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Abstract
In this paper, we investigate the maximization of the total population of a single
species which is governed by a stationary diffusive logistic equation with a fixed
amount of resources. For large diffusivity, qualitative properties of the maximizers
like symmetry will be addressed. Our results are in line with previous findings which
assert that for large diffusion, concentrated resources are favorable for maximizing
the total population. Then, an optimality condition for the maximizer is derived based
upon rearrangement theory. We develop an efficient numerical algorithm applicable to
domains with different geometries in order to compute the maximizer. It is established
that the algorithm is convergent. Our numerical simulations give a real insight into the
qualitative properties of the maximizer and also lead us to some conjectures about the
maximizer.
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1 Introduction

Spatially heterogeneousmodels are of great importance in conservation biology (Goss-
Custard et al. 2003). Considering such models, there are some natural questions to
be addressed. Existence, uniqueness and stability of equilibriums for heterogeneous
systems of reaction–diffusion equations are someof such questions, see for instanceHe
andNi (2017), Yousefnezhad andMohammadi (2016), andYousefnezhad et al. (2018).
Recently, the question of maximizing the total population size has drawn considerable
attention from bothmathematical and biological fields since the population abundance
is clearly a goodmeasurement for the conservation of a single species (Ding et al. 2010;
Mazari et al. 2020; Mazari and Ruiz-Balet 2021; Nagahara and Yanagida 2018).

In this paper an optimal control problem is studied to maximize the total population
of a single species. We consider the following semilinear elliptic equation

{
μ�u + m (x) u − u2 = 0 in �,
∂u
∂n = 0 on ∂�,

(1)

where μ > 0, m (x) ∈ L∞(�) is a non-negative, non-zero function, � is a bounded
domain in R

N with smooth boundary ∂� and n is the outward unit normal vector on
the boundary.

It is well known that Eq. (1) has a unique positive solution u (x) = uμ,m (x) in
W 2,p(�) ∩ C1,α(�̄) for α ∈ (0, 1) and p > 1. Also, we know that

0 < inf
�̄

u ≤ u ≤ ‖m‖L∞(�), (2)

see Berestycki et al. (2005), Ding et al. (2010), Mazari et al. (2020), and Nagahara
and Yanagida (2018).

Problem (1) arises as a stationary equationof a reaction–diffusionPDEmodeling the
growth of biological populations and plays an important role in studying the effects of
dispersal and spatial heterogeneity in population dynamics (Cantrell and Cosner 1989,
1991; Skellam 1951). From a biological point of view, � is the habitat of a species
and the zero-flux boundary condition in (1) accounts for the fact that no individuals
cross the boundary of the habitat. The function m (x) stands for the intrinsic growth
rate of the species at location x which in a way can be considered as a measure of the
resources available at x. The set {x | m(x) > 0} corresponds to the place in the habitat
which is favorable to the species since resources are available there. The parameter μ

represents the dispersal ability of the species or the diffusion rate.
It was observed by Lou (2006) that

∫
�

m(x)dx <

∫
�

uμ,m(x)dx, (3)

which implies that a total population at equilibrium is greater than the total carrying
capacity in a spatially heterogeneous environment. It was conjectured by Ni that,
among all spatial distributions of resources and the dispersal rate, μ, the ratio of the
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total population at equilibrium and the total carry capacity is bounded from above by
3, and that the constant is sharp in one dimension. This conjecture was later proved in
Bai et al. (2016).

We are interested in investigating how the allocation of resources influences the
population size of the species. Therefore, we consider the following optimization
problem. For A ∈ (0, |�|) define

M =
{
m ∈ L∞(�) : 0 ≤ m(x) ≤ 1,

∫
�

m(x)dx = A

}
,

and our objective functional

J (m) =
∫

�

uμ,m(x)dx.

We want to determine m̂ ∈ M such that

J � = J (m̂) = max
m∈M

J (m). (4)

The integral
∫
�
m(x)dx represents the total amount of resources and J (m) denotes

the total population of the species. The functional J (m) can be considered as a good
measurement for the conservation of a single species and also plays an important role
in preventing the invasion of alien species (Lou 2006). Indeed, in the optimization
problem (4), we want to maximize the total population size of the species while we
have a fixed amount of resources. If we distribute the resources in the habitat with the
optimal resource m̂, then the resident species has the highest population size, with a
given resource amount A, and so usually it is harder for other species to invade its
habitat. Similar questions regarding the optimal allocation of resources have also been
investigated in the framework of eigenvalue problems (Chugunova et al. 2016; Cosner
et al. 2013; Hintermüller et al. 2012; Kao et al. 2008; Lamboley et al. 2016; Lou 2008;
Lou and Yanagida 2006).

It has been established that problem (1) admits a solution by using a standard varia-
tional method (Ding et al. 2010). At the mathematical level, it is hard and challenging
to deal with the nonenergetic functional J (m) to derive qualitative properties of the
maximizer since the structure of the functional and boundary conditions in (1) avoid
employing classical tools (e.g., rearrangements, symmetrization). The main challeng-
ing qualitative question corresponding to this optimization problem was whether the
maximizer m̂ is of bang-bang type, i.e., there exists a set D̂ ⊂ � with |D̂| = A
such that m̂ = χD̂ . Having a bang-bang type maximizer yields m̂ = χD̂ and the
maximization problem (4) can be recast in terms of the following shape optimization
problem

J (m̂) = max
m∈N

J (m), (5)

where N = {χD : D ⊂ �, |D| = A}. This implies that with limited resources,
one should put all the resources in some suitable set D̂, a protected area, in order
to maximize the total population size. Numerical simulations in Ding et al. (2010),
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Mazari and Ruiz-Balet (2021) supported the conjecture that the maximizers of (4)
are of bang-bang type. It has been proved that all local maximizers m̂ of (4) that are
Riemann integrable are of bang–bang type (Nagahara and Yanagida 2018). Moreover,
the same result has been obtained in Mazari et al. (2020) assuming large diffusivity.
Recently this question was settled by Mazari et al. (2021) and it has been established
that the maximizers of (4) are of bang-bang type regardless of the value ofμ > 0. One
can see the discussion on a more general model in Lam et al. (2020) which accounts
for spatial dependent intrinsic growth rate and carrying capacity.

In this paper, after providing preliminaries in Sect. 2, we aim at obtaining qualitative
properties of the maximizer for a large diffusivity in Sect. 3. Considering N -balls and
annuli, our results suggest that symmetric properties or even radial structure for the
maximizers of (4)mayholdwhileμ → ∞. These qualitative properties are in linewith
results inMazari et al. (2020),Mazari and Ruiz-Balet (2021) which assert that for large
diffusion, concentrated resources are favorable for maximizing the total population.
In Sect. 4, an optimality condition for the maximizer of (4) is obtained based upon
rearrangement theory. From both mathematical and biological point of view, it is a
natural question to know about the shape of the optimal set D̂ and thus it is necessary to
have a numerical method to determine a solution for (4). We develop a gradient-based
numerical algorithm to compute the maximizer invoking rearrangement techniques.
The convergence of the algorithm is investigated. Our numerical algorithm is efficient
and applicable for domainswith different geometries and the numerical results validate
our findings and also theoretical results in Ding et al. (2010), Mazari et al. (2020,
2021), Mazari and Ruiz-Balet (2021), Nagahara and Yanagida (2018), and Heo and
Kim (2021).With an eye on the biological interpretations, numerical results give a real
insight into the qualitative properties of themaximizer, in particular for the challenging
case of small diffusions, and also lead us to some conjectures about the maximizer
which are stated in the conclusion section.

2 Preliminaries

In this section we provide some basic and well-known results about rearrangement
theory (Burton 1987, 1989) that will be required in our analysis.

Two Lebesgue measurable functions f : � → R, f̃ : � → R, are said to be
rearrangements of each other if

|{x ∈ � : f (x) ≥ θ}| = |{x ∈ � : f̃ (x) ≥ θ}| ∀θ ∈ R. (6)

The set of functions which are rearrangement of f̃ is called the rearrangement class
generated by f̃ . Considering f̃ = χD̃ with |D̃| = A, it is easy to check that all
functions inN are rearrangements of f̃ and indeedN ⊂ L2(�) is the rearrangement
class generated by this function. It is well known that the weak closure of this set in
L2(�) is M which has the following properties, see Burton (1989, Lemmas 2.2 and
2.3).
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Lemma 1 The setM is convex and weakly sequentially compact. Moreover,N is the
set of extreme points of M.

We need the following technical result.

Lemma 2 Consider h inM\N and η in N . Then we have ‖h‖L2(�) ≤ ‖η‖L2(�).

Proof Since M is the weak closure of N , there is sequence { fi }∞1 ⊂ N such that
fi⇀h in L2(�). It is easy to check that the L2-norm of all functions in N equals to√
A. Employing the weak lower semi-continuity of the norm, we have

‖h‖L2(�) ≤ lim inf
i→∞ ‖ fi‖L2(�) = √

A = ‖η‖L2(�).

�

Here we provide a brief introduction of cap or spherical symmetrization (Sperner

1981;Brock2007).Hereafter B(0, r) represents an openball centered at the originwith
radius r . Given a unit vector e as the direction, consider a measurable set D ⊂ R

N .
Then, the cap symmetrization of D with respect to direction e, denoted by D∗, is
defined in the following way: for all r ∈ (0,∞), the set D∗ ∩ ∂B(0, r) is a spherical
cap centered at re satisfying

HN−1(D∗ ∩ ∂B(0, r)) = HN−1(D ∩ ∂B(0, r)), for all r > 0,

whereHN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN . For a mea-
surable function v, the cap symmetrization v∗ is a rearrangement of v such that

{x ∈ � : v∗(x) ≥ θ} = {x ∈ � : v(x) ≥ θ}∗, for all θ > 0,

see Sperner (1981, Page 1) or Brock (2007, Sect. 3.3). In order to determine nearly
optimal solutions, we need the following result about cap symmetrization, see Brock
(2007, Theorem 4.5).

Lemma 3 Let v ∈ H1(�) where either � = B(0, r) or � = B(0, r2)\B(0, r1) for
some r2 > r1 ≥ 0. Then, we have v∗ ∈ H1(�) and ‖∇v‖L2(�) ≥ ‖∇v∗‖L2(�).

The following result is attributed to Hardy et al. (1952, Chapter 10).

Lemma 4 Consider u, v ∈ L2(�)where either� = B(0, r)or� = B(0, r2)\B(0, r1)
for some r2 > r1 ≥ 0. Then, we have

∫
�

uvdx ≤
∫

�

u∗v∗dx.

The following lemma which is a modification of the bathtub principle is required.
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Lemma 5 Consider f (x) ∈ L1(�). Then the maximization problem

max
m∈M

∫
�

m(x) f (x)dx,

is solvable by m(x) = χD such that |D| = A and

{x ∈ � : f (x) > t} ⊂ D ⊂ {x ∈ � : f (x) ≥ t}, (7)

where
t = sup{s ∈ R : |{x ∈ � : f (x) ≥ s}| ≥ A}. (8)

Moreover, this solution is unique if set {x ∈ � : f (x) = t} has zero Lebesgue measure
and we have D = {x ∈ � : f (x) ≥ t}.
Proof Considering the fact that

max
m∈M

∫
�

m(x) f (x)dx = − min
m∈M

∫
�

m(x)(− f (x))dx,

the assertion is obtained in view of Lieb and Loss (2001, Theorem 1.14). �


3 Nearly optimal solution

This section is devoted to nearly optimal solutions when the diffusion is large. A nearly
optimal solution is a functionm ∈ Mwhich is in good agreement with the maximizer
of (4) when μ is large enough. Denote τ = A/|�|. It is known that u → τ when
μ → ∞ (Lou 2006). Following the idea in He and Ni (2016a, b, 2017), and Mazari
et al. (2020), when μ is large, there is a function v such that

u ≈ τ +
v + 1

τ 2|�|
∫
�
|∇v|2dx

μ
.

Given m ∈ L2(�) with
∫
�
mdx = A, v satisfies the following boundary value

problem ⎧⎨
⎩

�v = τ(τ − m) in �,
∂v
∂n = 0 on ∂�,∫
�

vdx = 0,
(9)

where τ = A/|�|. This equation has a non-trivial solution (Mazari et al. 2020) and
the uniqueness is ensured by the integral constraint. Moreover, the solution belongs
to H2(�)∩C1,α(�) for some α > 0, see Gilbarg and Trudinger (2015, Theorem 8.8)
and Lê (2006, Theorem 4.4). It is well known that v = vm(x) satisfies (9) if it is a
solution of the following maximization problem

sup
v∈H1(�),

∫
� vdx=0

2τ
∫

�

mvdx −
∫

�

|∇v|2dx,

123



Maximal total population of species in a diffusive logistic model Page 7 of 27 47

and then in view of the integral constraint in (9) we have

∫
�

|∇vm |2dx = τ

∫
�

mvmdx,

for themaximizer. LetF(m) = ∫
�
|∇vm |2dx and consider the followingmaximization

problem
sup
m∈M

F(m). (10)

It has been proved that (10) has a solution m̃ = χD̃ in view of the fact that F(m) is
a strictly convex functional (Mazari et al. 2020). The maximizer of (10) is a nearly
optimal solution of (4). This means that when μ → ∞ the family {m̂μ}μ>0 which
are solutions of (4) corresponding to μ, converges up to a subsequence to a solution
of (10) in L1(�), see Mazari et al. (2020, Theorem 2).

Lemma 6 Let m ∈ M and assume that N < 4. The functional F is Gateaux differen-
tiable at m and we have

(F ′(m), h) = 2τ
∫

�

hvmdx,

for all h ∈ L2(�) with
∫
�
hdx = 0.

Proof Setting vt = vm+th − vm , it is easy to check that vt satisfies

⎧⎪⎨
⎪⎩

�vt = −tτh in �,
∂vt
∂n = 0 on ∂�,∫
�

vt dx = 0.

(11)

Using Sobolev embeddings and regularity results for elliptic equations, Gilbarg and
Trudinger (2015, Theorem 8.8), we obtain

‖vt‖C(�̄) ≤ C1‖vt‖H2(�) ≤ C2
(‖vt‖H1(�) + tτ‖h‖L2(�)

)
≤ C2tτ‖h‖L2(�)

(‖vt‖L2(�) + 1
)
,

which yields that vm+th → vm uniformly as t → 0. On the other-hand, it is easy to
check that for all m, n in L2(�), we have

∫
�

nvmdx =
∫

�

mvndx, (12)

in view of the fact that vm and vn are solutions of (9) corresponding to m and n
respectively.

Using these findings, it is inferred that
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(F ′(m), h) = τ lim
t→0

∫
�
(m + th)vm+thdx − ∫

�
mvmdx

t

= τ lim
t→0

∫
�
mvmdx + t

∫
�
hvmdx + t

∫
�
hvm+thdx − ∫

�
mvmdx

t

= 2τ
∫

�

hvmdx,

in view of (12) and the fact that vm+th → vm uniformly as t → 0. �

The following lemma provides an optimality condition for a local maximizer of (10).
Let B(m, ε) be a ball in L2(�) centered at m with radius ε > 0. Then, m̃ is a local
maximizer for (10) if there exists an ε > 0 such that

F(m̃) ≥ F(m) for all m ∈ B(m̃, ε) ∩ M.

Lemma 7 Assume that m̃ = χD̃ is a local maximizer of (10) and N < 4. Then, we
have

∫
�

m̃vm̃dx ≥
∫

�

hvm̃dx, for every h ∈ M.

Moreover, there is a non-decreasing function φ : R → R such that m̃ = φ(vm̃) and
also D̃ is uniquely determined in the following form

D̃ = {x ∈ � : vm̃ ≥ t̃}, such that t̃ = sup{s : |{x ∈ � : vm̃ ≥ s}| ≥ A}.

Proof Consider h ∈ M, then in view of Lemma 1 we know that m̃+ t(h− m̃) belongs
toM for t ∈ (0, 1). Now, Lemma 6 yields

2τ
∫

�

(h − m̃)vm̃dx = lim
t→0+

F(m̃ + t(h − m̃)) − F(m̃)

t
≤ 0,

and so

∫
�

m̃vm̃dx ≥
∫

�

hvm̃dx, for every h ∈ M.

The last inequality says that m̃ is a maximizer of the functional L(h) = ∫
�
hvm̃dx

over M. In view of (9), we know that �vm̃ = τ 2 − τχD̃ almost everywhere in �.
Since τ = A

|�| < 1, it is inferred that �vm̃ < 0 almost everywhere in D̃ and�vm̃ > 0
otherwise. Using Lemma 7.7 in Gilbarg and Trudinger (2015), it is concluded that the
graph of vm̃ has no significant flat section. Now employing Lemmas 2.4 and 2.9 in
Burton (1989), it is deduced that there is a non-decreasing function φ such that φ(vm̃)
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is the unique maximizer of L(h). Consequently, we have m̃ = χD̃ = φ(vm̃). Then, it
is inferred that there is t̃ such that φ(s) = 0 for s < t̃ and φ(s) = 1 for s ≥ t̃ where

D̃ = {x ∈ � : vm̃ ≥ t̃}, such that t̃ = sup{s : |{x ∈ � : vm̃ ≥ s}| ≥ A},

due to |D̃| = A. �

The following theorem reveals that (10) has a cap symmetric solution m∗ = χD∗

in balls or annuli. For instance let e = (1, 0, .., 0) ∈ R
N , this means that D∗ consists

of spherical caps centered at e. Indeed, if D∗ ⊂ R
2 in polar coordinates r ≥ 0 and

θ1 ∈ [−π, π ], D∗ is symmetric in θ1, convex in θ1 and concentrated about the positive
x1−axis. Moreover, vD∗ on D∗ depends only on the radial distance r = ‖x‖ and on
the geographical latitude θ1 := arccos(x1/‖x‖), and is non-increasing in θ1 ∈ [0, π ]
(Brock 2007; Kawohl 2006).

Theorem 1 Let� be ball B(0, r2) or annulus B(0, r2)\B(0, r1) for some r2 > r1 ≥ 0
and e be an arbitrary direction. Then problem (10) has a cap symmetric solution
m∗ = χD∗ with respect to e.

Proof Fix m ∈ M. Recall that
∫
�
|∇vm |2dx = τ

∫
�
mvmdx and also

F(m) = sup
v∈H1(�),

∫
� vdx=0

2τ
∫

�

mvdx −
∫

�

|∇v|2dx.

We know that
∫
�

vmdx = ∫
�

v∗
mdx due to Brock (2007, Theorem 3.1). Now, employ-

ing Lemmas 3 and 4, we observe that

F(m) = sup
v∈H1(�),

∫
� vdx=0

2τ
∫

�

mvdx −
∫

�

|∇v|2dx

≤ 2τ
∫

�

m∗vm∗dx −
∫

�

|∇vm
∗|2dx

≤ sup
v∈H1(�),

∫
� vdx=0

2τ
∫

�

m∗vdx −
∫

�

|∇v|2dx = F(m∗), (13)

for an arbitrary direction e. This yields that m∗ is a maximizer for (10). �

In the next theorem, we will address the question of uniqueness for (10) when � is

a ball or an annulus.

Theorem 2 Let� be ball B(0, r2) or annulus B(0, r2)\B(0, r1) for some r2 > r1 ≥ 0
in RN , N ≥ 2. Then, precisely one of the following statements holds
a) the problem (10) has a unique and then radial solution,
b) the problem (10) has infinitely many solutions.
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Proof a) For an arbitrary direction e, the cap symmetric function χD∗ is a maximizer
invoking Theorem 1. Due to the uniqueness, the set D∗ is symmetric with respect to
all direction since e is arbitrary. It yields that D∗ should be a radial set. b) If there is
not a radial solution then indeed we have infinitely many maximizers for (10) in view
of Theorem 1. �


4 Numerical method

Our numerical algorithm is based upon the idea of the gradient ascent method. There-
fore, in what follows we provide variations of J (m) and uμ,m with respect to m.

Lemma 8 Let m ∈ M, g ∈ L∞(�) and ε > 0 such that m + εg ∈ M. Then,
i) there exists ψμ,m,g ∈ H1(�) such that

uμ,m+εg − uμ,m

ε
⇀ψμ,m,g weakly in H1(�),

as ε −→ 0 and

{
μ�ψμ,m,g + (m − 2uμ,m)ψμ,m,g = −guμ,m in �,

∂ψμ,m,g
∂n = 0 on ∂�.

(14)

ii) Moreover, we have

∫
�

uμ,m+εgdx =
∫

�

uμ,mdx + ε

∫
�

ψμ,m,gdx + O(ε2). (15)

Proof See Ding et al. (2010, Lemma 4.1) and Nagahara and Yanagida (2018, Propo-
sition 2.2)). �


Rewriting Eq. (15) in the following form

∫
�

uμ,m+εgdx −
∫

�

uμ,mdx = ε

∫
�

ψμ,m,gdx + O(ε2),

reveals that for m ∈ M and ε small enough, Eq. (15) provides an ascend direction
to increase J (m) over M if we have

∫
�

ψμ,m,gdx > 0. The problem is that ψμ,m,g

depends on the function g and it is not clear that how we can determine g which yields
ψμ,m,g with positive integral. To overcome this problem, let us consider the following
adjoint problem {

μ�w + (m − 2uμ,m)w = −1 in �,
∂w
∂n = 0 on ∂�.

(16)

This equation has a unique solution w = wμ,m due to the fact that the operator
μ� + (m − 2uμ,m) is invertible, see Lou (2006) and Nagahara and Yanagida (2018,
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Proposition 2.2). Using standard elliptic regularity arguments and the Sobolev embed-
ding theorems, we have w (x) ∈ W 2,p(�) ∩ C1,α(�̄) for α ∈ (0, 1) and all p > 1. It
is noteworthy that there is C > 0 such that

‖w‖L∞(�) ≤ C, (17)

and C is uniform in m ∈ M, see Mazari et al. (2020).
Multiplying (14) by w and (16) by ψμ,m,g and applying integration by parts, we

obtain

− μ

∫
�

∇ψμ,m,g∇wdx +
∫

�

(m − 2uμ,m)ψμ,m,gwdx = −
∫

�

guμ,mwdx,

− μ

∫
�

∇w∇ψμ,m,gdx +
∫

�

(m − 2uμ,m)wψμ,m,gdx = −
∫

�

ψμ,m,gdx,

which reveals that ∫
�

ψμ,m,gdx =
∫

�

guμ,mwμ,mdx. (18)

Employing (18), one can determines an ascend direction for J (m) in M in the fol-
lowing way. Let η ∈ M, 0 < ε < 1 and assume m is not a local maximizer of J (m)

with respect to M. Then m + ε(η − m) belongs to M since M is convex in view of
Lemma 1. Setting g = η − m in (18) we have

∫
�

ψμ,m,gdx =
∫

�

ηuμ,mwμ,mdx −
∫

�

muμ,mwμ,mdx. (19)

Now setting f (x) = uμ,m(x)wμ,m(x) in Lemma 5, we can compute the maximizer of
the first integral on the right-hand side of (19) which is η = χD where D is a subset of
a super-level set of f (x) = uμ,m(x)wμ,m(x) derived by (7) and (8). Therefore, starting
from m, g = χD − m is a direction for functional J (m) with steepest ascend. One
can use a line search algorithm to determine the maximum amount to move along the
given ascend direction that the condition J (m+εg) > J (m) is fulfilled. The resulting
algorithm is presented in Algorithm 1.

The following theorem determine the global minimizer of the functional J (m) over
M.

Lemma 9 If m(x) = A/|�|, then for all μ, u(x) = m(x) is the solution of (1) and
J = A. Moreover, m = A/|�| is the unique minimizer of J (m) over M.

Proof A simple calculation yields the first part of theorem. For the proof of the second
part see Mazari et al. (2020). �


The following theorem provides an optimality condition for a maximizer of (4)
when the diffusion μ is large enough.

123



47 Page 12 of 27 C.-Y. Kao, S. A. Mohammadi

Algorithm 1Maximization algorithm
Given μ, A, and T OL > 0, choose an initial m0 ∈ M.
1. Set i = 0.
2. Compute ui = uμ,mi and J (ui ) using a finite element method.
3. Set mi − 2ui as the coefficient in (16) and compute wi = wμ,mi using a finite element method.
4. Set f = uiwi and derive χDi employing formulas (7) and (8).
5. Set gi = χDi − mi and ε = 1.
6. Set mi+1 = mi + εgi and compute ui+1 = uμ,mi+1 and J (mi+1) using a finite element method.
7. While J (mi+1) < J (mi ) do
Set ε = ε/2.
Set mi+1 = mi + εgi and compute ui+1 and J (mi+1) using a finite element method.
8. If J (mi+1) − J (mi ) < T OL , stop the algorithm. Otherwise set i = i + 1, go to step 3.

Theorem 3 Assume diffusion μ is large enough. Then, we have m̂ = χD̂ for D̂ ⊂ �

with |D̂| = A such that

∫
�

ηuμ,m̂wμ,m̂dx <

∫
�

m̂uμ,m̂wμ,m̂dx,

for all η ∈ M where η �= m̂ and also we have D̂ = {x ∈ � : uμ,m̂(x)wμ,m̂(x) ≥ t̂}.
Proof According to Theorem 1 in Mazari et al. (2020) we know that the maximizer is
of bang-bang type and so m̂ = χD̂ for D̂ ⊂ � with |D̂| = A when μ is large enough.

According to (15) and (18) we observe that J (m) is Gateaux differentiable and
indeed we have

lim
ε→0+

J (m + ε(η − m)) − J (m)

ε
=

∫
�

(η − m)uμ,mwμ,mdx, (20)

for all η,m ∈ M.
In view of Theorem 1 in Mazari et al. (2020), J : M → R is strictly convex for

large μ and so we see that

J (m̂ + ε(η − m̂)) − J (m̂)

ε
< J (η) − J (m̂) ≤ 0, (21)

for all η ∈ M, η �= m̂ and 0 < ε < 1. On the other hand due to the convexity of J (m)

and (20) we have

J (m̂ + ε(η − m̂)) ≥ J (m̂) + ε

∫
�

(η − m̂)uμ,m̂ŵμ,m̂dx,

or equivalently

J (m̂ + ε(η − m̂)) − J (m̂)

ε
≥

∫
�

(η − m̂)uμ,m̂ŵμ,m̂dx, (22)
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for all η ∈ M and 0 < ε < 1. Combining (21) and (22) we have

∫
�

ηuμ,m̂ŵμ,m̂dx <

∫
�

m̂uμ,m̂ŵμ,m̂dx, (23)

for all η ∈ M where η �= m̂. This means that m̂ is the unique maximizer of the
functional L(η) = ∫

�
ηuμ,m̂ŵμ,m̂dx over M. Employing Theorem 4.5 in Burton

(1987) there is an increasing function ξ : R → R such that m̂ = χD̂ = ξ(uμ,m̂ŵ).
This yields the last assertion of the theorem. �


In the next theorem we will address the convergence of Algorithm 1. Recall that
the algorithm generates an increasing sequence of {J (mi )}∞1 which is bounded from
above and so it converges to its supremum denoted by Ĵ . We establish that every
accumulation point of the sequence {mi }∞1 generated by the algorithm is a stationary
point and indeed satisfies the necessary condition for the maximizer. Let us recall that
m̂ ∈ M is an accumulation point of the sequence generated by Algorithm 1 if there
exists a subsequence, still denoted by {mi }∞1 , such that mi⇀m̂ weakly in L2(�).

Theorem 4 i) For all accumulation point m̂ ∈ M such that mi⇀m̂ weakly in L2(�)

we have ui → û = uμ,m̂ strongly in L2(�) and J (mi ) → Ĵ = J (m̂).
ii) Let ŵ = wμ,m̂ . We have

∫
�

m̂ûŵdx ≥
∫

�

ηûŵdx, for all η ∈ M. (24)

iii) Assume all level sets of function û(x)ŵ(x) have zero Lebesgue measure. Then,
we have m̂ = χD̂ where D̂ = {x ∈ � : û(x)ŵ(x) ≥ t̂} with |D̂| = A and mi → m̂
strongly in L2(�).

Proof i) In view of Eq. (1), we obtain

μ

∫
�

|∇ui |2dx =
∫

�

miu
2
i dx −

∫
�

u3i dx ≤
∫

�

miu
2
i dx ≤ |�|,

due to (2). Therefore, we can conclude that ‖ui‖H1(�) is bounded and so there is
û ∈ H1(�) and a subsequence, still denoted by {ui }∞1 , such that ui⇀û in H1(�).
Sobolev embedding yields that ui → û in L2(�). In summary, we have

mi⇀m̂, ui → û in L2(�) and ui⇀û in H1(�). (25)

In view of (2) and (25), it is inferred that ‖û‖L∞(�) ≤ 1.
It just remains to prove that û = uμ,m̂ . The weak form of (1) gives

−
∫

�

∇ui · ∇φdx +
∫

�

miuiφdx −
∫

�

u2i φdx = 0, for all φ ∈ H1(�). (26)
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Now, it is observed that when i → ∞
∣∣∣∣
∫

�

(miuiφ − m̂ûφ)dx

∣∣∣∣ ≤
∣∣∣∣
∫

�

mi (uiφ − ûφ)dx

∣∣∣∣ +
∣∣∣∣
∫

�

(mi − m̂)ûφdx

∣∣∣∣ → 0,

due to the facts that ‖mi‖L∞(�) ≤ 1, ‖û‖L∞(�) ≤ 1 and (25). Furthermore, we have

∣∣∣∣
∫

�

u2i φ − û2φdx

∣∣∣∣ ≤
∣∣∣∣
∫

�

(ui + û)(ui − û)φdx

∣∣∣∣ ≤ 2‖ui − û‖L2(�)‖φ‖L2(�) → 0,

in view of boundedness of ui and û and (25). Consequently, passing to the limit in
(26), we obtain û = uμ,m̂ . It is straightforward that J (mi ) → J (m̂). Recall that

{J (mi )}∞1 is a subsequence of a convergent sequence and hence we have Ĵ = J (m̂).
ii) Recall that according to Algorithm 1, J (mi ) < J (mi+1) and so

J (m̂) = sup{J (mi ) : i ∈ N}. (27)

This yields that ∫
�

m̂ûŵdx ≥
∫

�

ηûŵdx, for all η ∈ M, (28)

since otherwise, as explained above, we can find m̄ ∈ M such that J (m̄) > J (m̂).
This contradicts (27).
iii) Equation (28) says that m̂ is a maximizer of the functional L(η) = ∫

�
ηûŵdx for

η ∈ M. Since every level set of ûŵ has zero measure, there is an increasing function
ξ : R → R such that ξ(ûŵ) ∈ N , see Burton (1989, Lemma 2.9). The function ξ(ûŵ)

is the unique maximizer of L(η) relative toM in view of Burton (1989, Lemma 2.4).
Hence, one can infer that m̂ = ξ(ûŵ) = χD̂ and so we should have

ξ(s) =
{
0 s < t̂,
1 s ≥ t̂,

and D̂ = {x ∈ � : û(x)ŵ(x) ≥ t̂} such that |D̂| = A. In order to show the strong
convergence of the sequence {mi }∞1 , we see that

‖mi − m̂‖2L2(�)
= ‖mi‖2L2(�)

+ ‖m̂‖2L2(�)
− 2

∫
�

mim̂dx

≤ 2‖m̂‖2L2(�)
− 2

∫
�

mim̂dx, (29)

in view of Lemma 2. Passing i → ∞ in (29), we obtain the strong convergence result.
�


Remark 1 It is noteworthy that while μ is large enough we can always consider ε = 1
in Algorithm 1 and it is not required to use procedures like the line search algorithm
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to determine the maximum amount to move along the given ascend direction. It is due
to the fact that functional J is strictly convex for such μ and then we have

J (mi+1) = J (mi + εgi ) > J (mi ) + ε

∫
�

giuiwi dx.

4.1 Numerical Implementations

In this section, we show numerical results of Algorithm 1 to determine the optimal
m̂(x) which maximizes J , the total population of species. For any given diffusion
constant μ and area constant A such that m(x) ∈ M, we use numerical approaches to
find the solution u(x) to Eq. (1). In one dimension, a collocation method is used and
implemented by MATLAB built-in function bvp4c. The initial mesh has 12001 grid
points. In two dimensions, a finite element method is used and the basis functions are
linear polynomials of degree one. The resulting discretized nonlinear system is solved
by Gauss-Newton iteration method with numerical evaluation of the full Jacobian.
The residual tolerance to terminate the nonlinear solver is 10−10. The tolerance to stop
Algorithm 1 is chosen as 10−6. The implementation is done in MATLAB by using a
PDEToolbox. For optimization problem,we startwithmany different random resource
functionsm and report the optimizer which achieves the maximal total population size
J .

To emphasize the dependence of the total population on the resource function
m(x) and the diffusion constant, we will use the notation J = J (m(x), μ) from
now on. In Fig. 1, we show how the total population size J changes with respect
to the diffusion constant μ for the resource function m(x) = m1(x) := χ[0.7,1] and
m(x) = m2(x) := χ[0.35,0.65]. As discussed in Lou (2006), the total population size
reaches minimums, J = ∫

m1(x)dx = 0.3, at μ = 0 and μ = ∞, and a maximum
at some intermediate μ�. In this case, J (m1, μ

�) ≈ 0.406 at μ� ≈ 0.035279. Note
that due to the symmetry, J (χ[0,0.3], μ) = J (χ[0.7,1], μ). In Fig. 1b, the resource
function is chosen as χ[0.35,0.65], the graph of the total population size J is similar to
the one in Fig. 1 and the total population size reaches a maximum J (m2, μ

�) ≈ 0.406
at μ� ≈ 0.008819. Indeed, the values of total population satisfies J (m1(x), μ) =
J (m2(x),

μ
4 ). When the logarithmic scale is used for the x-axis, the graph of J for

m2(x) shifts to the left by log10 4 comparing to the one for m1(x).
In Fig. 2, we show the total population for m(x) = χ[c−0.15,c+0.15] for c ∈

[0.5, 0.85]. Among this class of resource functions, the optimal resource function
is m̂(x) = m1(x) when μ is greater than 0.01589 while the optimal resource
m̂(x) = m2(x) when μ is smaller than 0.01589.

In Fig. 3, we show how J varies with respect to the diffusion constantμ for another
two resource functions m(x) = χ[0.05,0.1] + χ[0.15,0.35] + χ[0.5,0.55] + χ[0.85,0.9] and
m(x) = χ[0,0.05] + χ[0.1,0.25] + χ[0.45,0.5] + χ[0.85,0.9], respectively. As indicated in
Liang and Lou (2012), the total population size is usually not a monotone function of
the diffusion constant μ. In Fig. 3a, the total population size has two local maxima
and one local minimum.
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Fig. 1 The graph of the total population J (m(x), μ) with respect to μ for the resource function a m(x) =
m1(x) := χ[0.7,1] and b m(x) = m2(x) := χ[0.35,0.65]

In general, assume that u(x) is the solution of (1.1) with m(x) = χ[1−l,1] on [0, 1]
with a given constant l > 0. For a given positive integer k, denote x j = j

k , 0 ≤ j ≤
k − 1,

mk(x) =
{
m

(
k

(
x − x j

))
x j ≤ x ≤ x j+1, j = even,

m
(
k

(
x j+1 − x

))
x j ≤ x ≤ x j+1, j = odd,

and

uk(x) =
{
u

(
k

(
x − x j

))
x j ≤ x ≤ x j+1, j = even,

u
(
k

(
x j+1 − x

))
x j ≤ x ≤ x j+1, j = odd.

It is straight forward to verify that

{
μ

k2
�uk + uk(mk − uk) = 0 x ∈ �,

∂uk
∂n = 0 x ∈ ∂�.

where � = [0, 1]. In Fig. 4, we see that objective function J remains constant for
μ = μ0/k2 and mk for μ0 = 0.035279, m(x) = χ[0.7,1] and k = 1, 2, 3, 4, 5 and
6. In light of this, we can use the maximum of the total population with respect to a
given class of resource functions such as mk(x), k = 1, 2, · · · , to provide a lower
bound for J � = maxm(x) J (m(x), μ). In Fig. 5, the black curve shows the lower bound
for J �. This indicates that it is possible to find J � ≥ 0.406 for small μ even though
it is challenging to obtain this numerically as it requires very refined calculations to
achieve the accuracy.

In Figs. 6 and 7, we show the optimal resource functions m̂(x) and its corresponding
û(x) for the total resource A = |D| equals to 0.3 and 0.6, respectively. In all cases, the
optimal resource functions are periodic. Denote m1 = χ[0.7,1]. The optimal resource
functions arem1,m2,m3,m6,m8,m19 forμ = 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001,
respectively.Whenμ gets smaller, the optimal resource becomesmore fragmented.We
also marked these diffusion parameters in red dots in Fig. 5 for A = 0.3. Numerically,
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Fig. 2 The resource function m(x) = χ[c−0.15,c+0.15] for c ∈ [0.5, 0.85] and its corresponding J with
respect to μ
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Fig. 3 The graph of the total population J (m(x), μ) with respect to μ for the resource function a m(x) =
χ[0.05,0.1] + χ[0.15,0.35] + χ[0.5,0.55] + χ[0.85,0.9] and b m(x) = χ[0,0.05] + χ[0.1,0.25] + χ[0.45,0.5] +
χ[0.85,0.9]

we observe some nonperiodic resource functions could be local maximizers as the
ones reported in Mazari and Ruiz-Balet (2021). In particular, there are many local
maximizers whenμ is small. This leads to a big challenge to find the global maximizer
for a small diffusion rate.

In two dimensions, we first show results on the unit square � = [0, 1]2. We
compute the optimal resource function m for the same parameters that was used in
Mazari and Ruiz-Balet (2021). The triangular mesh has 90,876 elements. In Fig. 8,
we show the optimal m̂(x) = χD̂ and its corresponding û(x) for A = 0.3|�| and
μ = 0.1, 0.01, 0.005, and 0.001, respectively. For large enough μ, such as μ = 0.1,
the optimal domain D̂ is simply-connected and attach to one of 4 corners of the square.
This result is in line with a theoretical conclusion of Mazari et al. (2020, Theorem 2)
which asserts that concentration occurs for large μ.

It is clear that the optimal m̂(x) is not unique. When μ gets smaller, the optimal
domain D̂ gets more fragmented. Also, the optimal domain D̂ and � do not possess
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Fig. 4 The solution uk (x) shown in red for m(x) = mk (x) shown in blue with m1(x) = χ[0.7,1] and
μ = 0.035279/k2 for k = 1, 2, 3, 4, 5, 6. All six resource functions leads to the same total population
J ≈ 0.406

Fig. 5 The lower bound for J � is shown in the black curve which is generated by taking the maximum of
J (mk (x), μ) with m1(x) = χ[0.7,1] and k ∈ N

the same symmetry in general. The maximizers that we found for smallμ are different
from the ones reported in Mazari and Ruiz-Balet (2021). We have also shown other
local maximizers that we found in Fig. 9 and these two configurations are similar to
the ones in Mazari and Ruiz-Balet (2021). It is noteworthy to mention that the ones
in Fig. 8 have slightly higher total population size even though we only show J with
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Fig. 6 The optimal resource functions m̂(x) and its corresponding û(x) for A = 0.3 and different diffusion
constants

Fig. 7 The optimal resource functions m̂(x) and its corresponding û(x) for A = 0.6 and different diffusion
constants
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Fig. 8 The optimal m̂(x) and its corresponding û(x) for A = 0.3|�| and different diffusion constant μ

three digits after the decimal place. We found that it is quite crucial to choose small
enough residual tolerance for the nonlinear solver and use a refined mesh to ensure
the accuracy of J .

In Fig. 10, we show the results for A = 0.6|�|. When μ = 0.1, the domain D̂ is a
stripe which is leaning to the side of the square. Again, the optimal m̂(x) is not unique.
For μ = 0.01, the domain D̂ is a stripe in the center of the square. When μ = 0.005,
the domain D̂ is no longer simply-connected. The maximizers m̂(x) for μ = 0.01 and
μ = 0.005 are different from the ones reported in Mazari and Ruiz-Balet (2021) and
have larger total population sizes.

Figures 11 and 12 show results on a L-shaped domain for A = 0.3|�| = 0.225 and
A = 0.6|�| = 0.45, respectively. The triangular mesh has 68,830 elements. Again,
the maximizers for large μ, such as μ = 0.1, has a simply-connected domain D̂ while
the ones for small μ has D̂ fragmented. Even when the diffusion constant is small, the
optimal J � is well beyond the total resource A = |D̂|.

Figures 13 and 14 show results on a unit disk for A = 0.3|�| and A = 0.6|�|,
respectively. The triangular mesh has 116,466 elements. As proved in Theorems 1–2,
when μ is large, we expect that the optimal m̂(x) has either a radial or cap symmetry.
We observe this phenomenon numerically. For μ = 0.1, the optimal m̂(x) has a cap
symmetry and thus one expect that there are infinite solutions due to rotation invariance.
Whenμ = 0.05, the maximizer looks like a projected baseball configuration.Whenμ

is even smaller, we observe that the optimal D̂ has several connected components for
A = 0.3|�| in Fig. 13 while the complement of the optimal D̂ has several connected
components for A = 0.6|�| in Fig. 14.

Figures 15 and 16 show results for A = 0.3|�| and A = 0.6|�|, respectively,
on an annulus with inner radius 0.5 and the outer radius 1. The triangular mesh has
87,766 elements. For μ = 0.1, the optimal resource m̂(x) has a cap symmetry as
expected fromTheorem 1. In Fig. 15, the optimal D̂ becomesmore fragmented, having
1, 2, 6, 7 connected components when μ = 0.1, 0.05, 0.01, 0.005, respectively. For
A = 0.6|�|, we found a radial maximizer for μ = 0.01 as shown in Fig. 16.
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Fig. 9 The other local maximizer m(x) and its corresponding u(x) for A = 0.3|�| and different diffusion
constant μ = 0.01 and μ = 0.001, respectively

Fig. 10 The optimal m̂(x) and its corresponding û(x) for A = 0.6|�| and different diffusion constant μ

5 Conclusion

In this paper we have obtained symmetric properties of the maximizer m̂ when � is a
ball or annulus inRN andμ is large. These qualitative properties are in linewith results
in Mazari et al. (2020) and Mazari and Ruiz-Balet (2021) which assert that for large
diffusion, concentrated resources is favourable for maximizing the total population.
After deriving an optimality condition, a numerical algorithm has been developed
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Fig. 11 The optimal m̂(x) and its corresponding û(x) for A = 0.3|�| and different diffusion constant μ

Fig. 12 The optimal m̂(x) and its corresponding û(x) for A = 0.6|�| and different diffusion constant μ

based upon rearrangement techniques. It has been proved that the algorithm converges
and numerical illustrations reveal that the algorithm can be applied efficiently for
domains with different geometries. Our numerical results validate the the theoretical
achievement in Ding et al. (2010), Mazari et al. (2020, 2021), and Nagahara and
Yanagida (2018), that there is a bang-bang type maximizer for (4) regardless of the
value of μ > 0.

To investigate the questions raised in Ding et al. (2010), Mazari and Ruiz-Balet
(2021), our numerical results reveal that it is not true that for general domains the
optimal resources distribution touches the boundary, see for instance Fig. 6. However,
in two dimensions, we observe that the optimal resources distribution touches the
boundary for all μ. Moreover, when μ is small and the domain � is curved, it is
not necessary to allocate the resource only near the curved parts. The resource could
also be allocated far away from the curved boundary as shown in Fig. 13. According
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Fig. 13 The optimal m̂(x) and its corresponding û(x) for A = 0.3|�| and different diffusion constant μ

Fig. 14 The optimal m̂(x) and its corresponding û(x) for A = 0.6|�| and different diffusion constant μ

to our numerical results in two-dimensional problems, we conjecture that for large
enough μ the optimal resources distribution is a simply connected domain touching
the boundary. If one can prove that there is a maximum point on the boundary of
domain � for uμ,m̂wμ,m̂ , then in view of the optimality condition we can conclude
that there is a connected component of the optimal resources distribution touching the
boundary. Even this simpler assertion is a challenging question.

A highly challenging problem is to investigate the behavior of maximizers as μ →
0 even for � = (0, 1). The numerical results for one-dimensional problems again
validate the theoretical results that to maximize the total population size, the smaller
the diffusivity, the more fragmentation should be done. This problem was raised in
Mazari et al. (2020). Recently, it has been proved that resource fragmentation is better
than concentration for the n-dimensional box domain (Mazari and Ruiz-Balet 2021)
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Fig. 15 The optimal m̂(x) and its corresponding û(x) for A = 0.3|�| and different diffusion constant μ

Fig. 16 The optimal m̂(x) and its corresponding û(x) for A = 0.6|�| and different diffusion constant μ

and then for any general bounded domains in R
N if the diffusion rate is sufficiently

small (Heo and Kim 2021).
Our numerical investigations illustrate that in the one-dimensional case whileμ →

0 we can find maximizers with periodic pattern, see Figs. 4, 6 and 7. However, it is
hard to conclude the same pattern for two-dimensional problems. Moreover, in this
case, the numerical results of this paper suggest that when μ → 0 the total variation
of m̂μ goes to infinity as it has been proved in Theorem 1 of Mazari and Ruiz-Balet
(2021).

Based upon our two-dimensional illustrations, we cannot infer decisively about the
topology and geometry of the optimal domain D̂ for small diffusivity although it has
been proved that fragmentation phenomenon occurs (Mazari and Ruiz-Balet 2021;
Heo and Kim 2021). According to Figs. 8, 11, 13 and 15, while A or the total amount
of resources is small, fragmentation occurs which means that the total variation of the

123



Maximal total population of species in a diffusive logistic model Page 25 of 27 47

function m̂μ goes to infinity whileμ → 0. However, the set D̂ is disconnected and has
a lot of connected components. But, if A is large, the optimal resource distribution is
fragmented and in this case it is connected, see for instance Figs. 10, 12 and 14. Indeed,
it seems that for the case that A is large, the set D̂c corresponding to the maximizer
m̂ = χD̂ or the places which is not favourable to the species, is disconnected and
has many connected components while we can observe that the total variation of the
function m̂μ goes to infinity as μ → 0. These observation necessitate a study on the
topology and geometry of the optimal domain D̂ considering both factors A, the total
amount of resources, and μ, the diffusivity.
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