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Abstract

In this paper, we investigate the maximization of the total population of a single
species which is governed by a stationary diffusive logistic equation with a fixed
amount of resources. For large diffusivity, qualitative properties of the maximizers
like symmetry will be addressed. Our results are in line with previous findings which
assert that for large diffusion, concentrated resources are favorable for maximizing
the total population. Then, an optimality condition for the maximizer is derived based
upon rearrangement theory. We develop an efficient numerical algorithm applicable to
domains with different geometries in order to compute the maximizer. It is established
that the algorithm is convergent. Our numerical simulations give a real insight into the
qualitative properties of the maximizer and also lead us to some conjectures about the
maximizer.
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1 Introduction

Spatially heterogeneous models are of great importance in conservation biology (Goss-
Custard et al. 2003). Considering such models, there are some natural questions to
be addressed. Existence, uniqueness and stability of equilibriums for heterogeneous
systems of reaction—diffusion equations are some of such questions, see for instance He
and Ni (2017), Yousefnezhad and Mohammadi (2016), and Yousefnezhad et al. (2018).
Recently, the question of maximizing the total population size has drawn considerable
attention from both mathematical and biological fields since the population abundance
is clearly a good measurement for the conservation of a single species (Ding et al. 2010;
Mazari et al. 2020; Mazari and Ruiz-Balet 2021; Nagahara and Yanagida 2018).
In this paper an optimal control problem is studied to maximize the total population
of a single species. We consider the following semilinear elliptic equation
MAu—i-m(x)u—uz:O in 2, |
{ g—;‘l =0 on 082, M

where u > 0, m (x) € L*°(2) is a non-negative, non-zero function, 2 is a bounded
domain in RY with smooth boundary 92 and n is the outward unit normal vector on
the boundary.

It is well known that Eq. (1) has a unique positive solution u (x) = uy , (X) in
W2P(Q) N Ch*(Q) fora € (0,1) and p > 1. Also, we know that

0 <infu <u < lImli~, @
Q

see Berestycki et al. (2005), Ding et al. (2010), Mazari et al. (2020), and Nagahara
and Yanagida (2018).

Problem (1) arises as a stationary equation of a reaction—diffusion PDE modeling the
growth of biological populations and plays an important role in studying the effects of
dispersal and spatial heterogeneity in population dynamics (Cantrell and Cosner 1989,
1991; Skellam 1951). From a biological point of view, €2 is the habitat of a species
and the zero-flux boundary condition in (1) accounts for the fact that no individuals
cross the boundary of the habitat. The function m (x) stands for the intrinsic growth
rate of the species at location x which in a way can be considered as a measure of the
resources available at x. The set {x | m(x) > 0} corresponds to the place in the habitat
which is favorable to the species since resources are available there. The parameter @
represents the dispersal ability of the species or the diffusion rate.

It was observed by Lou (2006) that

/m(x)dx</uu,m(x)dx, 3)
Q Q

which implies that a total population at equilibrium is greater than the total carrying
capacity in a spatially heterogeneous environment. It was conjectured by Ni that,
among all spatial distributions of resources and the dispersal rate, u, the ratio of the
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total population at equilibrium and the total carry capacity is bounded from above by
3, and that the constant is sharp in one dimension. This conjecture was later proved in
Bai et al. (2016).

We are interested in investigating how the allocation of resources influences the
population size of the species. Therefore, we consider the following optimization
problem. For A € (0, |€2]) define

M= {m e L®(Q): 0<m(x) <1, / m(x)dx = A},
Q
and our objective functional
J(m) =/ Uy, m(X)dX.
Q

We want to determine m € M such that

J*=Jm) = mmea}ét J(m). “4)

The integral fQ m(x)dx represents the total amount of resources and J(m) denotes
the total population of the species. The functional J (m) can be considered as a good
measurement for the conservation of a single species and also plays an important role
in preventing the invasion of alien species (Lou 2006). Indeed, in the optimization
problem (4), we want to maximize the total population size of the species while we
have a fixed amount of resources. If we distribute the resources in the habitat with the
optimal resource 71, then the resident species has the highest population size, with a
given resource amount A, and so usually it is harder for other species to invade its
habitat. Similar questions regarding the optimal allocation of resources have also been
investigated in the framework of eigenvalue problems (Chugunova et al. 2016; Cosner
et al. 2013; Hintermiiller et al. 2012; Kao et al. 2008; Lamboley et al. 2016; Lou 2008;
Lou and Yanagida 2006).

It has been established that problem (1) admits a solution by using a standard varia-
tional method (Ding et al. 2010). At the mathematical level, it is hard and challenging
to deal with the nonenergetic functional J (m) to derive qualitative properties of the
maximizer since the structure of the functional and boundary conditions in (1) avoid
employing classical tools (e.g., rearrangements, symmetrization). The main challeng-
ing qualitative question corresponding to this optimization problem was whether the
maximizer /m is of bang-bang type, i.e., there exists a set D C Q with |5| =A
such that i = xj. Having a bang-bang type maximizer yields i = yp and the
maximization problem (4) can be recast in terms of the following shape optimization
problem

J(m) = maxJ(m), 5)
meN

where N = {xp : D C @, |D| = A}. This implies that with limited resources,
one should put all the resources in some suitable set D, a protected area, in order
to maximize the total population size. Numerical simulations in Ding et al. (2010),
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Mazari and Ruiz-Balet (2021) supported the conjecture that the maximizers of (4)
are of bang-bang type. It has been proved that all local maximizers m of (4) that are
Riemann integrable are of bang—bang type (Nagahara and Yanagida 2018). Moreover,
the same result has been obtained in Mazari et al. (2020) assuming large diffusivity.
Recently this question was settled by Mazari et al. (2021) and it has been established
that the maximizers of (4) are of bang-bang type regardless of the value of & > 0. One
can see the discussion on a more general model in Lam et al. (2020) which accounts
for spatial dependent intrinsic growth rate and carrying capacity.

In this paper, after providing preliminaries in Sect. 2, we aim at obtaining qualitative
properties of the maximizer for a large diffusivity in Sect. 3. Considering N-balls and
annuli, our results suggest that symmetric properties or even radial structure for the
maximizers of (4) may hold while u — oo. These qualitative properties are in line with
results in Mazari et al. (2020), Mazari and Ruiz-Balet (2021) which assert that for large
diffusion, concentrated resources are favorable for maximizing the total population.
In Sect. 4, an optimality condition for the maximizer of (4) is obtained based upon
rearrangement theory. From both mathematical and biological point of view, it is a
natural question to know about the shape of the optimal set D and thus it s necessary to
have a numerical method to determine a solution for (4). We develop a gradient-based
numerical algorithm to compute the maximizer invoking rearrangement techniques.
The convergence of the algorithm is investigated. Our numerical algorithm is efficient
and applicable for domains with different geometries and the numerical results validate
our findings and also theoretical results in Ding et al. (2010), Mazari et al. (2020,
2021), Mazari and Ruiz-Balet (2021), Nagahara and Yanagida (2018), and Heo and
Kim (2021). With an eye on the biological interpretations, numerical results give a real
insight into the qualitative properties of the maximizer, in particular for the challenging
case of small diffusions, and also lead us to some conjectures about the maximizer
which are stated in the conclusion section.

2 Preliminaries

In this section we provide some basic and well-known results about rearrangement
theory (Burton 1987, 1989) that will be required in our analysis.

Two Lebesgue measurable functions f : Q@ — R, f : Q — R, are said to be
rearrangements of each other if

lixeQ: f(x) =60} =lixeQ: f(x) =6} V6 € R. Q)

The set of functions which are rearrangement of f is called the rearrangement class
generated by f. Considering f = x 5 with |ID| = A, it is easy to check that all
functions in A are rearrangements of f and indeed V' C L2(S) is the rearrangement
class generated by this function. It is well known that the weak closure of this set in
L?(R) is M which has the following properties, see Burton (1989, Lemmas 2.2 and
2.3).
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Lemma 1 The set M is convex and weakly sequentially compact. Moreover, N is the
set of extreme points of M.

We need the following technical result.
Lemma 2 Consider h in M\N and n in N. Then we have ||h| 12q) < IInll12(q)-
Proof Since M is the weak closure of V| there is sequence {f;}{° C N such that

"k in L2(). It is easy to check that the L2-norm of all functions in A equals to
y q
V/A. Employing the weak lower semi-continuity of the norm, we have

1Al 2y < liminf || fill 2 = VA = Il 2()-
11— 00

O

Here we provide a brief introduction of cap or spherical symmetrization (Sperner
1981; Brock 2007). Hereafter B(0, r) represents an open ball centered at the origin with
radius r. Given a unit vector e as the direction, consider a measurable set D C RV,
Then, the cap symmetrization of D with respect to direction e, denoted by D*, is
defined in the following way: for all r € (0, c0), the set D* N 3dB(0, r) is a spherical
cap centered at re satisfying

HN=YD*NaB(0,r) =H"""(DN3BO,r)), forall r >0,

where HV~! denotes the (N — 1)-dimensional Hausdorff measure in R" . For a mea-
surable function v, the cap symmetrization v* is a rearrangement of v such that

xeQ:v'"x) >0}={xeQ:v(x) >0} forall 0 >0,

see Sperner (1981, Page 1) or Brock (2007, Sect. 3.3). In order to determine nearly
optimal solutions, we need the following result about cap symmetrization, see Brock
(2007, Theorem 4.5).

Lemma3 Let v € H'(Q) where either @ = B(0,r) or Q = B(0,r2)\B(0, r) for
some ry > r1 > 0. Then, we have v* € H () and Vvl L2y = IVl L2¢)-

The following result is attributed to Hardy et al. (1952, Chapter 10).

Lemma 4 Consideru,v € L*(Q2) where either 2 = B(0, r) orQ = B(0, r2)\B(0, r1)
for some ry > r; > 0. Then, we have

/uvdxf/u*v*dx.
Q Q

The following lemma which is a modification of the bathtub principle is required.
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Lemma5 Consider f(x) € L'(Q). Then the maximization problem

max /Q n®) f (x)dx,
is solvable by m(x) = xp such that |D| = A and
xeQ: fX)>t}cDC{xeQ: f(x)>1t}, @)

where
t=sup{seR: [{xeQ: f(x)>s}| > A}. (8)

Moreover, this solution is unique if set {x € Q : f(x) = t} has zero Lebesgue measure
and we have D = {x € Q: f(x) > t}.

Proof Considering the fact that

max fQ mx) £ ()dx = = min /Q m() (= £ (0)dx,

the assertion is obtained in view of Lieb and Loss (2001, Theorem 1.14). O

3 Nearly optimal solution

This section is devoted to nearly optimal solutions when the diffusion is large. A nearly
optimal solution is a function m € M which is in good agreement with the maximizer
of (4) when p is large enough. Denote t = A/|Q2|. It is known that © — 7 when
u — oo (Lou 2006). Following the idea in He and Ni (2016a,b, 2017), and Mazari
et al. (2020), when u is large, there is a function v such that

v+ #szw [l Vv2dx
. .

uT

Given m € L*(Q) with fQ mdx = A, v satisfies the following boundary value
problem
Av=r1t(t —m) in Q,
=0 on 9%, 9)
Jo vdx =0,

where t = A/|€2|. This equation has a non-trivial solution (Mazari et al. 2020) and
the uniqueness is ensured by the integral constraint. Moreover, the solution belongs
to H2(2) N C1¥(Q) for some a > 0, see Gilbarg and Trudinger (2015, Theorem 8.8)
and L& (2006, Theorem 4.4). It is well known that v = v,,(X) satisfies (9) if it is a
solution of the following maximization problem

sup 21/ mvdx—/le|2dx,
veH!(Q), [q vdx=0 Q Q
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and then in view of the integral constraint in (9) we have

/|va|2dX= rf muy,dx,
Q Q

for the maximizer. Let 7 (m) = f ol Vum |>dx and consider the following maximization
problem

sup F(m). (10)

meM

It has been proved that (10) has a solution m = x5 in view of the fact that F(m) is
a strictly convex functional (Mazari et al. 2020). The maximizer of (10) is a nearly
optimal solution of (4). This means that when 4 — oo the family {sf1,,},,~0 which
are solutions of (4) corresponding to w, converges up to a subsequence to a solution
of (10) in L1(2), see Mazari et al. (2020, Theorem 2).

Lemma 6 Letm € M and assume that N < 4. The functional F is Gateaux differen-
tiable at m and we have

(F'(m), h) = 21’/ hvp,dX,
Q

forall h € L*(Q) with [ hdx = 0.

Proof Setting v; = V44 — Um, it is easy to check that v, satisfies

Av, = —tth 1in Q,

% =0 on 0%2, (11)
fQ v;dx =0.

Using Sobolev embeddings and regularity results for elliptic equations, Gilbarg and
Trudinger (2015, Theorem 8.8), we obtain

lvell ey < Cillvill gy < Co (el iy + tTlikll2q))
< Cartllhlirag) (vl 2g0) +1)

which yields that v, 4, — v, uniformly as # — 0. On the other-hand, it is easy to
check that for all m, n in LZ(Q), we have

/nvmdx=/mvndx, (12)
Q Q

in view of the fact that v,, and v, are solutions of (9) corresponding to m and n
respectively.
Using these findings, it is inferred that
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Jo(m + th) vy pdx — [ mvydx
t
Jomomdx +1t [o hvgdX + 1 [o hvgydX — [o muy,dx

(F'(m), h) =t lim
t—0

=7 lim
t—0 t
=2t / hv,,dx,
Q
in view of (12) and the fact that vy, ¢, — v, uniformly as ¢t — 0. O

The following lemma provides an optimality condition for a local maximizer of (10).
Let B(m, €) be a ball in LZ(Q) centered at m with radius € > 0. Then, m is a local
maximizer for (10) if there exists an € > 0 such that

FGi) > F(m) forall m e B(i,e) N M.

Lemma7 Assume that m = x, is a local maximizer of (10) and N < 4. Then, we
have

/nﬁv,ﬁde/hv,;tdx, forevery h e M.
Q Q

Moreover, there is a non-decreasing function ¢ : R — R such that m = ¢ (v;) and
also D is uniquely determined in the following form

D={xeQ: vz >1}, suchthat f =sup{s:|{x e Q:v; > s} > A}.

Proof Consider i € M, then in view of Lemma 1 we know that 71 + ¢ (h — ) belongs
to M fort € (0, 1). Now, Lemma 6 yields

3

Q

t—07F t

and so
fnﬁv,;ldxz/hv,;,dx, forevery h € M.
Q Q

The last inequality says that m is a maximizer of the functional L(h) = fQ hvzdx
over M. In view of (9), we know that Av; = 12 — 7 p almost everywhere in €.
Since t = ﬁ < 1, itisinferred that Av; < 0 almost everywhere in D and Avg >0
otherwise. Using Lemma 7.7 in Gilbarg and Trudinger (2015), it is concluded that the
graph of vy; has no significant flat section. Now employing Lemmas 2.4 and 2.9 in
Burton (1989), it is deduced that there is a non-decreasing function ¢ such that ¢ (v;)
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is the unique maximizer of L(h). Consequently, we have m = x5 = ¢(v;7). Then, it
is inferred that there is 7 such that ¢ (s) = 0 for s < 7 and ¢ (s) = 1 for s > 7 where

D={xeQ: v >17}, suchthat 7 =sup{s:|{xe Q:v; >s}| > A},

due to |D| = A. O

The following theorem reveals that (10) has a cap symmetric solution m* = xp+
in balls or annuli. For instance lete = (1,0, .., 0) € RY this means that D* consists
of spherical caps centered at e. Indeed, if D* C R? in polar coordinates » > 0 and
01 € [—m, w], D* is symmetric in 01, convex in 61 and concentrated about the positive
x1—axis. Moreover, vp+ on D* depends only on the radial distance r = ||x|| and on
the geographical latitude 6; := arccos(x;/||x||), and is non-increasing in 6 € [0, ]
(Brock 2007; Kawohl 2006).

Theorem 1 Let Q2 be ball B(0, r2) or annulus B(0, r2)\B(0, r1) for somer, > r; >0
and e be an arbitrary direction. Then problem (10) has a cap symmetric solution
m* = xp+ with respect to e.

Proof Fix m € M. Recall that [,,|Vv,|°dx =t [, mv,dx and also

F(m) = sup 27:/ mvdx—/|Vv|2dx.
veHY(RQ), [ vdx=0 Q Q

We know that [, vudx = [, v} dx due to Brock (2007, Theorem 3.1). Now, employ-
ing Lemmas 3 and 4, we observe that

F(m) = sup Zr/ mvdx—/|Vv|2dx
veH(Q), [q vdx=0 Q Q

521’/ m*vm*dx—/|va*|2dx
Q Q

< sup 2ff m*udx—/|w|2dx=}‘(m*), (13)
veH\(Q), [q vdx=0 Q 2

for an arbitrary direction e. This yields that m™ is a maximizer for (10). O

In the next theorem, we will address the question of uniqueness for (10) when €2 is
a ball or an annulus.

Theorem 2 Let Q2 be ball B(0, r) or annulus B(0, r2)\B(0, r1) for somer, > r; >0
in RN, N > 2. Then, precisely one of the following statements holds

a) the problem (10) has a unique and then radial solution,

b) the problem (10) has infinitely many solutions.
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Proof a) For an arbitrary direction e, the cap symmetric function x p+ is a maximizer
invoking Theorem 1. Due to the uniqueness, the set D* is symmetric with respect to
all direction since e is arbitrary. It yields that D* should be a radial set. b) If there is
not a radial solution then indeed we have infinitely many maximizers for (10) in view
of Theorem 1. O

4 Numerical method

Our numerical algorithm is based upon the idea of the gradient ascent method. There-
fore, in what follows we provide variations of J(m) and u, ,, with respect to m.

Lemma8 Letm € M, g € L°®°(R) and € > 0 such that m + e¢g € M. Then,
i) there exists Yy m,g € HY(Q) such that

u — U
Bpmeg = Mmoo weaklyin H'(SQ),
€

as € — 0 and

MAW/L,m,g + (m — 2M;L,m)1/f/4,m,g = —8Uu,m in €,
wm.g (14)
ii) Moreover, we have
f Uy mtegdX = / Uy mdX + e/ Vym.gdX + O(€2). (15)
Q Q Q

Proof See Ding et al. (2010, Lemma 4.1) and Nagahara and Yanagida (2018, Propo-
sition 2.2)). O

Rewriting Eq. (15) in the following form

/uu’mﬁgdx—/ uu,mdx:e/ wu,m,gdx—i—O(ez),
Q Q Q

reveals that for m € M and € small enough, Eq. (15) provides an ascend direction
to increase J (m) over M if we have fQ Yu.m,gdx > 0. The problem is that ¥, ,, ¢
depends on the function g and it is not clear that how we can determine g which yields
Yu,m,g With positive integral. To overcome this problem, let us consider the following
adjoint problem
{qu—I—(m—Zuu,m)w:—l in €, (16)
%—’l’: =0 on 0€2.

This equation has a unique solution w = w , due to the fact that the operator
MA + (m — 2uy ) is invertible, see Lou (2006) and Nagahara and Yanagida (2018,
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Proposition 2.2). Using standard elliptic regularity arguments and the Sobolev embed-
ding theorems, we have w (x) € W22 (Q) N C*(Q) fora € (0, 1) and all p > 1.1t
is noteworthy that there is C > 0 such that

lwllre) < C, (17

and C is uniform in m € M, see Mazari et al. (2020).
Multiplying (14) by w and (16) by v, u ¢ and applying integration by parts, we
obtain

—/L/ leu,m,ngdX—k/(m—2uﬂ,m)1ﬁﬂ,m,gde: —/ Uy mwdX,
Q Q Q

- M/ VwVI/f;/.,m,ng"‘ / (m — Zuu,m)wvf/l,,m,gdx = _/ I/f,u,m,gdx»
Q Q Q

which reveals that
Yum,gdX = / Uy m Wy, mdX. (18)
Q Q

Employing (18), one can determines an ascend direction for J(m) in M in the fol-
lowing way. Let n € M, 0 < € < 1 and assume m is not a local maximizer of J (m)
with respect to M. Then m + €(n — m) belongs to M since M is convex in view of
Lemma 1. Setting g = n — m in (18) we have

/I/fu’m,ngI/ nuu,mwu,mdx—/ MUy Wy mdX. (19)
Q Q Q

Now setting f(X) = 1, m (X)W, m (X) in Lemma 5, we can compute the maximizer of
the first integral on the right-hand side of (19) which is n = xp where D is a subset of
asuper-level setof f(X) = u; , (X)wy, ., (X) derived by (7) and (8). Therefore, starting
from m, g = xp — m is a direction for functional J(m) with steepest ascend. One
can use a line search algorithm to determine the maximum amount to move along the
given ascend direction that the condition J (m +€g) > J(m) is fulfilled. The resulting
algorithm is presented in Algorithm 1.

The following theorem determine the global minimizer of the functional J (im) over

M.

Lemma9 If m(x) = A/|2|, then for all i, u(x) = m(X) is the solution of (1) and
J = A. Moreover, m = A/|Q2| is the unique minimizer of J (m) over M.

Proof A simple calculation yields the first part of theorem. For the proof of the second
part see Mazari et al. (2020). O

The following theorem provides an optimality condition for a maximizer of (4)
when the diffusion w is large enough.
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Algorithm 1 Maximization algorithm

Given u, A, and TOL > 0, choose an initial my € M.

1. Seti =0.

2. Compute u; =ty m; and J(u;) using a finite element method.

3. Set m; — 2u; as the coefficient in (16) and compute w; = wy m; using a finite element method.
4. Set f = u;jw; and derive xp, employing formulas (7) and (8).

5.8etg; = xp; —mj ande = 1.

6.Setm;1| =m; + €g; and compute u; 1 = uy,m; | and J(m;4) using a finite element method.
7. While J(m; 1) < J(m;) do

Sete =¢€/2.

Setm; | =m; + €g; and compute u; 1 and J (m; 1) using a finite element method.

8.If J(m;y1) — J(m;) < T OL, stop the algorithm. Otherwise seti =i + 1, go to step 3.

Theorem 3 Assume diffusion . is large enough. Then, we have m = x p for DcQ
with |D| = A such that

/nuﬂ),;,wﬂ’,;,dx</muu’,ﬁwﬂy,hdx,
Q Q

forall n € M where n # 1iv and also we have D = {x € Q : Uy ;W 5(X) > f}.

Proof According to Theorem 1 in Mazari et al. (2020) we know that the maximizer is
of bang-bang type and so i = x 5 for D C Q with |ﬁ| = A when p is large enough.

According to (15) and (18) we observe that J(m) is Gateaux differentiable and
indeed we have

. Jm+em—m)) — J(m)
lim

e—07t €

_ f ()= Mtpmmdx,  (20)
Q

for all n, m € M.
In view of Theorem 1 in Mazari et al. (2020), J : M — R is strictly convex for
large n and so we see that

J (it +e(n —m)) — J (i)
€

< J(p — J(i) <0, 21

foralln € M, n # mand0 < € < 1. On the other hand due to the convexity of J (m)
and (20) we have

JGh+ €ty — ) = JGi) + € / (1 — )ity 5D X,
Q

or equivalently

J(h + e(n —m)) — J(m)
€

> / (0 — D, X, 22)
Q
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foralln € M and 0 < € < 1. Combining (21) and (22) we have
/ T)I/tﬂ,,;,ﬁ)ﬂg,ﬁdx < / n%uuy,;,zi)ﬂﬁ,;,dx, (23)
Q Q

for all n € M where n # m. This means that m is the unique maximizer of the
functional L(n) = fQ Ny W, ,dx over M. Employing Theorem 4.5 in Burton
(1987) there is an increasing function & : R — R such that m = xp = &(u, ;).
This yields the last assertion of the theorem. O

In the next theorem we will address the convergence of Algorithm 1. Recall that
the algorithm generates an increasing sequence of {J (m;)}7° which is bounded from

above and so it converges to its supremum denoted by J. We establish that every
accumulation point of the sequence {m;}{° generated by the algorithm is a stationary
point and indeed satisfies the necessary condition for the maximizer. Let us recall that
m € M is an accumulation point of the sequence generated by Algorithm 1 if there
exists a subsequence, still denoted by {m;}$°, such that m; —~m weakly in L3().

Theorem 4 i) For all accumulation point i € M such that m;—m weakly in L*($2)

we have u; — i = u,, j strongly in L2(Q) and J(m;) — J = J(h).
ii) Let w = w,, ;. We have

/n%ﬁzi;dx 2/ nuwdx, forall n € M. (24)
Q Q

iii) Assume all level setsAof function u(x)Ww(x) have zero Lebgsgue measure. Then,
we have i = xp where D = {x € Q : a(x)w(x) > f} with |D| = A and m; — m
strongly in L2(Q).

Proof i) In view of Eq. (1), we obtain

uf|Vui|2dX=/miu%dX—/ u?dxffmiul-zdxflm,
Q Q Q Q

due to (2). Therefore, we can conclude that [lu;| 1) is bounded and so there is
i€ HY(Q) and a subsequence, still denoted by {u;}{°, such that u;—ii in HY(Q).
Sobolev embedding yields that u; — # in L?(£2). In summary, we have

mi—m, u; — i inL*(Q) and w;—i in H'(Q). (25)

In view of (2) and (25), it is inferred that ||| L~ (@) < 1.
It just remains to prove that # = u,, ;. The weak form of (1) gives

—/ vMi-v¢dx+/miui¢dx—f ulpdx =0, forall ¢ e H'(RQ). (26)
Q Q Q
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Now, it is observed that when i — oo

= _)O»

‘/ (m,u,-d) — rhﬁq&)dx
Q

/ mi(uih — A)dx
Q

+ ‘/ (m; — m)hipdx
Q

due to the facts that [|m;[| 1o (@) < 1, l|lit]l (@) < 1 and (25). Furthermore, we have

=<

‘ / ulp — i pdx
Q

/ (i + i) (i — i)pdx
Q

< 2llu; — '2||L2(Q)||¢||L2(Q) — 0,

in view of boundedness of u; and iz and (25). Consequently, passing to the limit in
(26), we obtain & = u,, ;. It is straightforward that J(m;) — J(11). Recall that

{J (m,-)}‘fo is a subsequence of a convergent sequence and hence we have J=1 (m).
ii) Recall that according to Algorithm 1, J(m;) < J(m;4+1) and so

J () = sup{J(m;) : i € N}. Q7)

This yields that
/ muwdx 2/ nuwdx, forall n € M, (28)
Q Q

since otherwise, as explained above, we can find m € M such that J(m) > J(@mn).
This contradicts (27).

iii) Equation (28) says that 7 is a maximizer of the functional L (5) = fQ nuwdx for
n € M. Since every level set of 4w has zero measure, there is an increasing function
& : R — Rsuchthat£(@w) € N, see Burton (1989, Lemma 2.9). The function & (fit)
is the unique maximizer of L(n) relative to M in view of Burton (1989, Lemma 2.4).
Hence, one can infer that /it = &(ii) = x;, and so we should have

0s <1,
1s>1,

S(S)={

and D = {x € Q: 4(x)W(x) > 7} such that |D| = A. In order to show the strong
convergence of the sequence {m;}$°, we see that

A2 2 A2 ~
”mi - m”LZ(Q) = ”mi”LZ(Q) + ||m||L2(Q) - 2/;2mimdx

< 2l gy =2 [ muid, 29)

in view of Lemma 2. Passing i — o0 in (29), we obtain the strong convergence result.
O

Remark 1 Tt is noteworthy that while w is large enough we can always consider € = 1
in Algorithm 1 and it is not required to use procedures like the line search algorithm
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to determine the maximum amount to move along the given ascend direction. It is due
to the fact that functional J is strictly convex for such u and then we have

J(miy1) = J(m; +e€gi) > J(m;) +€/ giujw;dXx.
Q

4.1 Numerical Implementations

In this section, we show numerical results of Algorithm 1 to determine the optimal
m(x) which maximizes J, the total population of species. For any given diffusion
constant u and area constant A such that m(x) € M, we use numerical approaches to
find the solution u(x) to Eq. (1). In one dimension, a collocation method is used and
implemented by MATLAB built-in function bvp4c. The initial mesh has 12001 grid
points. In two dimensions, a finite element method is used and the basis functions are
linear polynomials of degree one. The resulting discretized nonlinear system is solved
by Gauss-Newton iteration method with numerical evaluation of the full Jacobian.
The residual tolerance to terminate the nonlinear solver is 10~ 0. The tolerance to stop
Algorithm 1 is chosen as 1076, The implementation is done in MATLAB by using a
PDE Toolbox. For optimization problem, we start with many different random resource
functions m and report the optimizer which achieves the maximal total population size
J.

To emphasize the dependence of the total population on the resource function
m(x) and the diffusion constant, we will use the notation J = J(m(x), u) from
now on. In Fig. 1, we show how the total population size J changes with respect
to the diffusion constant p for the resource function m(x) = m(x) := xj0.7,1) and
m(x) = ma(x) 1= x[0.35,0.65]- As discussed in Lou (2006), the total population size
reaches minimums, J = fml(x)dx = 0.3,at u = 0 and 4 = oo, and a maximum
at some intermediate p*. In this case, J(m, u*) ~ 0.406 at u* ~ 0.035279. Note
that due to the symmetry, J(x[0,0.3], #) = J(x[0.7,17, #). In Fig. 1b, the resource
function is chosen as x0.35,0.65], the graph of the total population size J is similar to
the one in Fig. 1 and the total population size reaches a maximum J (m,, u*) ~ 0.406
at u* ~ 0.008819. Indeed, the values of total population satisfies J(m(x), u) =
J(my(x), %). When the logarithmic scale is used for the x-axis, the graph of J for
m2(x) shifts to the left by log;, 4 comparing to the one for m(x).

In Fig. 2, we show the total population for m(x) = x[c—0.15,c+0.15] for ¢ €
[0.5, 0.85]. Among this class of resource functions, the optimal resource function
is m(x) = mi(x) when p is greater than 0.01589 while the optimal resource

m(x) = mp(x) when p is smaller than 0.01589.

In Fig. 3, we show how J varies with respect to the diffusion constant p for another
two resource functions m(x) = x[0.05,0.1] + X[0.15,0.35] + X[0.5,0.55] + X[0.85,0.9] and
m(x) = x[0,0.05] + X[0.1,0.25] + X[0.45,0.5] + X[0.85,0.9], respectively. As indicated in
Liang and Lou (2012), the total population size is usually not a monotone function of
the diffusion constant . In Fig. 3a, the total population size has two local maxima
and one local minimum.
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Fig. 1 The graph of the total population J (m(x), ) with respect to p for the resource function a m(x) =
m1(x) := x[0.7,1] and b m(x) = m2(x) := X[0.35,0.65]

In general, assume that u(x) is the solution of (1.1) with m(x) = x[1—;,1; on [0, 1]
with a given constant / > 0. For a given positive integer k, denote x; = %, 0<j<
k—1,

m(x) = m(k(x—x;))  xj Sx=<xjp.j=even,
VT (k (xj —x)) xj <x <xjp1, ) = odd,

and

u(k(x—xj)) Xj <x <Xji1,] =even,
Mk()C): .
u (k (xj+1 —x)) Xj <x < Xjy1, j =odd.

It is straight forward to verify that

kﬁzAuk +ur(mp —up) =0 x € Q,
S =0 x €99
where Q2 = [0, 1]. In Fig. 4, we see that objective function J remains constant for
w = ,uo/k2 and my for o = 0.035279, m(x) = xjo7,1and k = 1,2,3,4,5 and
6. In light of this, we can use the maximum of the total population with respect to a
given class of resource functions such as my(x), k = 1,2, -, to provide a lower
bound for J* = max,,(y) J (m(x), ). InFig. 5, the black curve shows the lower bound
for J*. This indicates that it is possible to find J* > 0.406 for small u even though
it is challenging to obtain this numerically as it requires very refined calculations to
achieve the accuracy.

In Figs. 6 and 7, we show the optimal resource functions /72 (x) and its corresponding
i (x) for the total resource A = | D| equals to 0.3 and 0.6, respectively. In all cases, the
optimal resource functions are periodic. Denote m1 = x[0.7,1]. The optimal resource
functions are m, my, m3, me, mg, mig for u = 0.1,0.01,0.005,0.001, 0.0005, 0.0001,
respectively. When p gets smaller, the optimal resource becomes more fragmented. We
also marked these diffusion parameters in red dots in Fig. 5 for A = 0.3. Numerically,
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Fig. 2 The resource function m(x) = X[¢—0.15,c40.15] for ¢ € [0.5,0.85] and its corresponding J with
respect to
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Fig.3 The graph of the total population J (m(x), ) with respect to p for the resource function a m(x) =
X[0.05,0.1] T+ X[0.15,0.35] + X[0.5,0.55] + X[0.85,0.9] and b m(x) = x[0,0.05] + X[0.1,0.25] + X[0.45,0.5] +
X[0.85,0.9]

we observe some nonperiodic resource functions could be local maximizers as the
ones reported in Mazari and Ruiz-Balet (2021). In particular, there are many local
maximizers when p is small. This leads to a big challenge to find the global maximizer
for a small diffusion rate.

In two dimensions, we first show results on the unit square Q2 = [0, 112. We
compute the optimal resource function m for the same parameters that was used in
Mazari and Ruiz-Balet (2021). The triangular mesh has 90,876 elements. In Fig. 8,
we show the optimal m(x) = xp and its corresponding i(x) for A = 0.3]2| and
w =0.1,0.01, 0.005, and 0.001, respectively. For large enough w, such as u© = 0.1,
the optimal domain Dis simply-connected and attach to one of 4 corners of the square.
This result is in line with a theoretical conclusion of Mazari et al. (2020, Theorem 2)
which asserts that concentration occurs for large .

It is clear that the optimal 71(x) is not unique. When u gets smaller, the optimal
domain D gets more fragmented. Also, the optimal domain D and €2 do not possess
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p = 0.035279 = 0.0088197 = 0.0039199
my —_—my —mg
Uy Uy Uy
1 1 1 1
0.5 ’// 05 ‘//\\ 05
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
T xr T
= 0.0022049 p=0.0014112 = 0.00097997
my ms me
Uy Us Us
1 1 M 1
0.5 0.5 U 0.5
0 0 0r— —
0 0.5 0 0.5 1 0 0.5 1
x T T

Fig. 4 The solution uj (x) shown in red for m(x) = my(x) shown in blue with m(x) = x[0.7,1] and
w = 0.035279/k2 for k = 1,2,3,4,5,6. All six resource functions leads to the same total population
J ~ 0.406

Fig. 5 The lower bound for J* is shown in the black curve which is generated by taking the maximum of
J(mp(x), ) withmy(x) = x[0.7,17and k € N

the same symmetry in general. The maximizers that we found for small p are different
from the ones reported in Mazari and Ruiz-Balet (2021). We have also shown other
local maximizers that we found in Fig. 9 and these two configurations are similar to
the ones in Mazari and Ruiz-Balet (2021). It is noteworthy to mention that the ones
in Fig. 8 have slightly higher total population size even though we only show J with
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w=0.1, J* = 0.386

u=0.01, J* = 0.406
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Fig.6 The optimal resource functions 7 (x) and its corresponding i (x) for A = 0.3 and different diffusion
constants
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Fig.7 The optimal resource functions 7 (x) and its corresponding i (x) for A = 0.6 and different diffusion
constants

@ Springer



47 Page 20 of 27 C.-Y.Kao, S. A. Mohammadi

7, p= 0.1 m, p= 0.01 7, p= 0.005 m, p= 0.001
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Fig. 8 The optimal 7 (x) and its corresponding it(x) for A = 0.3|€2| and different diffusion constant p

three digits after the decimal place. We found that it is quite crucial to choose small
enough residual tolerance for the nonlinear solver and use a refined mesh to ensure
the accuracy of J.

In Fig. 10, we show the results for A = 0.6|€2|. When p = 0.1, the domain Disa
stripe which is leaning to the side of the square. Again, the optimal /72(x) is not unique.
For 1 = 0.01, the domain Disa stripe in the center of the square. When p = 0.005,
the domain D is no longer simply-connected. The maximizers m(x) for © = 0.01 and
w = 0.005 are different from the ones reported in Mazari and Ruiz-Balet (2021) and
have larger total population sizes.

Figures 11 and 12 show results on a L-shaped domain for A = 0.3|2| = 0.225 and
A = 0.6|Q2] = 0.45, respectively. The triangular mesh has 68,830 elements. Again,
the maximizers for large w, such as u = 0.1, has a simply-connected domain D while
the ones for small z has D fragmented. Even when the diffusion constant is small, the
optimal J* is well beyond the total resource A = |l§|.

Figures 13 and 14 show results on a unit disk for A = 0.3|2] and A = 0.6|<2|,
respectively. The triangular mesh has 116,466 elements. As proved in Theorems 1-2,
when p is large, we expect that the optimal 772(x) has either a radial or cap symmetry.
We observe this phenomenon numerically. For 4 = 0.1, the optimal 7 (x) has a cap
symmetry and thus one expect that there are infinite solutions due to rotation invariance.
When p = 0.05, the maximizer looks like a projected baseball configuration. When u
is even smaller, we observe that the optimal D has several connected components for
A = 0.3|€2] in Fig. 13 while the complement of the optimal D has several connected
components for A = 0.6/2| in Fig. 14.

Figures 15 and 16 show results for A = 0.3|2] and A = 0.6|€2|, respectively,
on an annulus with inner radius 0.5 and the outer radius 1. The triangular mesh has
87,766 elements. For = 0.1, the optimal resource 71(x) has a cap symmetry as
expected from Theorem 1. In Fig. 15, the optimal D becomes more fragmented, having
1,2, 6,7 connected components when u = 0.1, 0.05, 0.01, 0.005, respectively. For
A = 0.6|2|, we found a radial maximizer for © = 0.01 as shown in Fig. 16.
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m, p= 0.01 m, p= 0.001
0.9
0.8
10.7
10.6

Fig.9 The other local maximizer m(x) and its corresponding u(x) for A = 0.3]|2| and different diffusion
constant i = 0.01 and o = 0.001, respectively

m, p=0.1 1, p= 0.01 mh, p= 0.005

4, J*= 0.668 i, J*= 0.675 a, J*=0.674 @, J*= 0.674

A

Fig. 10 The optimal /7 (x) and its corresponding #(x) for A = 0.6|€2| and different diffusion constant

m, p= 0.001

5 Conclusion

In this paper we have obtained symmetric properties of the maximizer m when Q is a
ball or annulus in R" and y is large. These qualitative properties are in line with results
in Mazari et al. (2020) and Mazari and Ruiz-Balet (2021) which assert that for large
diffusion, concentrated resources is favourable for maximizing the total population.
After deriving an optimality condition, a numerical algorithm has been developed
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Fig. 11 The optimal 7 (x) and its corresponding i (x) for A = 0.3|€2| and different diffusion constant p

m, p= 0.1 m, p= 0.01 m, pu= 0.005 m, p= 0.001
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- 0.4
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Fig. 12 The optimal /i (x) and its corresponding u(x) for A = 0.6|€2| and different diffusion constant

based upon rearrangement techniques. It has been proved that the algorithm converges
and numerical illustrations reveal that the algorithm can be applied efficiently for
domains with different geometries. Our numerical results validate the the theoretical
achievement in Ding et al. (2010), Mazari et al. (2020, 2021), and Nagahara and
Yanagida (2018), that there is a bang-bang type maximizer for (4) regardless of the
value of u > 0.

To investigate the questions raised in Ding et al. (2010), Mazari and Ruiz-Balet
(2021), our numerical results reveal that it is not true that for general domains the
optimal resources distribution touches the boundary, see for instance Fig. 6. However,
in two dimensions, we observe that the optimal resources distribution touches the
boundary for all u. Moreover, when w is small and the domain 2 is curved, it is
not necessary to allocate the resource only near the curved parts. The resource could
also be allocated far away from the curved boundary as shown in Fig. 13. According
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1, p= 0.1 h, p= 0.05 ", p= 0.01 i, p= 0.005 ;
0.9
0.8
0.7
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0, J*=1.276
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0.3

Fig. 13 The optimal m(x) and its corresponding i (x) for A = 0.3|€2| and different diffusion constant p

1, p= 0.1 7, p= 0.05 7, p= 0.01 i, p= 0.005 ;
0.9
0.8
0.7
0.6
0.5
=2 119 a, J*=2.117
0.4
0.3
0.2

Fig. 14 The optimal /i (x) and its corresponding u(x) for A = 0.6|€2| and different diffusion constant

to our numerical results in two-dimensional problems, we conjecture that for large
enough u the optimal resources distribution is a simply connected domain touching
the boundary. If one can prove that there is a maximum point on the boundary of
domain €2 for u,, ,;w,, ;, then in view of the optimality condition we can conclude
that there is a connected component of the optimal resources distribution touching the
boundary. Even this simpler assertion is a challenging question.

A highly challenging problem is to investigate the behavior of maximizers as © —
0 even for 2 = (0, 1). The numerical results for one-dimensional problems again
validate the theoretical results that to maximize the total population size, the smaller
the diffusivity, the more fragmentation should be done. This problem was raised in
Mazari et al. (2020). Recently, it has been proved that resource fragmentation is better
than concentration for the n-dimensional box domain (Mazari and Ruiz-Balet 2021)
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Fig. 15 The optimal m(x) and its corresponding i (x) for A = 0.3|€2| and different diffusion constant p
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Fig. 16 The optimal /1 (x) and its corresponding u(x) for A = 0.6|€2| and different diffusion constant

and then for any general bounded domains in R" if the diffusion rate is sufficiently
small (Heo and Kim 2021).

Our numerical investigations illustrate that in the one-dimensional case while u —
0 we can find maximizers with periodic pattern, see Figs. 4, 6 and 7. However, it is
hard to conclude the same pattern for two-dimensional problems. Moreover, in this
case, the numerical results of this paper suggest that when ¢+ — 0 the total variation
of m,, goes to infinity as it has been proved in Theorem 1 of Mazari and Ruiz-Balet
(2021).

Based upon our two-dimensional illustrations, we cannot infer decisively about the
topology and geometry of the optimal domain D for small diffusivity although it has
been proved that fragmentation phenomenon occurs (Mazari and Ruiz-Balet 2021;
Heo and Kim 2021). According to Figs. 8, 11, 13 and 15, while A or the total amount
of resources is small, fragmentation occurs which means that the total variation of the
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function 71, goes to infinity while u — 0. However, the set D is disconnected and has
a lot of connected components. But, if A is large, the optimal resource distribution is
fragmented and in this case it is connected, see for instance Figs. 10, 12 and 14. Indeed,
it seems that for the case that A is large, the set D¢ corresponding to the maximizer
i = xp or the places which is not favourable to the species, is disconnected and
has many connected components while we can observe that the total variation of the
function 711, goes to infinity as u — 0. These observation necessitate a study on the

topology and geometry of the optimal domain D considering both factors A, the total
amount of resources, and u, the diffusivity.
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