In this work, we study the synthesis of optimal lockdown policies that explicitly take such geographic con-
sideration into account. A lockdown policy speci"es the maximum number of allowable concurrent visitors to 
various types of activity sites accross a given metropolitan statistical area (MSA). We de"ne activity sites to be the 
physical locations throughout the MSA, such as grocery stores and "tness centers, where interactions between 
members of the population frequently occur and thus where the disease is likely to spread.

To synthesize optimal lockdown policies while incorporating the aforementioned geographic considera-
tions, we "rst develop a multiscale susceptible, infected, recovered, and deceased (multiscale SIRD) model of 
the spread of a disease through a given MSA. !e model explicitly incorporates geographic data describing the 
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spatial distribution of the population, and interactions between individuals from di#erent subregions within 
the MSA. !e visualization on the le$ of Fig. 1 illustrates the geographic and multiscale nature of the modeling 
approach; each MSA is partitioned into subregions, and each subregion contains a collection of di#erent types of 
activity sites. !e spread of the disease through each individual subregion is captured by a separate SIRD model. 
All potential inter-regional spread of the disease—driven by the frequency at which members of the distinct 
subregion populations come into contact—is then modeled by interaction terms between the SIRD submodels, 
illustrated by the arrows in Fig. 2.

By explicitly modeling the activity sites at which the disease is likely to spread, the developed approach 
allows for the synthesis of optimal heterogeneous lockdown policies. Each of these policies speci"es the allow-
able number of visitors to a speci"c type of activity site within a given subregion. We formulate the problem of 
computing optimal heterogeneous lockdown policies as a nonconvex optimization problem. We then develop 
an iterative algorithm addressing this nonconvexity through sequential convex  programming17. Building on 
related  results17–20, we linearize the underlying nonconvex problem around the solution from the previous itera-
tion and check whether the synthesized policy obtains a better objective value. !e algorithm can synthesize 
a heterogeneous lockdown policy that is locally optimal with respect to the nonconvex optimization problem.

We evaluate the developed modeling framework and optimal policy synthesis algorithm using data from 
six of the largest MSAs in the United States: Phoenix, New York, Chicago, Los Angeles, Dallas-Fort Worth, and 
Seattle. Figure 1 visualizes the di#erence in the cumulative number of infections within each MSA’s population 
that results from the application of optimal lockdown policies, in comparison with imposing no lockdown. !e 
experimental results, discussed further below, demonstrate that the developed optimal heterogeneous lockdown 

Figure 1.  Le$: Visualization of the multiple scales of pandemic control strategy synthesis. Right: Resulting 
SIRD dynamics for the considered MSAs. !e y-axes denote the cumulative number of infected people in 
millions, and x-axes denote the time in days. !e blue and red curves visualize the cumulative number of 
infected people with and without an optimal lockdown policy, respectively.

Figure 2.  !e multiscale SIRD model with spatial interactions among di#erent subregions (e.g., cities).
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policies not only result in far fewer deaths in each MSA, but also in lockdown policies that are much less severe 
than their homogeneous counterparts, which impose the same lockdown to all types of activity sites and to all 
subregions.

Related work
COVID‑19 epidemic modeling. Since the initial outbreak of COVID-19, there has been extensive 
research into modeling its spread within a  population21–26. Commonly used compartmental models partition the 
population into labeled groups, each of which describes a di#erent phase of  infection2,27–32. For example, the SIR 
model separates the population into three compartments, those who are susceptible to the virus (S) , those who 
are currently infectious (I) , and those who have been removed from the model’s consideration (R)33. Given such 
a partition of the population, systems of ordinary di#erential equations are o$en used to model the dynamics of 
the disease’s spread. By including additional compartments in the model, and thus re"ning the partition of the 
population into more detailed categories, predictions and analysis of speci"c changes and quantities of interest 
can be made. For example, partitioning the population into di#erent age categories allows for the analysis of age-
speci"c targeted lockdown  policies2. Giordano et al.32 consider eight categories in their compartmental model, 
allowing for discrimination between infected individuals depending on whether they have been diagnosed and 
on the severity of their symptoms; this re"nement aims to enable the model to re&ect the observed high number 
of asymptomatic individuals who are still able to cause transmissions.

While such compartmental models provide an easy-to-interpret means of analyzing the spread of COVID-
19, they may only be used in the context of relatively large populations. Conversely, agent-based models instead 
encode rules for agents—simulated members of the population—to follow. !ese models simulate the spread of 
the disease resulting from these  behaviors34–40. Agent-based models allow for simulation of the e#ectiveness of 
behavioral interventions on the level of individual members of the population, such as mask-wearing and social 
distancing requirements within an enclosed space.

Several papers have considered further extensions of compartmental models. Chang et al.41 model transmis-
sion within a network where households make contact at common points of interest.  Karaivanov42 incorporates a 
social network model with an SIR model to provide a more realistic model of the interactions within a population, 
as opposed to the uniform mixing assumed by most SIR models. However, none of the above papers consider 
the problem of optimal control. Table 1 summarizes several representative references for COVID-19 modeling.

COVID‑19 related control. Several papers have investigated the problem of control analysis for various 
COVID-19 related policies, including lockdowns, testing, and vaccine distribution. Sardar et al.53 use compart-
ment-style pandemic models to study the e#ect of lockdowns on the spread of COVID-19. However, they do 
not synthesize lockdown control policies, nor do they study geographically heterogeneous lockdowns. Chat-
zimanolakis et al.54 and Buhat et al.55 both study the problem of optimally distributing test kits under limited 
supply. Other works study the trade-o#s between focusing allocation of vaccinations to either high-risk or high-
transmission age-groups in the context of SIR  models3–6. Goldenbogen et al.56 study a human-human interaction 
network and analyzes the optimal policy for vaccine distribution.

Similar to our work, several papers have studied the problem of synthesizing or evaluating lockdown poli-
cies within various epidemiological models to balance the tradeo# between viral spread and economic impact. 
Alvarez et al.1 study the problem of minimizing the deceased people in a basic SIR model while controlling the 
impact on the economy. Acemoglu et al.2 extends this work to consider di#ering dynamics and control among 
age groups. Both of these works, along with other COVID-19 control-related  papers13,14,41,51,57,58, only consider a 
spatially homogeneous population and control policy. Similar to the regional model considered by Della  Rossa12, 
we consider a hierarchical model allowing for region-speci"c dynamics and control. Table 2 summarizes several 
representative references for COVID-19 control.

Table 1.  List of representative references for COVID-19 modeling.

Compartmental Agent-based Network-based Other
SIR2,  SEIR27,  SIQS30,  SUQC31,  SIDARTHE32 34–40 12,41–44 45–50

Table 2.  List of representative references for COVID-19 control.

Control Single-scale Optimality Geographic information Demographic Information
Lockdown 1,2,13,14,51 1,2 13,14 2,51

Testing 3,15,52 3 15 52

Vaccination 4–9,16 4–6 16 4–6
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Methods
We formulate a multiscale SIRD pandemic model that uses a directed graph to capture the spread of the disease 
through a given MSA. !e model also captures how the disease’s spread is a#ected by the lockdown of vari-
ous types of activity sites. Each node of this graph represents a distinct geographic subregion and contains an 
independent SIRD model, which captures the spread of COVID-19 within the corresponding population. We 
represent the interactions between the populations of the subregions, i.e., the SIRD models, by the directed 
edges in the graph. !e weight of a given edge encodes the fraction of the origin subregion’s population that 
frequently interact within the subregion represented by the destination node; these weights are obtained from 
SafeGraph  data59.

In this work, we assume that all interactions causing the spread of COVID-19 within the MSA population 
occur at various types of activity sites. !ese activity sites represent the physical spaces within a community in 
which it is common for people, o$en from di#erent households and potentially from di#erent subregions, to 
gather in close proximity. In this work, similarly to Giordano et al.32, we include the following types of activity 
sites in our model: Grocery stores, restaurants, !tness centers, hotels, pharmacies, and physicians.

We used the foot tra'c information of activity sites in April 2020, collected from SafeGraph, to estimate the 
demand rates for each type of activity site within each subregion. !e demand rates are de"ned as the average 
number of people from a given subregion that visit a particular type of activity site per day. For each type of 
activity site within each subregion, we then use the corresponding estimated demand rate to de"ne a nominal 
capacity, which represents the maximum number of visits per day that can be sustained by all activity sites of 
this type within the particular subregion. To help visualize the how the multiscale SIRD model partitions an 
example MSA into subregions, Fig. 3 illustrates the boundaries used to de"ne the subregions of the Phoenix 
MSA, as well as the spatial variation of the population and activity site densities, obtained from SafeGraph data.

To control the spread of the disease we specify a separate time-varying lockdown policy for each type of 
activity site within each subregion. At each point in time, the lockdown policy takes a value between 0 and 1, 
representing a fraction of the nominal capacity of the corresponding activity site type and subregion. For exam-
ple, a lockdown policy might specify that all grocery stores within a particular subregion of the MSA may only 
allow half as many visitors per day as their nominal capacity. On the other hand, in a neighboring subregion, 
restaurants may only serve up to a quarter of their nominal capacity. So, specifying the lockdown for activity sites 
reduces their allowable number of visitors per day. !is in turn reduces the spread of the disease in the model 
by reducing the number of interactions occurring in the population. However, in response to the reduction in 
available capacity at the various activity sites, we assume that members of the population will begin to travel to 
other subregions. Specifying lockdown policies may therefore also indirectly in&uence the inter-regional interac-
tions occurring throughout the MSA.

We assume that the selected lockdown policy cannot blindly shut down all activity sites. In particular, we 
enforce the constraint that, a$er accounting for the travel between subregions, there must be enough capacity 
throughout the MSA to satisfy all of the existing demand. !is constraint corresponds to the idea of imposing 
a lockdown while still ensuring that the needs of the population are being met. For example, every member of 
the population should have the chance to shop for groceries.

Our objective is to solve for a heterogeneous lockdown policy that minimizes the number of deaths in the 
MSA over some "nite time horizon, while limiting the severity of the imposed lockdown. We formulate the 
computation of an optimal lockdown policy as a nonlinear optimization problem. !e variables of the optimi-
zation problem encode, at each moment in time, the number of people in each subregion that are susceptible, 
infected, recovered, and deceased, the fraction of each subregion’s population that visit activity sites within each 
of the subregions, and the lockdown value for each type of activity site within each subregion. !e objective of 
the optimization problem is a weighted sum of the cumulative deaths in the MSA and the economic cost of the 

Figure 3.  Spatial variation of the population and activity site densities in the Pheonix MSA. !e developed 
multiscale SIRD pandemic model partitions the MSA into subregions according to the visualized subregion 
boundaries.
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lockdown policy over a "nite time horizon. We model the economic cost of imposing a lockdown on a given 
type of activity site within a given subregion as being proportional to the frequency at which it is visited by 
members of the MSA’s population. We represent the relative weight of the economic cost in the optimization 
objective by an economic impact parameter. A higher value of this parameter implies a higher relative weight on 
the economic cost in the objective.

!e resulting optimization problem is nonconvex due to the nonlinear dynamics of the multiscale SIRD 
model. In general, it is computationally hard to compute an optimal lockdown policy for such nonconvex 
 problems19. To compute a locally optimal solution, we successively linearize the nonconvex optimization prob-
lem by computing a local approximation of the problem at each  iteration17–20. We provide more details on the 
formulation of the multiscale pandemic model, on the resulting optimization problem, and on our solution 
approach in the supplementary material.

Results
In this section, we implement the developed approach using SafeGraph data from Phoenix, Seattle, New York, 
Chicago, Los Angeles, and Dallas-Fort Worth MSAs. We show detailed results for the Phoenix MSA in this sec-
tion, and we include the results for the other MSAs in the supplementary material.

In Figs. 4a,b, we show the dynamics of the susceptible, infected, recovered, and deceased people within the 
Phoenix MSA over a time horizon of 100 days. We observe that without any lockdown, the cumulative number of 
infected people in the Phoenix MSA by the end of the time horizon is 94% of the total population. Furthermore, 
the instantaneous number of infected individuals peaks at around 1.7 million a$er 40 days, which is roughly 40% 
of the MSA’s total population. Conversely, a$er imposing an optimal heterogeneous lockdown policy, we observe 
that the peak number of instantaneous infections is signi"cantly lower than in the case without lockdown. Under 
an optimal lockdown policy, the instantaneous number of infected individuals plateaus at 0.3 million a$er 40 
days instead of peaking at 1.7 million. As well as &attening the peak number of instantaneous infections, we 
observe that the imposed lockdown signi"cantly reduces the cumulative number of infected individuals over 
the time horizon. !e cumulative number of infections when an optimal lockdown is imposed is only 35% of 
the infections when no lockdown is imposed.

For each of the six types of activity sites included in the multiscale SIRD model, Fig. 5 illustrates the imposed 
optimal lockdown policies for "ve representative subregions within the Phoenix MSA. For all types of activity 
sites, we observe that the imposed lockdown values peak between 40 and 60 days, before gradually decreasing 
towards the end of the time horizon. We note that this peak in the lockdown policies coincides with the peak 
number of infections that occurs when no lockdowns are imposed. !e imposed lockdowns in Cave Creek, 
the subregion with the smallest population in the Phoenix MSA, are much less severe than the lockdowns in 
the other subregions. Finally, we observe that the lockdowns imposed on grocery stores, "tness centers, and 
restaurants are much more severe than those imposed on pharmacies, physicians, and hotels. !e former three 
types of activity sites all have much higher demand rates, obtained from SafeGraph data, than the latter three. 
!is pattern indicates a relationship between the frequency at which each type of activity site is visited, and the 
severity of optimal lockdown policies. !is particular relationship is explored further below.

Figure 6, we visualize the average number of interactions between the populations of the di#erent subregions 
that results from the solution to the optimization problem. Each directed edge represents people from the origin 
subregion visiting activity sites in the target subregion. !e width and color of the edges visualize the average 
number of such visits. !e size of each node is proportional to the size of the population of the corresponding 
subregion. We note that the edges in Fig. 6 illustrate frequent interactions between the populations of di#erent 

Figure 4.  Comparison of the dynamics of the multiscale SIRD model for the Phoenix MSA when no lockdown 
policy is imposed, and when a computed optimal lockdown policy is imposed. We note that the plots illustrate 
the current number of susceptible, infected, recovered, and deceased members of the MSA population, as 
opposed to the cumulative sums of these values.
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subregions, not permanent travel that changes the sizes of the populations. !e types of activity sites we consider 
are generally daily activities; we assume that a$er visiting an activity site in another subregion, members of the 
population will return to their home subregion.

In the remainder of this section we examine the bene"ts of heterogeneous lockdown policies, the tradeo# 
between the number of infected individuals and the economic cost of the imposed lockdowns, and the tradeo# 

Figure 5.  Visualization of the lockdown policies for di#erent types of activity sites and for "ve representative 
subregions in the Phoenix MSA. Higher values correspond to lockdowns that are more restrictive. !e 
populations of the "ve representative subregions, listed in decreasing order, are: Phoenix ( 1.67 × 106 ), Mesa 
( 5.46 × 105 ), Chandler ( 2.67 × 105 ), Tempe ( 1.82 × 105 ), and Cave Creek ( 6.20 × 103 ). For all activity sites, we 
observe that the average lockdown value is higher for subregions with larger populations. We also note that the 
lockdown value is signi"cantly higher for certain activity sites due to their large demand rates.

Figure 6.  Visualization of the average number of interactions between subregions that results from the solution 
to the optimization problem for Phoenix MSA. Each node in the visualization graph represents a subregion; 
node sizes are proportional to the population of the corresponding subregion. Directed edges between 
subregions visualizes interactions between their populations. !e direction of the edge represents the direction 
of travel: members of the origin subregion’s population visit activity sites within the target subregion, and 
then return to their home subregion. Increasing edge widths and darker colors for the edges represent a larger 
number of people that are traveling between subregions.
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between the accuracy of the multiscale SIRD model and the computational performance of the optimization 
algorithm. For consistency, we present these results only for the Phoenix MSA.

Illustrating the benefits of heterogeneous lockdown policies. In Figure 7, we compare the results 
of four di#erent classes of lockdown policies, each of which is computed using the optimization algorithm 
described in the Methods section and in the supplementary material, however, with various additional con-
straints. More speci"cally, we consider the four di#erent classes of lockdown policy detailed below. All of the 
considered lockdown policies may specify di#erent lockdown values for di#erent points in time.

• Heterogeneous lockdown (HL): Separate lockdowns are imposed for each type of activity site within each 
subregion.

• Regional lockdown (RL): Each subregion may impose di#erent lockdowns, but within a given subregion, all 
activity sites impose the same lockdown.

• Activity site lockdown (ASL): Each type of activity site may impose di#erent lockdowns, but the lockdown 
for a particular type of activity site is identical across all of the subregions.

• MSA lockdown (MSAL): All activity sites within all subregions impose the same lockdown.

Figure 7a, we note that the HL policies result in fewer deaths compared to the ASL, RL, and MSAL policies, all 
of which are less heterogeneous than HL. For instance, the MSAL policies result in 65% more deaths than the 
HL policies over the course of the 100 day time horizon. We also observe from Fig. 7b that the HL policies incur 
the lowest average lockdown values, i.e. the lowest lockdown values per time step, averaged over all activity sites 
and subregions. By allowing the lockdown policies to vary heterogeneously over the di#erent activity sites within 
the di#erent subregions, we not only reduce the number of deceased indiviuals, but also impose lockdowns that 
are, on average, less severe than the RL, ASL, and MSAL policies.

Practically speaking, the reason that HL policies are more performant than their more homogeneous coun-
terparts, is because they allow for more granular control of the lockdowns imposed throughout the MSA. !is 
granularity can help to individually address di#erent geographic, demographic, and epidemiological charac-
teristics of the disease’s spread across the di#erent subregions and types of activity sites. Mathematically, this 
intuitive explanation corresponds to the fact that the class of all HL policies is a superset of the classes of all ASL, 
RL, and MSAL policies, respectively. !at is, any ASL, RL, or MSAL policy can also be considered to be an HL 
policy. For this reason, it must be the case that the optimal HL policy is at least as performant as the optimal 
policy from each of these other classes.

Examining the tradeoff between the number of infected individuals and the economic cost 
of the imposed lockdowns. Figure 8, we compare the results of optimal policies that arise from di#erent 
values of the economic impact parameter, described in the Methods section. We observe that as the value of the 
economic impact parameter increases, assigning more weight to the economic cost of the imposed lockdowns 
in the optimization objective, the resultling average lockdown value decreases. Practically speaking, a lower 
average lockdown value corresponds to lockdown policies that are less restrictive—i.e. the allowed capacities of 
the activity sites throughout the MSA remain higher. While such policies may be desirable from an economic 
standpoint, they also result in more interactions between members of the MSA’s population. As demonstrated 
in Fig. 8a, this leads to a higher cumulative number of deaths by the end of the considered time horizon. So, a 
clear tradeo# exists between the severity of the disease’s spread throughout the population, and the cost of the 
imposed lockdown policies.

Figure 7.  Comparison of the number of deaths and average lockdown values resulting from di#erent classes of 
lockdown policies. Utilizing the HL policies results in the smallest average lockdown value while also inducing 
the least number of cumulative deaths.
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Effects of different number of outgoing edges for each subregion. In order to improve the com-
putational performance of the optimization algorithm, we may limit the number of outgoing edges from each 
subregion in the multiscale SIRD model of the MSA. An outgoing edge from subregion i to subregion j in the 
model implies that people in subregion i can travel to subregion j to visit an activity site. By pruning edges from 
the model, the number of variables in the optimization problem can be signi"cantly decreased, at the expense 
of a less accurate representation of the disease’s inter-regional spread. In Table 3, we compare the results of the 
optimal policies obtained when the multiscale SIRD model is restricted to only include 3, 4, or 5 outgoing edges 
from each subregion. For a detailed description of how we obtain the outgoing edges to keep in the model, see 
the supplementary material.

We observe that by including 5 outgoing edges per subregion in the model instead of 3, we can solve for an 
optimal lockdown policy with 26% fewer deaths. Conversely, the average lockdown value is very similar for the 
di#erent number of edges. In other words, including more outgoing edges per subregion leads to solutions that 
reduce the number of deaths, without imposing more severe lockdown policies. However, this bene"t comes 
at the expense of an increase in computation time; the computation times for 4 and 5 edges are 80% and 240% 
larger than for 3 edges, respectively.

We also note that the lockdown value and the number of deaths are very similar for the models that use 4 
and 5 outgoing edges for each subregion. !is is likely because our methods compute a locally optimal solution 
as opposed to a globally optimal one, which would be intractable.

Relationship between average lockdown value and the demand rate for types of activity 
sites. Figure 9 plots the demand rate for each type of activity site within each subregion, as well as the average 
value of the corresponding optimal lockdown policy. We observe an increasing relationship between these two 
quantities which indicates that, in general, the solution to the optimization problem described in the Methods 
section results in more severe lockdown policies for activity sites that are visited more frequently. Intuitively, this 
results in a redirection of people away from crowded activity sites towards less busy ones, reducing the potential 
interactions between members of the population.

Discussion
We present a modeling framework and an optimization algorithm for the synthesis of multiscale heterogene-
ous lockdown policies. Our numerical results demonstrate the e#ectiveness of these lockdown policies, which 
individually address the di#erent geographic, demographic, and epidemiological characteristics of the disease’s 
spread across the di#erent subregions and activity sites within an MSA. !e resulting policies provide practical 
and actionable insights surrounding the incorporation of geographic information into epidemic control strategy 
synthesis.

Figure 8.  Comparisons of the results of using di#erent values for the economic impact parameter when solving 
for optimal lockdown policies.

Table 3.  Number of deaths and average lockdown value resulting from a di#erent number of outgoing edges 
per subregion in the multiscale SIRD model of the Phoenix MSA. By using a model incorporating more edges, 
we can reduce the deaths by up to 26%, without inducing a signi"cant increase in the average lockdown value.

3 edges 4 edges 5 edges
Deaths per 100,000 819 607 620
Average lockdown value 0.15 0.19 0.19
Number of edges in adjacency matrix 84 109 132
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!rough our numerical results, we demonstrate that lockdown policies that distinguish between di#erent 
activity sites and geographical subregions not only reduce the number of deceased individuals due to the pan-
demic but also decrease the severity of the induced lockdowns across the entire MSA, in comparison to less 
heterogeneous lockdown policies. !is result highlights the importance of heterogeneous control strategies in 
slowing the spread of the pandemic. We also observe an increasing relationship between the demand rate of 
a particular type of activity site, and the average lockdown value that is assigned to those activity sites by the 
optimal heterogeneous lockdown policy. Similarly, we observe that the activity sites within subregions with 
large populations are locked down more severely than those in subregions with small populations. Finally, we 
observe that the optimal lockdown policy tends to become most severe at the point in time when the number of 
infections in the population is at its peak value, before gradually easing up over time. In summary, our numerical 
results suggest that lockdown policies are most e#ective when they distinguish between di#erent types of activity 
sites and geographic subregions, when the severity of the lockdown increases with the popularity of the activity 
site and the population of the subregion, and also when severity of the lockdown increases with the number of 
infected individuals in the population.

Furthermore, we observe a direct tradeo# between the severity of a lockdown and the resulting number of 
deceased individuals at the end of the considered time horizon. !e proposed lockdown policy synthesis algo-
rithm provides a method to control this tradeo# through the economic impact parameter. By varying the value 
of this parameter, decision-makers can assess the predicted biological and economic outcomes of an entire suite 
of lockdown policies, before deploying any of them in practice.

!e framework we present is &exible; it can be adapted to incorporate additional modeling considerations 
and data sources, when such information becomes available. For example, we assume that the economic impact 
of a lockdown policy is proportional to the demand rate of the corresponding activity sites. However, a more 
complex economic cost function could easily be incorporated into the optimization objective. Furthermore, 
additional considerations surrounding the lockdown policy for speci"c activity sites can be incorporated by 
adding constraints to the optimization problem. !e granularity of the model can also be re"ned by incorporat-
ing additional types of activity sites and a "ner partition of the MSA into subregions. Finally, we demonstrate 
that by including more edges in the multiscale SIRD model, we can signi"cantly reduce the predicted number 
of deceased individuals at the sole expense of a higher computational cost.
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