1) Check for updates

ORIGINAL ARTICLE

Multiscale Time-resolved Analysis Reveals Remaining
Behavioral Rhythms in Mice Without Canonical
Circadian Clocks
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Abstract  Circadian rhythms are internal processes repeating approximately every 24
hours in living organisms. The dominant circadian pacemaker is synchronized to the
environmental light-dark cycle. Other circadian pacemakers, which can have nonca-
nonical circadian mechanisms, are revealed by arousing stimuli, such as scheduled
feeding, palatable meals and running wheel access, or methamphetamine administra-
tion. Organisms also have ultradian rhythms, which have periods shorter than circa-
dian rhythms. However, the biological mechanism, origin, and functional significance
of ultradian rhythms are not well-elucidated. The dominant circadian rhythm often
masks ultradian rhythms; therefore, we disabled the canonical circadian clock of mice
by knocking out Per1/2/3 genes, where Perl and Per2 are essential components of the
mammalian light-sensitive circadian mechanism. Furthermore, we recorded wheel-
running activity every minute under constant darkness for 272 days. We then inves-
tigated rhythmic components in the absence of external influences, applying unique
multiscale time-resolved methods to analyze the oscillatory dynamics with time-
varying frequencies. We found four rhythmic components with periods of ~17 h,
~8h, ~4 h, and ~20 min. When the ~17-h rhythm was prominent, the ~8-h
rhythm was of low amplitude. This phenomenon occurred periodically approxi-
mately every 2-3 weeks. We found that the ~4-h and ~ 20-min rhythms were har-
monics of the ~ 8-h rhythm. Coupling analysis of the ridge-extracted instantaneous
frequencies revealed strong and stable phase coupling from the slower oscillations
(~17, ~8,and ~4 h) to the faster oscillations (~ 20 min), and weak and less stable
phase coupling in the reverse direction and between the slower oscillations.
Together, this study elucidated the relationship between the oscillators in the absence
of the canonical circadian clock, which is critical for understanding their functional
significance. These studies are essential as disruption of circadian rhythms contrib-
utes to diseases, such as cancer and obesity, as well as mood disorders.
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Humans, like all living organisms, are subject to
internal biological rhythms which are molded by
external forces. Our bodies are attuned to the envi-
ronment; our behavioral and physiological outputs
are shaped by geophysical cycles. Earth is our home,
and every step of our evolution from single cells to
complex organisms has polished our capability to
survive under the conditions dictated by this envi-
ronment. By organizing our behavior and physiology
with respect to the outside world, we are energy-effi-
cient machines.

Biological rhythms are outputs of interacting, ther-
modynamically open systems which are exposed to
continuous external influences. Mathematically, these
systems are nonautonomous, nonlinear, and predom-
inantly deterministic. Nonautonomous systems are
dynamical systems that are explicitly time-dependent
(Kloeden and Rasmussen, 2011). This means that
their frequencies, phases, and couplings can be all
functions of time. Physically, they are not indepen-
dent of the environment, so external perturbations
need to be taken explicitly into account. They are
largely deterministic; however, when time is not con-
sidered, that is, when they are represented in the
phase space or the frequency domain, their proper-
ties are often misinterpreted as stochastic (Clemson
and Stefanovska, 2014). Their resultant dynamics are
time-varying, so nonautonomous clocks are not per-
fect. They have adjustable frequencies, and time is a
physical quantity; hence, their dynamics are not the
same when time is reversed (Stefanovska and
McClintock, 2021; Kloeden and Yang, 2020;
Suprunenko et al., 2013). They need to be treated with
finite-time methods, both in modeling approaches
and in the methods with which their time series are
analyzed (Newman et al., 2021). In what follows, we
will use finite-time methods throughout.

The most well known biological rhythm is the cir-
cadian rhythm; the approximately 24-h cycle of phys-
iology and behavior which is synchronized to the
environmental light-dark cycle (Dibner et al., 2010;
Morse and Sassone-Corsi, 2002), and characterizes
most living organisms. A thorough investigation into
the timekeeping mechanism is highly essential, as
disruption of circadian rhythms contributes to the
onset of diseases such as cancer and obesity (Barger
et al., 2009) as well as mood disorders such as depres-
sion (McClung, 2007).

The circadian system is governed by self-sustaining
circadian clocks that exist in most cells (Dunlap, 1999;
Shearman, Sriram et al., 2000; Brown et al., 2019).
Coupling occurs between the clocks, forming a net-
work of interacting biological oscillators. The clock
components are clock genes and proteins, and the
clock mechanism is composed of transcription-transla-
tion feedback loops (Hastings et al., 2018). Positive

regulators (CLOCK and BMAL1) drive the transcrip-
tion of negative regulators (PER and CRY). PER-CRY
complexes accumulate during the circadian day, which
inhibits the positive regulators and so acts negatively
on their own transcription. During the circadian
night, the PER-CRY complexes degrade and their
transcription levels fall, and the cycle begins again.
Further accessory loops stabilize the transcription
levels of the positive regulators. This mechanism
then leads to ~ 24-h oscillations of clock gene tran-
script and protein levels which are responsible for
the organism’s 24-h body clock.

The circadian rhythm is entrained to the 24-h
environmental light-dark cycle. In mammals, a pri-
mary circadian pacemaker exists in the suprachias-
matic nucleus (SCN), a small region of the brain
(Weaver, 1998). The SCN is responsible for coordi-
nating the phase of circadian clocks throughout the
mammal. The SCN obtains information about the
time of day through light (Morse and Sassone-Corsi,
2002; LeGates et al., 2014; Foster et al., 2020), due to
the circadian clocks within the SCN being light-
entrainable oscillators (LEOs). Light enters the sys-
tem via the eyes and is then transmitted to the SCN.
The SCN then coordinates the phase of the rest of the
body clocks. Living organisms then adapt and orga-
nize their physiology and behavior according to the
time of day.

Light is the dominant environmental information
that is responsible for entraining the circadian
rhythm. However, other circadian pacemakers exist
which respond to other stimuli. In rodents, research-
ers have discovered the following oscillators: the
food-entrainable oscillator (FEO), the methamphet-
amine sensitive circadian oscillator (MASCO), the
palatable meal-inducible circadian oscillator (PICO)
and the wheel inducible circadian oscillator (WICO)
(Pendergast and Yamazaki, 2017). The locations of
these oscillators are unknown, but the MASCO and
FEO are known to exist outside the SCN. Therefore,
scheduled feeding, methamphetamine treatment,
palatable meals and wheel access also give timing
cues, and behavioral rhythms exhibit the outputs of
these extra-SCN oscillators. In rodents with SCN-
lesions or disabled canonical circadian transcrip-
tional-translational feedback clock mechanisms,
outputs are still seen from the other circadian pace-
makers (Mohawk et al., 2009; Storch and Weitz, 2009;
Pendergast and Yamazaki, 2017). Therefore, they
have a different molecular timekeeping mechanism
than the LEO. The FEO, MASCO, PICO and WICO
run with the same period (Pendergast et al., 2012;
Flores et al., 2016), and the corresponding stimuli
increase dopamine tone (Pendergast and Yamazaki,
2017). Therefore, these secondary pacemakers entrain
to arousing stimuli. The LEO and these secondary
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oscillators are speculated to be coupled (Pendergast
and Yamazaki, 2017), forming a circadian timing sys-
tem complex. The timing cues all influence the phase
and period of circadian clocks throughout the body.

Biological rhythms with periods substantially
shorter than 24 h have been detected (Goh et al.,
2019); such rhythms are termed ultradian rhythms.
Ultradian frequencies of many physiological pro-
cesses have been detected in most living systems,
from single cells (Kippert and Hunt, 2000) to more
complex organisms. However, their biological
mechanism, origin and functional significance are
yet to be understood. It is also unknown whether
there is a universal ultradian mechanism, or if there
are multiple.

Ultradian rhythms exist in the presence (Dowse
et al., 2010) and absence (Gerkema et al., 1990) of the
circadian cycle, which highlights their importance.
Sufficient evidence has been provided that ultradian
rhythms are independent of the LEO in the SCN, sug-
gesting a separate mechanism and origin (Gerkema
et al., 1990; Stephenson et al., 2012; Waite et al., 2012).
Ultradian rhythms do not correspond to any known
geophysical cycles. Early work by Bash (1939) showed
that an ultradian hunger drive persists in the absence
of neural impulses from the stomach; suggesting this
internal clock continues ticking regardless of the state
of the system. Ultradian rhythms in mammals have
been hypothesized to be of cellular origin, with a net-
work in place to synchronize and coordinate the
rhythms (Wu et al., 2018).

The purpose of this article is to investigate the
behavioral rhythms that remain in a biological sys-
tem after the canonical circadian timekeeping mecha-
nismis disabled and in the absence of external stimuli.
Biological systems cannot be modeled easily, and
through approximations, the most exciting character-
istics are lost. Oscillators within biological systems
may have time-varying frequencies, phases, ampli-
tudes and interactions. Therefore, novel numerical
methods must be applied to decipher their complex
dynamics. The time series obtained by monitoring
behavior over time have been analyzed using unique
set of methods that enable multioscillatory dynamics
to be time-resolved (Clemson and Stefanovska, 2014;
Clemson et al., 2016), available as the MatLab /Python
toolbox MODA (Newman et al., 2018). The algo-
rithms utilize the phases and amplitudes from the
signals, rather than only amplitudes which are more
prone to noise and artifacts, and do not assume that
phases/frequencies are constant. The data under
analysis are particularly long for this line of research
(272 days) and were sampled frequently (every
1 min), suitable to observe patterns that emerge over
time and rhythms that repeat on scales from days to
minutes.

Rhythms do not have strict frequencies, but vary
around certain values; therefore, it is of utmost impor-
tance to investigate their time-variable dynamical
properties which are often ignored. We first deter-
mine the oscillatory components and their depen-
dence on time wusing the wavelet transform
(Daubechies, 1992; Kaiser, 1994; latsenko et al., 2015).
Then, we investigated whether any of the oscillatory
components exist in harmonic relationships
(Sheppard et al., 2011) to determine the number of
basic oscillators within the system in a given time-
frame. The instantaneous frequencies of the oscilla-
tory components are then extracted using ridge curve
extraction (Delprat et al., 1992; Carmona et al., 1997,
1999; latsenko et al., 2016) before determining their
interactions and couplings (Jensen and Colgin, 2007;
Stankovski et al.,, 2019) using dynamical Bayesian
inference (DBI) (Smelyanskiy et al., 2005; Stankovski
et al., 2012, 2014). Wavelet phase coherence (Le Van
Quyen et al., 2001; Lachaux et al., 2002; Bandrivskyy
et al., 2004; Grinsted et al., 2004; Sheppard et al., 2012)
is used to investigate whether the system is fully
autonomous or whether some of the observed oscilla-
tions are responsive to some external perturbation.
An origin for the observed oscillations is suggested
based on the results obtained with such analyses, as
well as using current understanding from existing
studies. The overarching aim is to understand which
rhythms remain after the dominant canonical circa-
dian system is disabled.

MATERIALS AND METHODS

Biological System

To determine whether a timekeeping mechanism
other than the circadian rhythm exists, the circadian
system must be disabled in the organism under inves-
tigation. When investigating rodents, either SCN-
lesioned or knockout mice are used. Knockout mice
are genetically modified mice, where the function of a
gene has been inactivated or “knocked out”. In this
case, it is the circadian clock genes that must be
knocked out, such as the Period genes (Per1, Per2, and
Per3). Knocking out clock genes disrupts the clock
mechanism generating the circadian rhythm.

Single knockout Per1 /-, Per2 -/-,and Per3 /-~ mice
(in congenic with 129/Sv genetic background pro-
vided by David Weaver, University of Massachusetts
Medical School, Worcester, MA, USA) (Shearman
et al., 2000; Bae et al., 2001) were backcrossed with
C57BL/6] mice (Jackson Laboratory #000664) for 15
generations. The Per mutant mice were then crossed
until Perl+/~; Per2~/-; Per3~/- mice were generated.
The Perl +/-; Per2-/-; Per3-/- mice were maintained
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by intercross at Vanderbilt University (Pendergast
et al., 2009, 2010) and then UT Southwestern Medical
Center (Flores et al., 2016). The Nrldl-luciferase
reporter mouse line, in which the Nrd1d1 (also known
as Rev—erbo ) promoter drives the expression of lucifer-
ase, was generated in a C57BL/6NCrL background
(Charles River #027). 3.8 kb mNrd1d1 promoter was
cloned into Mlu I/Nco I site of the pGL3 BASIC firefly
luciferase reporter vector (Promega, Madison, WI,
USA). Transgenic mice were generated at the
Southwestern Transgenic Technology core using a 7.6
kb mNrd1d1-luc reporter construct linearized by Dra III
and Ase I. Transgenic mice were identified by using
PCR to detect a 195 bp fragment from tail DNA (for-
ward primer, 5'— accctecccttgtgttctct —3’; reverse primer,
5'— tccacctegatatgtgeatc —3’). Among the nine founders
that had luciferase activity, we established two Nrd1d1-
luc transgenic lines. Line #60 was crossed with
C57BL/6] mice obtained from the UT Southwestern
Wakeland Mouse Breeding core for 1 generation.
Per1+/=; Per2~/=; Per3~/~ mice (F7) were crossed with
hemizygous Nrldl-luciferase (N1) mice. The offspring
were intercrossed for 2—4 generations to generate exper-
imental mice. Those mice were generated for the project
identifying putative locations of the methamphetamine-
sensitive circadian oscillator; and the luciferase reporter
was not used in the current study.

All mice were bred and group-housed in a 12L:12D
cycle. Five Perl-/-; Per2-/-; Per3~/- mice (one
female) with hemizygous Nrld1-luciferase transgene,
aged 4-5 months old were used for this study.
Circadian behavior recordings were conducted in a
light-tight ventilated box (Phenome Technologies,
Skokie, IL, USA). The mice were singly housed in
plastic cages (length X width X height: 29.5 X 11.5 X
12.0 cm) with running wheels (diameter: 11 ¢cm) in
constant darkness with ad libitum access to regular
chow (2018 Teklad Global 18% Protein Rodent Diet;
Harlan, Madison, WI, USA) and water throughout
behavior recordings for 272 days. Wheel revolutions
were continuously recorded every minute
(ClockLab system ver. 3.604; Actimetrics, Wilmette,
IL, USA). Temperature and relative humidity inside
of the light-tight box were recorded every 5 min
(22.4£0.4°C, min =21.3°C, max = 24.6°C; 44.5+7.1%,
min =15.2%, max=60%) by Chamber Controller
software (ver. 4.104; Actimetrics). Their dynamical
characteristics are shown in the Supplementary
Material. Cages and water bottles were changed in
the dark by a researcher wearing an infrared viewer
(FIND-R-SCOPE  Infrared Viewer; FJW Optical
Systems, Inc. Palatine, IL, USA) without exposing
mice to visible light. All mice were in the same light-
tight box and treated the same way. Times when cage
changes and visual inspections were conducted were
recorded. All animal experiments were conducted in

accordance with the guidelines of the Institutional
Animal Care and Use Committee at UT Southwestern
Medical Center (protocol #2016-101376). Male and
female actogram examples are shown in Figure 1.

Due to a micro-switch problem, there are missing
data for mouse 2 for ~ 60 h between days 113 and 118
(Figure 1, left). In addition, for a small number of data
points (0.09% ), due to rebooting the PC or a ClockLab
software problem, the PC recorded no value; this
occurred at the same time for all mice. The most pro-
longed period this occurred for was 2 h, which over
272 days can be considered as negligible. All missing
data points were assigned a value of 0, so the time
series could later be used as an input in the analyses
that all require equidistantly spaced data with a
numerical value. Due to the very low percentage of
missing data points, no effect on the overall results is
expected.

Preprocessing

Before performing analysis on the biological sys-
tem, the signal must be preprocessed (latsenko et al.,
2015; Newman et al., 2018). The signal is first
detrended, which includes removing nonoscillatory
trends from the original signal by subtracting a best-
fit cubic polynomial. Nonoscillatory trends are rep-
resented as low-frequency oscillations, and
detrending removes the effects of their possible
interference with low-frequency oscillatory compo-
nents of interest. The frequencies of interest are then
determined, and the time series is filtered of fre-
quencies outside the frequency interval of interest,
by nullifying their amplitudes. The preprocessing,
as well as all time series analysis methods explained
below, were applied to the original data sampled at
intervals of 1 min.

Time-Frequency Analysis

For the nonautonomous system under investiga-
tion, representation in the frequency domain is insuf-
ficient in obtaining all the information contained
within the signals. Traditionally, time-dependence is
treated as noise and frequencies are time-averaged.
In this study, the time series are transformed to the
time-frequency domain via the wavelet transform, to
extract the oscillatory components over time.

The wavelet of choice is the lognormal wavelet,
which has better resolution than the well-known
Morlet wavelet (Iatsenko et al., 2015), as the ampli-
tude and power are symmetric around the peak. The
wavelet slides over the signal, and the section of the
signal overlapping with the wavelet is transformed
to the frequency domain. The scale of the wavelet is
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Figure 1. Wheel-running activity of Perl ™ ; Per2 = ; Per3 -
mice. Wheel revolutions were collected in 1-min bins and were
binned with 10 min and plotted with ClockLab (percentile plot).
An example of each sex is shown. There are missing data for
mouse 2 for ~60 h between days 113 and 118 due to a micro-
switch problem.

adjusted depending on the frequency to be obtained,
to optimize the frequency resolution and time-local-
ization trade-off. The wavelet scale is inversely pro-
portional to timelocalization and directly proportional
to frequency resolution. Therefore, smaller scales are
used to observe higher frequencies and larger scales
are used to observe lower frequencies. The frequency
resolution parameter determines the trade-off
between time localization and frequency resolution;
the higher the value, the higher the frequency resolu-
tion and the lower the time resolution. In this study,
the frequency resolution parameter value that pro-
vided an optimal trade-off was 1.8. Wavelet power
plots are produced by squaring the absolute value of
the wavelet amplitudes, then time-averaged.

Initial time-frequency analysis was performed
over all possible frequencies. The time between sam-
ple points is 1 min, and the highest frequency that
can be resolved is twice this time, 2 min (Nyquist
theorem). A lower frequency limit of ~ 28 days was
determined by the length of the recording (272 days)
and the frequency resolution (1.8). The lower fre-
quency limit was refined by identifying the lowest
significant frequency that was detected across all
mice, so frequencies below 0.00055min™ (~30.3 h)
are filtered out.

The cone of influence is the area in the time-
frequency domain that corresponds to half of the
window length used for each of the estimated fre-
quencies—both at the beginning and the end of a

recorded signal. Because of the logarithmic frequency
resolution, it has an exponential shape. To overcome
this, when ridge extraction is performed, zero-pad-
ding is added to the start and the end of the signal, so
that ridges are extracted for the entire time of record-
ing (latsenko et al., 2016).

Ridge Curve Extraction

Ridge curve extraction is a method to extract the
trace of a time-varying frequency from a time-fre-
quency representation of a signal (Delprat et al., 1992;
Carmona et al., 1997, 1999; Iatsenko et al., 2016). The
time-varying frequencies are seen as amplitude peaks
in the time-frequency representation and are referred
to as ridge curves. Oscillatory components with their
corresponding frequencies are identified visually by
using both the time-frequency representation and the
time-averaged power plot (see Figures 2a and 2b).

For ridge extraction, a frequency band must be
defined which includes the entirety of the oscillatory
component. The frequency band should include the
whole width of the oscillatory component, including the
peak and the interval in which the frequency variability
manifests. Caution was necessary when extracting the
oscillatory components, as some are very close together
and partially adjoined. For accurate results, only one
oscillatory component should exist in the frequency
band. The frequency bands for each oscillatory compo-
nent were chosen based on the time-frequency represen-
tation and the average power spectrum. Minima in the
average power spectrum were used as starting boundar-
ies, which then based on the time-frequency representa-
tion were corrected to avoid overlapping of oscillatory
components. For each mouse, the frequency bands of
different oscillatory components did not overlap. Figure
3 gives an example of the chosen boundaries for ridge
extraction, and the ridges for each oscillation in each
mouse are shown in the Supplementary Material. Ridge
curves are given by the time sequence of maximum
amplitude peaks in time-frequency space within the fre-
quency interval specified.

Violin plots (Hoffmann, 2015) were created for each
oscillation using the frequency data extracted from
ridge analysis for all mice, to visualize the spread of
the data.

Harmonic Finder

The oscillatory components extracted from the
time-frequency representation may be in harmonic
relationships: the instantaneous frequencies of an
oscillation are multiples of the instantaneous fre-
quencies of another at all times. Harmonics arise
due to a single oscillator having a nonsinusoidal
wave shape, which then in the frequency domain is
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Figure 3. The method for extracting ridges from a time-frequency representation, and the extracted ridges. The wavelet transform is
performed on the behavioral data of mouse 2. For ridge extraction, the chosen boundaries must contain the entirety of, and only, the
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represented with additional oscillatory compo-
nents, at multiple frequencies of the basic frequency.
Investigating harmonic relationships is essential to
determine the number of basic oscillators, or modes,
that characterize the biological system. By estab-
lishing the distinct oscillators, the fundamental ori-
gin of their rhythms can then be investigated.

A preliminary, visual harmonic test can be per-
formed by comparing the extracted ridges; if the fre-
quencies are in a harmonic relation, their ridges
should have similar shapes. Then, the possibility of a
harmonic relationship may be investigated by deter-
mining whether the oscillatory components consis-
tently exist in a rational relationship over time.
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However, a more reliable method has been developed
by Sheppard et al. (2011), specially designed to find a
harmonic relationship between oscillatory compo-
nents with time-varying frequencies and amplitudes,
using wavelets.

The phase time series of each frequency compo-
nent are extracted using the wavelet transform, and
are compared pairwise. The algorithm calculates the
mutual information between the pair to determine
whether a harmonic relationship exists. The fre-
quency interval of interest is from 6x10™* min™ (cor-
responding to a period of ~27.8 h) to 0.5min™" (a
period of 2 min), which includes the entirety of the
oscillatory components of interest, determined after
time-frequency analysis.

For the wavelet transform, a time resolution of
360 min is used (which is the length of the wavelet),
as it gave the optimal trade-off between time and fre-
quency resolution. The method of surrogates is used
to test the statistical significance. For computational
reasons, a minimum of 19 amplitude-adjusted
Fourier transform (AAFT) surrogates were used,
which has been demonstrated to be the acceptable
minimum (Lancaster et al., 2018). The harmonic
results are shown relative to the mean and standard
deviation of the surrogate distribution.

Dynamical Bayesian Inference

Dynamical Bayesian Inference (DBI) (Smelyanskiy
et al., 2005; Stankovski et al., 2012, 2014) is a method to
determine whether a pair of oscillators within a sys-
tem are coupled, and if so, how they are coupled.
Phase coupling is determined by how an oscillator
influences the phase of another oscillator. Within a bio-
logical system, the frequencies and amplitudes of
oscillators may be time-varying; therefore, their inter-
actions may also evolve in time. Within a time window
that s slid along a signal, DBI determines the time evo-
lution of couplings between oscillators. Therefore, it is
chosen over techniques that determine time-indepen-
dent coupling (Rosenblum and Pikovsky, 2001; Palus
and Stefanovska, 2003) to understand the true under-
lying nature of the system. DBI is based on Bayes’ the-
orem: prior knowledge of the evolution of the system
is used to help determine its current condition. It uses
a customized information propagation procedure
within the Bayesian framework, which allows for
time-evolving dynamics to be inferred (Smelyanskiy
et al., 2005; Stankovski et al., 2012, 2017).

The interactions between all combinations of
phases of pairs of oscillators for the same animal are
investigated. The instantaneous frequencies of an
individual oscillatory component are obtained from
the time-frequency representation using ridge extrac-
tion. For accurate results, during ridge extraction, the

oscillatory components must occupy disjoint fre-
quency bands to exclude interference.

Time-independent coupling strength approxima-
tions are computed within specified time windows.
For each time window, the strength of the coupling is
calculated by determining whether the phase of one
oscillator is influenced by the other and vice versa. The
window size must be at least 10 cycles of the lowest
frequency across the two frequency bands being inves-
tigated for coupling. For consistency, this lowest fre-
quency is determined across all the mice. Therefore,
the width of the time windows are chosen to be 15,880
min, and time windows overlap by 75% .

The Fourier order, K >0, determines the number
of degrees of freedom, (2K+1)*, for each coupling
when determining the interaction between two oscil-
lators (Newman et al., 2018). A Fourier order of 2
was empirically determined, which gives a sufficient
number of degrees of freedom (25 for each coupling)
without introducing too many which causes overfit-
ting leading to highly inaccurate predictions.

After obtaining results for a time window, the
amount that these results affect the calculation for the
subsequent window is determined by the propaga-
tion constant p >0 . The larger the value of p, the less
the results are incorporated into the algorithm for the
next window. A value of 0.2 was used; however, after
investigation, using different values did not change
the end coupling strength results.

Surrogates are used to test the statistical signifi-
cance of the coupling between two oscillators. As
there is for sure no coupling between the surrogates
and the oscillators under investigation, the method of
surrogates gives a relative value of the coupling
strength. For computational reasons, a minimum of
19 cyclic phase permutation (CPP) surrogates are
used, which has been demonstrated to be the accept-
able minimum (Lancaster et al., 2018), and the test is
performed with a significance level of o =0.05.

Wavelet Phase Coherence

Wavelet phase coherence (Le Van Quyen et al.,,
2001; Lachaux et al., 2002; Bandrivskyy et al., 2004;
Grinsted et al., 2004; Sheppard et al., 2012) investi-
gates the relationship between phases from two
time series over time, at each frequency of interest.
If the coherence is high, then the two sources are
either mutually coupled, or they have a common
external driver that influences their dynamics.
Phase coherence is investigated for all the possible
pairs of signals.

The wavelet transform is performed for the pair
of signals under investigation. During the wavelet
transform of the two signals, instantaneous phases
are assigned to the oscillatory processes at
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frequency f over time. The instantaneous phase
coherence is a measure of how close the instanta-
neous phase difference is to being constant between
the oscillatory processes at frequency f with an out-
put between 0 (no coherence) and 1 (perfect coher-
ence). The average phase coherence at frequency f
is then calculated. For high values of phase coher-
ence, an external driver with frequency f may be
influencing both signals, or they have mutually
coupled oscillations.

The higher and lower frequency limits were
refined by identifying the highest and lowest signifi-
cant frequencies that were detected across all mice,
and so wavelet phase coherence is investigated for
frequencies between 0.007 min-! (~24 h) and
0.00004 min ! (~17.4 days).

Phase coherence values are often nonzero for oscil-
lations that are completely unrelated; therefore, the
significance of the results must be tested. A surrogate-
based significance test is used to determine the sig-
nificance of the results using 30 AAFT surrogates.
The test is performed with a significance level
a=1/(30+1).

The median absolute coherence was then calcu-
lated to see what is common among all the mice.
For each mouse pair, the absolute coherence was
calculated by subtracting the surrogate data. Then,
the median was calculated at each frequency, along
with the 90th percentile to show the spread of the
data.

Surrogates

Surrogates are signals used to determine whether
a system has a certain property; they behave like the
system but do not possess the property under inves-
tigation (Lancaster et al., 2018). The surrogates and
the original data are treated in the same way, so any
process applied to the original data is also applied to
the surrogates.

For this study, surrogates are used to test the sig-
nificance of results obtained during DBI, the analysis
for the possible existence of high harmonic compo-
nents using the harmonic finder algorithm, and in the
analysis of wavelet phase coherence. The surrogates
are created from the signals. DBI uses CPP surrogates.
The signals used in DBI are phase signals, that is, they
cycle from 0 to 2n over time. The signal is divided
into complete cycles, which are then randomly per-
muted. The cycles at the beginning and end, which
are not complete, stay fixed. In the analysis for the
possible existence of high harmonics as well as wave-
let phase coherence analysis, AAFT surrogates are
used. A Gaussian noise signal G is generated, and its
values and the values of the original signal S are

ranked from smallest to largest. G is then reordered
to match the rank order of S, to create signal X. X is
Fourier transformed, creating Xrr , and the values of
Xpr are ranked from smallest to largest. The original
signal S is then reordered to match the rank order of
X;r to give the surrogates.

The appropriate analysis technique is applied to
the original data and the surrogate set. The result
given by the original system is compared with the
distribution of the results given by the surrogates. If
the comparison shows a significant difference, one
can propose that the original data, and hence the sys-
tem they represent, possess a particular property
with a certain confidence level. Otherwise, the sys-
tem cannot be considered to have such a property, or
the test is too inadequate to prove this.

RESULTS

Oscillatory Components

By performing the wavelet transform on the sig-
nals, it was discovered that Per1/2/3 triple knockout
mice in constant darkness had wheel-running
rhythms that were less than 24 h. A similar time-fre-
quency representation was obtained for all mice, and
an example is shown in Figure 2a (time-frequency
representations for all five mice data are shown in the
Supplementary Material, Figures S1-S3). In the aver-
age power plots, with an example shown in Figure
2b, two narrow peaks reside in the longer period end
(oscillation 1 and oscillation 2; see Tables 1 and 2).
Oscillation 2 always has more extensive power than
oscillation 1. A less distinct peak with a shorter period
is located near oscillation 2 (oscillation 3; see Tables 1
and 2). A broader peak exists in the shorter period
end (oscillation 4; see Tables 1 and 2).

Violin plots for periods of each oscillation are
shown in Figure 4 to visualize the spread of the data.
The frequency peaks of the oscillatory components
are given in Tables 1 and 2. The values in Table 1 were
found by determining the frequency value at which
peaks occur at in the average power spectra. The val-
ues in Table 2 were found by determining the average
frequency value of the ridges, which were extracted
from the time-frequency representation by ridge
extraction. The mean period of oscillation 4 listed in
Table 2 may be slightly lower than actuality because
the frequency resolution parameter of 1.8 for the
wavelet transform, based on which the ridges were
detected, is least optimal for the upper end of the fre-
quency interval investigated. This interval spans the
range from 0.00055 min™! (30.3 h) to 0.5 min™ (2 min).
It is difficult to preserve the same optimal
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Table 1. The oscillatory components within the murine behavioral data.

Oscillation Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5
1 155h 20.4h 159 h 179 h 16.5h
2 8.3h 7.1h 6.0 h 89h 85h
3 4.8h 3.8h 35h 4.7 h 33h
4 22.2 min 19.3 min 19.8 min 16.0 min 17.0 min

The oscillatory components were found by determining the frequency value at which peaks occur at in the average power spectra, which

was obtained after performing the wavelet transform on murine behavioral data.

Table 2. The oscillatory components within the murine behavioral data.

Oscillation Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

1 149 +21h 199 +20h 15.8 £22h 17.7 £23h 16.7 = 1.8h

2 84+1.0h 73+08h 5.6 =0.8h 89+ 11h 84*+12h

3 42 +04h 40*+05h 31*+04h 47 +05h 39*+05h

4 24.5 = 42 min 25.3 = 4.1 min 25.4 = 3.9 min 25.2 = 4.2 min 24.6 = 3.9 min

The oscillatory components were found by determining the mean frequency value of the ridges along with the standard deviation, which
were extracted from the time-frequency representation by ridge extraction.
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Figure 4. Violin plots for the periods of oscillation 1, 2, 3, and 4 for all mice (1, 2, 3, 4, and 5) obtained by the frequency ridges from

ridge extraction.
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Figure 6. The appearance of oscillation 1 for mouse 1, 2, 3, 4, and 5. The periods when oscillation 1 is at high amplitude are shown by

the blue blocks, and the red lines show cage changes.

compromise between time localization and frequency
resolution over such a large interval, due to the
Heisenberg uncertainty principle. Yet, for the sake of
comparison, a single resolution frequency was used,
rather than dividing the frequency interval into two
parts and calculating the frequency content with two
different resolution frequencies.

All the oscillatory components persist throughout
data measurement, although the amplitudes of oscil-
lations 1 and 2 are intermittently high and low, as
can be seen in Figure 5. The amplitude of oscillation
2 decreases when the amplitude of oscillation 1
increases, and vice versa. A significant peak for oscil-
lation 1 and oscillation 2 can be detected at all times,

since the ridges can be extracted at all times. To inves-
tigate whether the high-amplitude appearance of
oscillation 1 is common between all the mice, the start
and end time for each appearance were noted. Figure
6 depicts the appearance of oscillation 1 for mouse 1,
2, 3,4, and 5 (top to bottom), and the red lines are
when the cages were changed. As can be seen, the
appearance of oscillation 1 does not occur at the same
time for all the mice, and does not occur as a result of
changing the cages using an infrared light. Increasing
the frequency of cage changes did not affect the
appearance of oscillation 1. Furthermore, the mean
frequency of oscillation 1 is not the same for all the
mice. Therefore, it is unlikely there is a common
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Table 3. The mean duration and standard deviation of high-
amplitude oscillation 1, high-amplitude oscillation 2, and the
time between the onsets of oscillation 1 at high amplitude.

Oscillation 1 Oscillation 2 Combined
Mouse Duration (Days) Duration (Days) (Days)
1 41+13 19.6 = 3.6 23.7 4.0
2 46 =33 133 =18 18.1 = 3.3
3 32+07 13.8 £ 3.2 17.0 = 3.3
4 53+1.9 10.6 = 3.9 15.8 3.3
5 47 +1.2 10.1 = 4.6 14.7 £ 5.2

external force driving the intermittent amplitude of
oscillation 1. The time between the onsets of oscilla-
tion 1 at high amplitude appears rhythmic, and the
mean times are given in Table 3 for all mice. Table 3
also gives the mean duration of high-amplitude oscil-
lation 1 and high-amplitude oscillation 2.

Harmonics

By performing the harmonic finder algorithm for
each mouse, the oscillatory components within har-
monic relationships are made evident. The fre-
quency interval investigated includes the entirety of
the oscillatory components of interest: oscillation 1,
2,3, and 4.

An example is shown in Figure 7 (harmonic results
for the other mice data are shown in Suppl. Figs.
§9-512). The frequency boundaries used during ridge
extraction for each oscillation detected in the time-
frequency representation (oscillation 1, 2, 3, and 4)
form the outlines of the dashed boxes in the figure.
All the different combinations of oscillations are
investigated, and the boxes are plotted over the har-
monic results. For oscillation combinations which
overlap with higher valued areas, the two oscillations
are more likely in a harmonic relationship.

For all mice, oscillation 1 and oscillation 3 do not
appear to exist in a harmonic relationship. For
mouse 1, 2, and 3, there is statistically significant
evidence that oscillation 1 and oscillation 2 do not
existin a harmonic relationship; however, for mouse
4 and 5, oscillation 1 and oscillation 2 appear to
exist in a harmonic relationship. For mouse 1, 2, 3,
and 4, oscillation 2 and oscillation 3 exist in a har-
monic relationship; however, for mouse 5, there is
perhaps a faint signature of a harmonic relationship
but it is not clear. Oscillation 1 and oscillation 4 do
not appear to exist in a harmonic relationship, other
than a possible faint signature in mouse 2 and 4.
Oscillation 3 and 4 also do not appear to exist in a
harmonic relationship, other than a possible faint
signature in mouse 2 and 3. In all mice, oscillation 2
and oscillation 4 overlap with an area signifying a
harmonic relationship; however, this area stretches

Frequency (1/minute)

10 10 107!
Frequency (1/minute)

Figure7. The detected harmonics within the behavioral data of
mouse 2. The plot is a frequency-frequency representation show-
ing what oscillations are in harmonic relationships. The image is
symmetric over the diagonal; therefore, only half of the figure is
considered. The frequency boundaries used during ridge extrac-
tion for each oscillation detected in the time-frequency represen-
tation (oscillation 1, 2, 3, and 4) form the outlines of the dashed
boxes in the figure. All the different combinations of frequen-
cies are investigated, and the boxes are plotted over the harmonic
results. The color code shows a dimensionless quantity obtained
from the actual value, minus the mean of the surrogate distribu-
tion, divided by the standard deviation of the surrogate distri-
bution. Negative values correspond to results with values lower
than the surrogate mean; therefore, significant results are those
above 0. For oscillation combinations which overlap with higher
valued areas, the two frequencies are more likely in a harmonic
relationship.

to higher frequencies than the frequency interval
surrounding the peak of oscillation 4.

A possible reason for oscillation 1 and oscillation 2
sometimes appearing as if they are in a harmonic
relationship is due to the appearance of a harmonic of
oscillation 1 just below oscillation 2. In Figure 7, a
harmonic relationship exists below the oscillation 1
and oscillation 2 combination, corresponding to oscil-
lation 1 and its harmonic. For mouse 4 and 5, oscilla-
tion 2 has a mean frequency similar to the harmonic
of oscillation 1; therefore, it appears that oscillation 1
and oscillation 2 are in a harmonic relationship.

A harmonic relationship certainly exists in the
region of oscillation 2 and oscillation 4 on the fre-
quency-frequency representation, and the upper-
frequency bound when extracting oscillation 4 may
not be high enough. Therefore, it is highly probable
that oscillation 2 and oscillation 4 are in a harmonic
relationship.

In conclusion, oscillation 1 and oscillation 3 are
not in a harmonic relationship. Oscillation 2 and
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oscillation 3 are highly probable in a harmonic rela-
tionship. Oscillation 1 and oscillation 2 are most
likely not in a harmonic relationship, especially due
to the harmonic relationship between oscillation 2
and oscillation 3, and lack of harmonic relationship
between oscillation 1 and oscillation 3. Oscillation 1
and oscillation 4 are most likely not in a harmonic
relationship, and similarly for oscillation 3 and oscil-
lation 4. Oscillation 2 and oscillation 4 are highly
probable in a harmonic relationship.

Coupling

For each mouse, DBI was performed for all the pos-
sible combinations of pairs of oscillations (oscillation
1,2, 3, and 4) obtained from the time-frequency repre-
sentation by ridge extraction. From DBI, the coupling
strength between two oscillations is obtained over
time, for both directions of coupling.

An example is shown in Figure 8 (DBI results for
the other mice data are shown in Suppl. Figs. S13-
S16). The solid lines denote the results from DBI
using the pairs of phases, and the dotted lines are
results obtained from surrogate data. Only values
above the surrogate levels are considered as signifi-
cant. Table 4 gives the percentage of time the cou-
pling strengths from the phases are above the
surrogate level, and Table 5 gives the mean coupling
strength for the significant results. The coupling
results are similar for all mice. There seems to be
strong and stable (i.e. persists over time) coupling
from oscillation 1, oscillation 2, and oscillation 3 to
oscillation 4. There is some fluctuation around the
surrogate line, perhaps due to oscillation 1 and oscil-
lation 2 having time-varying phases, frequencies,
and amplitudes. In the reverse direction, the cou-
pling is less stable and weaker.

The coupling between oscillation 1, oscillation 2,
and oscillation 3 is weak, with the coupling stronger
in the direction of oscillation 1 to oscillation 2 and
oscillation 3 and stronger from oscillation 2 to oscilla-
tion 3, and is only present for a small percentage of
time. A summary is given in Figure 9. An explanation
for the intermittency of observed coupling is that it is
a characteristic of nonautonomous systems (Lucas
etal., 2018).

External Driver

By performing wavelet phase coherence for all
possible pairs of mice, it is possible to determine
whether there exists an external driver. This driver
will then be common for all mice and will manifest
as coherent oscillations at the same frequency for
each pair.

Table 4. The percentage of time the coupling results between
oscillations within murine behavioral data (for mouse [M] 1, 2,
3,4, and 5) is above the surrogate threshold, as a heatmap (color
scale from 0 to 100). For coupling direction 1-4, 2-4, and 3-4, the
percentage of significant results are much higher than the other
coupling directions.

Coupling M1 M2 M3 M4 M5

1-2 4.2 12.6 11.6 13.7 7.4
2-1 7.4 74 8.4 17.9 8.4
1-3 1.1 3.9 7 0 0.8
3-1 95 2.3 2.3 5.4 6.2
1-4 56.8 55.8 38.9 442 60

4-1 8.4 6.3 8.4 3.2 8.4
2-3 10.5 10.9 21.7 14 9.3
3-2 42 7 10.1 1.6 6.2
2-4 432 56.8 60 474 61.1
4-2 2.1 3.1 2.3 3.9 0

3-4 32.6 22.5 34.1 31.8 17.1
4-3 4.2 6.2 7 5.4 3.9

Table 5. The mean coupling strength (X10™) between
oscillations within murine behavioral data (for mouse [M] 1, 2,
3,4, and 5) when the coupling results are above the surrogate
threshold, as a heatmap (color scale from 0 to 192). For coupling
direction 1-4, 2-4, and 3-4, the mean coupling strengths are much
higher than the other coupling directions. For mouse 4 coupling
1-3, and mouse 5 coupling 4-2, there were no significant results
above the surrogate threshold.

Coupling M1 M2 M3 M4 M5
1-2 18 23 28 43 22
2-1 16 15 13 21 12
1-3 22 34 38 22
3-1 12 11 14 9 10
1-4 192 171 146 181 176
4-1 12 9 10 10 10
2-3 23 36 42 29 34
3-2 15 20 26 15 16
2-4 164 176 167 153 169
4-2 11 17 12 29

3-4 158 161 145 178 153
4-3 18 27 32 16 19

Accordingly, the median phase coherence for all
mice is obtained. Four clusters of frequencies become
evident, which are shown in Figure 10. The peaks
within a cluster may be independent, or are perhaps
due to time variations of a single oscillatory process.
It can be seen that even after the removal of light and
knocking out the genes responsible for the 24-h
rhythm, there is still a common, approximately 24-h
driver. In addition, peaks at 3.6 days, 1.8 days, and
21.6 h are observed, which based on simple division
can be shown to be in a harmonic relationship, point-
ing to 3.6 days being the main external rhythm in
addition to the 24-h rhythm. Most importantly, Figure
10 also illustrates that the behavioral rhythms sum-
marized in Tables 1 and 2 are unlikely the result of an
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Figure 8. The coupling strength over time between four oscillations (oscillation 1, 2, 3, and 4), within the behavioral data of mouse 2.
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Morris et al. /RESIDUAL RHYTHMS WITHOUT CANONICAL CIRCADIAN CLOCKS 323

Figure 9. The coupling between the oscillations (1, 2, 3, and 4)
within a murine biological system. There is strong and stable
coupling from oscillation 1, oscillation 2, and oscillation 3 to
oscillation 4, denoted by the solid green line, and weaker and
less stable coupling from oscillation 4 to oscillation 1, oscillation
2, and oscillation 3, denoted by the dashed orange line. There is
weak and less stable coupling between oscillation 1, oscillation
2, and oscillation 3, denoted by the dashed orange line, and the
coupling is stronger from oscillation 1 to oscillation 2 and oscil-
lation 3, and stronger from oscillation 2 to oscillation 3, denoted
by the larger arrow head in these directions.
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Figure 10. The median absolute coherence. After obtaining the
wavelet phase coherence results for each pair of mice, the aver-
age phase coherence is calculated. The surrogate values were
subtracted, and the median (red line) and 90th percentile (shaded
red area) were determined across all the pairs of mice. Signifi-
cant peaks correspond to an external driver synchronizing all the
mice. Four frequency clusters arise, with peaks within a cluster
possibly due to time variation.

external driver, due to there being no significant
peaks at the frequencies corresponding to the behav-
ioral frequencies.

With the chosen wavelet transform parameters, the
minimum frequency is limited at 0.00004 min-! or
approximately 17 days. Therefore, it is not possible to
determine whether the intermittency between oscilla-
tor 1 and 2 is due to an external influence through
wavelet phase coherence, due to the intermittency
having a frequency around this limit. Although, from

Figure 6, it is unlikely that the intermittency is due to
an external driver, as discussed previously.

DISCUSSION

Using 272 days of behavioral data sampled every
1 min from Per1/2/3 triple knockout mice kept in
constant darkness, we have investigated the dynamics
and interactions of the oscillatory components within
the data. By applying the wavelet transform for time-
localized frequency components with logarithmic fre-
quency resolution, we observed that the intrinsic 24-h
circadian rhythm is not visible; however, wavelet phase
coherence revealed a common 24-h rhythm as an exter-
nal driver, along with a 3.6-day external rhythm, both
very weak. The wavelet transform did however reveal
four prominent rhythmic components all less than 24 h,
with periods of ~17, ~8,and ~4h, and ~ 20 min. By
implementing the harmonic finder algorithm, which is
capable of detecting high harmonics in time-varying
systems, we found that the ~ 8-and ~ 4-h rhythms and
the ~8- and ~20-min rhythms were in a harmonic
relationship. Due to the absence of external timing cues
in our experimental setup, no known geophysical
cycles of these periods, and a lack of phase coherence
between mice in the ultradian range (Figure 10), we
conclude that these ultradian rhythms are intrinsically
driven. Coupling analysis of the ridge-extracted instan-
taneous frequencies revealed strong and frequent
phase coupling from the slower oscillations (~ 17, ~ 8§,
and ~4 h) to the faster oscillation (~20 min), and
weak and less frequent phase coupling in the reverse
direction and between the slower oscillations.

Oscillation 1 and oscillation 2 have intermittent
amplitude. When the amplitude of oscillation 1
increases, the amplitude of oscillation 2 decreases
(and vice versa), and the cause for this is unknown.
Bae and Weaver (2007) reported that a 3-h light pulse
transiently induced a ~16-h behavioral rhythm in
Per1/2/3 triple knockout mice. Therefore, it is possible
that a residual weak circadian oscillator exists in
Per1/2/3 triple knockout mice and this (oscillation 1)
is strengthened by an external force, for example,
cage change, but the appearance of high-amplitude
oscillation 1 was independent from the time the cages
were changed (Figure 6). Moreover, oscillation 1 does
not occur at the same time for all the mice, and the
periods of the appearance of oscillation 1 varied
between the mice (Table 3) and varied over time in
each mouse. Oscillation 1 has a period similar to the
extra-SCN circadian pacemakers in Per1/2/3 triple
knockout mice (Flores et al., 2016; Pendergast et al.,
2012); however, no procedure was performed to
reveal behavioral rhythms driven by these oscillators.
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It is possible that oscillation 1 is strengthened by an
internal, infradian mechanism; however, the purpose
of such a biological oscillator is currently unclear.

The existence of an infradian oscillator and its con-
nection with oscillation 1 and oscillation 2 remains to
be investigated, and it is especially important to gain a
good understanding of what internal or external events
could activate oscillation 1 at high amplitude. Recently,
Putker et al. (2021) have observed rhythms of a similar
period to oscillation 1 in circadian gene Cry1/2 double
knockout mice, which normally express arrhythmicity
in constant darkness. A ~16-h behavioral rhythm
appeared when the cryptochrome-deficient mice were
exposed to LL and then released to DD.

Robust ultradian rhythms of gene expression have
been found by van der Veen and Gerkema (2016) in
mouse liver tissue in vivo and NIH 3T3 cells in vitro
from a 48-h dataset of hourly transcriptome measure-
ments (Hughes et al, 2009; Barrett et al., 2013).
Frequency peaks appear at 8§ and 12 h; however, the
prominent peak in vivo is at 12 h and the prominent
peak in vitro is at 8 h. Although 8 and 12 h are har-
monics of the circadian rhythm, the detection method
disregards harmonics. Therefore, the gene expres-
sions show true ultradian rhythms, disjoint from the
circadian rhythm. From Tables 1 and 2, oscillation 2 is
approximately 8 h and may correspond to the in vitro
results. Perhaps the difference between in vitro and in
vivo is due to absence/presence of external informa-
tion, with the presence of time givers, for example, the
light-dark cycle and scheduled feeding times, elon-
gating the period. The genes investigated show con-
siderable variation in their expression patterns, with
peaks occurring at different times. A significant
amount of genes displaying ultradian expression pat-
terns are associated with metabolic processes and the
cell cycle. This could perhaps indicate a robust meta-
bolic cycle, the like of which has been found in yeast
(Tu et al., 2005). Rhythms of expression of yeast genes
are found to have periods of the same length, ~4-5h.
However, different genes follow different patterns of
expression, with peaks occurring at different times.
Therefore, the metabolic cycle is a highly organized
expression cycle obtained through mutual coordina-
tion, leading to oxidative and reductive phases. The
purpose of a metabolic cycle is to coordinate and tem-
porally compartmentalize incompatible cellular pro-
cesses which are essential to produce the energy
needed for the working of the cell. Maintaining this
underlying timekeeping mechanism is vital, in the
absence or presence of external stimuli. For example,
essential processes involved in the cell cycle are con-
fined to the reductive phases to minimize oxidative
damage to DNA. The metabolic cycle allows all neces-
sary processes of a cell to take place at a time which
optimizes the results. Hence, it is plausible to propose

that oscillation 2 corresponds to a metabolic cycle.
Interestingly, genes oscillating with ultradian frequen-
cies appear to be those which emerged early in evolu-
tion (Castellana et al., 2018).

From our analysis, we see there is strong and sta-
ble coupling from longer rhythms (hours) to shorter
rhythms (minutes). In mammalian cell biology, tran-
scription occurs on a timescale of approximately
10 min (Shamir et al., 2016). Therefore, oscillation 4
may correspond to the vital processes that take place
in the cell, which are driven by the metabolic cycle.
Furthermore, ~ 14-min neural activity rhythms were
found both inside and outside the SCN of the ham-
ster in constant darkness (Yamazaki et al., 1998).

To maintain synchrony between the metabolic
cycles, there must exist cell-to-cell communication
and coordination by a primary ultradian oscillator.
Control by a central oscillator is supported by evi-
dence such as that ultradian patterns of electrical
activity in the brain are phase advanced compared
with ultradian processes (Ootsuka et al., 2009).
Various anatomical locations which seem to be essen-
tial for the generation, transmission, or coordination
of ultradian rhythms have been discovered (Gerkema
et al., 1990; Nakamura et al., 2008; Blum et al., 2014;
Wau et al., 2018). The anatomical locations have appro-
priate connections for ultradian outputs and cross-
talk with the circadian system (Goh et al., 2019).

To further elucidate the origin and mechanism of
the ultradian rhythms, neural electrical activity could
be measured via an EEG alongside collecting behav-
ioral data of Per1/2/3 triple knockout mice kept in
constant darkness. The dynamics and interactions of
the oscillatory components that emerge can be inves-
tigated, along with the relationship between neural
activity and behavior. For such a study, the minimum
number of days of recording should include 8-10
cycles of the slowest oscillations under investigation.
Therefore, investigating oscillation 1 would require at
least 8-10 days of recording. However, due to the
intermittent amplitude of oscillation 1 and oscillation
2, with a cycle of intermittency of around 20 days, a
minimum recording of 160 days would be required.

By removing external perturbation such as light,
and allowing the mice to feed, drink, and exercise ad
libitum, the system may be modeled as approxi-
mately autonomous. However, there exists synchro-
nization in the population, evincing other external
perturbations. The rhythms that arise in Figure 10
could possibly be due to the variation of the Earth’s
magnetic field (Courtillot and Le Mouel, 1988;
Martynyuk and Temur’yants, 2009), which has a
24-h variation and 26- to 29-day variation; therefore,
the third harmonic would lie in the range 3.25-3.63
days. How these rhythms affect the behavior of the
mice is a further question, and whether they are
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causing the intermittency of oscillation 1 and oscilla-
tion 2. Subjecting the mice to varying magnetic field
strengths and recording their behavior could further
elucidate this hypothesis. The mice were physically
separated; however, a coupling mechanism could
exist through vocalizations and squeaky wheels
resulting in social synchrony. The 3.6-days rhythm
could be due to olfactory cues, for example, pher-
mones which cue the estrous stage of female mice
with a 4-day cycle, or is potentially a harmonic of
the 7-day work cycle. The 24-h rhythm could be due
to daily fluctuations of temperature or humidity
fluctuations caused by air conditioning, or experi-
menter presence (noise, odor) in the animal facility.
The coherence between temperature and humidity
fluctuations and mouse behavior is shown in the
Supplementary Material (Figs. S17 and S18). Weak,
but significant peaks arise; however, they do not
occur at the same frequencies for all mice. Mouse 2,
4, and 5 have a significant peak around ~ 3.5 h and
~53.0 min with temperature, and mouse 2, 3, 4, and
5have a significant peak around ~ 3.8 h with humid-
ity (see Supplementary Material).

Although the sample size of this study is small,
all the mice are characterized by a mutually consis-
tent pattern, as illustrated in the Supplementary
Material, Figures S1-S14. Furthermore, based on
recordings of length 272 days, under constant con-
ditions, we show that the pattern remains consis-
tent over time. Thus, the nature and consistency of
the results overcome the limitation of the relatively
small sample size.

Diseases such as cancer can arise due to disrup-
tion of such biological rhythms, and comprehending
their dynamics can be used to optimize drug deliv-
ery (Levi and Okyar, 2011). Given the importance of
circadian and ultradian rhythms (McClung, 2007;
Barger et al., 2009; van der Veen and Gerkema, 2016;
Castellana et al., 2018), it is essential to gain an in-
depth understanding of their nature. We have pro-
posed a robust methodology that promises to open
up new avenues to study a plethora of biological
rhythms, including their dynamics and interactions,
and possible ways of influencing these characteris-
tics. Multiple, simultaneously recorded, time series
of different physiological processes analyzed with
the methodology described here could help to fur-
ther investigate the origin of the rhythms and the
mechanisms by which they influence each other.
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