Journal of Complexity 73 (2022) 101681

Contents lists available at ScienceDirect

Journal of Complexity

www.elsevier.com/locate/jco

Computing zeta functions of large polynomial
systems over finite fields *

Check for
updates

Qi Cheng?, J. Maurice Rojas”*, Daqing Wan ¢

@ University of Oklahoma, School of Computer Science, Norman, OK 73019, United States of America
b Texas A&M University, Department of Mathematics, College Station, TX 77843-3368, United States of America
€ University of California, Irvine, Department of Mathematics, Irvine, CA 92697-3875, United States of America

ARTICLE INFO ABSTRACT

Article history: We improve the algorithms of Lauder-Wan [11] and Harvey [8] to
Received 22 August 2021) compute the zeta function of a system of m polynomial equations
Received in revised form 7 April 2022 in n variables, over the g element finite field Fq, for large m.

Accepted 19 May 2022

Available online 1 June 2022 The dependence on m in the original algorithms was exponential

in m. Our main result is a reduction of the dependence on m

MSC: from exponential to polynomial. As an application, we speed up
11Y16 a doubly exponential algorithm from a recent software verification
11G25 paper [3] (on universal equivalence of programs over finite fields)
14G10 to singly exponential time. One key new ingredient is an effective,
finite field version of the classical Kronecker theorem which (set-
Keywords: theoretically) reduces the number of defining equations for a
Counting solutions polynomial system over Fq when q is suitably large.
Finite fields © 2022 Elsevier Inc. All rights reserved.

Program verification

1. Introduction

Let Iy be the finite field of cardinality g with characteristic p. Let F be a polynomial system with
m equations and n variables over Fg:

FX1,....%0) = (fi(x1, X))y .o fm(X1, ..., X0)),

* Communicated by K.K. Meer.

* Corresponding author.
E-mail addresses: qcheng@ou.edu (Q. Cheng), jmauricerojas@gmail.com (J. Maurice Rojas), dwan@math.uci.edu (D. Wan).

https://doi.org/10.1016/j.jc0.2022.101681
0885-064X/© 2022 Elsevier Inc. All rights reserved.

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

where each f; € Fg[x1, ..., xy] has total degree at most d. Note that the total number of digits needed
to write down the monomial term expansions in such a system is O (m(d:j”)
d+n
n
One could refine the input size further — to take sparsity into account — by replacing the m(dﬁ")
factor with a quantity closer to the number of monomial terms of F. (See, e.g., [7,4,1] where various
NP-hardness and #P-hardness results are proved relative to this potentially smaller measure.) How-
ever, for applications like software verification, there is no reason to expect that the F one encounters
will have few monomial terms. So we will stick with m(d;r") logq as our measure of size. For our pur-
poses here, and for reasons to be made clear shortly, we will call the polynomial system F large if
the number of equations m is at least n + 2.

A basic algorithmic problem in number theory is to compute the number of solutions, Ng(F), of
the polynomial system F = (0,...,0) over IF;. More precisely, we let Nq(F) denote the cardinality
of { (x1,....x1) € Fy | F(X1,....X) =(0,...,0)}. The special case (m,n)=(1,2) already plays a huge
role in cryptography, since curves with a specified number of points are crucial to the design of many
cryptosystems (see, e.g., [6]).

An even deeper problem is to consider all extension fields of F; at once and compute the full
sequence Nq(F), Np(F), ..., Ny (F), ... or, equivalently, the generating zeta function

> N (F
Z(F,T)= exp(z %T") .

k=1

log q). So it is natural to

use m()logq as a measure of input size for F when discussing algorithmic efficiency.

Understanding this generating function occupied a good portion of 20th century algebraic and arith-
metic geometry. Interestingly, this generating function has found a recent application to software
engineering, specifically, in program equivalence [3]. (We clarify this in the next section.) It is not at
all obvious from the definition that this zeta function is effectively computable, so let us briefly recall
how it actually is.

A deep and celebrated theorem of Dwork from 1960 says that the zeta function is a rational
function in T. A theorem of Bombieri [5] from 1988 says that the total degree of the zeta function is
effectively boundable. It then follows, from basic manipulation of power series, that the zeta function
is effectively computable, although practical efficiency is far more subtle: See [14] for a survey on
algorithms for computing zeta functions. A general deterministic algorithm to compute Z(F, T) was
constructed in Lauder-Wan [11] with running time

2™ (pm™d" logq)°™.

One should note that the case d=1 is easily handled by linear algebra, leading to a complexity bound
of O((max3{m,n}log2 q) via any reasonable implementation of Gaussian elimination and finite field
arithmetic, without invoking sub-cubic matrix multiplication or Fast Fourier Transform multiplication
in .

Fgr small characteristic p, the general algorithm from [11] remains the best so far. However, for
large characteristic p, the dependence on p has been improved by Harvey [8], who constructed an
algorithm with running time

2"p(m"d" logq)°™,

for d>2. (There is also a variant in [8] with time complexity linear in ,/p instead, but at the expense
of increasing the space complexity to roughly the same order as the time complexity.) The algorithms
from [11] and [8] are, however, fully exponential in m, even for fixed n.

To improve the dependence on m, we briefly explain how the exponential factor 2™ arises in
the algorithms of [11] and [8]: Both algorithms, in the case m =1 (the hypersurface case), are ob-
tained via p-adic trace formulas (meaning linear algebra with large matrices over the polynomial
ring (Z/p*Z)[t], arising after some cohomological calculations). The case m > 1 is then reduced
to the case m =1 via an inclusion-exclusion trick [14] to compute the zeta function for each of

2

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

the 2™ hypersurfaces defined by fs =[];cs fi, where S runs through all subsets of {1,...,m} and
deg(fs) <|S|d <md.

In this paper, we improve the Lauder-Wan algorithm and the Harvey algorithm by employing an
additional algebraic trick to reduce the exponential factor from 2™ to m. A key new idea is to prove an
effective, finite field version of Kronecker’s theorem that enables us to reduce the number of defining
equations, m, to min{m, n + 1} when q is sufficiently large: See Section 3 below.

Our main result is the following:

Theorem 1.1. There is an explicit deterministic algorithm which computes the zeta function Z(F, T) of the
system F over IFy (with m equations, n variables, and total degree at most d for each equation) in time
mp(n"d"logq)° ™.

We prove Theorem 1.1 in Section 4.

We will see in the next section how our theorem enables us to speed up a doubly exponential
time algorithm (from [3]) for program equivalence to singly exponential time. In particular, we will
now briefly review some of the background on programs over finite fields.

2. Programs, their equivalence, and zeta functions
2.1. Background on program equivalence

A basic and difficult problem from the theory of programming languages is determining when two
programs always yield the same output, without trying all possible inputs. This problem — a special
case of program equivalence — also has an obvious parallel in cryptography: A fundamental problem
there is to decide whether a putative key for an unknown stream cipher (that one has spent much
time deducing) is correct or not, without trying all possible inputs. In full generality, program equiv-
alence is known to be undecidable in the classical Turing model of computation. However, program
equivalence (and formal verification, in greater generality [10]) remains an important problem in soft-
ware engineering and cryptography. It is then natural to ask these questions in a more limited setting.

For instance, Barthe, Jacomme, and Kremer (in [3]) describe a programming language which en-
ables a broad family of calculations (and verifications thereof) involving polynomials over finite fields.
They proved that program equivalence in their setting is decidable, and gave an algorithm with dou-
bly exponential complexity. We now briefly review their terminology (from [3, Sec. 2.2]), and explain
how their algorithm requires a non-trivial use of zeta functions.

To be more precise, in their restricted setting, a program is a sequence of logical/polynomial ex-
pressions over a finite field. To define this rigorously, one first fixes a set I of input variables and a set
R of random variables. Then all possible expressions making up a program can be defined recursively
(building up from (1) and (2) below) as follows:

(1) a polynomial P € IFg[I, R];
(2) the failure statement L;
(3) an “if” statement of the following form:

if b then e; else e
where e; and e, are expressions, and b is a propositional logic formula, whose atoms are of the
form Q =0 for some Q € IF[I, R].

Remark 2.1. Programs in [3] are written using semi-colons as delimiters, similar to some real-world
program languages such as C or Java. <

The size of a program is defined to be the number of characters in a program. The presence of
random variables enables our programs to use randomization, and give answers with a certain prob-
ability of failure. We denote the set of all such programs by P4(I, R). Polynomials in a program are

3

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

represented by arithmetic formulas, so the degree of any polynomial in the program is bounded from
above by the size of the program. Note that programs in this core language do not have loops. If a
program has neither “if” statements nor failure statements then we call the program an arithmetic
program. The set of all arithmetic programs is denoted by 75q (I, R).

The number of expressions at the top level of a program P — denoted by |IP| — is simply the length
of the sequence defining IP. (In a real-world programming language, the “top level” of a program
simply means one ignores subroutines and, e.g., statements inside of an “if” statement.) Note also

. . . . 1
that since our programs can use random variables, our programs thus send input values in]Fcllk‘ to

a probability distribution over F;F', for any positive integer k. Here we assume that for every input

assignment, the program does not fail (i.e., there is no evaluation of L that halts the program) for
at least one random assignment. A program can thus be viewed as a map from inputs to real-valued

functions: F ! (IE"P‘ — [0, 1]). The following example reveals how understanding the semantics
qk qk

of a program (i.e., what the program does) in fact requires counting solutions of polynomial systems
over finite fields.

Example 2.2. Fixing [=@ and R={x}, the program

X®X;XkX*kX

outputs the square, and the cube, of a uniformly random element of]Fq.‘ Let N(«, B8) denote the
number of solutions in]Fqk of (x*,x3)=(a, B). The output of the program thus exhibits a random

variable on IE‘;,U with probability mass function taking the value N(«, 8)/¢* at (&, B). ©

Example 2.3. Let I = {x} and R = {y, z}. The following program Py is in P(I, R):

if-(x=0)theny+1lelsey+2; zxz
The program [P; yields the probability distribution on IE‘;k corresponding to the first coordinate being
uniformly random in]Fqk and the second coordinate a uniformly random square in]Fqk. o

To calculate the distribution, the sample space consists of the assignments to random variables so
that the program does not fail. Recall that we assume that for every input assignment, the program
does not fail for at least one random assignment. For example, the following program (I = {x} and
R ={y}) computes the inverse of x with probability 1:

if x=0 then 0 else if x*xy=1 then y else L

Given two programs, we would like to check whether they produce the same distribution for any
input. More generally, let P, Q1 be programs and IP;, Q; be arithmetic programs. We write IP1|IP; ~
Q11Q if, taking any input ¢ under the condition that P, =0, [P outputs the same distribution as
Q) taking c as input under the condition Q; = 0. To calculate the distribution, we only need to
consider the random values such that none of P; and Q1 output L.

Remark 2.4. Observe that the set of inputs yielding a fixed sequence of outputs is nothing more than
a constructible set over IF, i.e., a boolean combination of algebraic sets over F . In particular, the
set of inputs making two programs differ is also a constructible set over a finite field. <

The question of equivalence can be raised for a fixed k, or for all positive integers k. The latter
case is called universal equivalence, which is most relevant to our discussion here. For example, let Q1
be the program defined by:

1 The value of x is fixed once the first instance has taken place. Note also that we use x % x in place of x2, since polynomials
are represented by arithmetic formulas and thus arbitrary exponentiation requires a varying number of gates.

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

y; 7xZ+1)x(z+1).

If 7 is a nonzero square in Fy then the program P; (from Example 2.3) is universally equivalent to
Q1, ie, 1|0 ~ Q1]0. Otherwise, IP1|0 and Q1|0 are not equivalent over Fy, and hence not universally
equivalent.

2.2. An improved reduction from general to arithmetic programs

Note that in greater generality, checking universal equivalence means checking if a sequence of
constructible sets consists solely of empty sets (per Remark 2.4 above). As observed in [3], this can
be done by a single zeta function computation. This is, in essence, how [3] proved that universal
equivalence for arithmetic programs can be done in singly exponential time. For universal equivalence
of conditional programs, the same ideas apply, but [3] proved a doubly exponential complexity upper
bound. More precisely, for general programs Py, Q; and arithmetic programs P, Q,, they defined a
reduction, to obtain four arithmetic programs IP{, IP;, Q) and Q) so that

P1|P; ~ Q1]|Qy if and only if P{|P, ~ Q}|Qj.

One can reduce general program equivalence to deciding P[P, ~ Q}]Q%, where IP{, P}, Q] and
Qy, are each arithmetic programs. More precisely, if £ is the input size of the original programs (i.e.,
the sum of the sizes of Py, P, Q; and Q3), then we can build the new arithmetic programs]P’i’
and Q] so that they have size 2°(, consist of 29 many polynomials, but involve just £ many
variables. Furthermore, the total degree of each polynomial in the new programs is at most 20,

We outline this reduction below, but first let us state an immediate consequence of applying our
improved zeta function algorithm to this reduction: We improve the main complexity bound of [3]
from doubly exponential to singly exponential.

Theorem 2.5. Universal equivalence of programs can be checked in time singly exponential in the size. B

Since our main focus is speeding up zeta function computation, we will now briefly outline,
through some representative examples, how to reduce general programs to arithmetic programs. See
[3] for the full, formal treatment of their original reduction.

First, it is clear that we need to be able to remove failure statements (L) and “if” statements
from P; and Q. We may assume that there is at most one occurrence of the failure statement in
P1, since we can collect the conditions for failure together. For example, the following program:

if Ay then 1 else Pq; if Ay then P; else if Ay then 1 else Pj3

is equivalent to

if AiV(—AyAA) then 1 else Py; if Ay then P, else P3

The new program has size polynomial in the size of the old program, since the number of L in the
input program is bounded from above by the size of the input. Without loss of generality, suppose
then that P; has the form

if b then P; else L1; Py

where L occurs only once in the program and PP; has no failure statements. If the condition
b is a disjunction of literals’ then we can find a single polynomial B whose vanishing repre-
sents b. For example, if b is (P, =0) Vv —(P3=0) Vv —~(P4=0), then we build the polynomial B =
Py(t3P3 — 1)(t4P4 — 1). The new programs then become

2 A disjunction is simply a boolean “OR” applied to several propositions. A literal is simply a variable, or the negation thereof.

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

P{=Py; Py
P) =1Py; B; t3(t3P3 — 1); P3(t3P3 — 1); t4(taPs — 1); Pa(taPs— 1)
Q=

Q5 =Q2; B; t3(t3P3 — 1); P3(t3P3 — 1); ta(taPs — 1); Pa(taPs— 1)

Here t3 and t4 are new random variables but they are uniquely determined by P3 and P4 under
the constraints. Namely if P3 =0, then t3 = 0, otherwise t3 = 1/P3. For a more general proposition
formula b, we first convert it to a CNF formula,®> which may result in a conjunction of exponentially
many disjunctions, hence exponentially many polynomials B1, By, --- , By, in addition to polynomials
like t;j(t;P; — 1) and P;(tjP; — 1) etc. The new equivalence is then

P1; P1|P,, By, B2, ...~ Q1]|Q2, By, Ba, ...

Nevertheless, we have only introduced polynomially many new variables, since we need at most
one new variable for each polynomial in the original program. Also, while the program P, may be
exponentially long, the program IP| is actually shorter than the original IP;.

Observe that we may also assume that all the inputs to conditional statements are literals. For
example we can replace

if AiVvAy; then P{ else P
by

if Ay then Pq else if Ay then P; else P;.

Then, to remove “if” in a conditional statement such as

-; if =(B=0) then Pi else Py;---|P;

we can use classical tricks such as replacing disequalities by equalities with an extra variable to obtain

o3 Pa+ (tB)(P1 — P2); -+ |P2; B(Bt = 1); (Bt — 1)

Note that this step may increase the size exponentially, but the number of variables grows only poly-
nomially.

The reduction we have just outlined is similar to the reduction [3] used to derive their doubly
exponential algorithm to solve the general universal equivalence. Our version is slightly better since
we do not introduce as many new variables.

Let us at last detail the key trick behind our improved zeta function algorithm.

3. Effective Kronecker theorem over finite fields

A classical theorem of Kronecker [9] says that any affine algebraic set defined by a system of m
(>n) polynomials in n variables over an algebraically closed field K can be set-theoretically defined
by a system of n+ 1 polynomials in n variables over the same field K. Kronecker stated his theorem
without a detailed proof; see [12] for a self-contained proof. The theorem, as stated, is actually true
for any infinite field K, not necessarily algebraically closed. But it fails for certain finite fields (de-
pending on the underlying polynomial system), which is our main concern here. Here we follow the
ideas in [12] to show that Kronecker’s theorem remains true for a finite field IFy, if q is suitably large,
and tailor our version to our algorithmic applications.

Recall that if I is an ideal in the commutative ring Fq[x1, ..., X,], then its radical ideal is defined
as VI={f eFqlx1,....xa]| fi €1 for some i > 1}. It is then clear that the two ideals I and +/I have
the same set of]Fqk—rational points for every k. In particular, they have the same zeta function.

3 Conjunctive Normal Form, meaning “an AND of ORs"....

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

Theorem 3.1 (Affine version). Let f; € Fylxq,...,x,] with deg(f;) < d for all i e{1,...,m}. Assume

that ¢ > (n + 1)d". Then there is a deterministic algorithm with running time mnd™)°® log?q or

O(max3{m,n}log2 q), according as d >2 or d =1, which finds n + 1 polynomials g; € Fg[x1, ..., x;]

with deg(g;) <d for all je{1,...,n + 1} such that their radical ideals are the same: \/(f1,..., fm) =
(81, .-+ &nt1)-

We prove Theorem 3.1 after first proving the following homogeneous version:

Theorem 3.2 (Homogeneous version). Let f; € Fq[x1,...,xn] be homogeneous polynomials of degree d
for all ie{1,...,m} and assume q >nd"~'. Then there is a deterministic algorithm, running in time
mnd™)°®™ log? q or O (max3{m, n}log?q), according as d >2 or d =1, which finds n homogeneous poly-
nomials gj € Fq[x1,...,xn] of degree d for all je{1,...,n} such that their radical ideals are the same:

V(f1s"'3fm = (g]""9gn)'

Proof of Theorem 3.2. If m <n then the theorem is trivial as we can just take g;j = f; for j <m and
= f1 for j > m. So we assume m > n henceforth. By induction, it is enough to prove the case
m =n+ 1. The case d=1 is immediate from Gaussian Elimination, so let us also assume d>2.
Now, the n + 1 polynomials {fi,..., fay1} in n variables are algebraically dependent over IFg.
That is, there is a non-zero homogeneous polynomial Ay (Y1, ..., Yn+1) of some positive degree M in
Fgly1, ..., ¥ns1] such that

k Kk
Am(f1,...; for) = Z Akyrdnn f11 fuld =0
ki 4 Hin 1 =M

(2"

This polynomial relation gives a homogeneous linear system over [y with variables Ay, .. kn
and (M‘i:”]’]) equations (one equation for each monomial of degree dM in the variables xq, ..., xp).

then the homogeneous linear system must have a non-trivial solution. So let us
choose M =nd"1: Clearly Md +i <d(M +1i) for all i > 0 and

If (M;—n) > (Md+n 1)

(M) M+n"_1 M+i _ M+n(1 “‘1>1
(Mtjjnll 1_1Md+i_ n d '

Solving our linear system takes time at most

M w
O((:—n) log2q>=MO(”)log2q=(nd”)o(”)logzq,

(with w < 2.373 the matrix multiplication complexity exponent [13]). So we can then clearly find a
non-trivial solution involving A, . .., € Fq with k1 +--- 4+ kny1 = M.
Next, we would like to make an invertible Fy-linear transformation

n+1
Yu= Zbu,vzw by,v elFg, ue{l,...,n+1j
v=1
such that when Ap(¥1,..., Yn+1) is expanded as a polynomial in z1, ..., z;+1 under the above linear

transformation, the coefficient of z,’;”H is non-zero. Such an invertible linear transformation may not
exist if q is small. We shall prove that it does exist if >M=nd"~!: Expand and write

Kn+1

kq
AN, YD) = Y Buken? 2
ki+-tknp1 =M

One easily checks that the coefficient of zn (1 is

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

. k Knt1
Bb1nt1,--->bny1,n+1):=Bo,...om = Z Aky.ookngr D1 g1 D s
ki+-+knp1=M

and is an (n + 1)-variate homogeneous polynomial in Fg[b1 n+1, ..., bnt1,n+11\{0} of degree M. Since
we assume M < g, the polynomial B is not the zero function on IF(';“.

Now, since we have solved for the coefficients Ay, .k, , of Am(¥1,..., ¥nt1) already, we know the
monomial term expansion for the homogeneous polynomial B, €Fy[b1 nt1,...,bnny1] that satisfies
B=B,(b1.n+1,-- .,b,,,nﬂ)bgjff,n+l +o(bg’r11’n+1) where dy41 is the degree of B in byi1 41, By is not

the zero polynomial, and the second term means a sum of terms of degree strictly lower than d;;q
with respect to byy1n+1. In particular, if n=1, we can simply pick by, to be any nonzero element
of g, and try <d» + 1<M + 1 elements of ; until we find a by » making B(b12, by 2) nonzero as
desired.

Otherwise, if n>2, we similarly determine the monomial term expansion for the homogeneous
polynomial By_1€Fy[b1 ny1,...,bn—1n+1] that satisfies

dy dn
Bn=Bp-1(b1,n+1, -, ba—1,n+1)by " 1 000", 1),

and so on, to define successive leading coefficient polynomials B,_3,..., 51 in fewer and fewer
variables. We then see that upon picking any nonzero element of IF; for by 41, and then check-
ing <M + 1 possible values for by +1, and <M + 1 possible values for b3 41, etc, we can make
Bb1.n+1, - -, bn+1.n+1) nonzero after (M + 1)n polynomial evaluations.

Recall that powers like a* in IFg can be evaluated via the binary method using O(logk) mul-
tiplications in IFy. Recall also that multiplications in IF; can be done within time 0(log?q), and
even faster if Fast Fourier Transforms are used. (See, e.g., [2].) Observe then that each evaluation
of Am(z1,...,2nt1) at a choice of (b1n41,...,bnt1.ne1) thus takes time O((M:")nlog(M) log?q) =
(nd"10™nlognd™ 1) log? q=n®™d°@ log2 q. So then, multiplying our last bound by (M + 1)n=
(nd"~! 4+ 1)n, we see that finding our desired vector (b1n+1, .-+, bny1n+1) takes overall time
n0(n)d0(n2) log2 q.

The non-zero vector (b1 n41,...,bn+1,n4+1) can be easily extended to an invertible square matrix
(bu,v) € GLy41(IFg). For instance, if byi1n41 # 0, then we can simply take b, , =0 for u # v and
ve{l,...,n}, and by v =1 if u =v <n. More generally, we can simply do the same construction (up
to a permutation of indices) if by41,,+1=0 and we find some other b; 511 that is nonzero. In this way,
we obtain the desired invertible transformation.

To conclude, we substitute f,-::Z’};r] bi jg; (thus actually defining the g; as linear combinations
of the f;, since the matrix [b; j] is invertible by construction) and rewrite our established polynomial
relation in the form

Am(f1, -y far1) =gy +Gi(gr, ... g8l + -+ Gu(gr. ... gn) =0,

where ¢ was our constructed nonzero value for B(b1 n+1,...,bnt1,n+1) and Gi(g1,...,&n) is a ho-
mogeneous polynomial in (gi,...,8;) of degree i for ie{1,...,M}. Since c#0 we deduce that
gM € (g1..... gn). It follows that

\/(fl’~-~7fn+1):\/(gla~-~,gn+1):\/(g17~~»gn)

so we have proved the case m=n + 1. Our general complexity bound can be attained simply by
repeating the preceding argument on the new system (g1, ..., &, fn+2) and proceeding inductively.
In other words, our final overall complexity bound is no more than m times (nd")°® log?q. M

Proof of Theorem 3.1. We first homogenize the polynomials f1,..., f;, to obtain a homogeneous
polynomial Fi(xo,)q,...,xn)::ngi(xl/xo,...,xn/xo) of degree exactly d for each ie{1,...,m}. Note
that Fi(1,x1,...,%)=fi(x1,...,x,) for all i.

Now applying Theorem 3.2 to {Fq,..., Fy} we obtain a homogeneous polynomial G j(Xo, X1, ..., Xn)
of degree d, for each je{1,...,n+ 1}, such that /(Fq,..., Fp) = \/(Gl,.‘.,GnH). Setting xo =1

8

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

in the last equality one obtains \/(fl,..‘,fm) = \/(gl,...,gnﬂ) where we define gj(x1,...,Xp):=
Gi(1,x1,...,xp). N

4. The computation of zeta functions: proving Theorem 1.1

Let F be the following polynomial system with m equations and n variables over Fg:

F(X17 "'7Xﬂ) = (fl(xla ~--7Xn)7«~~7fm(xl, --'axﬂ))v
where each f; € Fy[xq,...,x,] has total degree at most d. To compute the zeta function Z(F, T), we

need the following explicit degree bound of Bombieri:

Lemma4.1. [5] The total degree (the sum of the degrees of the numerator and denominator) of the zeta function
Z(F, T) is no greater than (4d +5)%**1. W

Note that this total degree bound is independent of m. This already suggests the possibility of
improving the dependence on m in earlier algorithms for computing zeta functions. By applying our
effective Kronecker theorem (Theorem 3.1), we are now ready to prove our main result.

Proof of Theorem 1.1. If ¢ > (n + 1)d" then we can apply the affine effective Kronecker theorem in
the previous section to replace the large polynomial system F by a smaller polynomial system G =
(81(X1, ..., %), ..., 8n+1(X1, ..., X)), where each g; € Fy[x1,...,x,] has total degree at most d. The
smaller system G can be constructed in time

mnd™)°® log?q,

thanks to Theorem 3.1. The two systems F and G have the same number of solutions over every
extension field]Fqk. In particular, their zeta functions are the same, namely, Z(F, T) = Z(G, T). Now,
by the algorithms in [8], the zeta function Z(G, T) can be computed in time

2" p((n+1)"d" logq)°™ = p(n"d" logq)°™.

Thus, the zeta function Z(F, T) can be computed in time

m(@d™)°®™ log?(q) + p(n"d" logg)°™ =d°™ mn° ™ log*(g) + p(n" log @) °™).

If g < (n+1)d" then we cannot apply our effective Kronecker theorem directly. So we use a some-
what different argument instead: Let B = (4d + 5)2"*! be the upper bound in Bombieri’s lemma. By
Corollary 2.7 and its proof in [14], it is enough to compute the following B numbers

Ny (F); ke{1,...,B}.
If ¢ < (n + 1)d", namely, k < log((n + 1)d")/logq, then we simply use exhaustive search to compute
Ny« (F). For each such k this takes time

¢"md 1ogq)° D < ((n + 1)d")"m(d 1ogq)° D = mn + 1)"d° ™ (logq)° V.
If ¢ > (n + 1)d", namely, log((n + 1)d")/logq < k < B, then we can apply Theorem 3.1 to the system
over the extension field]Fqk to produce a new system

Gk = (8k1(X15 -5 Xn)s -+, knt1(X1, ..., Xn)),

where each g ; €]Fqk[Xl,...,Xn] has total degree at most d. Note that this takes time
mmnd)°™ log?(g*) = mk*(nd")°™log?q < mBZ(nd")°™log?q = md°™nd")°™loglq =
m®nd™)°™ Jog? q. Now,

Q. Cheng, J. Maurice Rojas and D. Wan Journal of Complexity 73 (2022) 101681

Nge(F) = Nk (Gy).

The system has only n + 1 equations and thus the number Ny (Gp) (in fact the full zeta function of
Gy over]Fqk) can be computed by [8] in time

2" p(k(n + 1)"d" 1ogq)° ™ = p(Bn"d" logq)°™ = p(n"d" logq)°™.

Thus, the total time to compute Z(F, T) is bounded from above by
m@d™")°® 1og® ™V (q) + Bmp(n"d" log)™ =d°™ mn°® 10g M (q) + p(n"logg)°™). W
Acknowledgements

We thank the referees for their sharp-eyed comments that greatly helped improve our writing.
We also gratefully acknowledge the US National Science Foundation for their support through grants
CCF-1900820 (Cheng), CCF-1900881 (Rojas), and CCF-1900929 (Wan).

References

[1] Martin Avendaiio, Ashraf Ibrahim,]. Maurice Rojas, Korben Rusek, Faster p-adic feasibility for certain multivariate sparse
polynomials, in: Special Issue in Honor of 60th Birthday of Joachim von zur Gathen, J. Symb. Comput. 47 (4) (April 2012)
454-479.

[2] Eric Bach, Jeff Shallit, Algorithmic Number Theory, Efficient Algorithms, vol. I, MIT Press, Cambridge, MA, 1996.

[3] Gilles Barthe, Charlie Jacomme, Steve Kremer, Universal equivalence and majority of probabilistic programs over finite
fields, in: LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, July 2020,
pp. 155-166.

[4] Jingguo Bi, Qi Cheng, J. Maurice Rojas, Sub-linear root detection, and new hardness results, for sparse polynomials over
finite fields, SIAM]. Comput. 45 (4) (2016) 1433-1447.

[5] Enrico Bombieri, On exponential sums in finite fields, II, Invent. Math. 47 (1988) 29-39.

[6] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, Frederik Vercauteren (Eds.), Hand-
book of Elliptic and Hyperelliptic Curve Cryptography, Discrete Mathematics and Its Applications (Boca Raton), Chapman &
Hall/CRC, Boca Raton, FL, 2006.

[7] Joachim von zur Gathen, Marek Karpinski, Igor Shparlinski, Counting curves and their projections, Comput. Complex. 6 (1)
(1996-1997) 64-99.

[8] David Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc. 111 (6) (2015) 1379-1401.

[9] Leopold Kronecker, Grundziige einer arithmetischen Theorie der algebraischen Grossen, J. Reine Angew. Math. 92 (1882)
1-123.

[10] Shuvendu K. Lahiri, Andrzej Murawski, in: Ofer Strichman, Mattias Ulbrich (Eds.), Program Equivalence, Report from
Dagstuhl Seminar, 1815, pp. 8-13, http://www.dagstuhl.de/18151, 2018.

[11] Alan Lauder, Daging Wan, Counting rational points on varieties over finite fields of small characteristic, in: Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography, in: Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ.
Press, Cambridge, 2008, pp. 579-612.

[12] Oscar Perron, Beweis und Verscharfung eines Satzes von Kronecker, Math. Ann. 118 (1941-1943) 441-448.

[13] Virginia Vassilevska-Williams, Limits on all known (and some unknown) approaches to matrix multiplication, in: Proceed-
ing of International Symposium on Symbolic and Algebraic Computation, ISSAC 2019, Beijing, China, 2019.

[14] Daging Wan, Algorithmic theory of zeta functions over finite fields, in: Algorithmic Number Theory: Lattices, Num-
ber Fields, Curves and Cryptography, in: Math. Sci. Res. Inst. Publ, vol. 44, Cambridge Univ. Press, Cambridge, 2008,
pp. 551-578.

10

	Computing zeta functions of large polynomial systems over finite fields
	1 Introduction
	2 Programs, their equivalence, and zeta functions
	2.1 Background on program equivalence
	2.2 An improved reduction from general to arithmetic programs

	3 Effective Kronecker theorem over finite fields
	4 The computation of zeta functions: proving Theorem 1.1
	Acknowledgements
	References

