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We improve the algorithms of Lauder-Wan [11] and Harvey [8] to 
compute the zeta function of a system of m polynomial equations 
in n variables, over the q element finite field Fq , for large m. 
The dependence on m in the original algorithms was exponential 
in m. Our main result is a reduction of the dependence on m
from exponential to polynomial. As an application, we speed up 
a doubly exponential algorithm from a recent software verification 
paper [3] (on universal equivalence of programs over finite fields) 
to singly exponential time. One key new ingredient is an effective, 
finite field version of the classical Kronecker theorem which (set-
theoretically) reduces the number of defining equations for a 
polynomial system over Fq when q is suitably large.
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1. Introduction

Let Fq be the finite field of cardinality q with characteristic p. Let F be a polynomial system with 
m equations and n variables over Fq:

F (x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
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where each f i ∈ Fq[x1, . . . , xn] has total degree at most d. Note that the total number of digits needed 

to write down the monomial term expansions in such a system is O  
(

m
(

d+n
n

)

logq
)

. So it is natural to 

use m
(

d+n
n

)

logq as a measure of input size for F when discussing algorithmic efficiency.

One could refine the input size further — to take sparsity into account — by replacing the m
(

d+n
n

)

factor with a quantity closer to the number of monomial terms of F . (See, e.g., [7,4,1] where various 
NP-hardness and #P-hardness results are proved relative to this potentially smaller measure.) How-

ever, for applications like software verification, there is no reason to expect that the F one encounters 
will have few monomial terms. So we will stick with m

(

d+n
n

)

logq as our measure of size. For our pur-
poses here, and for reasons to be made clear shortly, we will call the polynomial system F large if 
the number of equations m is at least n + 2.

A basic algorithmic problem in number theory is to compute the number of solutions, Nq(F ), of 
the polynomial system F = (0, . . . , 0) over Fq . More precisely, we let Nq(F ) denote the cardinality 
of 

{

(x1, . . . , xn) ∈ Fn
q

∣

∣ F (x1, . . . , xn) = (0, . . . ,0)
}

. The special case (m, n) =(1, 2) already plays a huge 
role in cryptography, since curves with a specified number of points are crucial to the design of many 
cryptosystems (see, e.g., [6]).

An even deeper problem is to consider all extension fields of Fq at once and compute the full 
sequence Nq(F ), Nq2(F ), . . . , Nqk (F ), . . . or, equivalently, the generating zeta function

Z(F , T ) = exp

( ∞
∑

k=1

Nqk (F )

k
T k

)

.

Understanding this generating function occupied a good portion of 20th century algebraic and arith-
metic geometry. Interestingly, this generating function has found a recent application to software 
engineering, specifically, in program equivalence [3]. (We clarify this in the next section.) It is not at 
all obvious from the definition that this zeta function is effectively computable, so let us briefly recall 
how it actually is.

A deep and celebrated theorem of Dwork from 1960 says that the zeta function is a rational 
function in T . A theorem of Bombieri [5] from 1988 says that the total degree of the zeta function is 
effectively boundable. It then follows, from basic manipulation of power series, that the zeta function 
is effectively computable, although practical efficiency is far more subtle: See [14] for a survey on 
algorithms for computing zeta functions. A general deterministic algorithm to compute Z(F , T ) was 
constructed in Lauder-Wan [11] with running time

2m(pmndn logq)O (n).

One should note that the case d =1 is easily handled by linear algebra, leading to a complexity bound 

of O  
(

(max3{m,n} log2 q
)

via any reasonable implementation of Gaussian elimination and finite field 

arithmetic, without invoking sub-cubic matrix multiplication or Fast Fourier Transform multiplication 
in Fq .

For small characteristic p, the general algorithm from [11] remains the best so far. However, for 
large characteristic p, the dependence on p has been improved by Harvey [8], who constructed an 
algorithm with running time

2mp(mndn logq)O (n),

for d ≥2. (There is also a variant in [8] with time complexity linear in 
√

p instead, but at the expense 
of increasing the space complexity to roughly the same order as the time complexity.) The algorithms 
from [11] and [8] are, however, fully exponential in m, even for fixed n.

To improve the dependence on m, we briefly explain how the exponential factor 2m arises in 
the algorithms of [11] and [8]: Both algorithms, in the case m = 1 (the hypersurface case), are ob-
tained via p-adic trace formulas (meaning linear algebra with large matrices over the polynomial 
ring (Z/pλZ)[t], arising after some cohomological calculations). The case m > 1 is then reduced 
to the case m = 1 via an inclusion-exclusion trick [14] to compute the zeta function for each of 
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the 2m hypersurfaces defined by f S = ∏

i∈S f i , where S runs through all subsets of {1, . . . , m} and 
deg( f S ) ≤ |S|d ≤md.

In this paper, we improve the Lauder-Wan algorithm and the Harvey algorithm by employing an 
additional algebraic trick to reduce the exponential factor from 2m to m. A key new idea is to prove an 
effective, finite field version of Kronecker’s theorem that enables us to reduce the number of defining 
equations, m, to min{m, n + 1} when q is sufficiently large: See Section 3 below.

Our main result is the following:

Theorem 1.1. There is an explicit deterministic algorithm which computes the zeta function Z(F , T ) of the 
system F over Fq (with m equations, n variables, and total degree at most d for each equation) in time 
mp(nndn logq)O (n) .

We prove Theorem 1.1 in Section 4.

We will see in the next section how our theorem enables us to speed up a doubly exponential 
time algorithm (from [3]) for program equivalence to singly exponential time. In particular, we will 
now briefly review some of the background on programs over finite fields.

2. Programs, their equivalence, and zeta functions

2.1. Background on program equivalence

A basic and difficult problem from the theory of programming languages is determining when two 
programs always yield the same output, without trying all possible inputs. This problem — a special 
case of program equivalence — also has an obvious parallel in cryptography: A fundamental problem 
there is to decide whether a putative key for an unknown stream cipher (that one has spent much 
time deducing) is correct or not, without trying all possible inputs. In full generality, program equiv-
alence is known to be undecidable in the classical Turing model of computation. However, program 
equivalence (and formal verification, in greater generality [10]) remains an important problem in soft-
ware engineering and cryptography. It is then natural to ask these questions in a more limited setting.

For instance, Barthe, Jacomme, and Kremer (in [3]) describe a programming language which en-
ables a broad family of calculations (and verifications thereof) involving polynomials over finite fields. 
They proved that program equivalence in their setting is decidable, and gave an algorithm with dou-
bly exponential complexity. We now briefly review their terminology (from [3, Sec. 2.2]), and explain 
how their algorithm requires a non-trivial use of zeta functions.

To be more precise, in their restricted setting, a program is a sequence of logical/polynomial ex-
pressions over a finite field. To define this rigorously, one first fixes a set I of input variables and a set 
R of random variables. Then all possible expressions making up a program can be defined recursively 
(building up from (1) and (2) below) as follows:

(1) a polynomial P ∈ Fq[I, R];
(2) the failure statement ⊥;

(3) an “if” statement of the following form:

if b then e1 else e2

where e1 and e2 are expressions, and b is a propositional logic formula, whose atoms are of the 
form Q = 0 for some Q ∈ Fq[I, R].

Remark 2.1. Programs in [3] are written using semi-colons as delimiters, similar to some real-world 
program languages such as C or Java. 	

The size of a program is defined to be the number of characters in a program. The presence of 
random variables enables our programs to use randomization, and give answers with a certain prob-
ability of failure. We denote the set of all such programs by Pq(I, R). Polynomials in a program are 
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represented by arithmetic formulas, so the degree of any polynomial in the program is bounded from 
above by the size of the program. Note that programs in this core language do not have loops. If a 
program has neither “if” statements nor failure statements then we call the program an arithmetic 
program. The set of all arithmetic programs is denoted by P̄q(I, R).

The number of expressions at the top level of a program P — denoted by |P | — is simply the length 
of the sequence defining P . (In a real-world programming language, the “top level” of a program 
simply means one ignores subroutines and, e.g., statements inside of an “if” statement.) Note also 
that since our programs can use random variables, our programs thus send input values in F

|I|
qk

to 

a probability distribution over F |P |
qk

, for any positive integer k. Here we assume that for every input 

assignment, the program does not fail (i.e., there is no evaluation of ⊥ that halts the program) for 
at least one random assignment. A program can thus be viewed as a map from inputs to real-valued 
functions: F

|I|
qk

→ (F
|P |
qk

→ [0, 1]). The following example reveals how understanding the semantics 

of a program (i.e., what the program does) in fact requires counting solutions of polynomial systems 
over finite fields.

Example 2.2. Fixing I = ∅ and R ={x}, the program

x ∗ x; x ∗ x ∗ x

outputs the square, and the cube, of a uniformly random element of Fq .
1 Let N(α, β) denote the 

number of solutions in Fqk of (x2, x3) = (α, β). The output of the program thus exhibits a random 

variable on F2
qk
, with probability mass function taking the value N(α, β)/qk at (α, β). 	

Example 2.3. Let I = {x} and R = {y, z}. The following program P1 is in P(I, R):

if ¬(x = 0) then y + 1 else y + 2; z ∗ z

The program P1 yields the probability distribution on F2
qk

corresponding to the first coordinate being 

uniformly random in Fqk and the second coordinate a uniformly random square in Fqk . 	

To calculate the distribution, the sample space consists of the assignments to random variables so 
that the program does not fail. Recall that we assume that for every input assignment, the program 
does not fail for at least one random assignment. For example, the following program (I = {x} and 
R = {y}) computes the inverse of x with probability 1:

if x = 0 then 0 else if x ∗ y = 1 then y else ⊥
Given two programs, we would like to check whether they produce the same distribution for any 

input. More generally, let P1, Q1 be programs and P2, Q2 be arithmetic programs. We write P1|P2 ≈
Q1|Q2 if, taking any input c under the condition that P2 = 
0, P1 outputs the same distribution as 
Q1 taking c as input under the condition Q2 = 
0. To calculate the distribution, we only need to 
consider the random values such that none of P1 and Q1 output ⊥.

Remark 2.4. Observe that the set of inputs yielding a fixed sequence of outputs is nothing more than 
a constructible set over Fqk , i.e., a boolean combination of algebraic sets over Fqk . In particular, the 
set of inputs making two programs differ is also a constructible set over a finite field. 	

The question of equivalence can be raised for a fixed k, or for all positive integers k. The latter 
case is called universal equivalence, which is most relevant to our discussion here. For example, let Q1

be the program defined by:

1 The value of x is fixed once the first instance has taken place. Note also that we use x ∗ x in place of x2 , since polynomials 
are represented by arithmetic formulas and thus arbitrary exponentiation requires a varying number of gates.
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y; 7 ∗ (z + 1) ∗ (z + 1).

If 7 is a nonzero square in Fq then the program P1 (from Example 2.3) is universally equivalent to 
Q1 , i.e., P1|0 ≈ Q1|0. Otherwise, P1|0 and Q1|0 are not equivalent over Fq , and hence not universally 
equivalent.

2.2. An improved reduction from general to arithmetic programs

Note that in greater generality, checking universal equivalence means checking if a sequence of 
constructible sets consists solely of empty sets (per Remark 2.4 above). As observed in [3], this can 
be done by a single zeta function computation. This is, in essence, how [3] proved that universal 
equivalence for arithmetic programs can be done in singly exponential time. For universal equivalence 
of conditional programs, the same ideas apply, but [3] proved a doubly exponential complexity upper 
bound. More precisely, for general programs P1, Q1 and arithmetic programs P2, Q2 , they defined a 
reduction, to obtain four arithmetic programs P ′

1, P
′
2, Q

′
1 and Q′

2 so that

P1|P2 ≈ Q1|Q2 if and only if P ′
1|P ′

2 ≈ Q′
1|Q′

2.

One can reduce general program equivalence to deciding P ′
1|P ′

2 ≈ Q′
1|Q′

2 , where P ′
1, P

′
2, Q

′
1 and 

Q′
2 are each arithmetic programs. More precisely, if � is the input size of the original programs (i.e., 

the sum of the sizes of P1, P2, Q1 and Q2), then we can build the new arithmetic programs P ′
i

and Q′
i
so that they have size 2O (�) , consist of 2O (�) many polynomials, but involve just �O (1) many 

variables. Furthermore, the total degree of each polynomial in the new programs is at most 2O (�) .

We outline this reduction below, but first let us state an immediate consequence of applying our 
improved zeta function algorithm to this reduction: We improve the main complexity bound of [3]
from doubly exponential to singly exponential.

Theorem 2.5. Universal equivalence of programs can be checked in time singly exponential in the size. �

Since our main focus is speeding up zeta function computation, we will now briefly outline, 
through some representative examples, how to reduce general programs to arithmetic programs. See 
[3] for the full, formal treatment of their original reduction.

First, it is clear that we need to be able to remove failure statements (⊥) and “if” statements 
from P1 and Q1 . We may assume that there is at most one occurrence of the failure statement in 
P1 , since we can collect the conditions for failure together. For example, the following program:

if A1 then ⊥ else P1; if A2 then P2 else if A2 then ⊥ else P3

is equivalent to

if A1 ∨ (¬A2 ∧ A2) then ⊥ else P1; if A2 then P2 else P3

The new program has size polynomial in the size of the old program, since the number of ⊥ in the 
input program is bounded from above by the size of the input. Without loss of generality, suppose 
then that P1 has the form

if b then P1 else ⊥; P̄1

where ⊥ occurs only once in the program and P̄1 has no failure statements. If the condition 
b is a disjunction of literals2 then we can find a single polynomial B whose vanishing repre-
sents b. For example, if b is (P2 = 0) ∨ ¬(P3 = 0) ∨ ¬(P4 = 0), then we build the polynomial B =
P2(t3P3 − 1)(t4P4 − 1). The new programs then become

2 A disjunction is simply a boolean “OR” applied to several propositions. A literal is simply a variable, or the negation thereof.
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P ′
1 = P1; P̄1

P ′
2 = P2; B; t3(t3P3 − 1); P3(t3P3 − 1); t4(t4P4 − 1); P4(t4P4 − 1)

Q′
1 = Q1

Q′
2 = Q2; B; t3(t3P3 − 1); P3(t3P3 − 1); t4(t4P4 − 1); P4(t4P4 − 1)

Here t3 and t4 are new random variables but they are uniquely determined by P3 and P4 under 
the constraints. Namely if P3 = 0, then t3 = 0, otherwise t3 = 1/P3 . For a more general proposition 
formula b, we first convert it to a CNF formula,3 which may result in a conjunction of exponentially 
many disjunctions, hence exponentially many polynomials B1, B2, · · · , Bm , in addition to polynomials 
like ti(ti P i − 1) and P i(ti P i − 1) etc. The new equivalence is then

P1; P̄1|P2, B1, B2, . . . ≈ Q1|Q2, B1, B2, . . .

Nevertheless, we have only introduced polynomially many new variables, since we need at most 
one new variable for each polynomial in the original program. Also, while the program P ′

2 may be 
exponentially long, the program P ′

1 is actually shorter than the original P1 .

Observe that we may also assume that all the inputs to conditional statements are literals. For 
example we can replace

if A1 ∨ A2 then P1 else P2

by

if A1 then P1 else if A2 then P1 else P2.

Then, to remove “if” in a conditional statement such as

· · · ; if ¬(B = 0) then P1 else P2; · · · |P2

we can use classical tricks such as replacing disequalities by equalities with an extra variable to obtain

· · · ; P2 + (tB)(P1 − P2); · · · |P2; B(Bt − 1); t(Bt − 1)

Note that this step may increase the size exponentially, but the number of variables grows only poly-
nomially.

The reduction we have just outlined is similar to the reduction [3] used to derive their doubly 
exponential algorithm to solve the general universal equivalence. Our version is slightly better since 
we do not introduce as many new variables.

Let us at last detail the key trick behind our improved zeta function algorithm.

3. Effective Kronecker theorem over finite fields

A classical theorem of Kronecker [9] says that any affine algebraic set defined by a system of m
(>n) polynomials in n variables over an algebraically closed field K can be set-theoretically defined 
by a system of n + 1 polynomials in n variables over the same field K . Kronecker stated his theorem 
without a detailed proof; see [12] for a self-contained proof. The theorem, as stated, is actually true 
for any infinite field K , not necessarily algebraically closed. But it fails for certain finite fields (de-
pending on the underlying polynomial system), which is our main concern here. Here we follow the 
ideas in [12] to show that Kronecker’s theorem remains true for a finite field Fq , if q is suitably large, 
and tailor our version to our algorithmic applications.

Recall that if I is an ideal in the commutative ring Fq[x1, . . . , xn], then its radical ideal is defined 
as 

√
I =

{

f ∈ Fq[x1, . . . , xn]
∣

∣ f i ∈ I for some i ≥ 1
}

. It is then clear that the two ideals I and 
√

I have 
the same set of Fqk -rational points for every k. In particular, they have the same zeta function.

3 Conjunctive Normal Form, meaning “an AND of ORs”. . . .
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Theorem 3.1 (Affine version). Let f i ∈ Fq[x1, . . . , xn] with deg( f i) ≤ d for all i ∈ {1, . . . , m}. Assume 
that q > (n + 1)dn . Then there is a deterministic algorithm with running time m(ndn)O (n) log2 q or 
O (max3{m, n} log2 q), according as d ≥ 2 or d = 1, which finds n + 1 polynomials g j ∈ Fq[x1, . . . , xn]
with deg(g j) ≤ d for all j ∈ {1, . . . , n + 1} such that their radical ideals are the same: 

√

( f1, . . . , fm) =
√

(g1, . . . , gn+1).

We prove Theorem 3.1 after first proving the following homogeneous version:

Theorem 3.2 (Homogeneous version). Let f i ∈ Fq[x1, . . . , xn] be homogeneous polynomials of degree d
for all i ∈ {1, . . . , m} and assume q > ndn−1 . Then there is a deterministic algorithm, running in time 
m(ndn)O (n) log2 q or O (max3{m, n} log2 q), according as d ≥2 or d =1, which finds n homogeneous poly-
nomials g j ∈ Fq[x1, . . . , xn] of degree d for all j ∈ {1, . . . , n} such that their radical ideals are the same: 
√

( f1, . . . , fm) = √
(g1, . . . , gn).

Proof of Theorem 3.2. If m ≤ n then the theorem is trivial as we can just take g j = f j for j ≤m and 
g j = f1 for j > m. So we assume m > n henceforth. By induction, it is enough to prove the case 
m = n + 1. The case d =1 is immediate from Gaussian Elimination, so let us also assume d ≥2.

Now, the n + 1 polynomials { f1, . . . , fn+1} in n variables are algebraically dependent over Fq . 
That is, there is a non-zero homogeneous polynomial AM(y1, . . . , yn+1) of some positive degree M in 
Fq[y1, . . . , yn+1] such that

AM( f1, . . . , fn+1) =
∑

k1+···+kn+1=M

Ak1,...,kn+1
f
k1
1 · · · f kn+1

n+1 = 0.

This polynomial relation gives a homogeneous linear system over Fq with 
(

M+n
n

)

variables Ak1,...,kn+1

and 
(

Md+n−1
n−1

)

equations (one equation for each monomial of degree dM in the variables x1, . . . , xn). 

If 
(

M+n
n

)

>
(

Md+n−1
n−1

)

then the homogeneous linear system must have a non-trivial solution. So let us 
choose M = ndn−1: Clearly Md + i ≤ d(M + i) for all i ≥ 0 and

(

M+n
n

)

(

Md+n−1
n−1

)
= M + n

n

n−1
∏

i=1

M + i

Md + i
≥ M + n

n

(

1

d

)n−1

> 1.

Solving our linear system takes time at most

O

((

M + n

n

)ω

log2 q

)

= MO (n) log2 q = (ndn)O (n) log2 q,

(with ω < 2.373 the matrix multiplication complexity exponent [13]). So we can then clearly find a 
non-trivial solution involving Ak1,...,kn+1

∈ Fq with k1 + · · · + kn+1 = M .

Next, we would like to make an invertible Fq-linear transformation

yu =
n+1
∑

v=1

bu,v zv , bu,v ∈ Fq, u∈{1, . . . ,n + 1}

such that when AM(y1, . . . , yn+1) is expanded as a polynomial in z1, . . . , zn+1 under the above linear 
transformation, the coefficient of zMn+1 is non-zero. Such an invertible linear transformation may not 
exist if q is small. We shall prove that it does exist if q >M=ndn−1: Expand and write

AM(y1, . . . , yn+1) =
∑

k1+···+kn+1=M

Bk1,...,kn+1
z
k1
1 · · · zkn+1

n+1 .

One easily checks that the coefficient of zMn+1 is

7
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B(b1,n+1, . . . ,bn+1,n+1):=B0,...,0,M =
∑

k1+···+kn+1=M

Ak1,...,kn+1
b
k1
1,n+1 · · ·bkn+1

n+1,n+1,

and is an (n + 1)-variate homogeneous polynomial in Fq[b1,n+1, . . . , bn+1,n+1] \{0} of degree M . Since 
we assume M < q, the polynomial B is not the zero function on Fn+1

q .

Now, since we have solved for the coefficients Ak1,...,kn+1
of AM(y1, . . . , yn+1) already, we know the 

monomial term expansion for the homogeneous polynomial Bn ∈Fq[b1,n+1, . . . , bn,n+1] that satisfies 

B=Bn(b1,n+1, . . . , bn,n+1)b
dn+1

n+1,n+1 + o(b
dn+1

n+1,n+1) where dn+1 is the degree of B in bn+1,n+1 , Bn is not 
the zero polynomial, and the second term means a sum of terms of degree strictly lower than dn+1

with respect to bn+1,n+1. In particular, if n =1, we can simply pick b1,2 to be any nonzero element 
of Fq , and try ≤d2 + 1 ≤M + 1 elements of Fq until we find a b2,2 making B(b1,2, b2,2) nonzero as 
desired.

Otherwise, if n ≥2, we similarly determine the monomial term expansion for the homogeneous 
polynomial Bn−1∈Fq[b1,n+1, . . . , bn−1,n+1] that satisfies

Bn=Bn−1(b1,n+1, . . . ,bn−1,n+1)b
dn
n,n+1 + o(b

dn
n,n+1),

and so on, to define successive leading coefficient polynomials Bn−2, . . . , B1 in fewer and fewer 
variables. We then see that upon picking any nonzero element of Fq for b1,n+1 , and then check-
ing ≤M + 1 possible values for b2,n+1 , and ≤M + 1 possible values for b3,n+1 , etc., we can make 
B(b1,n+1, . . . , bn+1,n+1) nonzero after (M + 1)n polynomial evaluations.

Recall that powers like ak in Fq can be evaluated via the binary method using O (logk) mul-

tiplications in Fq . Recall also that multiplications in Fq can be done within time O (log2 q), and 
even faster if Fast Fourier Transforms are used. (See, e.g., [2].) Observe then that each evaluation 
of AM(z1, . . . , zn+1) at a choice of (b1,n+1, . . . , bn+1,n+1) thus takes time O (

(

M+n
n

)

n log(M) log2 q) =
(ndn−1)O (n)n log(ndn−1) log2 q =nO (n)dO (n2) log2 q. So then, multiplying our last bound by (M + 1)n =
(ndn−1 + 1)n, we see that finding our desired vector (b1,n+1, . . . , bn+1,n+1) takes overall time 

nO (n)dO (n2) log2 q.

The non-zero vector (b1,n+1, . . . , bn+1,n+1) can be easily extended to an invertible square matrix 
(bu,v) ∈ GLn+1(Fq). For instance, if bn+1,n+1 �= 0, then we can simply take bu,v = 0 for u �= v and 
v ∈{1, . . . , n}, and bu,v = 1 if u = v ≤ n. More generally, we can simply do the same construction (up 
to a permutation of indices) if bn+1,n+1=0 and we find some other bi,n+1 that is nonzero. In this way, 
we obtain the desired invertible transformation.

To conclude, we substitute f i :=
∑n+1

j=1 bi, j g j (thus actually defining the g j as linear combinations 
of the f i , since the matrix [bi, j] is invertible by construction) and rewrite our established polynomial 
relation in the form

AM( f1, . . . , fn+1) = cgM
n+1 + G1(g1, . . . , gn)g

M−1
n+1 + · · · + GM(g1, . . . , gn) = 0,

where c was our constructed nonzero value for B(b1,n+1, . . . , bn+1,n+1) and G i(g1, . . . , gn) is a ho-
mogeneous polynomial in (g1, . . . , gn) of degree i for i ∈ {1, . . . , M}. Since c �= 0 we deduce that 
gM
n+1 ∈ (g1, . . . , gn). It follows that

√

( f1, . . . , fn+1) =
√

(g1, . . . , gn+1) =
√

(g1, . . . , gn)

so we have proved the case m =n + 1. Our general complexity bound can be attained simply by 
repeating the preceding argument on the new system (g1, . . . , gn, fn+2) and proceeding inductively. 
In other words, our final overall complexity bound is no more than m times (ndn)O (n) log2 q. �

Proof of Theorem 3.1. We first homogenize the polynomials f1, . . . , fm to obtain a homogeneous 
polynomial F i(x0, x1, . . . , xn) :=xd0 f i(x1/x0, . . . , xn/x0) of degree exactly d for each i ∈{1, . . . , m}. Note 
that F i(1, x1, . . . , xn) = f i(x1, . . . , xn) for all i.

Now applying Theorem 3.2 to {F1, . . . , Fm} we obtain a homogeneous polynomial G j(x0, x1, . . . , xn)
of degree d, for each j ∈{1, . . . , n + 1}, such that 

√
(F1, . . . , Fm) =

√

(G1, . . . ,Gn+1). Setting x0 = 1
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in the last equality one obtains 
√

( f1, . . . , fm) =
√

(g1, . . . , gn+1) where we define gi(x1, . . . , xn) :=
G i(1, x1, . . . , xn). �

4. The computation of zeta functions: proving Theorem 1.1

Let F be the following polynomial system with m equations and n variables over Fq:

F (x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where each f i ∈ Fq[x1, . . . , xn] has total degree at most d. To compute the zeta function Z(F , T ), we 
need the following explicit degree bound of Bombieri:

Lemma 4.1. [5] The total degree (the sum of the degrees of the numerator and denominator) of the zeta function 
Z(F , T ) is no greater than (4d + 5)2n+1 . �

Note that this total degree bound is independent of m. This already suggests the possibility of 
improving the dependence on m in earlier algorithms for computing zeta functions. By applying our 
effective Kronecker theorem (Theorem 3.1), we are now ready to prove our main result.

Proof of Theorem 1.1. If q > (n + 1)dn then we can apply the affine effective Kronecker theorem in 
the previous section to replace the large polynomial system F by a smaller polynomial system G =
(g1(x1, . . . , xn), . . . , gn+1(x1, . . . , xn)), where each g j ∈ Fq[x1, . . . , xn] has total degree at most d. The 
smaller system G can be constructed in time

m(ndn)O (n) log2 q,

thanks to Theorem 3.1. The two systems F and G have the same number of solutions over every 
extension field Fqk . In particular, their zeta functions are the same, namely, Z(F , T ) = Z(G, T ). Now, 
by the algorithms in [8], the zeta function Z(G, T ) can be computed in time

2n+1p((n + 1)ndn logq)O (n) = p(nndn logq)O (n).

Thus, the zeta function Z(F , T ) can be computed in time

m(ndn)O (n) log2(q) + p(nndn logq)O (n)=dO (n2)(mnO (n) log2(q) + p(nn logq)O (n)).

If q ≤ (n + 1)dn then we cannot apply our effective Kronecker theorem directly. So we use a some-

what different argument instead: Let B = (4d + 5)2n+1 be the upper bound in Bombieri’s lemma. By 
Corollary 2.7 and its proof in [14], it is enough to compute the following B numbers

Nqk (F ); k∈{1, . . . , B}.

If qk ≤ (n + 1)dn , namely, k ≤ log((n + 1)dn)/ logq, then we simply use exhaustive search to compute 
Nqk (F ). For each such k this takes time

qknm(dn logq)O (1) ≤ ((n + 1)dn)nm(dn logq)O (1) =m(n + 1)ndO (n2)(logq)O (1).

If qk > (n + 1)dn , namely, log((n + 1)dn)/ logq < k ≤ B , then we can apply Theorem 3.1 to the system 
over the extension field Fqk to produce a new system

Gk = (gk,1(x1, . . . , xn), . . . , gk,n+1(x1, . . . , xn)),

where each gk, j ∈ Fqk [x1, . . . , xn] has total degree at most d. Note that this takes time

m(ndn)O (n) log2(qk) = mk2(ndn)O (n) log2 q ≤ mB2(ndn)O (n) log2 q = mdO (n)(ndn)O (n) log2 q =
m(ndn)O (n) log2 q. Now,
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Nqk (F ) = Nqk (Gk).

The system has only n + 1 equations and thus the number Nqk (Gk) (in fact the full zeta function of 
Gk over Fqk ) can be computed by [8] in time

2n+1p(k(n + 1)ndn logq)O (n) = p(Bnndn logq)O (n) = p(nndn logq)O (n).

Thus, the total time to compute Z(F , T ) is bounded from above by

m(ndn)O (n) logO (1)(q) + Bmp(nndn logq)O (n) = dO (n2)(mnO (n) logO (1)(q) + p(nn logq)O (n)). �
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