2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton) | 979-8-3503-9998-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/ALLERTON49937.2022.9929349

Alternating Direction Method of Multipliers for
Decomposable Saddle-Point Problems

Mustafa O. Karabag
Electrical & Computer Engineering
The University of Texas at Austin
Austin, USA
karabag @utexas.edu

Abstract—Saddle-point problems appear in various settings
including machine learning, zero-sum stochastic games, and
regression problems. We consider decomposable saddle-point
problems and study an extension of the alternating direction
method of multipliers to such saddle-point problems. Instead of
solving the original saddle-point problem directly, this algorithm
solves smaller saddle-point problems by exploiting the decompos-
able structure. We show the convergence of this algorithm for
convex-concave saddle-point problems under a mild assumption.
We also provide a sufficient condition for which the assumption
holds. We demonstrate the convergence properties of the saddle-
point alternating direction method of multipliers with numerical
examples on a power allocation problem in communication
channels and a network routing problem with adversarial costs.

Index Terms—Saddle-point problems, decomposable optimiza-
tion, alternating direction method of multipliers

I. INTRODUCTION

Saddle-point problems consider optimization of an objec-
tive function simultaneously by a minimizer and maximizer.
These problems appear, for example, in zero-sum stochastic
games [1], adversarial training of machine learning models [2],
[3], regression problems [4], and maximum-margin estimation
of structured output models [5].

We focus on decomposable saddle-point problems of the
following form that have a decomposable objective function
with complicating global constraints:

N
i ) filvis on) (10
subject to =z, € X, (1b)
Ty € X (lc)
Taui € Xy, forallicl,...,N (1d)
Ty € Xy, foralleel,...,N (le)
where z, = [Tq1,...,%q,n] and xz, = [2p1,..., 7 N] are

each concatenations of IV vectors, and X, C R"«, A}, C R"?,

X, i C R™i and A, ,; € R™-¢ are closed, convex sets such
N ’ N .

that > . na; = ng and > ;_; ny; = np. In particular, we

are interested in the convex-concave case, i.e., f; : Xg; X
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X — R is convex in z,; and concave in xy, ;. This problem
structure arises, for example, in power allocation problems
for communication channels with adversarial noise [6] and
optimal network routing problems with adversarial costs.

The paper [7] proposed the alternating direction method
of multipliers (ADMM) to solve an optimization problem
with decomposable nonconvex-concave objective functions.
In this paper, we analyze the convergence properties of this
method, saddle-point ADMM (SP-ADMM), for the decom-
posable convex-concave objective functions. The iterative SP-
ADMM preserves the separable structure of (1) and consists of
three steps. In the first step, SP-ADMM solves a saddle-point
problem separately for every block. It performs projections
onto the global constraints (1b)—(1c) in the next step, and
performs the dual variable updates in the last step.

SP-ADMM has several advantages. Each individual saddle-
point problem has a lower number of dimensions compared to
the original problem and hence can be solved more efficiently.
For some objective functions, for example bilinear functions
of two one-dimensional variables, these individual saddle-
point problems can be solved analytically. Since the individual
saddle-point problems have no coupling, they can be solved in
parallel. SP-ADMM performs the projection onto the global
constraints without considering the individual constraints. For
some global constraints such as unit ball or probability sim-
plex, this projection step can be performed more efficiently
compared to the case that takes the individual constraints into
account.

The contributions of this paper are threefold. The paper [7]
demonstrated the performance of SP-ADMM for a specific
robust optimization problem without any theoretical guaran-
tees. We analyze the performance of SP-ADMM. We first
show that for the convex-concave case SP-ADMM converges
to the saddle point of the problem under a mild assumption.
Secondly, we provide a sufficient condition for convergence
by considering standard conditions of the minimax theo-
rem [8] and Slater’s constraint qualification [9]. Finally, we
demonstrate and evaluate the performance of SP-ADMM for
a power allocation problem for communication channels with
adversarial noise [6] and an optimal network routing problem
with adversarial costs.
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II. RELATED WORK

Saddle-point problems: Convergent variants of gradient
descent-ascent methods such as the extra gradient method [10],
optimistic gradient descent-ascent method [11], and subgra-
dient descent-ascent method [12] have been proposed for
convex-concave saddle-point problems. The paper [13] ex-
tended the Frank-Wolfe (conditional gradient) method to solve
strongly convex-strongly concave saddle-point problems.

We remark that first-order methods can also exploit the
decomposable structure during gradient computation. How-
ever, the coexistence of local and global constraints for the
projection step may result in harder optimization problems
compared to SP-ADMM that decouples the projection step
and local constraints.

SP-ADMM solves saddle-point problems as a subroutine
and one can employ these methods to solve the individual
saddle-problems. The quadratic penalties introduced in the SP-
ADMM results in strongly convex-strongly concave objective
functions that often increase the rate of convergence.

Decomposable optimization: Decomposable optimization
studies optimization problems that can be decomposed into
smaller sub-problems once the complicating constraints (or
variables) are removed. Seminal Dantzig—Wolfe [14] and Ben-
ders [15] decomposition methods solve block decomposable
linear programs. ADMM [16], [17] solves general decompos-
able convex optimization problems. ADMM has convergence
guarantees for convex problems [18], [19] and also for some
nonconvex problems [20], [21]. In practice, ADMM often
generates acceptable solutions in a few iterations, however
it behaves like a first-order method and suffers from slow
convergence in the long run [18].

Decentralized saddle-point problems: Decentralized saddle-
point problems [22]-[26] consider the optimization of a
separable objective function subject to the communication
constraints (usually defined with a graph). Unlike the decom-
posable setting that we consider, these works consider that
each component of the objective function is a function of a
global variable. The paper [24] also consider local variables as
a part of the objective functions, however these local variables
do not have complicating constraints that we have in (1).

III. NOTATION AND PRELIMINARIES FOR DECOMPOSABLE
OPTIMIZATION

A. Notation

We use subscripts a and b with colors blue and red to
denote the variables/constants of the minimizer and maximizer,
respectively. The subscript 7 denotes the 7 block (element) of
the object with the subscript. With an abuse of notation we
also use the subscript 4, for X, ; and A} ; that the sets for
Zq,; and x3 ;, and are not blocks of X, and A}, respectively.
The superscript k£ denotes the value of the variable with
the superscript at the k" iteration of the algorithms. The
superscript 2 is used as an exponent. [y (x) is the indicator
function of set X’ such that Ix(z) = 0 if z € X and co
otherwise.

B. Preliminaries for Decomposable Optimization

While the objective function is block-decomposable for (1),
the constraints =, € X, and x;, € A} are not separable.
The potential existence of these constraints result in different
problem structures:

a) Fully separable case: In the absence of both z, € X,
and z;, € A}, we can solve the saddle-point problem separately
for every block i. The saddle points of these individual
problems are jointly a saddle point for the global problem.

b) Maximizer separable case: In this case, the inner
maximization problem is a function of z,, i.e., fz(:Lm) =
maxy, ;ex,,; fi(Ta,i, xp,i). If f, can be derived, we get a
minimization problem with a block-separable objective. How-
ever, the global minimization problem still contains constraint
rp, € Ajp. This optimization problem can be solved with
decomposable optimization methods such as ADMM.

c) Inseparable case: If both z, € X, and x;, € &), are
present, we cannot use fl(xal) = maxy, ;ex,; fi(Tai,Tbi)
due to the globally bounding constraint z, € Xy. We may
attempt to derive f(zq) = max,, cx,n~  x,,) filZai, T0,0)-
However, this process (potentially) removes the separability
of the objective function. Hence, decomposable optimization
methods are not directly applicable to this case. We are
interested in separable solutions for this case by preserving
the minimax formulation.

IV. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
FOR DECOMPOSABLE OPTIMIZATION

The alternating direction method of multipliers
(ADMM) [16], [17] is an optimization method to solve

optimization problems with separable objectives and
complicating constraints. Consider the problem
N
min > gi(va,i) (2a)
i=1
subject to x4, € X, (2b)
Zqi € Xgi, foralliel,...,N. (2¢)

To solve this problem using ADMM, we use an auxiliary
variable z, and rewrite (2) as

N
min Zgi (Ta.) (3a)

“ i=1
subject to 2z, € &, (3b)
Zai = Tqs, foralliel,...,N o)
Zai € X, foralliel,...,N. (3d)

For (3), we define the Lagrangian KC(x,, 24, A\a) as

N
Z (gi(l'a,i) + IXG,,, (Ia,i)) + AaT(wa - Za) + IX,,, (Za)
i=1

and the augmented Lagrangian K(z,, z4, o) as

]C(CL'Q,ZQ, /\a) + p?a ||1'a - Za”g
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Algorithm 1: Alternating Direction Method of Multi-
pliers (ADMM) for decomposable optimization

1 Inltlahze 29,29, \Y such that 20 € X, 1 x .
20 e X,

2 for k=0,1,... do

3 = argming, ’C(‘Laa av)‘k)

a4 |ZFt = argmin., K(aFt!, z,, AF).

s )\A+1 — N4 pa(ahtl = SR

. X X(l,N7

where p, > 0 is the penalty parameter.

ADMM for decomposable optimization, Algorithm 1, con-
sists of three steps: primal variable z,, auxiliary primal
variable z,, and dual variable A\, updates. We note that Line
3 of Algorithm 1 is separable and is the same with assigning

Gi(@ai)+ (N5 )T (wai—28 ) +22

arg min HJL kR H2
Ta,i€Xa,i 2 a,? a,illg
to :Ek 1 for every ¢ € 1,...N. Line 4 is the convex projection

step and is equal to letting

N 2
2 = arg min (V)@ — 20) + 5 ol =zl

which is equal to

2
2 = arg ngn ||akar1 + X\ pg — z,,||2.

Let z; be an optimal solution of (2). The iterates of ADMM
converge to an optimal solution [18], i.e., z(’f — a, if there
exists (zF, 25 \*) for all x,, z,, and )\, such that

a’~a’

K(zh,zi ha) S K(ak, 22 N0 < K(2a, 20, A2). D)
V. SADDLE-POINT ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

In this section, we describe the alternating direction method
of multipliers (ADMM) for saddle-point problems that was
first introduced in [7]. The method shares the same steps with
standard ADMM and enjoys the same convergence guarantees.

To apply ADMM to saddle-point problem (1) we first
rewrite the problem using the auxiliary variables z, ; and z; ;:

N
i max D fileaison) o)
subject to  z, € A, (5b)
zp € Xp (5¢)
Zai = Zq4, foralliel,..., N, (5d)
Zpi =xpq, foraliel,..., N, (5e)
Tai € Aoy, foralliel,..., N, (5%)
Ty € Xy, foralleel, ..., N. 5g)

Algorithm 2: Saddle-Point Alternating Direction
Method of Multipliers (SP-ADMM) for decomposable
optimization

LRy . O 0 0
1 Initialize 29, 29, 29, 20, A9, \? such that

xge){a,lx...xXa,N,LLgeval><...
20 e X,, and zg € X,
2 for k=0,1,... do

x Xy N,

3 |2kt M = argmin max £(z,, 1y, 25, 25 NE )
Tq Ty
a |25 = argmin L(zk T af T 2, 28 NEAE)
Za
s |2itt = arg max L(ahtt bt 2kt o Ak AR
e
¥/\l/;‘,+l — /\ +[)b( k41 Z{:Jr])
For (5), we define the Lagrangian
‘C(xav .’If[” Z(l7 Z[)a )‘(M )\[)) -
N
Z (fz(xa iy b, z) + Ix, (l‘a z) —Ix,, (mb,i))
i=1
+ A(J,T(xa - Za) + IXu (Za) - /\b (71) — 2t ) IX (Zb)

and the augmented Lagrangian

E(xa, Tbhy Zay Zby >\a» )\b) = ﬁ(l‘a, Lhy Zay Zb,y )\aa )\b)
Pa Pb

+2|| ‘a T

where p, > 0 is the penalty parameter for the minimizer, and
py > 0 is the penalty parameter for the maximizer.

Saddle-point ADMM for decomposable optimization, Al-
gorithm 2, also consists of three steps: primal variable x,, z;
updates, auxiliary primal variable z,,z, updates, and dual
variable \,, \;, updates. Line 3 of Algorithm 2 is separable:
This step assigns

||TI) Zb”; .

Za||2

arg min

max (., .
Bayi €Xa i fi(@ai,4)

Tp,i €EXb i

+ () (@ai =

— ) @i =) - 5

to x, ! and Tb_H for every 7 € 1,... N. These sub-problems
have a significantly lower number of dimensions compared
to the original saddle-point problem (1) and can be solved
in parallel. The sub-problems can be solved using existing
saddle-point optimization methods and for some objective
functions such as bilinear functions of two one-dimensional
variables, they have analytical solutions. Lines 4-5 are the
convex projection steps and are equal to letting

k
|2ai — 2

k 2
- ZbJHz

k+

k : k k 2

aptt = arg min (|f 4+ N pa =zl

and )
7{;“ = arg mln qu"H + )\ on — 2|,

2, €EX

which can be solved using convex optimization methods.
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We show the convergence of SP-ADMM, under a similar
assumption of standard ADMM. We assume that there exists
a saddle-point where strong duality holds for the minimizer’s
problem when the maximizer is fixed, and vice versa.

Assumption 1. There exists (z}, x;, 2%, 25, N5, \}) such that

L(25: Ths 25 25 > Aas Ap)
< L(xh,xp, zh, 20 Any AL) (6)

a’
< Ac(l‘cux])azavzba/\m /\b)

and
* * * *
ﬁ(xaamhzaazbaAaa/\b)
S ‘C(xmlbvzmzbﬂ/\m)‘b) (7)
Lok K k% *
< £(‘La7‘l’b7 Zas '4ba>‘aa /\b)
for all x,,xy, 2q, 2p, Aa, and \p.

Note that x}; = z; and 2} = z; for the saddle-point since
supy, Ao ' (25 — 2}) = oo and infy, A\, T (2] — z;) = —o0
otherwise. Also note that 2 € X, N (X1 X ... x X, n) and
xp € XN (X1 X ... x Ay ) due to the indicator functions.

Despite its complicated nature, the assumption is satisfied
for the convex-concave saddle-point point problems where

Slater’s condition [9] is satisfied.

Proposition 1 (Sufficient condition for a saddle-point). There
exists a saddle point (x},x}, 2%, 25, \i, A} for L that satisfies
Assumption 1 if
1) Every f; is a convex function of x,; and concave
Sunction of xy,; in Xq; X X ;.
2) Every f; is continuous.
3) X, Xy, and every X,; Xp; are compact, convex
polytopes.

We give the proof of Proposition 1 in Appendix A.

Note that the conditions given in Proposition 1 imply that
the saddle-point problem satisfies Slater’s condition for the
minimizer and maximizer. In the proposition, we use polytope
constraints for simplicity; the proposition can be improved to
general convex sets X, ;, A}, X, and &} as long as there is
a saddle point for (1) that satisfies Slater’s condition.

Under Assumption 1, the iterates of SP-ADMM converges
to a saddle point of (1). If every f; is Lipschitz continuous,
the proposition also implies the convergence of value.

Proposition 2. Under Assumption 1, the iterates of SP-ADMM
converge to a saddle point for (1), i.e., z(’f — ) and zb]‘”’ — Ty
where (), x}) is a saddle-point of (1).

We give the proof of Proposition 2 in Appendix B.

Proposition 2 shows convergence in the limit. As in the
standard ADMM [18], one can use the magnitude of pri-
mal and dual residuals as the stopping criterion in practice:
Terminate when HxZ - sz||2 + HIl’j —zF |2 < epimal apd
pa||2E = 2E7|, + oo |28 = 27, < e where ok — 2%
and x} — 2 are the primal residuals, and p,(2* — 2¥~1) and

pu(2f — 27 1) are the dual residuals after iteration k.

— 0 = pp = 0.001
— o=y =0.1

= po = pp = 0.01
Pa = Pb = 1

Total Capacity
w
¢ )
|
—
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—_ —
(e [}
o ¥
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Fig. 1. (Top) Total capacity of the communication channels with

(2F, k). (Bottom) Total residual norm is |lz% — z{'f”2 + [Jak — zé’||2 +
. k—1 : k—1

palleh = oot -8

-

VI. NUMERICAL EXAMPLES

In this section, we give numerical examples for SP-
ADMM and compare it with saddle-point Frank-Wolfe (SP-
FW) method [13]. The implementations are given at https:
//github.com/mustafakarabag/SP-ADMM.

A. Power Allocation Game for Communication Channels

In this example from [6], we consider a power allocation
problem in Gaussian communication channels. The total com-
Zitran
the signal power allocated to the ™ channel, o; is the receiver
noise for the i channel, and 24, 1s the noise of the i channel.

We consider a game between a maximizer that allocates
signal powers and a minimizer that adversarially chooses
the noise levels for N = 10 channels. The global con-
straints are Zij\;hl’b,i = 20 for the the maximizer and
Zi]\il Zq,; = 10 for the minimizer. Players have individual
constraints x,; > 0 and 2;,; > 0. The receiver noise level
is 0 =12,6,5,8,3,9,5,6,7,3]. The equilibrium value of the
problem instance is 2.860 [6].

For the implementation of SP-ADMM, we use SP-FW to
solve the sub-saddle-point problems that are in the form of

munication capacity is Zfil log (1+

) where z;, ; is

N
min maleog (1 + O_Jjbl> + )\];’z(xa,i - Zl];,i)
i=1

Ta,i Tbi i+ Tayi

+ Pa(ma,i - 2571‘)2 - )‘l];z<Tbl - 2117‘1) — po(Tp,i — Zg.z‘)2-

We initialize x, and z; with a vector of zeros. The variables
z, and z; are initialized with the projections of z, and x;
onto their global constraints, respectively.

In Figure 1, we show the output of SP-ADMM for different
penalty parameters. Similar to the standard ADMM, SP-
ADMM generates acceptable solutions within a few iterations:
The total capacity converges to the equilibrium value 2.860.
The total residual norm decay as the number of iterations
increase. However, similar to the standard ADMM, the rate
of convergence is slow. We suspect that the fluctuations of the
total residual norm is due to the dynamic competition between
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the players and the fact that sub-problems are solved with a
finite accuracy. When we compare the effects of the penalty
parameters p, and p;, we observe that mild penalties such as
0.1 lead to both faster objective and residual convergences.

B. Network Routing Game with Adversarial Agents

In this example, we consider a network routing problem
represented with a Markov decision process (MDP). The
MDP is deterministic, i.e., it is a directed graph with N
edges. Players choose a policy for this MDP that induces a
Markov chain. The players’ policies control the density of
atomic agents that are transitioning in the Markov chain. The
variables, x, and x;, of the players represent the stationary
distributions induced by the players over the edges of the
Markov chain. We generate the underlying directed graph of
the MDP using a random Erdos-Renyi graph such that every
node has 5 edges in expectation.

The network has a price function for every edge ¢ that is
equal to z,; + 23, i.e., the total demand for edge i. The
cost of an edge ¢, for the minimizer is x, ;(%q,; + %p,;) that
is the density of minimizer times the price of the edge. The
minimizer’s goal is to minimize the total cost Zfil Ta,i(Ta,i+
Zp.;). The maximizer is an adversary trying to maximize the
same cost. The minimizer and maximizer control a unit density
each. The individual constraints are 0 < z,; < 1 and 0 <
xp,; < 1 for every edge 7. The global contraints are enforced by
the dynamics of the MDP: The players’ stationary distributions
have to be valid. In addition, the maximizer’s density at state
1 has to be at least 0.1, i.e., ZiEE 24, 2> 0.1 where E is the
incoming edges of state 1.

We compare the performance of SP-ADMM with SP-FW
for different sizes of MDPs. For the initialization of both SP-
ADMM with SP-FW, we use the valid stationary distribution
that is closest to the uniform distribution in Lo distance. We
solve the sub-saddle-point problems of SP-ADMM using an
analytical solution exploiting the bilinear structure of sub-
problems. This step has O(N) time complexity. The gradients
for SP-FW are also computed using analytical solutions, which
has O(N) time complexity. The projection step of SP-ADMM
and the maximization step of SP-FW are both computed
using ECOS solver [27] with CVXPY [28] interface. For SP-
ADMM, we use p, = pp = 1, and for SP-FW, we use the
step size 2/(2 + k) at iteration k as suggested in [13].

For both algorithms, we compute a bound on the optimality
gap in the following way. Let z*** be the optimal response of
the minimizer against the maximizer’s zg action, and z; * be
the optimal response of the maximizer against the minimizer’s
2¥ action. We compute the best action of a player by solving
a convex optimization problem where the other player’s action
is fixed. By the definition of a saddle-point, we have

N N N

N c k
Z f7(Z:z 9 ZI]:,I',) < Z fl(z;;u ZZI) < Z f?(zl(jw lej, )
=1 =1 =1

. N i
The best lower bound is I = maxi<j<k iy fi(2,7,2],)

and best upper bound is u* = minj<;<x Y i fi(z) . 27)

TABLE I
COMPARISON OF SP-ADMM AND SP-FW FOR DIFFERENT MDP SIZES

Network size SP-ADMM SP-FW

# edges | Opt. gaj . Opt. ga .

# nodes Ng UE 7gl,5 Time (s) UE 7gl,§ Time (s)

10 49 1.36e-92 5.48 1.36e-9* 5.17
20 93 2.49¢-7 9.39 5.13e-3 9.09
50 282 1.87¢-6 28.06 2.35e-3 25.67
100 494 1.35e-6 51.18 1.62e-3 48.17

@ Both algorithms fail to improve on the initialization point
due to numerical precision issues.

| SP-ADMM SP-FW
= [tr. Value = [tr. Value
© 10~ 4 Lower Bound Lower Bound
73 1 = = Upper Bound = = Upper Bound
] i
2 19N .
8 N e Y | ~ .
= " Ne . A T -
2 T ——— - = N L e
o /7
1072 %
T T T T T T

T T T
0 10 20 30 40 50 60 70 8 90 100
k (Tteration)

Fig. 2. The objective values for SP-ADMM and SP-FW. For each algorithm,
’Itr. Value’ refers to the value with the variables from the current iterate, i.e.,

(zF, zg ™). "Lower Bound’ refers to the value with the maximizer’s variable
k

from the current iterate and the minimizer’s best response to it, i.e., (zﬁ"*, 2p).
"Upper Bound’ refers to the value with the minimizer’s variable from the
current iterate and the maximizer’s best response to it, i.e., (2%, zé ).

at iteration k. The optimality gap of an iterative algorithm at
iteration k is bounded by u* — [¥.

We compare SP-ADMM and SP-FW in Table I and Figure
2. In Figure 2, we observe that SP-ADMM performs better
than SP-FW for objective convergence. In addition, the upper
and lower bounds are closer for SP-ADMM, which shows a
better convergence to the saddle-point solution. In Table I, we
observe that the solution time for SP-ADMM is slightly worse
since we solve a quadratic program for SP-ADMM whereas
we solve a linear program of the same size for SP-FW. On the
other hand, the optimality gap u* — [* is orders of magnitude
better for SP-ADMM with similar solution times.

VII. CONCLUSION

We demonstrated saddle-point alternating direction method
of multipliers (SP-ADMM) to solve decomposable saddle-
point problems. We show that SP-ADMM has convergence
guarantees under a saddle-point assumption. This assumption
is satisfied for convex-concave problems that satisfy Slater’s
conditions. While we show that SP-ADMM converges asymp-
totically, we suspect that it also enjoys the non-asymptotic
guarantees of standard ADMM [19], for example, in the
strongly convex-strongly concave setting.
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APPENDIX A
PROOF OF PROPOSITION 1

We show the existence of a saddle point for the augmented
Lagrangian by considering the minimax theorem [8] and
Slater’s constraint qualification for convex duality [9]. Since
Zij\il fi(za,xp:) 1s a continous, convex-concave function
and the feasible spaces are compact, convex for both minimizer
and maximizer, there exists a saddle point (z, z;) for (1) by
the minimax theorem [8]. Consequently, (xz n’,.I,b,Za’,Zb) is a
saddle point of (5) where z; = x; and x} = 2.

Since the feasible spaces are compact, convex polytopes,

o there exist G, ; and h, ; such that Gy ;24 + he; < 0 is

equal to z,; € Xy 4,
o there exist G, ; and hy,; such that Gy ;74 ; + hy 3 < 0 is
equal to xp, ; € A} 4,

o there exist G, and h, such that G,z, + h, < 0 is equal

to z, € X,, and

o there exist GG, and h; such that G}z,

to zp € A
Define the Lagrangian for (5)

+ hy < 0 is equal

E(xaa Thy Zas Zby /\aa >\ba Hay Kb,y [/Ja,i]i]ila [Nb,i]gil)

N
= Z fi(ZayisTb.4)
i=1

N
+)‘aT(xa — Zq) + NI(Gaza +ha) + ZN;—,i(Ga,ixa,i + ha,i)
i=1
N
_AI)T(-TI) - Zb) - ,U}T(szb + hb) - Z ﬂl—}lji(GIJ,imb.i + hb,i)
i=1
where fig, fp; fla,1, - s Ha N1y ooy o, N 2 > 0.

For fixed z; and z}, 27, fi(zai, ;) is a continuous,
jointly convex function of x, and \, and the constraints of
(5) satisfies Slater’s condition. Note that ) and z is optimal
for fixed x;, and z;. By the saddle point theorem [29], there
exists (25,25, Any His [ 15 -+, M, ) Such that

a’

L(x5, 25,255 255 Aas Aby Has s [Ha, 1]1—17 (110, z]zl\L ) (8a)
< E(»La, uLz,,ZM 2 A Abs s s (1 3 [n,ilisy) - (8D)
SL(ah, 5 205 2 Ny Ao s s (10 311 (10,6 1y) (8c)

for any /\b,ub, [m, N . Let Ay, i, [6,i]Y; = 0. Note that

E(l‘a, ‘er Zav Zb ) >\aa /\b)
< L, 2y 2 25 Ay Ao My 0y i) s [017 )
since Goizy; + hai < 0, Gaizy + hei < 0, and
Has fals -+ fa,n = 0. We also have
L(a, 5, Zay 25 Moy Ao 15, 0, [ 171, [017)
< L(Tay Ty Zay 245 Aoy Ab)
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since Iy, (2ai) > pg(Gaiai + hai)s Ix,(z4) >
pa (Gaa + ha)s x;, € Xy, and 2 € A,
We established

Lzt xl, zh 20, An M) < L(Ta, Thy Zas 20 Ay Ab)-
We now show

L(xh,wy, zh 20 Aas o) < L(xh,p, 20, 20, Ay Ap)-
Note that the optimization problem

min
Aastras[tta,i] Ty

is separable: the optimal values of A\, and f4, fta,1, .. s la,N
can be computed independently. Consequently, since \,* is a
maximizer for

ok * * N N
‘C(xaa LThsZasZhs )\aa )\ba Hay b, [/u'a,i]i:la [ﬂl},i}z‘:l)v
it is also a maximizer for L(z},x}, 2%, 2, Aay Ap), and
we have L(x},x7, 25, 20, Aay o) < Lk, xp, 28, 25, N5, Ap).
Combining these results, we get
* * * *
‘C’(ICH Ty, Za7 Zba Aaa )\b)
* ok * * *
S £<xaalbazaazb7>\aa/\b) (9)
ok * *
< L(Tay Ty, Zas 2 » Ags A\b)
for arbitrary )\,. By symmetry, we can repeat the same
arguments and get
* * *
L(x, Ty 25 Zby Aay AL)
< L(xh,xl, 28, 20 Aay AL)
kR ok ok
< ’C(xav Ths 2y Zhs )‘a? /\b)

(10)

for arbitrary \,. Finally, by letting A\, = A} in (9) and A\, = A},
in (10), we get the desired result.

APPENDIX B
PROOF OF PROPOSITION 2

The proof follows the same steps of the proof for conver-
gence for the standard ADMM algorithm [18]. The work [18]
proves convergence of standard ADMM by considering only
the properties of minimizer updates. To prove the convergence
of SP-ADMM, we consider the properties of both minimizer
and maximizer updates.

We define the value function of the algorithm

2 : 12 2 12
PR S VR A e i ]
Pa Po 1/pa 1/pv

We will show that the value decreases at every step, i.e.,

k

VIR VR — [ = ol
k+1

A e

*paHZ(L
kE_ .k _ k
a

—:fa. an
xa ZU.

where 7 is the primal residual for the minimizer
and 7} = 2 — zF is the primal residual for th imi

L=y b primal residual for the maximizer.
By telescoping sum over k, we get

o0
VO >3 pu ekl —on Il —pa |25 — 220500 |12
=1

E(l’;, 517;:; sz Z;:, )\a» )\bv Hay b, [/La,i}i]\;p [,ub,i]ijil)

==

Since V0 is finite, and po and p, are strictly gositive,
we must have limg_,oo Hr(’jHi = 0, limyoo ||}, = 0.
limg o0 ||z§—z;‘ ; = 0, and limy_,~ ||z,’: -z 5 = 0.
Consequently, ¥ — 2%, 28 — 2%, 2aF — 2}, and 2} — 2},
For ease of notation, we also define the following quantities:
« Equilibrium value p* = S fi(x%;,z; ). Note that
p* = L(xk, x), 25, 25, N5, Ap) since x) = 2%, xf = 2]
e b= 3L Sk k), )" = S Sk ),
(P)F = 0Ly fulws )

To prove (11), we will show

P = ()" < () Tt (12)
(o) —p < () T (13)
PP — (pE)FHL <o (2B — )T (rhHT 2R o)
— (AEFY Tt (14)
and
()" =" <z =) T T T = )
o ()\2’+1)T7,{)€+1' (15)

We, for now, assume that these inequalities hold.

A. Proof of (11)
Adding (12), (13), (14), and (15), and multiplying by 2, we
get
0 <2(; — AT ek 4200 — AP T

+2palzg ™ = 2) (g 20T = 20)

+ 2pb(zf+1 — z{f)—r(r;fﬂ + zf“ —2z7). (16)
We use the definitions to rewrite (16).
Using AG™! = AL + parg ™ it = (G = AD)/pas
AL N = ARFL s A AF) we get
20\% — /\k+1)TTk+1 — 2\ — )\k)TTkH — 24 ‘ P+ 2
=200 A TOE =) [ k] = |
Pa a 2 2
2 2 2
S Y S b a7
Pa 2 Pa 2
By the symmetry of the definitions, we also get
200 = s T (18)

1 1 .
=l - Nl - e - Nollz = pa [rET s (9
Using P! — 2% = 21 2k 4 ok 2% and 2F 1 — 2k =

2Rl 2k 2 we get

20 = )T 42— 2 — [

R

= Pl = 22l = 1125 = z2l13) 0)
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By the symmetry of the definitions, we also get

200(zp T =) T+ T = ) HrbHHQ
*prle k+172b||2
— o[ S [ ) 1)

By substituting (17), (19), (20), and (21) in (16), we get

VL <y Da HrkJrlJerH st (22)
k+l k+1 _ Zk:HQ

SV’“—paHrﬁ“Hz ool I

= pall=E = k] = ool = 2

=202 (A (20T - 20) =

As shown in the proofs of (14) and (15), z**! mini-
~(AEH1) T2, in X, and 2" maximizes (A1) Tz,

200(N ) T (2 = 2) (@3)

mizes
in X,. Consequently, we have 72pa()\k+1)T ) <
_2P ()\kJrl)TZS, and 2pb()\;f+1)"l' ];r‘rl < 2/)b()\k+1) Zb

Combining these with (23), we get (11).
B. Proofs of (12) and (13)

Due to the saddle point assumption, we have

* k% % * * k+1 k+1 * *
£<xavlb7'za7zb’/\aﬂ)‘b) < E(l‘a Tbvza Zba)‘ )‘b)'

Since p* = L(x}, zy, 2%, 25, N5, A\p) and z} = z;, we have
k+1 Tkl _ k1
P (pp)" A (A (T =z ).
Using r¥+1 = z*+1 — 2*+1 and rearranging the terms, we get
k+1 T, kt1
P ()= (D) ra (24)

The proof of (13) has the same steps with the proof of (12).
C. Proofs of (14) and (15)

We note that L’(a:a, xy, 2%, 2F AENE) s a convex function

of z, and a concave functlon of 2, and (zF+1, 2 "") is a

solution to

min max L(xq,x, 28, 28 NENE).
Ta€Xg,1 X ... XX N TpE€EXp 1 X... XX N
Define
k k+1 k\\ T
xa,l‘b § fz La,iy T 71 ()\ ( Za z )) La

- ()‘b - Pb(% - lef))—rxb

Using \f1 € X, 1 x. .. x X, n and \FHL = Nepp (21—
2F 1), we get

8E(xa,7;,,z 28 AR AR _ 0g(xa,p)
0x, — 0x, R
Similarly, we get
8£($a,rb,z PV _0g(xq, )
oxy, T[,—I;;Fl Oy Tb_léﬂ

Since L(xq,xp, 28, 2F, \E,AF) and g(4,2,) share the same

gradient field for z, and 7, and (25+1, 271 is a saddle point
of L(xa,xp, 28, 2 NEAE), (J?Z+1,. Hl) is also a saddle

point of g(x,, Ib). Using the saddle point property we have,

Zfz (it ay )+ G = palzg ™ —zg)) Tag ™
S OF e e
< Zfz i@yt )+ AT = palzn ™ = z) ey
k k kT k
— T = =) Ty
By definitions of (p?)**! and p**!, we get
PR — g (5H = o)) Tkt
< )"+ T = pa(za ™ = 2) T (25)

By the saddle point property, we also get

P = (- ) T

> (pp) = T = (T =) T (26)
Define ho(2,) = —(AfH1)Tz,. and hy(z,) = (A\FTH) T2,
We have
L (x * L, k1, Zay 25, AELAF) _ Ohq(24)
0z o 0T |
and similarly
Gf(xak“,a:bk“ KL 2, AR AR Ohy(2p)
0z oxy,
f Z’_7h+1 f Trp= Zb

Since L(x,*1, 2,84t 2., 28 NENE) and h,(24) has the
same gradient ﬁeld 1n Xa, 2R s a]so a minimizer of h,(z,)
in X,. Similarly, z is also a maximizer of hy(zp) in Aj.
Due to these we have

e T < =00 T 27
and
D T2 = ) T (28)
By combining (25) and (27), and noting that ) = 2z and
rhtl = ghtl k4 we get
PP = () (et — )T 2 - )
AR (29)
Similarly, by combining (26) and (28), and noting that z;, = z;
and 7y =2t — 2T we get
(7)1 = PP <o = )T 2 - 2)
_ ()\ll;-s-l)Trl/:-H_ (30)
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