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Abstract

We propose a framework for verifiable and compositional
reinforcement learning (RL) in which a collection of RL sub-
systems, each of which learns to accomplish a separate sub-
task, are composed to achieve an overall task. The framework
consists of a high-level model, represented as a parametric
Markov decision process (pMDP) which is used to plan and
to analyze compositions of subsystems, and of the collection
of low-level subsystems themselves. By defining interfaces
between the subsystems, the framework enables automatic
decompositions of task specifications, e.g., reach a target set
of states with a probability of at least 0.95, into individual
subtask specifications, i.e. achieve the subsystem’s exit con-
ditions with at least some minimum probability, given that
its entry conditions are met. This in turn allows for the inde-
pendent training and testing of the subsystems; if they each
learn a policy satisfying the appropriate subtask specification,
then their composition is guaranteed to satisfy the overall task
specification. Conversely, if the subtask specifications cannot
all be satisfied by the learned policies, we present a method,
formulated as the problem of finding an optimal set of pa-
rameters in the pMDP, to automatically update the subtask
specifications to account for the observed shortcomings. The
result is an iterative procedure for defining subtask specifi-
cations, and for training the subsystems to meet them. As
an additional benefit, this procedure allows for particularly
challenging or important components of an overall task to
be identified automatically, and focused on, during training.
Experimental results demonstrate the presented framework’s
novel capabilities in both discrete and continuous RL settings.
A collection of RL subsystems are trained, using proximal pol-
icy optimization algorithms, to navigate different portions of
a labyrinth environment. A cross-labyrinth task specification
is then decomposed into subtask specifications. Challenging
portions of the labyrinth are automatically avoided if their
corresponding subsystems cannot learn satisfactory policies
within allowed training budgets. Unnecessary subsystems are
not trained at all. The result is a compositional RL system that
efficiently learns to satisfy task specifications.

Introduction
Reinforcement learning (RL) algorithms offer tremendous ca-
pabilities in systems that work with unknown environments.

Copyright © 2022, Association for the Advancement of Artificial
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However, there remain significant barriers to their deploy-
ment in safety-critical engineering applications. Autonomous
vehicles, manufacturing robotics, and power systems manage-
ment are examples of complex application domains that re-
quire strict adherence of the system’s behavior to stakeholder
requirements. However, the verification of RL systems is dif-
ficult. This is particularly true of monolithic end-to-end RL
approaches; many model-free RL algorithms, for instance,
only output the learned policy and its estimated value func-
tion, rendering them opaque for verification purposes. The
difficulty of verification is compounded in engineering appli-
cation domains, which often require large observation and
action spaces, and complicated reward functions.
How do we build complex engineering systems we can

trust? Engineering design principles have long prescribed
system modularity as a means to reduce the complexity of
individual subsystems (Haberfellner et al. 2019; Nuseibeh
and Easterbrook 2000). By creating well-defined interfaces
between subsystems, system-level requirements may be de-
composed into component-level ones. Conversely, each com-
ponent may be developed and tested independently, and the
satisfaction of component-level requirements may then be
used to place assurances on the behavior of the system as a
whole. Building RL systems that incorporate such engineer-
ing practices and guarantees is a crucial step toward their
widespread deployment.

Toward this end, we develop a framework for verifiable
and compositional reinforcement learning. The framework
comprises two levels of abstraction. The high level is used to
plan meta-policies and to verify their adherence to task speci-
fications, e.g., reach a particular goal state with a probability
of at least 0.9. Meta-policies dictate sequences of subsystems
to execute, each of which is designed to accomplish a spe-
cific subtask, i.e. achieve a particular exit condition, given
the subsystem is executed from one of its entry conditions.
We assume a collection of partially instantiated subsystems
to be given a priori; their entry and exit conditions are known,
but the policies they implement are not. These entry and exit
conditions might be defined by pre-existing engineering capa-
bilities, explicitly by a task designer, or by entities within the
environment. At the low level of the framework, each subsys-
tem employs RL algorithms to learn policies accomplishing
its subtask. Figure 1 illustrates the major components of the
proposed framework.
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Figure 1: An illustration of the proposed framework. The task specification and the subtask entry and exit conditions are used
to build the high-level model (HLM) of the compositional RL system. We use the HLM to formulate an optimization problem
whose outputs yield a meta-policy, the probability of overall task success, and separate specifications for each subtask. The
subtask specifications are used to select the next subsystem to train using the RL algorithm of choice. Estimates of the resulting
subsystem policies are then used to update the HLM. This iterative process repeats until either the composite system satisfies the
task specification, or a user-defined training budget has been exhausted.

We model the high level of the framework using a paramet-
ric Markov decision process (pMDP) (Cubuktepe et al. 2018;
Junges et al. 2019). Each action in the pMDP represents
an individual RL subsystem, and the parametric transition
probabilities in the pMDP thus represent the likelihoods of
outcomes that could occur when the subsystem is executed.
Using sampling-based estimates of subsystem policies, we
assign values to the model parameters and use existing MDP
techniques for the planning and verification of meta-policies
(Puterman 2014; Baier and Katoen 2008). Beyond this capa-
bility, the framework offers the following novel features.
1. Automatic decomposition of task specifications.We

formulate, as the problem of finding an optimal set of param-
eters in the pMDP, a method to automatically decompose the
task specification into subtask specifications, allowing for
independent learning and verification of the subsystems.
2. Learning to satisfy subtask specifications. Any RL

method can be used to learn the subsystem policies, so long as
the learned policies satisfy the relevant subtask specification.
We present a subsystem reward function definition, in terms
of the exit conditions of the subsystem, that motivates the
learning of policies satisfying the subtask specification. Fur-
thermore, these subtask specifications provide an interface
between the subsystems, allowing for the analysis of their
compositions. In particular, we guarantee that if each of the
learned subsystem policies satisfies its subtask specifications,
a composition of them exists satisfying the specifications on
the overall task.
3. Iterative specification refinement. However, if some

of the subtask specifications cannot be satisfied by the corre-
sponding learned policies, sampling-based estimates of their
behavior are used to update the high-level model. We present
a method to use this information to refine the subtask spec-
ifications, in order to better reflect what might realistically
be achieved by the subsystems. This automatic refinement
naturally leads to a compositional RL algorithm that itera-
tively computes subtask specifications, and then trains the
corresponding subsystems to achieve them.

4. System modularity: prediction and verification in
task transfer. By providing an interface between the sub-
tasks, the presented framework allows for previously learned
subtask policies to be re-used as components of new high-
level models, designed to solve different tasks. Furthermore,
the subtask specifications themselves may be re-used to per-
form verification within these new models, without the need
for further training.

Experimental results exemplify these novel capabilities in
both discrete and continuous versions of a labyrinth naviga-
tion task. We use proximal policy optimization algorithms
(Schulman et al. 2017) to train individual subsystems to navi-
gate portions of the environment, which are then composed to
complete a cross-labyrinth navigation task. Through the afore-
mentioned compositional RL algorithm, the task specification
is decomposed and challenging portions of the labyrinth are
avoided if their corresponding subsystems cannot satisfy their
specifications.

The Compositional RL Framework
To provide intuitive examples of the notions of tasks, sub-
tasks, systems, and subsystems, we consider the example
labyrinth environment shown in Figure 2a. The system exe-
cutes its constituent subsystems in this environment to com-
plete an overall task. The task is to safely navigate from the
labyrinth’s initial state in the top left corner to the goal state
in the bottom left corner. Satisfaction of the task specification
requires that the system successfully completes the task with
a probability of at least 0.95. As an added difficulty, lava ex-
ists within some of the rooms, represented in the figure by the
orange rectangles. If the lava is touched, the task is automati-
cally failed. This task is naturally decomposed into separate
subtasks, each of which navigates an individual room, and is
executed by a separate subsystem.

Preliminaries. We model the task environment as a
Markov decision process (MDP), which is defined by a tu-
ple M = (S,A,P). Here, S is a set of states, A is a set of
actions, and P : S×A×S→ [0,1] is a transition probability
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(b) The HLM corresponding to the labyrinth example.

Figure 2: An example labyrinth navigation task. Figure (a) illustrates the environment, as well as an example collection of
subsystems, represented by the colored paths. Entry and exit conditions for the various subsystems are shown as blue circles.
Figure (b) illustrates the corresponding HLM. Each subsystem c causes a transition to its successor state with probability pc.
Otherwise, the HLM transitions to the failure state s̃× with probability 1− pc, visualized by the red transitions.

function. A stationary policy π within the MDP is a function
π : S×A→ [0,1] such that ∑a∈A π(s,a) = 1 for every s ∈ S.
Intuitively, π(s,a) assigns the probability of taking action a
from state s under policy π . Given an MDP M, a policy π ,
and a target set of states Starg ⊆ S, we define Ps

M,π(♦Starg) to
be the probability of eventually reaching some state s′ ∈ Starg,
beginning from the initial state s, under policy π . Similarly,
Ps
M,π(♦≤T Starg) denotes the probability of reaching the target

set from state s within some finite time horizon T .
The framework we present is agnostic to the implemen-

tation details of the RL algorithms that interact with the
low-level environment. As such, S and A can either be un-
countably infinite subsets of Euclidean space, or they can
be countable sets indexing the states and actions. Our ex-
periments examine both cases. For notational simplicity, we
present the framework for countable sets S and A.

RL Subsystems and Subtasks. We define each RL sub-
system c acting within the environment by the tuple c =
(Ic,Fc,Tc,πc). Here, Ic ⊆ S is a set defining the subsys-
tem’s entry conditions,Fc ⊆ S is a set representing the sub-
system’s exit conditions, and Tc ∈ N is the subsystem’s al-
lowed time horizon. The subtask associated with each sub-
system, is to navigate from any entry condition s ∈Ic to any
exit condition s′ ∈Fc within the subsystem’s time horizon
Tc. The time horizon is included to ensure that the composi-
tional system will complete its task in finite time. We assume
that each subsystem may only be executed, or begun, from
an entry condition s ∈Ic and that its execution ends either
when it achieves an exit condition s ∈Fc, or when it runs
out of time. Finally, πc : S×A→ [0,1] is the policy that the
component implements to complete this objective.
For notational convenience, we define σ c

πc(s) :=
Ps
M,πc(♦≤TcFc). A subtask specification, is then defined as

the requirement that σ c
πc(s) ≥ pc for every entry condition

s ∈ Ic of the subsystem. Here, pc ∈ [0,1] is a value repre-
senting the minimum allowable probability of the subtask
success. We note that such reachability-based task specifi-

cations are very expressive. Temporal logic specifications
can be expressed as reachability specifications in a so-called
product MDP (Baier and Katoen 2008; Hahn et al. 2019).
We say a subsystem c is partially instantiated when Ic,

Fc, and Tc are defined, but its policy πc is not. We define
a collection C = {c1,c2, ...,ck} of subsystems to be com-
posable, if and only if for every i, j ∈ {1,2, . . . ,k}, either
Fci ⊆Ic j orFci ∩Ic j = /0. In words, subsystems are com-
posable when the set of exit conditions of each subsystem is
a subset of all the sets of entry conditions that it intersects.
This ensures that regardless of the specific exit condition
s ∈Fc in which subsystem c terminates, s will be a valid
entry condition for the same collection of other subsystems.

Compositions of RL Subsystems. Compositions of sub-
systems are specified by meta-policies µ : S×C → [0,1],
which assign probability values to the execution of different
subsystems, given the current environment state s ∈ S. So,
execution of the composite system occurs as follows. From a
given state s, the meta-policy is used to select a subsystem c
to execute. The subsystem’s policy πc is then followed until it
either reaches an exit condition s′ ∈Fc, or it reaches the end
of its time horizon Tc. If the former is true, the meta-policy
selects the next subsystem to execute from s′, and the process
repeats. Conversely, if the latter is true, the subsystem has
failed to complete its subtask in time, and the execution of the
meta-policy stops. In the labyrinth example, the meta-policy
selects which rooms to pass through, while the subsystems
policies navigate the individual rooms.
The task of the composite system is, beginning from an

initial state sI , to eventually reach a particular target exit
condition Ftarg ⊆ S. We assume that Ftarg is equivalent
to Fc for at least one of the subsystems. That is, there is
some subsystem c ∈ C such that Ftarg =Fc. Furthermore,
to simplify theoretical analysis, we assume that for every
c∈C , eitherFc =Ftarg orFc∩Ftarg = /0. This assumption
removes ambiguity as to whether or not completion of a given
subtask results in the immediate completion of the system’s
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task. Finally, we assume that at least one subsystem c can be
executed from the initial state sI , i.e. there exists a subsystem
c ∈ C such that sI ∈ Ic. We say that the execution of a
meta-policy reaches the target set Ftarg, when one of the
subsystems c withFc =Ftarg is executed, and successfully
completes its subtask. With a slight abuse of notation, we
denote the probability of eventually reaching the target set
under meta-policy µ by PsI

M,µ(♦Ftarg).
A task specification places a requirement on the proba-

bility of the compositional RL system reachingFtarg. That
is, for some allowable failure probability δ ∈ [0,1], the task
specification is satisfied if PsI

M,µ(♦Ftarg)≥ 1−δ . With these
definitions in place, we now deliver our problem statement.
Problem Statement. Given an allowable failure proba-

bility δ ∈ [0,1], an initial state sI , a target set Ftarg, and a
partially instantiated collection C of composable subsystems,
learn policies πc for each subsystem c ∈ C and compute a
meta-policy µ such that PsI

M,µ(♦Ftarg)≥ 1−δ .

The High-Level Decision-Making Model
We now introduce the high-level model (HLM) of the com-
positional RL framework, which is used to compute meta-
policies, and to decompose task specifications into subtask
specifications to be satisfied by the individual subsystems.

Defining the High-Level Model (HLM). To construct the
HLM, we use a given collection C = {c1,c2, . . . ,ck} of par-
tially instantiated subsystems, an initial state sI , and a target
set Ftarg. We begin by defining a state abstraction, which
groups together environment states in order to define the state
space of the HLM. To do so, we define the equivalence rela-
tion R⊆ S×S such that (s,s′)∈ R if and only if the following
two conditions hold.

1. For every c ∈ C ,s ∈Ic if and only if s′ ∈Ic, and,
2. s ∈Ftarg if and only if s′ ∈Ftarg.

The equivalence class of any state s ∈ S under equivalence
relation R is given by [s]R = {s′ ∈ S|(s,s′) ∈ R}. The quo-
tient set of S by R is defined as the set of all equivalence
classes S/R = {[s]R|s ∈ S}. Intuitively, this equivalence rela-
tion groups together all the states in the target set, and it also
groups together states that are entry conditions to the same
subset of subsystems.
We may now define the HLM corresponding to the col-

lection C by the parametric MDP M̃ = (S̃, s̃I , s̃!, s̃×,C , P̃).
Here, the high-level states S̃ are defined to be S/R; states
in the HLM correspond to equivalence classes of environ-
ment states. The initial state s̃I of the HLM is defined as
s̃I = [sI ]R, the equivalence class of the environment’s initial
state. The goal state s̃! ∈ S̃ is similarly defined as [s]R such
that s ∈Ftarg. Recall thatFtarg =Fc for at least one of the
subsystems c ∈ C . Finally, the failure state s̃× ∈ S̃ is defined
as [s]R such that s ∈ S \ [

⋃
c∈C Ic]∪Ftarg, i.e., the equiva-

lence class of states not belonging to the initial states of any
component, or to the target set.

As an example, Figure 2b illustrates the HLM correspond-
ing to the collection of subsystems from Figure 2a. The over-
lapping entry and exit conditions, represented by the blue

circles in Figure 2a, define the states of the HLM. The tar-
get setFtarg defines the HLM’s goal state s̃!, and all other
environment states are absorbed into the failure state s̃×.
The collection of subsystems C defines the HLM’s set

of actions. By definition of the equivalence relation R, for
every HLM state s̃ ∈ S̃ there is a well-defined subset of the
subsystems C (s̃)⊆ C that can be executed. That is, for every
environment state s ∈ s̃, s ∈Ic for all c ∈ C (s̃). We define
C (s̃) as the set of available subsystems at high-level state s̃.

Furthermore, consider any subsystem c∈C (s̃). As a direct
result of the definition of equivalence relation R and of the
subsystems in collection C being composable, every state
s within set Fc belongs to the same equivalence class [s]R.
In other words, we may uniquely define the successor HLM
state of any component c ∈ C as succ(c) = [s]R such that
s ∈Fc. We then construct the HLM transition probability
function in terms of parameters pc ∈ [0,1] as follows.

P̃(s̃,c, s̃′) =






pc, i f c ∈ C (s̃), s̃′ = succ(c)
1− pc, i f c ∈ C (s̃), s̃′ = s̃×
0, Otherwise

The interpretation of this definition of P̃ is as follows. After
selecting component c ∈ C (s̃) from HLM state s̃, the com-
ponent either succeeds in reaching an exit condition s ∈Fc
within its time horizon Tc with probability pc, resulting in an
HLM transition to succ(c), or it fails to do so with probability
1− pc, resulting in a transition to the HLM failure state s̃×.

The parameters pc may thus be interpreted as estimates of
the probabilities that the subsystems complete their subtasks,
given they are executed from one of their entry conditions.
Their values come either from empirical rollouts of learned
subsystem policies πc, or as the solution to the aforemen-
tioned automatic decomposition of the task specification,
which is discussed further below.

Relating the HLM to Compositions of RL Subsystems.
We note that while parameters pc are meant to estimate the
probabilities of successful subtask completion, they cannot
capture these probabilities exactly. In reality, while param-
eter pc is constant, it’s possible for this probability to vary,
given the entry condition s ∈ Ic from which the compo-
nent is executed. However, the simplicity of the presented
parametrization of P̃ enables tractable solutions to planning
and verification problems in M̃. Furthermore, by establishing
relationships between policies in M̃, and meta-policies com-
posing RL subsystems, the HLM becomes practically useful
in the analysis of composite RL systems.
Towards this idea, we note that any stationary policy µ̃ :

S̃×C → [0,1] acting in HLM M̃ defines a unique composi-
tional meta-policy µ : S×C → [0,1] as follows: for any envi-
ronment state s and component c, define µ(s,c) := µ̃([s]R,c).
So, solutions to planning problems in M̃ can be used directly
as meta-policies to specify compositions of the RL subsys-
tems. Of particular interest, is the problem of computing an
HLM policy µ̃ that maximizes Ps̃I

M̃,µ̃(♦s̃!), the probability
of eventually reaching the goal state s̃! from the HLM’s
initial state s̃I . Theorem 1 relates this probability to the cor-
responding meta-policy’s probability of completing its task,
PsI
M,µ(♦Ftarg), in the environment.
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Theorem 1. Let C = {c1,c2, ...,ck} be a collection of com-
posable subsystems with respect to initial state sI and target
set Ftarg within the environment MDP M. Define M̃ to be
the corresponding HLM and let µ̃ be a policy in M̃. If, for
every subsystem c ∈ C and for every entry condition s ∈Ic,
σ c

πc(s)≥ pc, then PsI
M,µ(♦Ftarg)≥ Ps̃I

M̃,µ̃(♦s̃!).
For example, consider the labyrinth task from Figure 2a,

and its corresponding HLM from Figure 2b. Suppose the
HLM’s parameters pc are specified such that they lower
bound the true probabilities of subtask success, i.e. the transi-
tion probabilities in Figure 2b lower bound the probabilities
of the subsystems successfully navigating their respective
rooms in Figure 2a. By planning a policy µ̃ in the HLM that,
for example, reaches s̃! with probability 0.95, we ensure that
the corresponding composition of the subsystems will reach
Ftarg in the labyrinth with a probability of at least 0.95.

Automatic Decomposition of Task Specifications. Recall
that our objective is not only to compute a meta-policy µ ,
but also to learn the subsystem policies πc1 ,πc2 , ...,πck that
this meta-policy will execute, such that the system’s task
specification PsI

M,µ(♦Ftarg)≥ 1−δ is satisfied. Suppose that
we choose a set of HLM parameters {pc1 , pc2 , ..., pcck } such
that a policy µ̃ in the HLM exists with PsI

M,µ(♦Starg)≥ 1−δ .
Then, so long as each of the corresponding subsystems c
are able to learn a policy πc such that σ c

πc(s)≥ pc for every
s ∈Ic, Theorem 1 tells us that the meta-policy defined by
µ(s,c) := µ̃([s]R,c) will satisfy the task specification.
We may thus interpret the values of parameters pc as sub-

task specifications. Each subsystem must achieve one of its
exit conditions s′ ∈Fc within its allowed time horizon Tc
with a probability of at least pc, given its execution began
from some entry condition s ∈Ic. With this interpretation
in mind, we take the following approach to the decompo-
sition of the task specification: find the smallest values of
parameters pc1 , pc2 , ..., pck such that an HLM policy µ̃ ex-
ists satisfying Ps̃I

M̃,µ̃(♦s̃!) ≥ 1− δ . We formulate this con-
strained parameter optimization problem as the bilinear pro-
gram given in equations (1)-(5). In (2) and (5), we define
pred(s̃) := {(s̃′,c′)|c′ ∈ C (s̃′) and s̃= succ(c′)}.

min
x,pc

∑
c∈C

pc (1)

s.t. ∑
c∈C (s̃)

x(s̃,c) = δs̃I (s̃)+ ∑
(s̃′,c′)∈pred(s̃)

x(s̃′,c′)pc′ , (2)

∀s̃ ∈ S̃\{s̃×, s̃!}
x(s̃,c)≥ 0, ∀s̃ ∈ S̃\{s̃×, s̃!}, ∀c ∈ C (s̃) (3)
0≤ pc ≤ 1, ∀c ∈ C (4)

∑
(s̃′,c′)∈pred(s̃!)

x(s̃′,c′)pc′ ≥ 1−δ (5)

The decision variables in (1)-(5) are the HLM parameters pc
for every c ∈ C , and x(s̃,c) for every s̃ ∈ S̃ \ {s̃×, s̃!}. The
value of δs̃I (s̃) is 1 if s̃= s̃I and 0 otherwise. The constraint (2)
is the so-called Bellman-flow constraint; it ensures that the
variable x(s̃,c) defines the expected number of times subsys-
tem c is executed in state s̃. The constraint (5) enforces the

HLM policy µ̃’s satisfaction of Ps̃I
M̃,µ̃(♦s̃!)≥ 1−δ . We refer

to Etessami et al. (2007) and Puterman (2014) for further
details on these variables and the constraints.

Iterative Compositional Reinforcement
Learning (ICRL)

In this section, we discuss how subsystem policies are learned
to satisfy the subtask specifications discussed above, and we
present how the bilinear program given in (1)-(5) is modified
to refine the subtask specifications, after some training of the
subsystems has been completed.

Learning and Verifying Subsystem Policies. Let
pc1 , pc2 , ..., pck be the parameter values output as a solution
to problem (1)-(5). We want each subsystem c to learn a
policy πc satisfying the subtask specification: σ c

πc(s) ≥ pc
for each entry condition s ∈Ic of the subsystem. We note
that any RL algorithm and reward function may be used, so
long as the resulting learned policy can be verified to satisfy
its subtask specification. A particularly simple candidate
reward function Rc outputs 1 when an exit condition s ∈Fc
is first reached, and outputs 0 otherwise. Under this reward
function, we have σ c

πc(s) = E[∑t∈[Tc]Rc(st)|πc,s0 = s]. We
can maximize the probability of reaching an exit condition
by maximizing the expected undiscounted sum of rewards.
To verify that a learned subsystem policy πc satisfies its

subtask specification, we consider σ̄c = inf{σ c
πc(s)|s ∈Ic},

the greatest lower bound of the policy’s probability of sub-
task succcess, beginning from any of the subsystem’s entry
conditions. So long as σ̄c ≥ pc, the subtask specification is
satisfied. In practice, the value of σ̄c cannot be known ex-
actly, but we may obtain an estimate σ̂c of its value through
empirical rollouts of πc, beginning from the different entry
conditions s ∈ Ic. We note that one may additionally use
Hoeffding’s inequality to obtain a high-confidence range of
values for σ̄c, given the number of rollouts used. We refer to
σ̂c as the estimated performance value of policy πc.

Automatic Refinement of the Subtask Specifications.
The estimated performance values σ̂c are useful not only
for the empirical verification of the learned policies, but also
as additional information used periodically during training
to refine the subtask specifications. To do so, we re-solve the
optimization problem (1)-(5), with a modified objective (6),
and additional constraints (7)-(8).

ob j(L ) = ∑
c∈C

(pc− σ̂c) (6)

LBConst(L ) = {pc ≥ σ̂c|∀σ̂c ∈L } (7)
UBConst(U ) = {pc ≤ σ̂c|∀σ̂c ∈U } (8)

Here, we assume that the subsystems have learned policies
πc1 ,πc2 , ...,πck . Let L = {σ̂c1 , σ̂c2 , ..., σ̂ck} be the set of the
corresponding estimated performance values. The objective
function (6) minimizes the performance gap between the sub-
task specifications pc and the current estimated performance
values σ̂c. The rationale behind the additional constraints
defined by LBConst(L ) is as follows: the subsystems have
already learned policies achieving probabilities of subtask
success greater than the estimated performance values σ̂c,
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Algorithm 1: Iterative Compositional RL (ICRL)
Input: Partially instantiated subsystems

C = {c1,c2, ...,ck}, δ , Ntrain, Nmax.
Output: Subsystem policies {πc1 ,πc2 , ...,πck},

meta-policy µ , success probability σ̂µ .
1 M̃←ConstructHLM(C )
2 σ̂c1 , σ̂c2 , ..., σ̂ck , σ̂µ ← 0; Nc1 ,Nc2 , ...,Nck ← 0
3 L ← {σ̂c1 , σ̂c2 , ..., σ̂ck}; U ← {}
4 while σ̂µ ≤ 1−δ do
5 if (1)-(8) infeasible then
6 return Problem is infeasible.
7 {pc1 , . . . , pck}← Solve (1)-(8) using (M̃,L ,U )
8 c j← selectSubSystem(pc1 , . . . , pck , σ̂c1 , . . . , σ̂ck)
9 πc j ← RLTrain(c j,πc j ,Ntrain); Ncj ← Ncj +Ntrain

10 σ̂c j ← estimateSubTaskSuccessProb(c j,πc j)
11 L .update(σ̂c j)
12 if Ncj ≥ Nmax then
13 U .add(σ̂c j)

14 µ ← solveOptimalHLMPolicy(M̃,L )
15 σ̂µ ← predictTaskSuccessProbability(M̃,µ,L )

16 return {πc1 ,πc2 , ...,πck}, µ , σ̂µ

and so there is no reason to consider subtask specifications
pc that are below these values.
Conversely, if the RL algorithm of a particular subsystem

c has converged – i.e. the value of σ̂c will no longer increase
with additional training steps – we add the constraint pc ≤ σ̂c.
This ensures that solutions to the optimization problem will
not yield a subtask specification pc that is larger than what
the subsystem can realistically achieve. In practice, as a proxy
to convergence, we allow each subsystem a maximum budget
of Nmax training steps. Once any subsystem c has exceeded
this training budget, we append σ̂c to the set U , which is
used to defineUBConst(U ) in (8).

Iterative Compositional Reinforcement Learning (ICRL).
By alternating between the training of the subsystems and the
refinement of the subtask specifications, we obtain Algorithm
1. In lines 1−3, the HLM is constructed from the collection
of partially instantiated subsystems C and the subsystem poli-
cies are initialized. The while loop in lines 4−12 is the main
loop controlling the subtask specifications and training of the
subsystems. In line 5, the bilinear program (1)-(8) is solved
to update the values of pc. These values are used, along with
the estimated performance values, to select a subsystem to
train. A simple selection scheme, is to choose the subsystem
c j maximizing the current performance gap between pc j and
σ̂c j . In line 7, the subsystem is trained for Ntrain steps using
the RL algorithm of choice. The subsystem’s initial state is
sampled uniformly from its entry conditions during training.
Finally, in line 12, the HLM M̃ and the current estimated
performance valuesL are used to plan a meta-policy µ max-
imizing the probability σ̂µ of reaching the HLM goal state s̃!.
This step uses standard MDP algorithms (Puterman 2014).

We note that the conditions in lines 4 and 5 ensure that the

algorithm only terminates once a meta-policy that satisfies the
task specification exists, or the optimization problem (1)-(8)
has become infeasible. One of these two outcomes is guara-
teed to eventually occur. In particular, by our construction of
U and the corresponding constraints in (8), the problem will
become infeasible if all of the allotted subsystem training
budgets Nmax have been exhausted and a satisfactory meta-
policy still does not exist. In such circumstances the task
designer may wish to lower δ , to increase Nmax, or to further
decompose the task using additional subtasks.

Numerical Examples
In this section, we present the results of applying the proposed
framework to the labyrinth navigation task used as a running
example throughout the paper. We begin by discussing the
results obtained using a discrete gridworld implementation of
the labyrinth. However, to help demonstrate the framework’s
generality, we also present results for a continuous-state and
continuous-action labyrinth, whose dynamics are goverened
by a rigid-body physics simulator. Project code is available
at: github.com/cyrusneary/verifiable-compositional-rl.
Figure 2a illustrates the labyrinth environment, and high-

lights each subtask with a different color, matching the colors
used to represent the different subtasks in the presentation of
the numerical results. Recall that the overall task specifica-
tion is to safely navigate from the labyrinth’s initial state in
the top left corner to the goal state marked by a green square
in the bottom left corner, with a probability of at least 0.95.

Discrete Gridworld Labyrinth Environment. We imple-
ment the gridworld labyrinth environment using MiniGrid
(Chevalier-Boisvert, Willems, and Pal 2018). The environ-
ment’s state space consists of the current position and orien-
tation within the labyrinth, resulting in 1600 total states. The
allowed actions are: turn left, turn right, and move forward.
A slip probability is added to the environment dynamics to
render them stochastic; each action has a 10% probability of
accidentally causing the result of a different action to occur.
Subtask entry Ic and exit Fc conditions are implemented as
finite collections of states.

ICRL Algorithm Implementation. Each RL subsystem
is trained using the Stable-Baselines3 (Raffin et al. 2021)
implementation of the proximal policy optimization (PPO)
algorithm (Schulman et al. 2017). Whenever estimates of
task or subtask success probabilities are needed, we roll out
the corresponding (sub)system 300 times from initial states
randomly sampled from Ic, and compute the empirical suc-
cess rate. We solve the bilinear program in (1)–(5) using
Gurobi (Gurobi Optimization, LLC 2021). Gurobi transforms
the bilinear program into an equivalent mixed-integer linear
program, and computes a globally optimal solution to this pro-
gram by using cutting plane and branch and bound methods.
For further details please see the supplementary materials in
the extended version of the paper (Neary et al. 2021a).

Empirical Validation of Theorem 1. At regular intervals
during training, marked by diamonds in Figure 3, each sub-
system’s probability of subtask success is estimated and used
to update L and U , as described in the previous section.

620



Subsystem Index 0 1 2 3 4 5 6 7 8 9 10 11
pc at t = 6e5 .97 .00 .00 .00 .97 1.0 .00 .00 .00 1.0 .00 .57
pc at t = 10e5 .95 .99 .00 .99 .88 1.0 .00 .00 .99 1.0 .99 .99

Table 1: Demonstration of automatic subtask specification refinement. Each value corresponds to a subtask specification, i.e. the
minimum allowable probability of subtask success. The two rows of the table show these values at two distinct points of the
system’s training; before and after the subtask specification refinement illustrated by the dotted red lines in Figure 3. The cells
highlighted in grey indicate which subsystems are used by the meta-policy, at the specified point.
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Figure 3: Discrete labyrinth experimental results. Top: Esti-
mated task and subtask success probabilities during training.
Bottom: Automatically generated subsystem training sched-
ule. Each subtask is represented by a different color, matching
those used in Figure 2a. The dotted red lines illustrate the
point in training at which the HLM automatically refines the
subtask specifications. Step counts do not include the rollouts
used to estimate subtask success probabilities.

That is, each diamond in Figure 3 corresponds to a pass
through the main loop of algorithm 1. The HLM-predicted
probability of the meta-policy completing the overall task is
illustrated in Figure 3 by the navy blue curve. For compari-
son, we plot empirical measurements of the success rate of
the meta-policy in black. We clearly observe that the HLM
predictions closely match the empirical measurements.

Subtask Specification Refinements Lead to Meta-Policy
Adaptation and Targeted Subsystem Training. Figure 3
illustrates the subsystem training schedule. Table 1 lists the
values of pc for each subsystem c. We observe from Table 1
that prior to 8e5 elapsed training steps, the value of pc is only
specified to be close to 1.0 for subsystems c0, c4, c5, and, c9.
As can be seen in Figure 2a, these are the subsystems needed

to move straight down, through the rooms containing lava, to
the goal. The HLM has selected a meta-policy that will only
use these subsystems because their composition yields the
shortest path to goal; this path only requires training of 4 of
the subsystems. Furthermore, because the meta-policy does
not use any of the other subsystems, it places no requirements
on their probability of subtask success. Figure 3 agrees with
this observation: only this small collection of the subsystems
are trained prior to 8e5 elapsed training steps. In particular,
subsystem 4, which must navigate the top lava room and is
represented by dark green, is trained extensively. However,
due to the environment slip probability, this subsystem is
unable to meet its subtask specification, safely navigate to
the room’s exit with probability 0.97, regardless of the num-
ber of training iterations it receives. As a result, subsystem 4
exhausts its individual training budget after 8e5 elapsed sys-
tem training steps, marked by the vertical dotted red lines in
Figure 3. At this point, subsystem 4’s empirically estimated
success rate of 0.88 is used to update the HLM, which then
refines the subtask specifications. The result of this refine-
ment is a new meta-policy, which instead uses subsystems
c1, c3, c8, c10, and c11 to take an alternate path that avoids
the lava rooms altogether. The updated subtask specifications
are listed in the second row of Table 1, and in Figure 3 we
observe a distinct change in the subsystems that are trained.
Once subsystems c1, c3, c8, c10, and c11 learn to satisfy their
new subtask specifications with the required probability, the
composite system’s probability of task success rises above
0.95, satisfying the overall task specification.

Comparison to a Monolithic RL Approach. The pro-
posed ICRL algorithm takes less than two million training
steps to satisfy the task specification. By comparison, a mono-
lithic approach in which the entire task is treated as a single
subsystem takes roughly thirty million training steps. We
note that this is not a fair comparison because the proposed
compositional approach has a priori knowledge of the sub-
system entry and exit conditions. However, such information
is often available through natural decompositions of complex
systems. The proposed framework provides a method to take
advantage of such information when it is available.

Results in a Continuous Labyrinth Environment. To
demonstrate the framework’s ability to generalize to different
RL settings, we also implemented a continuous-state and
continuous-action version of the labyrinth environment in the
video game engine Unity (Juliani et al. 2018). In this version
of the task, the RL system must roll a ball from the initial
location to the goal location. The set A of available actions
consists of all of the force vectors, with magnitude of at most

621



0.0 1.0 2.0 3.0 4.0 5.0 6.0 ·105
0.0
0.2
0.4
0.6
0.8
1.0

Elapsed Total Training Steps

Pr
ob

ab
ili
ty

Va
lu
e

Figure 4: Continuous labyrinth experimental results.

1, that can be applied to the ball in the horizontal plane. The
set S of environment states is given by all possible locations
(x,y) and velocities (ẋ, ẏ) of the ball within the labyrinth. The
action space A is thus a compact subset of R2 while the state
space S is a compact subset of R4. The transition dynamics
are governed by Unity’s rigid-body physics simulator. Sub-
task entry Ic and exit Fc conditions are implemented as
subsets of R4 such that

√
(x− xc)2+(y− yc)2 ≤ 0.5m and√

ẋ2+ ẏ2 ≤ 0.5m
s respectively, for some pre-specified xc and

yc. We use the PPO algorithm to train the RL subsystem
policies. Each RL subsystem receives rewards that are pro-
portional to its negative distance to the exit conditions, and
incurs a large penalty if the lava is touched. We refer to the ex-
tended version of the paper for additional details and figures
of this continuous environment (Neary et al. 2021a).

Figure 4 illustrates the experimental results in the continu-
ous labyrinth environment. Qualitatively, these results closely
resemble our observations from the discrete labyrinth, despite
significant differences in the environment’s dynamics and in
its representations of states and actions. The ICRL algorithm
again initially attempts to move straight down past the lava,
before automatically refining the subtask specifications in or-
der to focus on training the subsystems that take the alternate
route through the labyrinth. This similarity in the algorithm’s
behavior when applied to different types of environments
helps illustrate the generality of the proposed framework;
ICRL is agnostic to the details of the environment dynamics
and of the individual RL subsystems.

Additional Discussion. We note that all predictions made
using the HLM will be sensitive to the values of σ̂c – the
estimated lower bounds on the probability of subtask success.
In our experiments, we compute σ̂c empirically by rolling
out the subsystems from randomly sampled entry conditions.
While this technique provides only rough estimates of the
true value of the lower bound (particularly in the case of the
continuous labyrinth environment which has an uncountably
infinite number of entry conditions per subtask), our results
demonstrate that these empirical approximations are suffi-
cient for high-level decision making. The algorithm makes
effective use of the HLM predictions to automatically se-
lect the subsystems that require training. Any methods to
further improve the estimates of σ̂c will only improve the
performance of the ICRL algorithm.

Related Work
While the proposed framework is closely related to hierar-
chical RL (HRL) (Sutton, Precup, and Singh 1999; Barto
and Mahadevan 2003; Kulkarni et al. 2016; Vezhnevets et al.
2017; Nachum et al. 2018; Levy et al. 2019), our framework
adds several benefits to existing HRL methods. These bene-
fits include: a systematic means to decompose and to refine
task specifications, explicit reasoning over the probabilities of
events, the use of planning-based solution techniques (which
could incorporate additional problem constraints), and flexi-
bility in the choice of RL algorithm used to learn subsystem
policies. HRL methods use task decompositions to reduce
computational complexity, particularly in problems with large
state and action spaces (Pateria et al. 2021). However, they
typically focus on the efficient maximization of discounted
reward and they require the meta-policy to be learned; no
model of the high-level problem is explicitly constructed. By
contrast, we present a framework that builds a model of the
high-level problem with the specific aim of enabling verifi-
able RL against a rich set of task specifications (e.g., safely
reach a target set with a required probability of success),
while enjoying a similar reduction in sample complexity.

Compositional verification has been studied in for-
mal methods (Nam, Madhusudan, and Alur 2008; Feng,
Kwiatkowska, and Parker 2011), but not in the context of RL.
Conversely, recent works have used structured task knowl-
edge to decompose RL problems, however, they do not study
how such information can be used to verify RL systems. Ca-
macho et al. (2017) and Littman et al. (2017) both define a
task specification language based on linear temporal logic,
and subsequently use it to generate reward functions for RL.
Sarathy et al. (2021) incorporates RL with symbolic planning
models to learn new operators – similar to our subtasks –
to aid in the completion of planning objectives. Meanwhile,
Toro Icarte et al. (2018, 2019); Xu et al. (2020); Toro Icarte
et al. (2022) use reward machines, finite-state machines en-
coding temporally extended tasks in terms of atomic proposi-
tions, to break tasks into stages for which separate policies
can be learned. Neary et al. (2021b) extends the use of reward
machines to the multi-agent RL setting, decomposing team
tasks into subtasks for individual learners. These works all
use structured task knowledge to decompose RL problems,
however, they do not provide methods for the automated ver-
ification and decomposition of task success probabilities, or
for the targeted training of subsystems.

Conclusions
The verification of reinforcement learning (RL) systems is
a critical step towards their widespread deployment in engi-
neering applications. We develop a framework for verifiable
and compositional RL in which collections of RL subsystems
are composed to achieve an overall task. We automatically
decompose system-level task specifications into individual
subtask specifications, and iteratively refine these subtask
specifications while training subsystems to satisfy them. Fu-
ture directions will study extensions of the framework to
multi-level task hierarchies, compositional multi-agent RL
systems, and to systems involving partial information.
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