
https://doi.org/10.1177/07487304221087065

JOURNAL OF BIOLOGICAL RHYTHMS, Vol. 37 No. 3, June 2022 310–328
DOI: 10.1177/07487304221087065
© 2022 The Author(s)

Article reuse guidelines: sagepub.com/journals-permissions

310

1087065JBRXXX10.1177/07487304221087065JOURNAL OF BIOLOGICAL RHYTHMS / Month XXXXMorris et al. / SHORT TITLE
research-article2022

1.   To whom all correspondence should be addressed: Aneta Stefanovska, Department of Physics, Lancaster University, 
Lancaster LA1 4YB, UK;  e-mail: aneta@lancaster.ac.uk.

Multiscale Time-resolved Analysis Reveals Remaining 
Behavioral Rhythms in Mice Without Canonical 

Circadian Clocks
Megan Morris*,† , Shin Yamazaki‡ , and Aneta Stefanovska*,1  

*Department of Physics, Lancaster University, Lancaster, UK, †Department of Bioengineering, Imperial 
College London and The Institute of Cancer Research, London, UK, and ‡Department of Neuroscience and 

Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, USA

Abstract  Circadian rhythms are internal processes repeating approximately every 24 
hours in living organisms. The dominant circadian pacemaker is synchronized to the 
environmental light-dark cycle. Other circadian pacemakers, which can have nonca-
nonical circadian mechanisms, are revealed by arousing stimuli, such as scheduled 
feeding, palatable meals and running wheel access, or methamphetamine administra-
tion. Organisms also have ultradian rhythms, which have periods shorter than circa-
dian rhythms. However, the biological mechanism, origin, and functional significance 
of ultradian rhythms are not well-elucidated. The dominant circadian rhythm often 
masks ultradian rhythms; therefore, we disabled the canonical circadian clock of mice 
by knocking out Per1/2/3 genes, where Per1 and Per2 are essential components of the 
mammalian light-sensitive circadian mechanism. Furthermore, we recorded wheel-
running activity every minute under constant darkness for 272 days. We then inves-
tigated rhythmic components in the absence of external influences, applying unique 
multiscale time-resolved methods to analyze the oscillatory dynamics with time-
varying frequencies. We found four rhythmic components with periods of  17 h, 
 8 h,  4 h, and  20 min. When the  17-h rhythm was prominent, the 


8-h 

rhythm was of low amplitude. This phenomenon occurred periodically approxi-
mately every 2-3 weeks. We found that the  4-h and  20-min rhythms were har-
monics of the  8-h rhythm. Coupling analysis of the ridge-extracted instantaneous 
frequencies revealed strong and stable phase coupling from the slower oscillations 
( 17,  8, and  4 h) to the faster oscillations ( 20 min), and weak and less stable 
phase coupling in the reverse direction and between the slower oscillations. 
Together, this study elucidated the relationship between the oscillators in the absence 
of the canonical circadian clock, which is critical for understanding their functional 
significance. These studies are essential as disruption of circadian rhythms contrib-
utes to diseases, such as cancer and obesity, as well as mood disorders.
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Humans, like all living organisms, are subject to 
internal biological rhythms which are molded by 
external forces. Our bodies are attuned to the envi-
ronment; our behavioral and physiological outputs 
are shaped by geophysical cycles. Earth is our home, 
and every step of our evolution from single cells to 
complex organisms has polished our capability to 
survive under the conditions dictated by this envi-
ronment. By organizing our behavior and physiology 
with respect to the outside world, we are energy-effi-
cient machines.

Biological rhythms are outputs of interacting, ther-
modynamically open systems which are exposed to 
continuous external influences. Mathematically, these 
systems are nonautonomous, nonlinear, and predom-
inantly deterministic. Nonautonomous systems are 
dynamical systems that are explicitly time-dependent 
(Kloeden and Rasmussen, 2011). This means that 
their frequencies, phases, and couplings can be all 
functions of time. Physically, they are not indepen-
dent of the environment, so external perturbations 
need to be taken explicitly into account. They are 
largely deterministic; however, when time is not con-
sidered, that is, when they are represented in the 
phase space or the frequency domain, their proper-
ties are often misinterpreted as stochastic (Clemson 
and Stefanovska, 2014). Their resultant dynamics are 
time-varying, so nonautonomous clocks are not per-
fect. They have adjustable frequencies, and time is a 
physical quantity; hence, their dynamics are not the 
same when time is reversed (Stefanovska and 
McClintock, 2021; Kloeden and Yang, 2020; 
Suprunenko et al., 2013). They need to be treated with 
finite-time methods, both in modeling approaches 
and in the methods with which their time series are 
analyzed (Newman et al., 2021). In what follows, we 
will use finite-time methods throughout.

The most well known biological rhythm is the cir-
cadian rhythm; the approximately 24-h cycle of phys-
iology and behavior which is synchronized to the 
environmental light-dark cycle (Dibner et  al., 2010; 
Morse and Sassone-Corsi, 2002), and characterizes 
most living organisms. A thorough investigation into 
the timekeeping mechanism is highly essential, as 
disruption of circadian rhythms contributes to the 
onset of diseases such as cancer and obesity (Barger 
et al., 2009) as well as mood disorders such as depres-
sion (McClung, 2007).

The circadian system is governed by self-sustaining 
circadian clocks that exist in most cells (Dunlap, 1999; 
Shearman, Sriram et  al., 2000; Brown et  al., 2019). 
Coupling occurs between the clocks, forming a net-
work of interacting biological oscillators. The clock 
components are clock genes and proteins, and the 
clock mechanism is composed of transcription-transla-
tion feedback loops (Hastings et  al., 2018). Positive 

regulators (CLOCK and BMAL1) drive the transcrip-
tion of negative regulators (PER and CRY). PER-CRY 
complexes accumulate during the circadian day, which 
inhibits the positive regulators and so acts negatively 
on their own transcription. During the circadian 
night, the PER-CRY complexes degrade and their 
transcription levels fall, and the cycle begins again. 
Further accessory loops stabilize the transcription 
levels of the positive regulators. This mechanism 
then leads to  24-h oscillations of clock gene tran-
script and protein levels which are responsible for 
the organism’s 24-h body clock.

The circadian rhythm is entrained to the 24-h 
environmental light-dark cycle. In mammals, a pri-
mary circadian pacemaker exists in the suprachias-
matic nucleus (SCN), a small region of the brain 
(Weaver, 1998). The SCN is responsible for coordi-
nating the phase of circadian clocks throughout the 
mammal. The SCN obtains information about the 
time of day through light (Morse and Sassone-Corsi, 
2002; LeGates et al., 2014; Foster et al., 2020), due to 
the circadian clocks within the SCN being light-
entrainable oscillators (LEOs). Light enters the sys-
tem via the eyes and is then transmitted to the SCN. 
The SCN then coordinates the phase of the rest of the 
body clocks. Living organisms then adapt and orga-
nize their physiology and behavior according to the 
time of day.

Light is the dominant environmental information 
that is responsible for entraining the circadian 
rhythm. However, other circadian pacemakers exist 
which respond to other stimuli. In rodents, research-
ers have discovered the following oscillators: the 
food-entrainable oscillator (FEO), the methamphet-
amine sensitive circadian oscillator (MASCO), the 
palatable meal-inducible circadian oscillator (PICO) 
and the wheel inducible circadian oscillator (WICO) 
(Pendergast and Yamazaki, 2017). The locations of 
these oscillators are unknown, but the MASCO and 
FEO are known to exist outside the SCN. Therefore, 
scheduled feeding, methamphetamine treatment, 
palatable meals and wheel access also give timing 
cues, and behavioral rhythms exhibit the outputs of 
these extra-SCN oscillators. In rodents with SCN-
lesions or disabled canonical circadian transcrip-
tional-translational feedback clock mechanisms, 
outputs are still seen from the other circadian pace-
makers (Mohawk et al., 2009; Storch and Weitz, 2009; 
Pendergast and Yamazaki, 2017). Therefore, they 
have a different molecular timekeeping mechanism 
than the LEO. The FEO, MASCO, PICO and WICO 
run with the same period (Pendergast et  al., 2012; 
Flores et  al., 2016), and the corresponding stimuli 
increase dopamine tone (Pendergast and Yamazaki, 
2017). Therefore, these secondary pacemakers entrain 
to arousing stimuli. The LEO and these secondary 
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oscillators are speculated to be coupled (Pendergast 
and Yamazaki, 2017), forming a circadian timing sys-
tem complex. The timing cues all influence the phase 
and period of circadian clocks throughout the body.

Biological rhythms with periods substantially 
shorter than 24 h have been detected (Goh et  al., 
2019); such rhythms are termed ultradian rhythms. 
Ultradian frequencies of many physiological pro-
cesses have been detected in most living systems, 
from single cells (Kippert and Hunt, 2000) to more 
complex organisms. However, their biological 
mechanism, origin and functional significance are 
yet to be understood. It is also unknown whether 
there is a universal ultradian mechanism, or if there 
are multiple.

Ultradian rhythms exist in the presence (Dowse 
et al., 2010) and absence (Gerkema et al., 1990) of the 
circadian cycle, which highlights their importance. 
Sufficient evidence has been provided that ultradian 
rhythms are independent of the LEO in the SCN, sug-
gesting a separate mechanism and origin (Gerkema 
et al., 1990; Stephenson et al., 2012; Waite et al., 2012). 
Ultradian rhythms do not correspond to any known 
geophysical cycles. Early work by Bash (1939) showed 
that an ultradian hunger drive persists in the absence 
of neural impulses from the stomach; suggesting this 
internal clock continues ticking regardless of the state 
of the system. Ultradian rhythms in mammals have 
been hypothesized to be of cellular origin, with a net-
work in place to synchronize and coordinate the 
rhythms (Wu et al., 2018).

The purpose of this article is to investigate the 
behavioral rhythms that remain in a biological sys-
tem after the canonical circadian timekeeping mecha-
nism is disabled and in the absence of external stimuli. 
Biological systems cannot be modeled easily, and 
through approximations, the most exciting character-
istics are lost. Oscillators within biological systems 
may have time-varying frequencies, phases, ampli-
tudes and interactions. Therefore, novel numerical 
methods must be applied to decipher their complex 
dynamics. The time series obtained by monitoring 
behavior over time have been analyzed using unique 
set of methods that enable multioscillatory dynamics 
to be time-resolved (Clemson and Stefanovska, 2014; 
Clemson et al., 2016), available as the MatLab/Python 
toolbox MODA (Newman et  al., 2018). The algo-
rithms utilize the phases and amplitudes from the 
signals, rather than only amplitudes which are more 
prone to noise and artifacts, and do not assume that 
phases/frequencies are constant. The data under 
analysis are particularly long for this line of research 
(272  days) and were sampled frequently (every 
1 min), suitable to observe patterns that emerge over 
time and rhythms that repeat on scales from days to 
minutes.

Rhythms do not have strict frequencies, but vary 
around certain values; therefore, it is of utmost impor-
tance to investigate their time-variable dynamical 
properties which are often ignored. We first deter-
mine the oscillatory components and their depen-
dence on time using the wavelet transform 
(Daubechies, 1992; Kaiser, 1994; Iatsenko et al., 2015). 
Then, we investigated whether any of the oscillatory 
components exist in harmonic relationships 
(Sheppard et  al., 2011) to determine the number of 
basic oscillators within the system in a given time-
frame. The instantaneous frequencies of the oscilla-
tory components are then extracted using ridge curve 
extraction (Delprat et al., 1992; Carmona et al., 1997, 
1999; Iatsenko et  al., 2016) before determining their 
interactions and couplings (Jensen and Colgin, 2007; 
Stankovski et  al., 2019) using dynamical Bayesian 
inference (DBI) (Smelyanskiy et al., 2005; Stankovski 
et al., 2012, 2014). Wavelet phase coherence (Le Van 
Quyen et al., 2001; Lachaux et al., 2002; Bandrivskyy 
et al., 2004; Grinsted et al., 2004; Sheppard et al., 2012) 
is used to investigate whether the system is fully 
autonomous or whether some of the observed oscilla-
tions are responsive to some external perturbation. 
An origin for the observed oscillations is suggested 
based on the results obtained with such analyses, as 
well as using current understanding from existing 
studies. The overarching aim is to understand which 
rhythms remain after the dominant canonical circa-
dian system is disabled.

Materials and Methods

Biological System

To determine whether a timekeeping mechanism 
other than the circadian rhythm exists, the circadian 
system must be disabled in the organism under inves-
tigation. When investigating rodents, either SCN-
lesioned or knockout mice are used. Knockout mice 
are genetically modified mice, where the function of a 
gene has been inactivated or “knocked out”. In this 
case, it is the circadian clock genes that must be 
knocked out, such as the Period genes (Per1, Per2, and 
Per3). Knocking out clock genes disrupts the clock 
mechanism generating the circadian rhythm.

Single knockout Per1 − −/ , Per2 − −/ , and Per3 − −/  mice 
(in congenic with 129/Sv genetic background pro-
vided by David Weaver, University of Massachusetts 
Medical School, Worcester, MA, USA) (Shearman 
et  al., 2000; Bae et  al., 2001) were backcrossed with 
C57BL/6J mice (Jackson Laboratory # 000664) for 15 
generations. The Per mutant mice were then crossed 
until Per1 + −/ ; Per2 − −/ ; Per3 − −/  mice were generated. 
The Per1 + −/ ; Per2 − −/ ; Per3 − −/  mice were maintained 
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by intercross at Vanderbilt University (Pendergast 
et al., 2009, 2010) and then UT Southwestern Medical 
Center (Flores et  al., 2016). The Nr1d1–luciferase 
reporter mouse line, in which the Nrd1d1 (also known 
as Rev–erbα ) promoter drives the expression of lucifer-
ase, was generated in a C57BL/6NCrL background 
(Charles River # 027). 3.8 kb mNrd1d1 promoter was 
cloned into Mlu I/Nco I site of the pGL3 BASIC firefly 
luciferase reporter vector (Promega, Madison, WI, 
USA). Transgenic mice were generated at the 
Southwestern Transgenic Technology core using a 7.6 
kb mNrd1d1-luc reporter construct linearized by Dra III 
and Ase I. Transgenic mice were identified by using 
PCR to detect a 195 bp fragment from tail DNA (for-
ward primer, 5’– accctccccttgtgttctct –3’; reverse primer, 
5’– tccacctcgatatgtgcatc –3’). Among the nine founders 
that had luciferase activity, we established two Nrd1d1-
luc transgenic lines. Line # 60 was crossed with 
C57BL/6J mice obtained from the UT Southwestern 
Wakeland Mouse Breeding core for 1 generation. 
Per1 + −/ ; Per2 − −/ ; Per3 − −/  mice (F7) were crossed with 
hemizygous Nr1d1-luciferase (N1) mice. The offspring 
were intercrossed for 2–4 generations to generate exper-
imental mice. Those mice were generated for the project 
identifying putative locations of the methamphetamine-
sensitive circadian oscillator; and the luciferase reporter 
was not used in the current study.

All mice were bred and group-housed in a 12L:12D 
cycle. Five Per1 − −/ ; Per2 − −/ ; Per3 − −/  mice (one 
female) with hemizygous Nr1d1-luciferase transgene, 
aged 4-5  months old were used for this study. 
Circadian behavior recordings were conducted in a 
light-tight ventilated box (Phenome Technologies, 
Skokie, IL, USA). The mice were singly housed in 
plastic cages (length × width × height: 29.5 × 11.5 × 
12.0  cm) with running wheels (diameter: 11  cm) in 
constant darkness with ad libitum access to regular 
chow (2018 Teklad Global 18% Protein Rodent Diet; 
Harlan, Madison, WI, USA) and water throughout 
behavior recordings for 272 days. Wheel revolutions 
were continuously recorded every minute  
(ClockLab system ver. 3.604; Actimetrics, Wilmette, 
IL, USA). Temperature and relative humidity inside 
of the light-tight box were recorded every 5  min 
(22.4 0.4± °C, min = 21.3C, max = 24.6C; 44.5 7.1%± ,  
min = 15.2%, max= 60%) by Chamber Controller 
software (ver. 4.104; Actimetrics). Their dynamical 
characteristics are shown in the Supplementary 
Material. Cages and water bottles were changed in 
the dark by a researcher wearing an infrared viewer 
(FIND-R-SCOPE Infrared Viewer; FJW Optical 
Systems, Inc. Palatine, IL, USA) without exposing 
mice to visible light. All mice were in the same light-
tight box and treated the same way. Times when cage 
changes and visual inspections were conducted were 
recorded. All animal experiments were conducted in 

accordance with the guidelines of the Institutional 
Animal Care and Use Committee at UT Southwestern 
Medical Center (protocol # 2016-101376). Male and 
female actogram examples are shown in Figure 1.

Due to a micro-switch problem, there are missing 
data for mouse 2 for  60 h between days 113 and 118 
(Figure 1, left). In addition, for a small number of data 
points ( 0.09% ), due to rebooting the PC or a ClockLab 
software problem, the PC recorded no value; this 
occurred at the same time for all mice. The most pro-
longed period this occurred for was 2  h, which over 
272  days can be considered as negligible. All missing 
data points were assigned a value of 0 , so the time 
series could later be used as an input in the analyses 
that all require equidistantly spaced data with a 
numerical value. Due to the very low percentage of 
missing data points, no effect on the overall results is 
expected.

Preprocessing

Before performing analysis on the biological sys-
tem, the signal must be preprocessed (Iatsenko et al., 
2015; Newman et  al., 2018). The signal is first 
detrended, which includes removing nonoscillatory 
trends from the original signal by subtracting a best-
fit cubic polynomial. Nonoscillatory trends are rep-
resented as low-frequency oscillations, and 
detrending removes the effects of their possible 
interference with low-frequency oscillatory compo-
nents of interest. The frequencies of interest are then 
determined, and the time series is filtered of fre-
quencies outside the frequency interval of interest, 
by nullifying their amplitudes. The preprocessing, 
as well as all time series analysis methods explained 
below, were applied to the original data sampled at 
intervals of 1 min.

Time-Frequency Analysis

For the nonautonomous system under investiga-
tion, representation in the frequency domain is insuf-
ficient in obtaining all the information contained 
within the signals. Traditionally, time-dependence is 
treated as noise and frequencies are time-averaged. 
In this study, the time series are transformed to the 
time-frequency domain via the wavelet transform, to 
extract the oscillatory components over time.

The wavelet of choice is the lognormal wavelet, 
which has better resolution than the well-known 
Morlet wavelet (Iatsenko et al., 2015), as the ampli-
tude and power are symmetric around the peak. The 
wavelet slides over the signal, and the section of the 
signal overlapping with the wavelet is transformed 
to the frequency domain. The scale of the wavelet is 
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adjusted depending on the frequency to be obtained, 
to optimize the frequency resolution and time-local-
ization trade-off. The wavelet scale is inversely pro-
portional to time localization and directly proportional 
to frequency resolution. Therefore, smaller scales are 
used to observe higher frequencies and larger scales 
are used to observe lower frequencies. The frequency 
resolution parameter determines the trade-off 
between time localization and frequency resolution; 
the higher the value, the higher the frequency resolu-
tion and the lower the time resolution. In this study, 
the frequency resolution parameter value that pro-
vided an optimal trade-off was 1.8. Wavelet power 
plots are produced by squaring the absolute value of 
the wavelet amplitudes, then time-averaged.

Initial time-frequency analysis was performed 
over all possible frequencies. The time between sam-
ple points is 1 min, and the highest frequency that 
can be resolved is twice this time, 2  min (Nyquist 
theorem). A lower frequency limit of  28 days was 
determined by the length of the recording (272 days) 
and the frequency resolution (1.8). The lower fre-
quency limit was refined by identifying the lowest 
significant frequency that was detected across all 
mice, so frequencies below 0.00055 1min−  ( 30.3 h) 
are filtered out.

The cone of influence is the area in the time- 
frequency domain that corresponds to half of the 
window length used for each of the estimated fre-
quencies—both at the beginning and the end of a 

recorded signal. Because of the logarithmic frequency 
resolution, it has an exponential shape. To overcome 
this, when ridge extraction is performed, zero-pad-
ding is added to the start and the end of the signal, so 
that ridges are extracted for the entire time of record-
ing (Iatsenko et al., 2016).

Ridge Curve Extraction

Ridge curve extraction is a method to extract the 
trace of a time-varying frequency from a time-fre-
quency representation of a signal (Delprat et al., 1992; 
Carmona et al., 1997, 1999; Iatsenko et al., 2016). The 
time-varying frequencies are seen as amplitude peaks 
in the time-frequency representation and are referred 
to as ridge curves. Oscillatory components with their 
corresponding frequencies are identified visually by 
using both the time-frequency representation and the 
time-averaged power plot (see Figures 2a and 2b).

For ridge extraction, a frequency band must be 
defined which includes the entirety of the oscillatory 
component. The frequency band should include the 
whole width of the oscillatory component, including the 
peak and the interval in which the frequency variability 
manifests. Caution was necessary when extracting the 
oscillatory components, as some are very close together 
and partially adjoined. For accurate results, only one 
oscillatory component should exist in the frequency 
band. The frequency bands for each oscillatory compo-
nent were chosen based on the time-frequency represen-
tation and the average power spectrum. Minima in the 
average power spectrum were used as starting boundar-
ies, which then based on the time-frequency representa-
tion were corrected to avoid overlapping of oscillatory 
components. For each mouse, the frequency bands of 
different oscillatory components did not overlap. Figure 
3 gives an example of the chosen boundaries for ridge 
extraction, and the ridges for each oscillation in each 
mouse are shown in the Supplementary Material. Ridge 
curves are given by the time sequence of maximum 
amplitude peaks in time-frequency space within the fre-
quency interval specified.

Violin plots (Hoffmann, 2015) were created for each 
oscillation using the frequency data extracted from 
ridge analysis for all mice, to visualize the spread of 
the data.

Harmonic Finder

The oscillatory components extracted from the 
time-frequency representation may be in harmonic 
relationships: the instantaneous frequencies of an 
oscillation are multiples of the instantaneous fre-
quencies of another at all times. Harmonics arise 
due to a single oscillator having a nonsinusoidal 
wave shape, which then in the frequency domain is 

Figure 1.  Wheel-running activity of Per1 −− −−/ ; Per2 −− −−/ ; Per3 −− −−/  
mice. Wheel revolutions were collected in 1-min bins and were 
binned with 10 min and plotted with ClockLab (percentile plot). 
An example of each sex is shown. There are missing data for 
mouse 2 for 60 h between days 113 and 118 due to a micro-
switch problem.
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represented with additional oscillatory compo-
nents, at multiple frequencies of the basic frequency. 
Investigating harmonic relationships is essential to 
determine the number of basic oscillators, or modes, 
that characterize the biological system. By estab-
lishing the distinct oscillators, the fundamental ori-
gin of their rhythms can then be investigated.

A preliminary, visual harmonic test can be per-
formed by comparing the extracted ridges; if the fre-
quencies are in a harmonic relation, their ridges 
should have similar shapes. Then, the possibility of a 
harmonic relationship may be investigated by deter-
mining whether the oscillatory components consis-
tently exist in a rational relationship over time. 

Figure 2.  (a) The time-frequency representation (obtained via the wavelet transform) of behavioral data from mouse 2, where the 
“Wavelet power” is the squared amplitude of the wavelet, and (b) the corresponding time-averaged power spectrum. The y-axis is pre-
sented on a logarithmic scale. Four oscillatory components emerge. The wavelet power and the average power have units (wheel revolu-
tions/min)2. TFR = time-frequency representation.

Figure 3.  The method for extracting ridges from a time-frequency representation, and the extracted ridges. The wavelet transform is 
performed on the behavioral data of mouse 2. For ridge extraction, the chosen boundaries must contain the entirety of, and only, the 
oscillatory component under investigation, and are shown by the dashed lines and two-way arrows. Both the time-frequency representa-
tion and the average power spectrum are used to determine the correct boundaries. The wavelet power and the average power have units 
(wheel revolutions/min)2. TFR = time-frequency representation.
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However, a more reliable method has been developed 
by Sheppard et al. (2011), specially designed to find a 
harmonic relationship between oscillatory compo-
nents with time-varying frequencies and amplitudes, 
using wavelets.

The phase time series of each frequency compo-
nent are extracted using the wavelet transform, and 
are compared pairwise. The algorithm calculates the 
mutual information between the pair to determine 
whether a harmonic relationship exists. The fre-
quency interval of interest is from 6 10  4 1× − −min  (cor-
responding to a period of  27.8 h) to 0.5 1min−  (a 
period of 2 min), which includes the entirety of the 
oscillatory components of interest, determined after 
time-frequency analysis.

For the wavelet transform, a time resolution of 
360 min  is used (which is the length of the wavelet), 
as it gave the optimal trade-off between time and fre-
quency resolution. The method of surrogates is used 
to test the statistical significance. For computational 
reasons, a minimum of 19  amplitude-adjusted 
Fourier transform (AAFT) surrogates were used, 
which has been demonstrated to be the acceptable 
minimum (Lancaster et  al., 2018). The harmonic 
results are shown relative to the mean and standard 
deviation of the surrogate distribution.

Dynamical Bayesian Inference

Dynamical Bayesian Inference (DBI) (Smelyanskiy 
et al., 2005; Stankovski et al., 2012, 2014) is a method to 
determine whether a pair of oscillators within a sys-
tem are coupled, and if so, how they are coupled. 
Phase coupling is determined by how an oscillator 
influences the phase of another oscillator. Within a bio-
logical system, the frequencies and amplitudes of 
oscillators may be time-varying; therefore, their inter-
actions may also evolve in time. Within a time window 
that is slid along a signal, DBI determines the time evo-
lution of couplings between oscillators. Therefore, it is 
chosen over techniques that determine time-indepen-
dent coupling (Rosenblum and Pikovsky, 2001; Paluš 
and Stefanovska, 2003) to understand the true under-
lying nature of the system. DBI is based on Bayes’ the-
orem: prior knowledge of the evolution of the system 
is used to help determine its current condition. It uses 
a customized information propagation procedure 
within the Bayesian framework, which allows for 
time-evolving dynamics to be inferred (Smelyanskiy 
et al., 2005; Stankovski et al., 2012, 2017).

The interactions between all combinations of 
phases of pairs of oscillators for the same animal are 
investigated. The instantaneous frequencies of an 
individual oscillatory component are obtained from 
the time-frequency representation using ridge extrac-
tion. For accurate results, during ridge extraction, the 

oscillatory components must occupy disjoint fre-
quency bands to exclude interference.

Time-independent coupling strength approxima-
tions are computed within specified time windows. 
For each time window, the strength of the coupling is 
calculated by determining whether the phase of one 
oscillator is influenced by the other and vice versa. The 
window size must be at least 10  cycles of the lowest 
frequency across the two frequency bands being inves-
tigated for coupling. For consistency, this lowest fre-
quency is determined across all the mice. Therefore, 
the width of the time windows are chosen to be 15 880,  
min, and time windows overlap by 75% .

The Fourier order, K > 0 , determines the number 
of degrees of freedom, (2 1)2K + , for each coupling 
when determining the interaction between two oscil-
lators (Newman et  al., 2018). A Fourier order of 2  
was empirically determined, which gives a sufficient 
number of degrees of freedom ( 25  for each coupling) 
without introducing too many which causes overfit-
ting leading to highly inaccurate predictions.

After obtaining results for a time window, the 
amount that these results affect the calculation for the 
subsequent window is determined by the propaga-
tion constant p ≥ 0 . The larger the value of p , the less 
the results are incorporated into the algorithm for the 
next window. A value of 0.2  was used; however, after 
investigation, using different values did not change 
the end coupling strength results.

Surrogates are used to test the statistical signifi-
cance of the coupling between two oscillators. As 
there is for sure no coupling between the surrogates 
and the oscillators under investigation, the method of 
surrogates gives a relative value of the coupling 
strength. For computational reasons, a minimum of 
19  cyclic phase permutation (CPP) surrogates are 
used, which has been demonstrated to be the accept-
able minimum (Lancaster et al., 2018), and the test is 
performed with a significance level of α = 0.05 .

Wavelet Phase Coherence

Wavelet phase coherence (Le Van Quyen et  al., 
2001; Lachaux et al., 2002; Bandrivskyy et al., 2004; 
Grinsted et al., 2004; Sheppard et al., 2012) investi-
gates the relationship between phases from two 
time series over time, at each frequency of interest. 
If the coherence is high, then the two sources are 
either mutually coupled, or they have a common 
external driver that influences their dynamics. 
Phase coherence is investigated for all the possible 
pairs of signals.

The wavelet transform is performed for the pair 
of signals under investigation. During the wavelet 
transform of the two signals, instantaneous phases 
are assigned to the oscillatory processes at 
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frequency f over time. The instantaneous phase 
coherence is a measure of how close the instanta-
neous phase difference is to being constant between 
the oscillatory processes at frequency f with an out-
put between 0 (no coherence) and 1 (perfect coher-
ence). The average phase coherence at frequency f  
is then calculated. For high values of phase coher-
ence, an external driver with frequency f  may be 
influencing both signals, or they have mutually 
coupled oscillations.

The higher and lower frequency limits were 
refined by identifying the highest and lowest signifi-
cant frequencies that were detected across all mice, 
and so wavelet phase coherence is investigated for 
frequencies between 0.007 min −1  ( 2.4 h) and 
0.00004 min −1  ( 17.4 days).

Phase coherence values are often nonzero for oscil-
lations that are completely unrelated; therefore, the 
significance of the results must be tested. A surrogate-
based significance test is used to determine the sig-
nificance of the results using 30  AAFT surrogates. 
The test is performed with a significance level 
α = 1 30 1/( )+ .

The median absolute coherence was then calcu-
lated to see what is common among all the mice. 
For each mouse pair, the absolute coherence was 
calculated by subtracting the surrogate data. Then, 
the median was calculated at each frequency, along 
with the 90th percentile to show the spread of the 
data.

Surrogates

Surrogates are signals used to determine whether 
a system has a certain property; they behave like the 
system but do not possess the property under inves-
tigation (Lancaster et  al., 2018). The surrogates and 
the original data are treated in the same way, so any 
process applied to the original data is also applied to 
the surrogates.

For this study, surrogates are used to test the sig-
nificance of results obtained during DBI, the analysis 
for the possible existence of high harmonic compo-
nents using the harmonic finder algorithm, and in the 
analysis of wavelet phase coherence. The surrogates 
are created from the signals. DBI uses CPP surrogates. 
The signals used in DBI are phase signals, that is, they 
cycle from 0 to 2π over time. The signal is divided 
into complete cycles, which are then randomly per-
muted. The cycles at the beginning and end, which 
are not complete, stay fixed. In the analysis for the 
possible existence of high harmonics as well as wave-
let phase coherence analysis, AAFT surrogates are 
used. A Gaussian noise signal G  is generated, and its 
values and the values of the original signal S  are 

ranked from smallest to largest. G  is then reordered 
to match the rank order of S , to create signal X. X  is 
Fourier transformed, creating XFT , and the values of 
XFT  are ranked from smallest to largest. The original 
signal S  is then reordered to match the rank order of 
XFT  to give the surrogates.

The appropriate analysis technique is applied to 
the original data and the surrogate set. The result 
given by the original system is compared with the 
distribution of the results given by the surrogates. If 
the comparison shows a significant difference, one 
can propose that the original data, and hence the sys-
tem they represent, possess a particular property 
with a certain confidence level. Otherwise, the sys-
tem cannot be considered to have such a property, or 
the test is too inadequate to prove this.

Results

Oscillatory Components

By performing the wavelet transform on the sig-
nals, it was discovered that Per1/2/3 triple knockout 
mice in constant darkness had wheel-running 
rhythms that were less than 24 h. A similar time-fre-
quency representation was obtained for all mice, and 
an example is shown in Figure 2a (time-frequency 
representations for all five mice data are shown in the 
Supplementary Material, Figures S1-S3). In the aver-
age power plots, with an example shown in Figure 
2b, two narrow peaks reside in the longer period end 
(oscillation 1 and oscillation 2; see Tables 1 and 2). 
Oscillation 2 always has more extensive power than 
oscillation 1. A less distinct peak with a shorter period 
is located near oscillation 2 (oscillation 3; see Tables 1 
and 2). A broader peak exists in the shorter period 
end (oscillation 4; see Tables 1 and 2).

Violin plots for periods of each oscillation are 
shown in Figure 4 to visualize the spread of the data. 
The frequency peaks of the oscillatory components 
are given in Tables 1 and 2. The values in Table 1 were 
found by determining the frequency value at which 
peaks occur at in the average power spectra. The val-
ues in Table 2 were found by determining the average 
frequency value of the ridges, which were extracted 
from the time-frequency representation by ridge 
extraction. The mean period of oscillation 4 listed in 
Table 2 may be slightly lower than actuality because 
the frequency resolution parameter of 1.8 for the 
wavelet transform, based on which the ridges were 
detected, is least optimal for the upper end of the fre-
quency interval investigated. This interval spans the 
range from 0.00055 min−1 (30.3 h) to 0.5 min−1 (2 min). 
It is difficult to preserve the same optimal 
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Table 1.  The oscillatory components within the murine behavioral data.

Oscillation Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

1 15.5 h 20.4 h 15.9 h 17.9 h 16.5 h
2 8.3 h 7.1 h 6.0 h 8.9 h 8.5 h
3 4.8 h 3.8 h 3.5 h 4.7 h 3.3 h
4 22.2 min 19.3 min 19.8 min 16.0 min 17.0 min

The oscillatory components were found by determining the frequency value at which peaks occur at in the average power spectra, which 
was obtained after performing the wavelet transform on murine behavioral data.

Table 2.  The oscillatory components within the murine behavioral data.

Oscillation Mouse 1 Mouse 2 Mouse 3 Mouse 4 Mouse 5

1 14.9 ± 2.1 h 19.9 ± 2.0 h 15.8 ± 2.2 h 17.7 ± 2.3 h 16.7 ± 1.8 h
2 8.4 ± 1.0 h 7.3 ± 0.8 h 5.6 ± 0.8 h 8.9 ± 1.1 h 8.4 ± 1.2 h
3 4.2 ± 0.4 h 4.0 ± 0.5 h 3.1 ± 0.4 h 4.7 ± 0.5 h 3.9 ± 0.5 h
4 24.5 ± 4.2 min 25.3 ± 4.1 min 25.4 ± 3.9 min 25.2 ± 4.2 min 24.6 ± 3.9 min

The oscillatory components were found by determining the mean frequency value of the ridges along with the standard deviation, which 
were extracted from the time-frequency representation by ridge extraction.

Figure 4.  Violin plots for the periods of oscillation 1, 2, 3, and 4 for all mice (1, 2, 3, 4, and 5) obtained by the frequency ridges from 
ridge extraction.



Morris et al. /Residual Rhythms without Canonical Circadian Clocks  319

compromise between time localization and frequency 
resolution over such a large interval, due to the 
Heisenberg uncertainty principle. Yet, for the sake of 
comparison, a single resolution frequency was used, 
rather than dividing the frequency interval into two 
parts and calculating the frequency content with two 
different resolution frequencies.

All the oscillatory components persist throughout 
data measurement, although the amplitudes of oscil-
lations 1 and 2 are intermittently high and low, as 
can be seen in Figure 5. The amplitude of oscillation 
2 decreases when the amplitude of oscillation 1 
increases, and vice versa. A significant peak for oscil-
lation 1 and oscillation 2 can be detected at all times, 

since the ridges can be extracted at all times. To inves-
tigate whether the high-amplitude appearance of 
oscillation 1 is common between all the mice, the start 
and end time for each appearance were noted. Figure 
6 depicts the appearance of oscillation 1 for mouse 1, 
2, 3, 4, and 5 (top to bottom), and the red lines are 
when the cages were changed. As can be seen, the 
appearance of oscillation 1 does not occur at the same 
time for all the mice, and does not occur as a result of 
changing the cages using an infrared light. Increasing 
the frequency of cage changes did not affect the 
appearance of oscillation 1. Furthermore, the mean 
frequency of oscillation 1 is not the same for all the 
mice. Therefore, it is unlikely there is a common 

Figure 5. A  smaller section of the time-frequency representation for mouse 2. Two oscillatory components appear intermittently. The 
blue lines show the boundaries for oscillation 1, and the red lines show the boundaries for oscillation 2. Oscillatory components between 
the blue and red lines, or by the bottom red line, are harmonics of the longer period oscillation. The vertical black dashed line marks 
where oscillation 1 decreases in amplitude and the other increases. The y-axis is presented on a logarithmic scale, and the “Wavelet 
power” is the squared amplitude of the wavelet and has units (wheel revolutions/min)2.

Figure 6.  The appearance of oscillation 1 for mouse 1, 2, 3, 4, and 5. The periods when oscillation 1 is at high amplitude are shown by 
the blue blocks, and the red lines show cage changes.
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external force driving the intermittent amplitude of 
oscillation 1. The time between the onsets of oscilla-
tion 1 at high amplitude appears rhythmic, and the 
mean times are given in Table 3 for all mice. Table 3 
also gives the mean duration of high-amplitude oscil-
lation 1 and high-amplitude oscillation 2.

Harmonics

By performing the harmonic finder algorithm for 
each mouse, the oscillatory components within har-
monic relationships are made evident. The fre-
quency interval investigated includes the entirety of 
the oscillatory components of interest: oscillation 1, 
2, 3, and 4.

An example is shown in Figure 7 (harmonic results 
for the other mice data are shown in Suppl. Figs. 
S9-S12). The frequency boundaries used during ridge 
extraction for each oscillation detected in the time-
frequency representation (oscillation 1, 2, 3, and 4) 
form the outlines of the dashed boxes in the figure. 
All the different combinations of oscillations are 
investigated, and the boxes are plotted over the har-
monic results. For oscillation combinations which 
overlap with higher valued areas, the two oscillations 
are more likely in a harmonic relationship. 

For all mice, oscillation 1 and oscillation 3 do not 
appear to exist in a harmonic relationship. For 
mouse 1, 2, and 3, there is statistically significant 
evidence that oscillation 1 and oscillation 2 do not 
exist in a harmonic relationship; however, for mouse 
4 and 5, oscillation 1 and oscillation 2 appear to 
exist in a harmonic relationship. For mouse 1, 2, 3, 
and 4, oscillation 2 and oscillation 3 exist in a har-
monic relationship; however, for mouse 5, there is 
perhaps a faint signature of a harmonic relationship 
but it is not clear. Oscillation 1 and oscillation 4 do 
not appear to exist in a harmonic relationship, other 
than a possible faint signature in mouse 2 and 4. 
Oscillation 3 and 4 also do not appear to exist in a 
harmonic relationship, other than a possible faint 
signature in mouse 2 and 3. In all mice, oscillation 2 
and oscillation 4 overlap with an area signifying a 
harmonic relationship; however, this area stretches 

to higher frequencies than the frequency interval 
surrounding the peak of oscillation 4.

A possible reason for oscillation 1 and oscillation 2 
sometimes appearing as if they are in a harmonic 
relationship is due to the appearance of a harmonic of 
oscillation 1 just below oscillation 2. In Figure 7, a 
harmonic relationship exists below the oscillation 1 
and oscillation 2 combination, corresponding to oscil-
lation 1 and its harmonic. For mouse 4 and 5, oscilla-
tion 2 has a mean frequency similar to the harmonic 
of oscillation 1; therefore, it appears that oscillation 1 
and oscillation 2 are in a harmonic relationship.

A harmonic relationship certainly exists in the 
region of oscillation 2 and oscillation 4 on the fre-
quency-frequency representation, and the upper-
frequency bound when extracting oscillation 4 may 
not be high enough. Therefore, it is highly probable 
that oscillation 2 and oscillation 4 are in a harmonic 
relationship.

In conclusion, oscillation 1 and oscillation 3 are 
not in a harmonic relationship. Oscillation 2 and 

Table 3.  The mean duration and standard deviation of high-
amplitude oscillation 1, high-amplitude oscillation 2, and the 
time between the onsets of oscillation 1 at high amplitude.

Mouse
Oscillation 1 

Duration (Days)
Oscillation 2 

Duration (Days)
Combined 

(Days)

1 4.1 ± 1.3 19.6 ± 3.6 23.7 ± 4.0
2 4.6 ± 3.3 13.3 ± 1.8 18.1 ± 3.3
3 3.2 ± 0.7 13.8 ± 3.2 17.0 ± 3.3
4 5.3 ± 1.9 10.6 ± 3.9 15.8 ± 3.3
5 4.7 ± 1.2 10.1 ± 4.6 14.7 ± 5.2

Figure 7.  The detected harmonics within the behavioral data of 
mouse 2. The plot is a frequency-frequency representation show-
ing what oscillations are in harmonic relationships. The image is 
symmetric over the diagonal; therefore, only half of the figure is 
considered. The frequency boundaries used during ridge extrac-
tion for each oscillation detected in the time-frequency represen-
tation (oscillation 1, 2, 3, and 4) form the outlines of the dashed 
boxes in the figure. All the different combinations of frequen-
cies are investigated, and the boxes are plotted over the harmonic 
results. The color code shows a dimensionless quantity obtained 
from the actual value, minus the mean of the surrogate distribu-
tion, divided by the standard deviation of the surrogate distri-
bution. Negative values correspond to results with values lower 
than the surrogate mean; therefore, significant results are those 
above 0. For oscillation combinations which overlap with higher 
valued areas, the two frequencies are more likely in a harmonic 
relationship.
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oscillation 3 are highly probable in a harmonic rela-
tionship. Oscillation 1 and oscillation 2 are most 
likely not in a harmonic relationship, especially due 
to the harmonic relationship between oscillation 2 
and oscillation 3, and lack of harmonic relationship 
between oscillation 1 and oscillation 3. Oscillation 1 
and oscillation 4 are most likely not in a harmonic 
relationship, and similarly for oscillation 3 and oscil-
lation 4. Oscillation 2 and oscillation 4 are highly 
probable in a harmonic relationship.

Coupling

For each mouse, DBI was performed for all the pos-
sible combinations of pairs of oscillations (oscillation 
1, 2, 3, and 4) obtained from the time-frequency repre-
sentation by ridge extraction. From DBI, the coupling 
strength between two oscillations is obtained over 
time, for both directions of coupling.

An example is shown in Figure 8 (DBI results for 
the other mice data are shown in Suppl. Figs. S13-
S16). The solid lines denote the results from DBI 
using the pairs of phases, and the dotted lines are 
results obtained from surrogate data. Only values 
above the surrogate levels are considered as signifi-
cant. Table 4 gives the percentage of time the cou-
pling strengths from the phases are above the 
surrogate level, and Table 5 gives the mean coupling 
strength for the significant results. The coupling 
results are similar for all mice. There seems to be 
strong and stable (i.e. persists over time) coupling 
from oscillation 1, oscillation 2, and oscillation 3 to 
oscillation 4. There is some fluctuation around the 
surrogate line, perhaps due to oscillation 1 and oscil-
lation 2 having time-varying phases, frequencies, 
and amplitudes. In the reverse direction, the cou-
pling is less stable and weaker.

The coupling between oscillation 1, oscillation 2, 
and oscillation 3 is weak, with the coupling stronger 
in the direction of oscillation 1 to oscillation 2 and 
oscillation 3 and stronger from oscillation 2 to oscilla-
tion 3, and is only present for a small percentage of 
time. A summary is given in Figure 9. An explanation 
for the intermittency of observed coupling is that it is 
a characteristic of nonautonomous systems (Lucas 
et al., 2018).

External Driver

By performing wavelet phase coherence for all 
possible pairs of mice, it is possible to determine 
whether there exists an external driver. This driver 
will then be common for all mice and will manifest 
as coherent oscillations at the same frequency for 
each pair.

Accordingly, the median phase coherence for all 
mice is obtained. Four clusters of frequencies become 
evident, which are shown in Figure 10. The peaks 
within a cluster may be independent, or are perhaps 
due to time variations of a single oscillatory process. 
It can be seen that even after the removal of light and 
knocking out the genes responsible for the 24-h 
rhythm, there is still a common, approximately 24-h 
driver. In addition, peaks at 3.6 days, 1.8 days, and 
21.6 h are observed, which based on simple division 
can be shown to be in a harmonic relationship, point-
ing to 3.6  days being the main external rhythm in 
addition to the 24-h rhythm. Most importantly, Figure 
10 also illustrates that the behavioral rhythms sum-
marized in Tables 1 and 2 are unlikely the result of an 

Table 4.  The percentage of time the coupling results between 
oscillations within murine behavioral data (for mouse [M] 1, 2, 
3, 4, and 5) is above the surrogate threshold, as a heatmap (color 
scale from 0 to 100). For coupling direction 1-4, 2-4, and 3-4, the 
percentage of significant results are much higher than the other 
coupling directions.

Coupling M1 M2 M3 M4 M5

1-2 4.2 12.6 11.6 13.7 7.4
2-1 7.4 7.4 8.4 17.9 8.4
1-3 1.1 3.9 7 0 0.8
3-1 9.5 2.3 2.3 5.4 6.2
1-4 56.8 55.8 38.9 44.2 60
4-1 8.4 6.3 8.4 3.2 8.4
2-3 10.5 10.9 21.7 14 9.3
3-2 4.2 7 10.1 1.6 6.2
2-4 43.2 56.8 60 47.4 61.1
4-2 2.1 3.1 2.3 3.9 0
3-4 32.6 22.5 34.1 31.8 17.1
4-3 4.2 6.2 7 5.4 3.9

Table 5.  The mean coupling strength (×10−−4 ) between 
oscillations within murine behavioral data (for mouse [M] 1, 2, 
3, 4, and 5) when the coupling results are above the surrogate 
threshold, as a heatmap (color scale from 0 to 192). For coupling 
direction 1-4, 2-4, and 3-4, the mean coupling strengths are much 
higher than the other coupling directions. For mouse 4 coupling 
1-3, and mouse 5 coupling 4-2, there were no significant results 
above the surrogate threshold.

Coupling M1 M2 M3 M4 M5

1-2 18 23 28 43 22
2-1 16 15 13 21 12
1-3 22 34 38 22
3-1 12 11 14 9 10
1-4 192 171 146 181 176
4-1 12 9 10 10 10
2-3 23 36 42 29 34
3-2 15 20 26 15 16
2-4 164 176 167 153 169
4-2 11 17 12 29
3-4 158 161 145 178 153
4-3 18 27 32 16 19
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Figure 8.  The coupling strength over time between four oscillations (oscillation 1, 2, 3, and 4), within the behavioral data of mouse 2. 
The solid lines denote the coupling strength results over time, obtained from dynamical Bayesian inference. The dotted lines are the sur-
rogate significance tests. Only results above the surrogate lines are significant. The arrow in the legend denotes the direction of coupling.
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external driver, due to there being no significant 
peaks at the frequencies corresponding to the behav-
ioral frequencies.

With the chosen wavelet transform parameters, the 
minimum frequency is limited at 0.00004min −1  or 
approximately 17  days. Therefore, it is not possible to 
determine whether the intermittency between oscilla-
tor 1 and 2 is due to an external influence through 
wavelet phase coherence, due to the intermittency 
having a frequency around this limit. Although, from 

Figure 6, it is unlikely that the intermittency is due to 
an external driver, as discussed previously.

Discussion

Using 272  days of behavioral data sampled every 
1  min from Per1 / 2 / 3  triple knockout mice kept in 
constant darkness, we have investigated the dynamics 
and interactions of the oscillatory components within 
the data. By applying the wavelet transform for time-
localized frequency components with logarithmic fre-
quency resolution, we observed that the intrinsic 24-h 
circadian rhythm is not visible; however, wavelet phase 
coherence revealed a common 24-h rhythm as an exter-
nal driver, along with a 3.6-day external rhythm, both 
very weak. The wavelet transform did however reveal 
four prominent rhythmic components all less than 24 h, 
with periods of  17,  8, and  4 h, and  20 min. By 
implementing the harmonic finder algorithm, which is 
capable of detecting high harmonics in time-varying 
systems, we found that the  8- and  4-h rhythms and 
the  8- and  20-min rhythms were in a harmonic 
relationship. Due to the absence of external timing cues 
in our experimental setup, no known geophysical 
cycles of these periods, and a lack of phase coherence 
between mice in the ultradian range (Figure 10), we 
conclude that these ultradian rhythms are intrinsically 
driven. Coupling analysis of the ridge-extracted instan-
taneous frequencies revealed strong and frequent 
phase coupling from the slower oscillations ( 17,  8, 
and  4 h) to the faster oscillation ( 20  min), and 
weak and less frequent phase coupling in the reverse 
direction and between the slower oscillations.

Oscillation 1 and oscillation 2 have intermittent 
amplitude. When the amplitude of oscillation 1 
increases, the amplitude of oscillation 2 decreases 
(and vice versa), and the cause for this is unknown. 
Bae and Weaver (2007) reported that a 3-h light pulse 
transiently induced a  16-h behavioral rhythm in 
Per1/2/3 triple knockout mice. Therefore, it is possible 
that a residual weak circadian oscillator exists in 
Per1/2/3 triple knockout mice and this (oscillation 1) 
is strengthened by an external force, for example, 
cage change, but the appearance of high-amplitude 
oscillation 1 was independent from the time the cages 
were changed (Figure 6). Moreover, oscillation 1 does 
not occur at the same time for all the mice, and the 
periods of the appearance of oscillation 1 varied 
between the mice (Table 3) and varied over time in 
each mouse. Oscillation 1 has a period similar to the 
extra-SCN circadian pacemakers in Per1/2/3 triple 
knockout mice (Flores et al., 2016; Pendergast et al., 
2012); however, no procedure was performed to 
reveal behavioral rhythms driven by these oscillators. 

Figure 10.  The median absolute coherence. After obtaining the 
wavelet phase coherence results for each pair of mice, the aver-
age phase coherence is calculated. The surrogate values were 
subtracted, and the median (red line) and 90th percentile (shaded 
red area) were determined across all the pairs of mice. Signifi-
cant peaks correspond to an external driver synchronizing all the 
mice. Four frequency clusters arise, with peaks within a cluster 
possibly due to time variation.

Figure 9.  The coupling between the oscillations (1, 2, 3, and 4) 
within a murine biological system. There is strong and stable 
coupling from oscillation 1, oscillation 2, and oscillation 3 to 
oscillation 4, denoted by the solid green line, and weaker and 
less stable coupling from oscillation 4 to oscillation 1, oscillation 
2, and oscillation 3, denoted by the dashed orange line. There is 
weak and less stable coupling between oscillation 1, oscillation 
2, and oscillation 3, denoted by the dashed orange line, and the 
coupling is stronger from oscillation 1 to oscillation 2 and oscil-
lation 3, and stronger from oscillation 2 to oscillation 3, denoted 
by the larger arrow head in these directions.
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It is possible that oscillation 1 is strengthened by an 
internal, infradian mechanism; however, the purpose 
of such a biological oscillator is currently unclear.

The existence of an infradian oscillator and its con-
nection with oscillation 1 and oscillation 2 remains to 
be investigated, and it is especially important to gain a 
good understanding of what internal or external events 
could activate oscillation 1 at high amplitude. Recently, 
Putker et al. (2021) have observed rhythms of a similar 
period to oscillation 1 in circadian gene Cry1/2 double 
knockout mice, which normally express arrhythmicity 
in constant darkness. A  16-h behavioral rhythm 
appeared when the cryptochrome-deficient mice were 
exposed to LL and then released to DD.

Robust ultradian rhythms of gene expression have 
been found by van der Veen and Gerkema (2016) in 
mouse liver tissue in vivo and NIH 3T3 cells in vitro 
from a 48-h dataset of hourly transcriptome measure-
ments (Hughes et  al., 2009; Barrett et  al., 2013). 
Frequency peaks appear at 8  and 12  h; however, the 
prominent peak in vivo is at 12  h and the prominent 
peak in vitro is at 8  h. Although 8  and 12  h are har-
monics of the circadian rhythm, the detection method 
disregards harmonics. Therefore, the gene expres-
sions show true ultradian rhythms, disjoint from the 
circadian rhythm. From Tables 1 and 2, oscillation 2 is 
approximately 8  h and may correspond to the in vitro 
results. Perhaps the difference between in vitro and in 
vivo is due to absence/presence of external informa-
tion, with the presence of time givers, for example, the 
light-dark cycle and scheduled feeding times, elon-
gating the period. The genes investigated show con-
siderable variation in their expression patterns, with 
peaks occurring at different times. A significant 
amount of genes displaying ultradian expression pat-
terns are associated with metabolic processes and the 
cell cycle. This could perhaps indicate a robust meta-
bolic cycle, the like of which has been found in yeast 
(Tu et al., 2005). Rhythms of expression of yeast genes 
are found to have periods of the same length,  4-5 h. 
However, different genes follow different patterns of 
expression, with peaks occurring at different times. 
Therefore, the metabolic cycle is a highly organized 
expression cycle obtained through mutual coordina-
tion, leading to oxidative and reductive phases. The 
purpose of a metabolic cycle is to coordinate and tem-
porally compartmentalize incompatible cellular pro-
cesses which are essential to produce the energy 
needed for the working of the cell. Maintaining this 
underlying timekeeping mechanism is vital, in the 
absence or presence of external stimuli. For example, 
essential processes involved in the cell cycle are con-
fined to the reductive phases to minimize oxidative 
damage to DNA. The metabolic cycle allows all neces-
sary processes of a cell to take place at a time which 
optimizes the results. Hence, it is plausible to propose 

that oscillation 2 corresponds to a metabolic cycle. 
Interestingly, genes oscillating with ultradian frequen-
cies appear to be those which emerged early in evolu-
tion (Castellana et al., 2018).

From our analysis, we see there is strong and sta-
ble coupling from longer rhythms (hours) to shorter 
rhythms (minutes). In mammalian cell biology, tran-
scription occurs on a timescale of approximately 
10 min (Shamir et al., 2016). Therefore, oscillation 4 
may correspond to the vital processes that take place 
in the cell, which are driven by the metabolic cycle. 
Furthermore,  14-min neural activity rhythms were 
found both inside and outside the SCN of the ham-
ster in constant darkness (Yamazaki et al., 1998).

To maintain synchrony between the metabolic 
cycles, there must exist cell-to-cell communication 
and coordination by a primary ultradian oscillator. 
Control by a central oscillator is supported by evi-
dence such as that ultradian patterns of electrical 
activity in the brain are phase advanced compared 
with ultradian processes (Ootsuka et  al., 2009). 
Various anatomical locations which seem to be essen-
tial for the generation, transmission, or coordination 
of ultradian rhythms have been discovered (Gerkema 
et al., 1990; Nakamura et al., 2008; Blum et al., 2014; 
Wu et al., 2018). The anatomical locations have appro-
priate connections for ultradian outputs and cross-
talk with the circadian system (Goh et al., 2019).

To further elucidate the origin and mechanism of 
the ultradian rhythms, neural electrical activity could 
be measured via an EEG alongside collecting behav-
ioral data of Per1/2/3 triple knockout mice kept in 
constant darkness. The dynamics and interactions of 
the oscillatory components that emerge can be inves-
tigated, along with the relationship between neural 
activity and behavior. For such a study, the minimum 
number of days of recording should include 8-10 
cycles of the slowest oscillations under investigation. 
Therefore, investigating oscillation 1 would require at 
least 8-10  days of recording. However, due to the 
intermittent amplitude of oscillation 1 and oscillation 
2, with a cycle of intermittency of around 20 days, a 
minimum recording of 160 days would be required.

By removing external perturbation such as light, 
and allowing the mice to feed, drink, and exercise ad 
libitum, the system may be modeled as approxi-
mately autonomous. However, there exists synchro-
nization in the population, evincing other external 
perturbations. The rhythms that arise in Figure 10 
could possibly be due to the variation of the Earth’s 
magnetic field (Courtillot and Le Mouel, 1988; 
Martynyuk and Temur’yants, 2009), which has a 
24-h variation and 26- to 29-day variation; therefore, 
the third harmonic would lie in the range 3.25 - 3.63  
days. How these rhythms affect the behavior of the 
mice is a further question, and whether they are 
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causing the intermittency of oscillation 1 and oscilla-
tion 2. Subjecting the mice to varying magnetic field 
strengths and recording their behavior could further 
elucidate this hypothesis. The mice were physically 
separated; however, a coupling mechanism could 
exist through vocalizations and squeaky wheels 
resulting in social synchrony. The 3.6-days rhythm 
could be due to olfactory cues, for example, pher-
mones which cue the estrous stage of female mice 
with a 4-day cycle, or is potentially a harmonic of 
the 7-day work cycle. The 24-h rhythm could be due 
to daily fluctuations of temperature or humidity 
fluctuations caused by air conditioning, or experi-
menter presence (noise, odor) in the animal facility. 
The coherence between temperature and humidity 
fluctuations and mouse behavior is shown in the 
Supplementary Material (Figs. S17 and S18). Weak, 
but significant peaks arise; however, they do not 
occur at the same frequencies for all mice. Mouse 2, 
4, and 5 have a significant peak around  3.5 h and 
 53.0 min with temperature, and mouse 2, 3, 4, and 
5 have a significant peak around  3.8 h with humid-
ity (see Supplementary Material).

Although the sample size of this study is small, 
all the mice are characterized by a mutually consis-
tent pattern, as illustrated in the Supplementary 
Material, Figures S1-S14. Furthermore, based on 
recordings of length 272 days, under constant con-
ditions, we show that the pattern remains consis-
tent over time. Thus, the nature and consistency of 
the results overcome the limitation of the relatively 
small sample size.

Diseases such as cancer can arise due to disrup-
tion of such biological rhythms, and comprehending 
their dynamics can be used to optimize drug deliv-
ery (Levi and Okyar, 2011). Given the importance of 
circadian and ultradian rhythms (McClung, 2007; 
Barger et al., 2009; van der Veen and Gerkema, 2016; 
Castellana et al., 2018), it is essential to gain an in-
depth understanding of their nature. We have pro-
posed a robust methodology that promises to open 
up new avenues to study a plethora of biological 
rhythms, including their dynamics and interactions, 
and possible ways of influencing these characteris-
tics. Multiple, simultaneously recorded, time series 
of different physiological processes analyzed with 
the methodology described here could help to fur-
ther investigate the origin of the rhythms and the 
mechanisms by which they influence each other.
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