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Abstract

In this paper we investigate the bipartite analogue of the strong Erdés-Hajnal property. We prove
that for every forest H and every 7 with 0 < 7 < 1, there exists € > 0, such that if G has a bipartition
(A, B) and does not contain H as an induced subgraph, and has at most (1 — 7)|A| - |B| edges, then
there is a stable set X of G with |X N A| > ¢|A| and |X N B| > ¢|B|. No graphs H except forests
have this property.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. If G, H are graphs, we say G
contains H if some induced subgraph of G is isomorphic to H, and G is H -free otherwise. We denote
by a(G),w(G) the cardinalities of the largest stable sets and largest cliques in G respectively. Two
disjoint sets A, B are complete if every vertex in A is adjacent to every vertex in B, and anticomplete
if no vertex in A has a neighbour in B; and we say A covers B if every vertex in B has a neighbour
in A. A pair (A, B) of subsets of V(G) is pure if A, B are complete or anticomplete to each other.
We denote the complement graph of H by H. We denote the number of vertices of G by |G].
The Erdds-Hajnal conjecture [6, 7] asserts that:

1.1 Conjecture: For every graph H, there exists ¢ > 0 such that every H-free graph G satisfies
a(G)w(G) = |G

An ideal or hereditary class of graphs is a class G of graphs such that if G € G and H is isomorphic
to an induced subgraph of G then H € G. We say that an ideal G of graphs has the Erdds-Hajnal
property if there exists ¢ > 0 such that every G € G satisfies a(G)w(G) > |G|¢. Thus the Erdés-Hajnal
conjecture states that the class of H-free graphs has the Erdés-Hajnal property.

One way to prove that a class of graphs has the Erdds-Hajnal property is to prove something
stronger. We say that a class G has the strong Erdds-Hajnal property if there is some £ > 0 such
that every graph G € G with at least two vertices contains disjoint sets A, B that have size at least
|G| and are either complete or anticomplete (that is, (A, B) is a pure pair). It is easy to prove
that, for an ideal G, the strong Erdés-Hajnal property implies the Erdés-Hajnal property (see [2, 9]).
Unfortunately, it is also easy to prove (by considering a sparse random graph with girth larger than
|H|) that if the class of H-free graphs has the strong Erdés-Hajnal property then H must be a forest;
and (by considering the complement of a sparse random graph) that H must also be a forest. Thus
H has at most four vertices, and the Erdds-Hajnal conjecture was already known for these graphs.

But what if we exclude both a forest and the complement of a forest? Then there is some good
news. In an earlier paper [4], with Maria Chudnovsky, we proved that this implies the strong Erdés-
Hajnal property:

1.2 For every forest H, there exists ¢ > 0 such that for every graph G that is both H-free and H -free
with |G| > 2, there is a pure pair (Z1, Z2) of subsets of V(G) with |Z1|,|Z2] > €|G]|.

We also proved the stronger result that, if G is not too dense, then it is enough just to exclude a
forest.

1.3 For every forest H there exists € > 0 such that for every H-free graph G with |G| > 2, either
e some vertex has degree at least £|G|; or
o there exist disjoint Zy,Zy C V(G) with |Z1|,|Z2| > €|G|, anticomplete.

Neither of these theorems hold for any graph H such that neither of H, H is a forest (this follows easily
from the random construction by Erdds of graphs with large girth and large chromatic number [5]).

In this paper we look at the analogous question for bipartite graphs. It will help to set up some
terminology. A bigraph G is a graph with a designated bipartition (V1(G), Va(G)); thus, V1(G), Va(G)



are disjoint stable sets of G with union V(G). The bigraph obtained from the same graph by
exchanging V1 (G) and V5(G) is called the transpose of G. The bicomplement of a bigraph G is the
bigraph G’ with the same vertex set, and the same bipartition, in which for all v € V4(G) and
w € Va(G), v and w are adjacent in G if and only if they are not adjacent in G’. If G is a bigraph,
and X C V(G), G[X] denotes the bigraph induced on X in the natural sense (that is, the bigraph
H with V(H) = X, where for all u,v € X, u,v are adjacent in H if and only if they are adjacent in
G,and V;(H) = V;(G)NX for i =1,2). We call G[X] an induced sub-bigraph of G. An isomorphism
between bigraphs G, H is an isomorphism between the corresponding graphs that maps V;(G) to
Vi(H) for i = 1,2. If G, H are bigraphs, we say that G contains H if there is an isomorphism from
H to an induced sub-bigraph of G. We say G is H-free if G does not contain H. We stress that a
bigraph G may contain a bigraph H and not contain the transpose of H.

What about the analogue of 1.2 for bigraphs? Let H be a forest bigraph, and suppose that G is
a bigraph that contains neither H not its bicomplement: must there then be a pure pair of subsets
of V1(G) and Va2(G) respectively, both of linear size? This seems neither to imply, nor to be implied
by, the results of [4] just mentioned, but there has been some previous work on it. It was conjectured
in this form by Alecu, Atminas, Lozin and Zamaraev [1], amd Axenovich, Tompkins and Weber [3],
and independently Korandi, Pach and Tomon [10] gave a result for bigraphs H in which |V} (H)| < 2:

1.4 Let H be a forest bigraph with |Vi1(H)| < 2, such that the bicomplement of H is also a forest.
Then there exists € > 0 such that, if G is a bigraph that is H-free then there is a pure pair (Z1, Z2)
in G with Z; C Vi(G) and |Z;| > ¢|Vi(G)| fori=1,2.

In this paper we will prove the conjecture of Alecu, Atminas, Lozin and Zamaraev [1], that the
bipartite analogue of 1.2 holds in full. Our main result is the following:

1.5 For every forest bigraph H with bicomplement J, there exists € > 0 such that, if G is a bigraph
that is both H-free and J-free, then there is a pure pair (Zy,Z2) in G with Z; C V;(G) and |Z;| >
e|lVi(G)| fori=1,2.

Note that this implies that it is sufficient to exclude any forest H and any forest bicomplement
J (as we can always consider the forest obtained from the disjoint union of H and J). Furthermore,
if we exclude any finite set of bigraphs, then the random construction once again shows that one
of the graphs must be a forest, and one must be the bicomplement of a forest. Thus 1.5 leads to a
characterizion of the finite sets of excluded subgraphs that give the (bipartite) strong Erdés-Hajnal
property.

As with 1.3, we will also prove a ‘one-sided’ version of the result for sparse graphs, where we only
exclude a forest. Let us say a bigraph G is e-coherent, where ¢ > 0, if:

e cvery vertex in V;(G) has degree less than €|Va(G)|;
e every vertex in Vo(G) has degree less than ¢|V1(G);

e there do not exist anticomplete subsets Z; C Vi (G) and Zs C Va(G), such that |Z;| > €|V;(G)|
fori=1,2.

Thus, if 0 < ¢ < &’ and G is e-coherent then it is also &’-coherent. Our main theorem says:

1.6 For every forest bigraph H, there exists € > 0 such that every e-coherent bigraph contains H.



This can be further strengthened, to prove the statement in the abstract; in the next section
we will show that the “sparse” hypothesis can be replaced with a “not very dense” hypothesis, as
follows:

1.7 For every forest bigraph H, and every 7 with 0 < 7 < 1, there exists € > 0 such that if G is an
H-free bigraph with at most (1—7)|Vi(G)|-|Va(G)| edges, then there are anticomplete sets Z; C Vi(G)
with | Z;| > €|Vi(G)| fori=1,2.

Finally, let us note that there are very interesting questions of this type for ordered bigraphs,
or equivalently 0-1 matrices. Korandi, Pach and Tomon [10] also made a much stronger conjecture,
that the statement of 1.7 still holds if we work with ordered bigraphs (bigraphs G with fixed linear
orders on V1 (G) and on V2(G)) and ask for containment that respects the orders. This remains open,
and is discussed further in [12].

2 Reducing to the sparse case

In this section we will show that 1.6 implies 1.7 and 1.5. We need the following. For general graphs
an analogue was proved by Rodl [11], using the regularity lemma, but for bigraphs its proof is much
easier, and does not use the regularity lemma. The result is essentially due to Erd6s, Hajnal and
Pach [8], but we give a proof since it is short.

2.1 Let H be a bigraph, and let € > 0. Then there exists 6 > 0 with the following property. Let G
be an H-free bigraph with Vi(G),Va(G) # 0; then there exists A; C Vi(G) with |A;| > 6|Vi(G)| for
i =1,2, such that either

e cvery vertex in Ay has fewer than €| As| neighbours in As, and every vertex in Ag has fewer
than €| A1| neighbours in Ay ; or

e cvery vertex in Ay has more than (1 — ¢)|As| neighbours in Az, and every vertex in Ay has
more than (1 — e)|A1| neighbours in Aj.

Proof. We may assume that ¢ < 1 and V(H) # (), because otherwise the result is trivial. Let
Vi(H) = {a1,...,ax} and Va(H) = {b1,...,be}. If Kk = 0 or £ = 0 the theorem holds with § =
min(1/2,|H|™!), so we may assume that k,¢ > 0. Define 6 = min(1/2,|H|~, (¢/2)*/¢). We claim
that & satisfies the theorem. Let G' be an H-free bigraph. If |Vi(G)| < 71, the result holds with
|A1| = 1, A; = {v} say, and and As the larger of N(v) and Va(G) \ N(v), since § < 1/2; so we may
assume that |V1(G)| > 671, and similarly |Vo(G)| > 5.

Let 0 < i <k, let uy,...,u; € Vi(G) be distinct, and let 1 < j < ¢. We say that v € V5(G) is
j-appropriate for (uq,...,u;) if for all A with 1 < h <i:

e if aj, b; are adjacent in H then uy, v are adjacent in G; and
e if aj, b; are nonadjacent in H then uj,v are nonadjacent in G.

For all i with 0 <4 < k let n; = (¢/2)"|Va(G)|. Thus ny = (¢/2)*|Va(G)| > (¢/2)*6~! > ¢. For
0 <i < k, we say a sequence (uy,...,u;) of vertices in V1 (G) is i-good if uy,...,u; are all distinct,
and for 1 < j < £ there are at least n; vertices in V5(G) that are j-appropriate for (uq,...,u;).



The null sequence is 0-good, since ng = |Va(G)|; and so we may choose i with 0 < ¢ < k

maximum such that there is an i-good sequence (uq,...,u;). Suppose that i = k. For 1 < j < ¢
choose v; € Va(G), j-appropriate for (uq,...,uy), such that vq,...,ve are all different (the last is
possible since ny > £); then the subgraph induced on {ui,...,ug,v1,...,v¢} is isomorphic to H, a

contradiction. So i < k.
From the maximality of i, for each u € Vi(G) \ {u1,...,u;}, there exists j € {1,...,¢} such

that fewer than n;1; vertices in Va(G) are j-appropriate for (uq,...,u;,u). Hence there exist A; C
Vi(G)\ A{u1,...,ui} with |A1] > (|Vi(G)| — k)/¢, and j € {1,..., ¢}, such that for each u € Ay, fewer
than n;y; vertices in Vo(G) are j-appropriate for (ui,...,u;,u). Let A} be the set of vertices in

Va(G) that are j-appropriate for (ug,...,u;); thus |A5| > n;, from the choice of i. Consequently

e if a;41,b; are adjacent in H, then each u € A; has fewer than n;;; neighbours in Al

e if a;;1,b; are nonadjacent in H, then each u € A; has more than |A5| —n;;; neighbours in A.

By taking bicomplements if necessary, we may assume the former. There are fewer than n;1|A;]
edges between Aj, AL, and so at least |A}|/2 vertices in Af have fewer than 2n,1|A1|/|A}| neighbours
in A;. Let Ay be the set of vertices in A} with fewer than €| 4;| neighbours in A;. Since e > 2n;41/| A}
(because |44 > n; = (2/e)niy1), it follows that |As| > |AS]/2 > n;/2. Thus:

o |A1| > 8|V1(G)], since |A1| > (|[VA(G)| — k) /€ > e|Vi(G)] (because |V1(G)| > e~ >k +4);
o |Ag| > 6|Va(G)], since [Ag| > ni/2 > ng = (¢/2)"|Va(G)| > 8|Va(G)];
e every vertex in A; has fewer than n;11 = en;/2 < | Aa| neighbours in Ay; and

e cvery vertex in A has fewer than | A;| neighbours in A;.

This proves 2.1. |

Proof of 1.5, assuming 1.6. Let H be a forest bigraph with bicomplement J. By 1.6 there exists
e > 0 such that every e-coherent bigraph contains H. By 2.1 there exists ¢’ > 0 such that taking
d = ' satisfies 2.1. Let § = d’; we claim that § satisfies 1.5.

Let G be a bigraph that is both H-free and J-free. We must show that there exist By C Vi (G)
and By C V5(G) such that |B;| > 0|V;(G)| for i = 1,2, and By, By are complete or anticomplete. We
may assume that V;(G) # () for i = 1,2. By the choice of ¢’, there exist A; C V1(G) for i = 1,2, such
that |A;| > §'|Vi(G)| for i = 1,2, and either

e cvery vertex in A; has fewer than €|As| neighbours in Ay, and every vertex in Ay has fewer
than e|A;| neighbours in Aj; or

e every vertex in A; has more than (1 — €)|As| neighbours in As, and every vertex in As has
more than (1 — ¢)|A;1| neighbours in A;.

Suppose that the first holds. By applying 1.6 to the subgraph G’ of G induced on A; U Az, we deduce
that G’ is not e-coherent; and so there exist anticomplete subsets By C A; and By C As, such that
|Bi| > e]A;] for i = 1,2. But ¢|4;] > &d'|Vi(G)| = §|Vi(G)|, as required.

If the second holds, then we apply 1.6 to the bicomplement G’ of the subgraph of G induced on
Aj U Ao, and deduce that G’ is not e-coherent (since it is H-free, because G is J-free). So there exist
subsets By C Aj and By C Aj, such that |B;| > ¢|4;| for i = 1,2, and By, By are anticomplete in G’
and hence complete in G. Since |B;| > §|V;(G)| for i = 1,2, the result follows. This proves 1.5. 1



We can in fact weaken the hypothesis of 1.6 that G is sparse. In 1.7 we replace this by the
hypothesis that G is not very dense, that the bicomplement of G has at least 7n? edges. The “not
very dense” hypothesis is as good as the “sparse” hypothesis because of the next result.

2.2 For all c,e,m > 0 with e < 7 < 8/9, there exists 6 > 0 with the following property. Let G be
a bigraph with at most (1 — 7)|V1(G)| - |[Va(G)| edges and with V1(G),Va(G) # 0. Then there exist
Z; C Vi(G) with |Z;| > 0|Vi(G)| for i = 1,2, such that there are fewer than (1 — €)|Y1| - |Ya| edges
between Y1,Ys for all subsets Y; C Z; with |Y;| > c|Z;| fori=1,2.

Proof. By reducing ¢, we may assume that ¢ < 1/3. Let

(1 —e)c?

)\:1_(1—02)(1—7)'

It follows that 0 < A\ < 1 (since c¢?/(1 —¢?) < 1/8 and (7 —¢)/(1 — 1) < 8). Choose an integer n > 0
such that A"(1 —7) < (1 —€)c¢/2. Let 06 = min(c”, 7). We will show that ¢ satisfies the theorem.

Let G be a bigraph with at most (1 — 7)|V1(G)] - |Va(G)| edges. Choose an integer ¢ > 0 with
t < n, maximum such that there are subsets Z; C V;(G) with |Z;| > ¢!|V;(G)| for i = 1,2, where the
number of edges between Z1, Zs is at most A\'(1 — 7)|Z1| - | Z3|. (This is possible since we may take
t=0and Z; = V;(G) for i = 1,2.)

(1) If t = n then the theorem holds.

Suppose that t = n. Thus there are at most \"(1 — 7)|Z1| - |Z2] < (1 — €)(¢/2)|Z1| - | Z2| edges
between Z1, Z. At least half of the vertices in Z; have at most (1 — &)c|Z2| neighbours in Zs; choose
Z1 C Zy with |Z]| > |Z1|/2 > 6|Vi(G)| such that every vertex in Z; has at most (1 — €)c|Z2| neigh-
bours in Zs. Now let Y7 C Z], and let Yo C Z5 with |Y2| > ¢|Z2|. Each vertex in Y7 has at most
(1 —e)elZa] < (1 — €)|Ya| neighbours in Y3, and so the number of edges between Y7,Y> is at most
(1 —e)|Yy| - |Ya|. Since |Z]| > §|Vi(G)| and |Z2| > §|Va(G)|, the pair Z}, Z, satisfies the theorem.
This proves (1).

(2) If Vi(GQ)| < 1/0 or |Va(G)| < 1/6 then the theorem holds.

Suppose that |V1(G)| < 1/4, say. Since G has at most (1 — 7)|V1(G)| - |Va(G)| edges, and Vi (G) # 0,
some vertex v; € V1 (G) has at most (1 — 7)|V2(G)| neighbours in V2(G); and so there is a set Za C
Vao(G) with |Za| > 7|Va(G)| > 6|V2(G)| that is anticomplete to Z1 = {v1}. Since |Z1] =1 > 0|Vi(G)|,
the theorem holds. This proves (2).

(3) If t < n then the theorem holds.
Suppose that t < n. Since
1Zi| = ViG] = ViG] = (6/0)Vi(G)]| = 8| Vi(G)]

for i = 1,2, it suffices to show that there do not exist subsets Y; C Z; with |Y;| > ¢|Z;| for i = 1,2,
such that the number of edges between Y7,Y5 is at least (1 —¢)|Y1| - |Y2|. Suppose that such subsets



exist. By averaging, we may assume that |Y;| = [¢|Z;]] for i« = 1,2; by (2) we may assume that
S|Vi(G)| > 1 for ¢« = 1,2, and therefore |Z;| > (0/¢)|Vi(G)| > 1/c > 3; and since ¢ < 1/3, it follows
that

[e|Zi]] < elZi] +1 < (1 - O)\Z].

Let X; = Z; \ Y;, and let y; = |Y;| and z; = | X;| for i = 1,2. Thus z;,y; > c|Z;| > HVi(G)|, for
i = 1,2. From the choice of ¢, it follows that

e there are more than A**1(1 — 7)y 22 edges between Y7 and Xo;
e there are more than A'*1(1 — 7)z1y2 edges between X; and Ya; and
e there are more than A'*(1 — 7)z 75 edges between X1 and Xo.
Adding, we deduce that there are more than
NN = 7) (122 + 2192 + 2122) + (1 — €)y192
edges between 71, Z5, and so
N — 7 (1o + 212 + 2122) + (1 — &) y1y2 < X(1 — 7)|Z1] - | Za.
Since |Z;| = x; + y; for i = 1,2, it follows that
(1—e= X1 = m)yiye < A1 = N1 = 7) (21 + 1) (22 + 12),
and since y1y2 > c?(x1 + y1)(22 + y2), we deduce that
(1—e—= A1 —71) < M1 = N)(1—1).
Since A1 < X\ and A < 1, it follows that (1 —c — A(1 —7))c? < (1 — A\)(1 —7), and so
Ml-—71(1-A)<Q-7)—1—-¢e)?,
contradicting the definition of A. This proves (3).

From (1) and (3), this proves 2.2. |

Let us deduce 1.7, which we restate:

2.3 For every forest bigraph H, and every T > 0, there exists € > 0 such that if G is an H-free
bigraph with at most (1 —7)|Vi(G)| - |Va(G)| edges, then there are anticomplete sets Z; C V;(G) with
\Zi] > £|Vi(G)| fori = 1,2,

Proof, assuming 1.6. Let H be a forest bigraph, and let 7 > 0. By reducing 7, we may assume
that 7 < 8/9. By 1.6 there exists n > 0 such that every n-coherent bigraph contains H. By reducing
1, we may assume that 7 < 7. Choose ¢ > 0 such that setting § = ¢ satisfies 2.1 with ¢ replaced by
1. Let § satisfy 2.2 with e replaced by 7. Let ¢ = ¢dn.

Now let G be an H-free bigraph with at most (1 — 7)|Vi(G)| - |[V2(G)| edges. We may assume
that Vi(G), Va(G) # 0. By 2.2, there exist Z; C V;(G) with |Z;| > §|V;(G)] for i = 1,2, such that
there are fewer than (1 —n)|Y1|-|Ya| edges between Y7, Y, for all subsets Y; C Z; with |Y;| > ¢|Z;| for
i =1,2. By 2.1, applied to the sub-bigraph induced on Z; U Zs, there exists Y; C Z; with |Y;| > ¢|Z;]
for ¢ = 1,2, such that either



e every vertex in Y] has fewer than 7|Y3| neighbours in Ys, and every vertex in Y5 has fewer than
n|Y1| neighbours in Y7; or

e every vertex in Y] has more than (1 —n)|Y2| neighbours in Ys, and every vertex in Y5 has more
than (1 — n)|Y1| neighbours in Yj.

The second is impossible, since for all such Y7, Y there are fewer than (1 —7)|Y1|-|Y2| edges between
Y1,Ys. Thus the first bullet holds. Since the sub-bigraph induced on Y; U Y5 is H-free, it is not
n-coherent; and so there exist anticomplete sets X; C Y; with

| Xi| = nlYi| = n(cd|Vi(G)]) = e[Vi(G))

for 4 = 1,2. This proves 2.3. |

3 Parades and concavity

In this section we carry out the main step in the proof of 1.6. The general approach is similar to the
main proof in [4], and we apologize for repeating some material and ideas from there. But adapting
the proof of [4] to work for bipartite graphs was nontrivial, and there seems no way to present the
tricky new parts of the argument without also including the straightforward parts.

We will need a number of definitions. A parade in a bigraph GG means a sequence

(Al,...,AK;Bl,...,BL)
of pairwise disjoint nonempty subsets of V(G), such that
o Ay,....,Ax CVi(G), and By,...,Br C Va(G);

e Ay, ..., Ak all have the same cardinality, and By, ..., By, all have the same cardinality (possibly
different).

Its length is the pair (K, L), and its width is the pair (|A1],|B1|). (For convenience in handling widths,
let us (W1, W3) < (Wq, Wy) it W] < W; for i = 1,2, and define A\(Wy, Wa) = (AWy, A\W3) for A > 0.)
We call the sets A;, B; blocks of the parade. We are interested in parades of some fixed length, and
width at least linear in (|V1(G)[, |V2(G)|). (We remark that in later papers of this series we use
“parade” to mean the same thing with the second bullet above removed; but here it is convenient to
include the second bullet in the definition.)

Here are two useful ways to make smaller parades from larger. Let P = (44,...,Ax; B1,...,Br)
be a parade. First, let 1 < 7 < r9--- <7y < K,and 1 < 51 < --- < sp < L; then P/ =
(Ary,...,Ar; Bsy, ..., Bg,) is a parade, of smaller length but of the same width, and we call it a
sub-parade of P. Let I = {r1,...,ri} and J = {s1,...,s¢}; then P[I;J] = (4; (i € I);Bj (j € J))
denotes the same subparade P’. Second, for 1 < i < K let A} C A;, all of the same cardinality, and
for 1 <j < Llet B; C By, all of the same cardinality; then the sequence (41,..., A%; By,..., By) is
a parade, of the same length but of smaller width, and we call it a contraction of P. A contraction
of a sub-parade (or equivalently, a sub-parade of a contraction) we call a minor of P. (Thus a minor
of a minor is a minor.)



Let P = (Ay,...,Ak; B1,...,Br) be a parade in a bigraph G. We say an induced sub-bigraph
H of G is P-rainbow or rainbow relative to P if each vertex of H belongs to some block of P, and no
two vertices belong to the same block. A copy of a bigraph T in a bigraph G is a bigraph isomorphic
to T that is contained in G.

An ordered bigraph is a bigraph T with linear orders imposed on Vj(7') and on V5(T). Let
P = (Ai,...,Ax;B1,...,Br) be a parade in G. If H is an P-rainbow induced sub-bigraph of G,
then there is an associated linear order < on V;(H) defined by u < v if u € A; and v € A; for some
i,J with ¢ < j; and similarly for Vo(H). This gives an ordered bigraph that we call the P-ordering
of H; and if the P-ordering of H is isomorphic to some ordered bigraph T we say that H is a copy
of T.

A rooted bigraph H is a pair (H~,r(H)), where H™ is a bigraph and r(H) € V(H™); we call
r(H) the root. Thus, the root might belong to Vi (H) or to Vao(H). If Hy, Hy are rooted bigraphs,
by an isomorphism between them we mean an isomorphism between H, and H, that takes root to
root.

An induced rooted sub-bigraph H of G is P-left-rainbow if

e it is P-rainbow; and

e if the root of H belongs to Ay, then h < i for all i € {1,..., K} with V(H) N A; # 0; and if
the root of H belongs to By, then h < j for all j € {1,...,L} with V(H) N B; # 0.

We define P-right-rainbow similarly, requiring h > ¢ and h > j instead.
Let P = (A1,...,Ax; B1,...,Br) be a parade in a bigraph G. If T' is an induced subgraph that
is P-rainbow, its support is the pair (I, J) of subsets of {1,..., K} where

e [isthesetofallie {1,..., K} such that V(T) N A; # (), and
e Jis theset of all j € {1,..., L} such that V(T') N B; # 0.

If S is an ordered bigraph, and P is as above, we define the trace of S (relative to P) to be the set
of supports of all P-rainbow copies of S in G.

We say P is T-support-uniform if for every ordered tree bigraph T with at most 7 vertices, either
the trace of T' (relative to P) is empty, or it consists of all pairs (I,J) with I C {1,..., K} and
J CA{1,...,L} of cardinalities |V1(T)|, |Va(T')| respectively.

Let 0 < k < 1, and let P = (Ay,...,Ax;B1,...,Br) be a parade in a bigraph G. We say
that P is (k,T)-support-invariant if it has the following property: for every contraction P’ =
(Af,..., Al By, ..., By) of P such that [A}] > k|A;| for 1 <i < K and |B}| > k|By| for 1 <j <L,
and for every ordered tree bigraph T with at most 7 vertices, the trace of T relative to P equals the
trace of T relative to P’.

If G is a bigraph and X C V4(G) and Y C V5(G), or vice versa, and 0 < X\ < 1, we say that X
A-covers Y if there are at least A|Y'| vertices in Y with a neighbour in X, and X A-misses Y if there
are at least A\|Y| vertices in Y with no neighbour in X.

A parade P = (A1,...,Ax; B1,..., Br) is A-top-concave if it has the following very strong prop-
erty: for every Y C By U---U By, there do not exist hi, ho, hg with 1 < hy < ho < hy < K, such
that Y A-covers Ap, and Y A-misses Ay, and Ap,. We define \-bottom-concave similarly. We say P
is A-concave if it is both A-top-concave and A-bottom-concave.



A bigraph G is balanced if |V1(G)| = |V2(G)|; and we say a parade (Ay,...,Ax;B1,...,Br) is
balanced if K = L and all its blocks have the same cardinality (that is, |4;| = |Bi|).

The following theorem, which is the main step in the proof, says that we can find a rooted tree
bigraph T in any parade that is sufficiently well-behaved. In later sections, we will show that it is
possible to find such a parade.

3.1 Letd > 2 andn > 0 be integers. Let T be a rooted tree bigraph, such that every vertex has degree
at most 0 + 1, the root has degree at most §, and every path from root to leaf has length less than 7.
Let 7 = 6"Y, and let 0 < A < 27399510 Let G be a balanced bigraph with a balanced parade P of
length (K, K) where K = (320 4+ 4)7 + 2, such that P is A-concave, (273% 7)-support-invariant and
T-support-uniform. Let P have width (W, W). If G is e-coherent where ¢ < 2739 then there is a
P-rainbow copy of T.

Proof. We will be looking at rooted tree bigraphs in which every vertex has degree exactly § + 1
except the root and the leaves; but the root might have degree different from §, and not all paths
from root to leaf will necessarily have the same length. Let us first set up some notation for such
trees.

If a > 2 is an integer, let T'(a,0) be the rooted tree bigraph H with |[Vi(H)| =1 and Va(H) =0
(thus, a is irrelevant, but this will be convenient). If a > 2 and b > 1 are integers, let T'(a, b) be the
rooted tree bigraph H with root in V;(H), such that the root has degree a, every vertex different
from the root has degree a+1 or 1, and every path from root to leaf has length exactly b. We denote
the transpose of T'(a, b) by T(a,b).

root

AR AN Dt YA

root
Figure 1: T(2,3) and T(2,3).
Now let a1, ag, by, by > 0 be integers. Let T'(a1, b1, az, ba) be the rooted tree bigraph obtained from

ay copies of T'(6,b1) and ay copies of T(8,by), all pairwise disjoint, by adding a new root adjacent to
all the old roots. We denote its transpose by T'(a1, b1, as, ba).

root

a1 copies: --agy copies: -

Figure 2: T'(a1, b1, ag,b2).

Let P = (A1,...,Ak; By, ..., Bk) as in the theorem, where K = (320 4+4)7 42, and let its width
be (W, W). We observe that, since G is e-coherent, fewer than eWW vertices in A; have no neighbour
in B; for 1 <4 < K; and since § < K, and &§ < 1, there is a vertex in A; with a neighbour in



each of By,..., Bs. Hence tyere is a copy of T'(d, 1) that is P-left-rainbow and P-right-rainbow; and
similarly there is a copy of T'(, 1) that is P-left-rainbow and P-right-rainbow. Consequently we may
choose p, p, o, as below.

e Choose p > 1 maximum such that there is a copy of T'(d, p) that is P-left-rainbow (and therefore
there is a P-left-rainbow copy of T'(0, p,d, p — 1)); and choose ¢ > 0 maximum such that there
is a copy of T'(¢, p,0 — ¢, p — 1) that is P-left-rainbow.

e Choose p > 1 maximum such that there is a copy of T(6 p) that is P-left-rainbow; and choose
¢ maximum such that there is a copy of T(gi), 0,0 — ¢, p — 1) that is P-left-rainbow.

e Choose o > 1 maximum such that there is a copy of T'(9, o) that is P-right-rainbow; and choose
¥ > 0 maximum such that there is a copy of T'(¢, 0,6 — 1,0 — 1) that is P-right-rainbow.

e Choose ¢ > 1 maximum such that there is a copy of T(5 &) that is P-right-rainbow; and choose
v maximum such that there is a copy of T'(¢),5,8 — 1,5 — 1) that is P-right-rainbow.

We suppose for a contradiction that there is no P-rainbow copy of T'(6,7n) or its transpose, and so
P, p,0,0 < 1. Also ¢ < ¢, since otherwise T'(¢, p,d — ¢, p — 1) contains T'(d, p + 1), contrary to the
maximality of p; and similarly qb Y, 1/1 < 4.

Let us partition {2,..., K — 1} into 164 + 2 intervals, each of length 27, and numbered in order.
Thus, Iy, ..., 16541 are pairwise disjoint subsets of {2,..., K — 1}, with union {2,..., K — 1}, each
of cardinality 27, and such that x < y for all 4,5 € {0,...,160 + 1} with ¢ < j and all € I; and
Yy < [j.

Let a,b,¢,d,a,b, ¢ d > 0 be integers, all at most §, and let e be the sum of these eight integers.
Let I be the union of {1, K'} and the sets I; for all j € {0,...,80 —e} U{8 +e+1,...,165 + 1}.
Let P' = (A] (i € I); B (i € I)) be a balanced minor of P, where A C A; and B; C B; for i € I.
We say that P’ is (a,b, ¢, d,a, b, d)-anchored if the following hold:

e P’ has width at least 273¢(W, W).
* Y CUeq,.. kpgAiUBi, and Y is anticomplete to AlUBl forallie I\ {1,K}.

e For every v € A there is a P-left-rainbow copy of T(a, 5,b,5) in G[Y U {v}] with root v.
e For every v € B there is a P-left-rainbow copy of T(a, p,b, o) in G[Y U {v}] with root v.
e For every v € A’ there is a P-right-rainbow copy of T(¢, p,d,5) in G[Y U {v}] with root v.
e For every v € BY; there is a P-right-rainbow copy of T'(c, p,d, o) in G[Y U {v}] with root v.

Let [V1(G)| = |Va(@)| = n. Choose a,b,c,d,a,b,é d with maximum sum such that some bal-
anced minor is (a,b,c,d, a, b, & d)-anchored (this is possible since P is (0,...,0)-anchored), and let
I,P' . a,b,ecd, abédeand Y be as above. Let P’ have width (W/,W). Since e < 89, it follows
that W' > 2-2407)7,

For a bigraph H, we call the pair (|V1(H)|, |Va(H)|) its part size. Let

T(¢7p75_¢7p_1)7T(&7575_(&75_1)7T(¢70—76_w70'_1)7T(7~;76’75_’¢~}76’_1)

have part size (p1,q1), (p2,492), (P3,43), (P4, qs) respectively. Each of these eight numbers is at most
7. Choose
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Figure 3: Figure for “anchored”. Here, h = 27(80 — e) + 1, and j = 27(80 + €) + 2.

e disjoint subsets P;, P, of Ig5_. of cardinality pi, po respectively, with the smallest member of
1-8676 in Pl;

e disjoint subsets Ps, Py of Igsy.t1 of cardinality ps,ps respectively, with the largest member of
Igstev1 in Ps;

o disjoint subsets @)1, Q2 of Igs_. of cardinality ¢1, g2 respectively, with the smallest member of
Igs—e In Q2;

e disjoint subsets @3, Q4 of Igsie+1 of cardinality g¢3, g4 respectively, with the largest member of
Igstet1 in Q4.

Let r = [(27240 — 273091777, It follows that r > (269 — 1)2739TF > (212 — 1)273%W since § > 2.

(1) There are r copies Ly,..., Ly of T(¢,p,0 — ¢, p — 1), pairwise vertez-disjoint and each P’-left-
rainbow with support (P, Q1).

Since there is a copy of T(¢,p,0 — ¢, p — 1) that is P-left-rainbow, and P is 7-support-uniform,
there is such a copy that is P-left-rainbow with support (P;,Q1). Choose ' < r maximum such
that there are 7’ copies of T'(¢, p,d — ¢, p— 1), pairwise vertex-disjoint and each P’-left-rainbow with
support (P;,Q1). Suppose that ' < r. By removing the vertices of these copies from the blocks of
P’ that contain them, and removing 7’ vertices arbitrarily from every other block of P’, we obtain a
minor of P’, and hence of P, with width (W’ — ¢/, W’ — '), relative to which there is no left-rainbow
copy of T(¢p,p,d — ¢, p — 1) with support (P, Q1). But P’ is (273%, 7)-support-invariant, and so
W' — ¢ < 2730W . Since W’ > 27291, it follows that ' > (2724 — 27309}/ contradicting that
r’ < r. This proves (1).

Similarly, we deduce:

e There are 7 copies L, ..., L, of T((JE, P, 0 — b, p — 1), pairwise vertex-disjoint and each P’-left-
rainbow with support (P, Q2).

e There are r copies My,..., M, of T(¢,0,8 — 1,0 — 1), pairwise vertex-disjoint and each P-
right-rainbow with support (P35, @3).

e There are r copies M, ..., M, of T(,5,6 — 1), — 1), pairwise vertex-disjoint and each P-
right-rainbow relative to P’ with support (Py, Q4).
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For 1 <1 < r,let H; be the disjoint union of L;, I:@-, M; and M;. Thus H; is P'-rainbow. If & is the
smallest member of Igs_., then the root of L; belongs to A} and the root of L; belongs to Bj; and if
h' is the largest member of Igs 41, then the root of M; belongs to Aj,, and the root of M; belongs
to By,. We call these four roots the extremes of H;. Let v € AjUBjU A} UB), and 1 <i <r. If
v € A UA then every vertex of H; adjacent to v belongs to Va(H;), and if v € B] U B), then every
vertex of H; adjacent to v belongs to Vi(H;). In particular, there are at most two extremes of H;
that are adjacent to v. We say

e v meets H; if v is adjacent to some vertex of Hj;

e v meets H; internally if v is adjacent to some vertex of H; that is not an extreme (and possibly
v is also adjacent to one or two extremes);

e v meets H; properly if v is adjacent to one or two extremes, and to no other vertices of H;, that
is, if v meets H; and does not meet H; internally.

For X C A UB; UA% UB/, let f(X) be the number of i € {1,...,r} such that some vertex
in X meets H;, and let g(X) be the number of i € {1,...,r} such that some vertex in X meets H;
internally. Choose D C A} U B} U A U B}, maximal such that f(D) < r/2 and g(D) > f(D)/8. For
i=1,2, let D; = DN Vi(Q).

(2) Dy, Dy both have cardinality less than en; and f(D) <r/2 —en.

Let h be the smallest element of Igs_.. There are at least r/2 vertices in Aj; with no neighbour
in Ds (the roots of the trees L; such that no vertex in D meets H;). Since r/2 > en and G is e-
coherent, it follows that |Ds| < en; and since 7/2 > AW, we deduce that Dy A-misses Ap. Similarly
it A-misses A/, where h’ is the largest member of Igsi..1; and since P is A-concave, Dy does not
A-cover any of the sets Aj(h < j < h'). In particular, since |Iss_e| = |[Issret1| = 27, there are at
most \(47)W vertices in

U (415 € Tss—e \ {h}) U (Issea1 \ (1)

that have neighbours in Dj. It follows that g(D2) < 4\7W. The same holds for Dj; and since
g(D) < g(D1) 4+ g(D2), it follows that g(D) < 8A\7W. But f(D) < 8¢(D), and so

F(D) < 64ATW < 64(2730057 1) (671 (212 — 1) 7123y = 64(2"2 — 1) 'r <r/d<r/2—en
since A < 273996177 and 7 > (2'2 — 1)273%W  and r > 4en. This proves (2).
Let F' be the set of vertices in (A} U A% U B] U By) \ D that meet one of Hy,..., H,.

(3) At most 2en vertices in A} U A’ do not belong to F, and the same for B} U B,.

Since r > en, and G is e-coherent, there are fewer than en vertices in A’1 U A’K that have no
neighbour in any of Hi,...,H,. All the other vertices in A} U A’ belong to either Dy or F', and
only at most en belong to D, by (2). Consequently at most 2en vertices in A} U A’ do not belong
to F, and the same for B} U B),. This proves (3).

12



Let C be the set of all ¢ € {1,...,r} such that D is anticomplete to V(H;). Thus |C| =r— f(D).

(4) For each v € F, the number of i € C such that v meets H; internally is less than 1/8 of
the number of i € C such that v meets H;.

Since f(D) < r/2 —en by (2), it follows that f(D U {v}) < r/2, and the maximality of D im-
plies that g(D U {v}) < f(D U{v})/8. Since g(D) > f(D)/8, this proves (4).

Let us say v € F' is happy if v meets H; properly, where ¢ € C' is minimum such that v meets H;.

(5) We may assume that at least half of the vertices in each of the sets A{NF, A\ NF,B|NF,B.NF
are happy.

Let v € F, and take a linear order of C. If we choose the linear order uniformly at random,
the probability that v is happy is more than 7/8, by (4); and so the expected number of happy
vertices in A} is more than 7/8|A}|. Hence the probability that at least half the vertices in A} are
happy is more than 3/4 (because if it were at most 3/4 then the expected number of happy vertices
would be at most (3/4)| A} |+ (1/4)|A}]/2, which is too small). Similarly the probability that at least
half the vertices in A’ are happy is more than 3/4, and the same for B}, B).; and so there is positive
probability that all four events happen, that is, for some linear order of C, at least half the vertices
of each of A}, A}, B, B} are happy. Renumber C in this order; then (5) holds.

Let X be the set of all happy vertices in F. For each v € X, choose ¢ € C minimum such
that v meets H;. We call i the happiness of v. Now |[F N A > W — 2en by (3), and so
|IX NnA) > W/2—en > 3W/8 Thus we may choose m < |C| minimum such that one of
AN X A NX, Bl NX,By NX contains at least W’ /4 vertices with happiness at most m. Let
Y = V(H) U+ UV (Hyp) and I’ = I\ (Iss—e U Isssesr)-

(6) For each i € I'\ {1,K}, there is a subset Al of A,, and a subset B} of Bj, both anticom-
plete to Y', and both of cardinality [W'/8].

Let ¢ € I' \ {1,K}; we will show that A} has a subset with the desired properties. Let j €
Igs—e U Igsiey1. From the choice of m, fewer than W’/4 vertices in X N A} have happiness less
than m; and so at most W’ /4 + 2en have happiness at most m, since those with happiness exactly m
are adjacent to one of the roots of L, M,,. Since | X N A4| > 3W’/8, there are at least W’/8 — 2en
vertices in X N A} that have no neighbour in Y, and in particular have no neighbour in B; NnY".
Since W’/8 —2en > AW, Bi NY’ A-misses A;. By the same argument B; NY’ A-misses Ak, and so
does not A-cover A;, since P is A-concave. Consequently, for each j € Igs o U Igsier1, there are at
most AW vertices in A} with a neighbour in B, NY’; and so there are at most 47 AW vertices in A}
with a neighbour in Y. Since |A}| = W/ and W/ —47AWn > W'/8, this proves that A’ has a subset
with the desired properties. From the symmetry under taking transpose, this proves (6).

We chose m such that at least one of A} N X, A% N X, B NX,Bj NX contains at least W’'/4
vertices with happiness at most m; and from the symmetry, we may assume that B} N X contains
at least W'/4 vertices with happiness at most m. If v € B{ N X has happiness at most m, let i be
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its happiness; then v is adjacent to either the root of L; or the root of M;. Choose Z C Bj N X
with |Z| > W’/8 such that either every vertex v € Z is adjacent to the root of L;, where i is the
happiness of v, or every v € Z is adjacent to the root of M;, where 7 is the happiness of v. Choose
BY C Bj of cardinality [W’/8] with B} C Z (this is possible since |Z| > W’/8). Choose A] C A},
Al C A%, and B, C B, all of cardinality [W’'/8]. Let P” = (A} (i € I"); B/ (i € I')). Then P”
is a balanced minor of P. Its width is at least W'/8.

Suppose first that every vertex v € Z is adjacent to the root of L;, where 7 is the happiness of
v. Choose v € Z, and let i be its happiness. Let u be the root of L;. Since P’ is (a,b, ¢, d, a, b, ¢, ci)—
anchored, there is a copy of T'(a, p,b, o) in G[Y U {v}] with root v, P-left-rainbow, say S.

Suppose that @ = . Then S has a rooted subtree S’ with root v, isomorphic to T(&, p). But
L; is a copy of T(¢,p,d — ¢, p — 1); and so the union of S’, L;, and the edge uv, with root u, is a
P-left-rainbow copy of T (¢ + 1,p,5 — ¢, p — 1). From the choice of p, $ + 1 < J; and so there is a
P-left-rainbow copy of T'(¢ + 1,p,6 — ¢ — 1,p — 1), contrary to the choice of ¢. This proves that
a < 4.

By taking the union of S and an appropriate subtree of L; and the edge uv, we obtain a copy
of T(a+1,p,b,0) in GIY UY' U {v}], with root v. This holds for each v € Z. We claim that P” is
(a+1,b,¢,d,a, b, ¢, d)-anchored. Since its width is at least 273¢(W, W), it suffices to check that:

e YUY C U(UiteAiUBi:&S—(e—i—l)—i—l <j §8(5+(e+1)>, and Y UY” is anticomplete
to AYUBY/ forallie I\ {1, K}.

e For every v € A} there is a copy of T(a, §,b,5) in G[Y UY’U{v}] with root v, P-left-rainbow.
e For every v € BY there is a copy of T(a+1, p, b, o) in G[Y UY’U{v}] with root v, P-left-rainbow.
e For every v € A" there is a copy of T'(¢, p,d, &) in G[Y UY'U{v}] with root v, P-right-rainbow.
e For every v € B there is a copy of T(c, p,d, o) in G[Y UY'U{v}] with root v, P-right-rainbow.

The first of these holds from the choice of Y’ and of the sets A/, B/. We have just seen that the
third holds; and the other three statements are true because P’ is (a,b, ¢, d, a, l~), c, ci)—anchored. But
this contradicts the maximality of e.

This completes the case when every vertex v € Z is adjacent to the root of L;, where i is the
happiness of v; so now we may assume that every vertex v € Z is adjacent to the root of M;, where
i is the happiness of v. In fact this second case is the same as the first case, as can be seen by
reversing the numbering of Aq,..., Ax; but checking that this symmetry argument is valid seems
more difficult than repeating the argument for the first case, so we will just repeat the argument for
the first case.

Choose v € Z, and let i be its happiness. Since P’ is (a,b,c¢,d, a, l;, c, ci)—anchored, there is a
P-left-rainbow copy of T'(a, p,b,o) in G[Y U {v}] with root v, say S. Let u be the root of M;.

Suppose that b = §. Then S has a rooted subtree S’ with root v isomorphic to T'(8,). But M;
is a copy of T'(¢,0,6 — 1,0 — 1); and so the union of S’ M;, and the edge uv, with root u, is a
P-left-rainbow copy of T'(¢) + 1,0,0 — 9,0 — 1). From the choice of o, 1) + 1 < §; and so there is a
P-left-rainbow copy of T'(¢) + 1,0,8 — 1) — 1,0 — 1), contrary to the choice of ¥. This proves that
b <.
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By taking the union of S with an appropriate subtree of M; and the edge uv, we obtain a copy
of T(a,p,b+1,0) in G[Y UY'" U {v}]. We claim that P” is is (a,b+ 1,¢,d, a,b, ¢ d)-anchored, and
the argument is as before. But this contradicts the maximality of e.

This contradiction shows that there is a P-rainbow copy of T'(d,7n) or its transpose, and since
both these contain copies of T', possibly with different root (because all paths in T from root to leaf
have length less than 7)), there is also a P-rainbow copy of T'. This proves 3.1. |

4 Unbalanced parades

We have finished the difficult part of the paper; now we just have to apply 3.1. One problem is that
3.1 applies only to balanced parades in balanced bigraphs, and it would be easier to use without that
restriction. In this section we deduce a version of 3.1 without the balancedness restrictions.

For clarity, in what follows we say “G-adjacent” to mean adjacent in G, and define “G-neighbour”,
“G-anticomplete” and so on, similarly. Let G be a bigraph, and let a,b > 0 be integers. For each
u € V1(G) take a set M, of a new vertices, and for each v € V2(G) take a set M, of b new vertices.
Let H be the bigraph with V;(H) = Uvev,-(G) M; for i = 1,2, in which if u,v are G-adjacent then
M, is H-complete to M,, and if u,v are not G-adjacent then M, is H-anticomplete to M,. We
say H is obtained from G by (a,b)-multiplication. By appropriate multiplication, we can convert
an unbalanced parade to a balanced one, and it turns out that all the important properties of the
output of 3.1 are preserved under this. That will allow us to prove:

4.1 Let 6 > 2 and n > 0 be integers. Let T be a rooted tree bigraph, such that every vertex
has degree at most § + 1, and every path from root to leaf has length less than n. Let 7 = 8" and
A= 273095171 Let G be a bigraph with a parade P of length at least (K, K) where K = (326+4)7+2,
such that P is A-concave, (2*305,T)—support—mvarmnt and T-support-uniform. Let P have width
(W1, Wa). If G is e-coherent where ¢ < 2730~ min(Wy/|Vi(G)|, Wa/|Va(G)|), then there is a P-
rainbow copy of T.

Proof. By moving to a sub-parade, we may assume that P has length (K, K). Let |V;(G)| =
n; for i = 1,2. Let H be obtained from G by (W, Wi)-multiplication, with corresponding sets
M, (v € V(GQ)). Let P = (Ay,...,Ak;Bi1,...,Bk), and let P' = (A},..., A%; B, ..., B}), where
each A = J,¢ 4, My, and B = Upe B, My is defined similarly. Thus P’ is a balanced parade in H.

H is not yet a balanced bigraph, but we remedy that as follows. Let Uy = A1 U---U Ak, and
Uy = By U---UBg. Thus ‘U2|/|U1‘ = Wg/Wl. For i = 1,2, choose V; C V;(G) with U; C V;,
such that |Va|/|Vi| = |Usz|/|Ui|, with Vi maximal. Then P is a parade in G[V; U V3], satisfying
|A;|/|Vi| = |Bjl|/| V2| for all 4, j. Also, W; + |Vi| > n; for some ¢ € {1,2}, from the maximality of V;.

Let G’ be the sub-bigraph of H induced on the union of the sets M, (v € V3 UV3). Thus G’ is a
balanced bigraph, and P’ is a balanced parade in it. Let

Wl/nl WQ/RQ)
¢/ = 2e max < , > 2e.
Wa/ng’ Wi/ny ) —

(1) Fori=1,2, en; <&'|Vy].
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For this we may assume ¢ = 1, from the symmetry. Since & > 2¢, we may assume that n; >
2|Vi| > |Vi|+ Wi, Since W; + |V;| > n; for some i € {1, 2}, it follows that Wy + |V5| > ng, and in par-
ticular |Va| > na/2. So |Vi| = |Vo|(W1/Wa) > Wing/(2Ws2), and so ny < 2 ((Wa/na)/(W1i/n1)) |VA].
Hence eny < &|V4]. This proves (1).

(2) G' is €'-coherent.

Let w € V(G'), with w € M, say. From the symmetry we may assume that w € Vi(G). Then
the set of G’-neighbours of w is the union of the sets M, over all G-neighbours u of v with u € V5.
The number of such w is less than eng < &/|Va| by (1); and so w has degree less than &’'|Va(G')|.

Now suppose that there are subsets Z; C V;(G’) of cardinality at least £'|V;(G")| for i = 1,2,
such that Z; is G’-anticomplete to Z5. For ¢ = 1,2, let Y; be the set of all v € V; such that
M, N Z; # 0. Tt follows that |Y1| > |Z1|/Wa, and |Ya| > |Z2]|/W1, and Y7 is G-anticomplete to Ya.
Consequently |Y;| < en; for some i € {1,2}, and from the symmetry we may assume that i = 1. Thus
|Z1| < en1Wa, and since |Z1| > '|V1(G')], it follows that enyWa > &'|[V1(G')|. But [Vi(G')| = Wa|VA|,
and so en1 Wy > &'Wy|Vy|, that is, eny > €’|V4|, contrary to (1). This proves (2).

(3) P’ is A-concave, (2739 7)-support-invariant and T-support-uniform.

To see that P’ is A-concave, let Y/ C Bj U--- U B}. Let Y be the set of all v € By U---U B
such that Y’ N M, # 0. Thus for 1 <14 < K, the set of vertices in A} with a G’-neighbour in Y is
precisely the union of the sets M, over all u € A; that have a G-neighbour in Y. So Y’ A-covers A}
if and only if Y A-covers A;, and the same for A-missing; and so P’ is A-concave.

We observe that for every ordered tree bigraph S with at most 7 vertices, the trace of S relative
to P’ equals its trace of S relative to P (because each block of P’ only contains at most one vertex
of the tree).

To see that P’ is (273, 7)-support-invariant, let Q' = (CY,...,C%; D}, ..., D)) be a contraction
of P such that |C!| > 2739 A and |D}| > 273%9|B!| for i = 1,2. For 1 < i < K, there are at least
|C!| /Wy vertices v € A; such that M, N C! # (. Let C; be a set of [|Cl|/Wa] such vertices. Define
Dy, ..., Dy similarly. Then Q = (C4,...,Ck; D1, ..., D) is a contraction of P, and |C;| > 27399 4]
and |D;| > 2739 |B;| for 1 <i < K. Let S be an ordered tree bigraph with at most 7 vertices. We
need to show that for every such S, its trace relative to Q' equals its trace relative to P’. The trace
of S relative to Q' is a subset of its trace relative to P’, and we must show the converse inclusion.
Thus, let (H, K) belong to the trace of S relative to P’. Then (H, K) belongs to the trace of S
relative to P, as we saw above. Since P is (273%°, 7)-support-invariant, the trace of S relative to P
equals the trace of S relative to Q; and so (H, K) belongs to the trace of S relative to Q. But then
it belongs to the trace relative to Q. This proves that P’ is (273%, 7)-support-invariant.

Finally, that P’ is T-support-uniform is clear, since for every ordered tree bigraph S with at most
T vertices, the trace of S relative to P’ equals its trace relative to P. This proves (3).

Now P’ has width (W, W) where W = W1 W5. From the symmetry we may assume that Wi /ny >
Wa/ne. By hypothesis, 26 < 2739W, /ny; and since €' = 2e(Wy/ny)/(Wa/ns), it follows that

E/ < 27305W1/n1 < 27305W1/‘V'1‘ — 27306W/|‘/1(G/)‘.
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Since |V1(G)| = [Va(G")|, we deduce, from (2), (3) and 3.1 applied to G',P" and &', that there is a
P’-rainbow copy of T' in G’, and hence there is a P-rainbow copy of T' in GG. This proves 4.1. |

5 Producing a concave parade
In this section we apply 4.1 to deduce 1.6.

5.1 Let 7 > 1 be an integer, and let 0 < k < 1. Let P = (A1,...,Ar; B1,...,BL) be a parade in a
bigraph G. Then there is a contraction P' = (A}, ..., A By,...,B}) of P, such that

2K+LTT

o |A| > k2“5 44| and 1B} > K |Bj| for 1 <j < L;and

e P’ is (k,T)-support-invariant.

Proof. Let P =(Ai,...,Ax;B1,...,Br) be a parade in a bigraph G. We define the trace-cost of a
contraction P’ of P to be the sum of the cardinality of the trace of T', summed over all nonisomorphic
ordered tree bigraphs T with at most 7 vertices. The cardinality of the trace of any given ordered
tree bigraph T is at most 258% and up to isomorphism there are at most 77 ordered tree bigraphs
T with at most 7 vertices. Hence the trace-cost of P is at most 25+L77,

There are integers t > 0 (for instance ¢ = 0) such that there is a contraction

P = (A}, ..., A% B, ...,BL)

of P with |A]] > w'|A;| for 1 < i < K, and |Bj| > «'|B;| for 1 < j < L, and with trace-cost at
most 25+ — ¢ Since trace-cost is nonnegative, it follows that every such ¢ satisfies t < 28+L77
and so we can choose ¢ maximum with the stated property. Let P" = (AY,... A% B{,...,B]) be
a contraction of P’ such that |A]| > k|A}| for 1 <4 < K, and |Bj| > «|B}| for 1 < j < L. For
every ordered tree bigraph T, the trace of T relative to P” is a subset of the trace of T relative to
P, and so from the choice of ¢, equality holds for every T with at most 7 vertices, that is, P’ is
(k, T7)-support-invariant. This proves 5.1. |

There is a bipartite version of Ramsey’s theorem for uniform hypergraphs:

5.2 For all integers a,b, c there exists N with the following property. Let A, B be two disjoint sets
both of cardinality at least N; let F be the set of all subsets of AU B that contain exactly a vertices
of A and b vertices of B; and let H C F. Then there exists A C A and B' C B, with |A'| = |B'| = ¢,
such that one of H,F \ H contains no subset of A" U B'.

By iterated applications of 5.2 (one for each ordered tree bigraph 7" with at most 7 vertices) we
deduce:

5.3 Let k,7 > 0 be integers; then there exists an integer K > 0 with the following property. Let P
be a parade of length (K, K) in a bigraph G, and let 0 < A < 1. Then P has a sub-parade of length
(k, k) which is T-support-uniform.

Combining 5.1 and 5.3, we obtain:
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5.4 Let k,7 > 1 be integers, and 0 < k < 1; then there exist an integer K with the following
property. Let P be a parade of length at least (K, K) and width (W1, Ws) in a bigraph G. Then there
is a minor P of P, with length (k,k) and width at least

22K

(25T, KT W),

such that P’ is (k, T)-support-invariant and T-support-uniform.

Proof. Let K satisfy 5.3; then we claim it satisfies 5.4. Let P = (A44,...,Ak; Bi1,...,Bg) be a pa-
rade in a bigraph G, of width (W7, W3). By 5.1 there is a contraction P’ = (A,...,Ax; Bi, ..., By)
of P, with width at least

22K

(H22KTTW17 K TTW2)’

such that P’ is (k, 7)-support-invariant. By 5.3 applied to P’, the result follows, since being (&, 7)-
support-invariant is inherited by sub-parades. This proves 5.4. |

We need the following lemma.

5.5 Let K,l,t > 0 be integers, and let 0 < k < 1/2. Let A = 2k, let r = [t/k], and let L = r.
Let P = (A1,...,Ax; B1,...,Bpr) be a parade in a bigraph G, of width (W1, Wy). Suppose that there
do not exist 1 < qo < --- < gt < L and a subset X C Ay U ---U Ak such that X 2k-covers By,,
and X k-misses By, for all j € {0,...,2t} \ {t}. For 1 < j <, let C; be the union of the sets B;
for all i with r(j — 1) < i < rj. Then the parade C = (Ay,...,Ak;C1,...,Cy) is A-bottom-concave.
Moreover, for T > 0, if P is T-support-uniform then

e s0isC;

e for every ordered tree bigraph T with |T| < 7 and |Vao(T)| < £, if its trace relative to P is
nonempty then its trace relative to C is nonempty; and

e if in addition for some k' > k, P is (', T)-support-invariant, then C is also (k',T)-support-
invariant.

Proof. Let 1 < hy < hy < hy < ¢, and suppose that there exists X C A; U---U Ak, such that
X A-covers C, and A-misses Cp, and Cj,. Since X A-covers C},, there are at least A\rWs vertices
in Cj, with a neighbour in X, and so there exists r; with r(hy — 1) < rj < rhg such that at least
AW; vertices in B, have a neighbour in X. Hence X A-covers B,,. From the hypothesis, either
X k-misses B; for fewer than ¢ values of ¢ with r(h; — 1) < i < rhy, or X k-misses B; for fewer
than ¢ values of i with r(hg — 1) < i < rhg, and from the symmetry we may assume the former.
Consequently there are fewer than tWs + (r —t)xWa vertices in Cj,, —1 with no neighbour in X. Since
X A-misses C},,, it follows that

tWo + (r — t)kWa > N Ch, | = 2krWa,

and so t(1 — k) > kr, contrary to the choice of r. This proves that C is A-bottom-concave.

If P is T-support-uniform then clearly so is C. Let T be an ordered tree bigraph, with |T'| < 7
and |V2(T')| < ¢ that has nonempty trace relative to P. Let |Vi(T")| = s and |Vo(T")| = t. Thus t < /.
Since P is T-support-uniform, the trace of T' consists of all pairs (I, J) where I C {1,..., K} with
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|I| = s and J C {1,...,L} with |J| = ¢t. In particular, ({1,...,s},{r,2r,...,tr}) belongs to the
trace of T relative to P; and so ({1,...,s},{1,2,...,t}) belongs to the trace of T relative to C. This
proves the second bullet.

It remains to show that if in addition P is (, 7)-support-invariant then so is C. Let T be an
ordered tree bigraph, with |T'| < 7. Let |Vi(T)| = s and |Vo(T)| =t say. Let 1 <p; <--- <ps < K
and 1 < ¢ < --- < g < ¢, such that there is a (A4y,,...,Ap,;Cq,...,Cq,)-rainbow copy of T'. For

1 <i<slet A, €Ay, and for 1 <j <t let C'(’]j C Cy;, where (A}, ,..., A, ;Cq ..., C,) is a
parade with width at least (x'W1, 5'rWa). We must show that there is an (A}, ,..., A, ;Cy ..., Cp)-

rainbow copy of T'.

For 1 < j < t, since ]C,;j| > k'rWo, there exists g; with 7(g; — 1) < g; < rg; such that
\C(’Ij N B;j| > k'Wy > kW,. Choose Dy, C C’gj N B;j of cardinality [kW2| for 1 < j < t.
Since P is 7-support-uniform and (k,7)-support-invariant, it follows that there is a copy of T
that is (A),,..., A4, ;Dg,- .., Dg,)-rainbow and hence (4, ,..., 4, ;Cy ,...,Cy )-rainbow. This
proves 5.5. |

5.6 For every tree bigraph T, there exist d > 0 and an integer K, such that, for every bigraph G
with a parade P of length at least (K, K), if for some e > 0, G is e-coherent and P has width at least
(ed|Vi(G)|, ed|Va(G)|), then there is a P-rainbow copy of T in G.

Proof. We proceed by induction on |T'|, and may assume that |7| > 2. Choose § > 2 and n > 0
such that 7" is a sub-bigraph of T'(6,n) and of T(8,7). (The latter were defined within the proof of
3.1.) Let A = 27997157177 and k = A\/2. Let r = [(|T| — 1)/x]. From the inductive hypothesis,
there exist K',d such that for every tree bigraph 7" with |T”| < |T'|, the theorem is satisfied with
T',K',d replacing T, K,d. By increasing K’, we may assume that K’ > 6r6"2, and K’ > 2|T| +1,
and K’ is a multiple of 4r. Let £ = K'/(4r). Let 7 = §"*1. Let K satisfy 5.4 with k replaced by K.
Let
d=r"2" max(d', 2% /r).

We claim that K,d satisfy 5.6. Let P be a parade in a bigraph G, of length (K, K) and width
(W1, Ws), where W; > ed|V;(G)| for i = 1,2, and G is e-coherent. We assume (for a contradiction)
that there is no P-rainbow copy of T. By 5.4, there is a minor P’ of P of length (K’, K') and
width at least /<;2QKTT(W1, W5), such that P’ is T-support-uniform and (k, 7)-support-invariant. Let
P’ = (Ay,...,Ags; B1,...,Bg), and let its width be (wy,w2). Let ¢t = |T|. From the symmetry we
may assume that some vertex of V4 (7') has degree one in 7T

(1) There do not exist 1 < ro < -+- < rog < K', such that for some X C Ay U---UAgr, X
2k-covers By,, and X k-misses By, for all i € {0,...,2t} \ {t}.

Suppose that such X and rg,...,ry exist. Let B, be a set of [skws] vertices in B,, that have
a neighbour in X; for 0 < ¢ < 2t with ¢ # ¢, let B;,Z_ be a set of [kws] vertices in B,, that do not
have a neighbour in X; and for ¢ € {1,..., K’} with ¢ # ro,...,ry, let B} be a subset of B; of
cardinality [kwq]. Partition {1,..., K’} into two sets I, I2, both of cardinality K'/2 > |T|. Let
X1 be the intersection of X with the union of the sets A;(i € I ), and define X5 similarly. At
least one of X1, Xy k-covers B,,, since their union 2x-covers B,,, and from the symmetry we may
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assume that Xo k-covers B,,. Since || > K'/2 > t, Let J = {ro,71,...,7r9t}. Then the parade
P" = (A; (i € I); B (j € J)) has width at least (w1, kws).

Let vg € Vi(T) be a vertex of T with degree one, and let ug be its neighbour. Let 77 =T\ {vp}.
From the inductive hypothesis, there is a P’-rainbow copy of T”, since for i = 1,2,

K2Z5TTW > k25T (2d|VA(G)|) > de|Vi(G)).

Hence there is an ordered bigraph S, obtained from T by ordering V3 (T”) and V,(T”), with nonempty
trace relative to P’.

Since P’ is T-support-uniform, and (k, 7)-support-invariant, and the trace of S relative to P’ is
nonempty, and |I1| > |V4(T)|, there is an isomorphism from S to a P”-rainbow induced sub-bigraph
H of G, with P”-ordering isomorphic to S, where ug is mapped to a vertex of H in B, , say u.
Choose v € X adjacent to u; such a vertex exists since PP X covers B, . But then v has no other
neighbour in V (H), since X is anticomplete to B, for all € I\ {t}; and v € A}, where h € I5. Thus
adding v to H gives a P-rainbow copy of T', a contradiction. This proves (1).

We recall that K’ = 4r¢. For 1 < i < 4¢, let C; be the union of the sets B; for all j with r(i—1) <
j <ri. Then C = (Ay,...,Ag;C1,...,Cy) is a parade, of width (wy,rws), and rwy > r2 T,
By 5.5, C is 2k-bottom-concave, 7-support-uniform and (k, 7)-support-invariant.

Let 1 <i < K’', and let X C A; be such that X A-covers each of C1,...,Cy. This is possible,
because A; A-covers each of C1,...,Cy, since A < 1/2 and w; > €|Vi(G)], and rwe > €|Va(G)|. Let
us say j € {1,...,4¢} is a pit for X if X A-misses C;. Since C is A-bottom-concave, there are at
most two pits for X, and if there are two then they are consecutive. On the other hand, if we choose
X minimal, then it follows by deleting one vertex from X that for some j € {1,...,4¢}, fewer than
A Cj| + €|Va(G)| vertices in C; have a neighbour in X, and since A|Cj| + ¢|V2(G)| < (1 — N)|C}l, it
follows that j is a pit for X. Thus there is either exactly one pit, or exactly two consecutive pits for
X. Let us say A; is left-first if there is a choice of X C A; such that X A-covers each of C'q, ..., Cyy,
and X has a pit j with j > 2¢; and right-first if there is a choice of X C A; such that X A-covers
each of C'q,...,Cyy, and X has a pit j with j < 2£. Each A; is therefore either left-first or right-first,
possibly both; and so we may assume (by reversing the order of C1, ..., Cy if necessary) that at least
half of them are left-first. Let I C {1,..., K’} with |I| = K'/2 = 2r¢ such that A; is left-first for
each i € I.

Let ¢ € I, and choose X C A; such that X A-covers each of C1,...,Cy, and X has a pit j with
j > 2¢. Choose X% C X minimal such that X2¢ A\-covers Cy, and for 2¢ > i > 1 in turn, inductively
choose X C X! minimal such that X? A\-covers C;. To show that this is possible, we will prove
inductively that for 2¢ > ¢ > 1:

e X' does not A\-miss any of C1,...,Ci_1;
e X’ both A-covers and A-misses Cj;

e X* does not A-cover any of Cj;1,...,Cop; and

fewer than \|C;| + ¢|Va(G)| vertices in C; have a neighbour in X

Suppose then that either i = 2¢ or X**! satisfies the four bullets; then the choice of X' is possible, and
it remains to show that X* satisfies the four bullets. Certainly X* A-covers C; from its definition; and
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from the minimality of X, fewer than \|C;| +¢|Va(G)| < (1 — \)|C;| vertices in C; have a neighbour
in X? and so X* \-misses Cj. Since it also A\-misses Cj, because j is a pit for X and X i C X, and
j > 20, we deduce from concavity that X* does not A-cover any of Cj,1,...,Cy. Thus the second,
third and fourth bullets hold. But also, since X¢ A-covers C; and A-misses C}, concavity implies that
X% does not A-miss any of C1,...,C;_1. Thus all four bullets hold. This completes the inductive
definition of X1,..., X% Let us call the sequence (X', ..., X%) a A-ladder in A;.

For each i € I, choose a A-ladder (X}, ... ,Xi%) in A;. For 1 < j <2/, let us say that v € Cj
is unwanted if for some ¢ € I, either v has a neighbour in Xij7 or v has no neighbour in Xf " for
some j with j < 7/ < 2¢ (and hence j < 2/, and v has no neighbour in Xl-jH). We say v is
wanted if it is not unwanted. (Note that if v € C; is wanted, then for each i € I, v has no neigh-
bour in any of X%, ..., X;) It follows that the total number of unwanted vertices in Cj is at most
II|(2A|C}| + €|Va(G)]), since for each i € I, there are at most A\|C;| + €|V2(G)| vertices in C; with a
neighbour in Xij, and at most A|C;| vertices in C; that have no neighbour in XijJrl (when j < 2¢).
Since |I](2A|C}| + €|Va(G)|) < |Cj|/2 it follows that at least |C;|/2 vertices in C; are wanted. For
1 <j <24 let C} C Cj be a set of vertices that are wanted, with |C}| = [|C}|/2].

(2) There do not exist qo, - ..,qat € I with qo < q1 < --- < qa¢, such that for someY C C1U---UCY,
Y 2k-covers Ag,, and Y k-misses Ay, for alli € {0,...,2t}\ {t}.

Suppose that such qo,...,q2,7,Y exist. Choose u € Vo(T') such that all its T-neighbours except
possibly one have degree one in T. (This is possible, because if V5(T') contains a leaf of T', let u be
that leaf, and if all leaves belong to Vi(T'), let u be a leaf of the tree obtained from 7' by deleting
all leaves.) Let v be a neighbour of u such that all its other neighbours are leaves; and let u have s
neighbours different from v. Let T” be obtained from T' by deleting v and all its neighbours except v.
Let Aj, be a subset of [kW1] vertices in A, that have a neighbour in Y, and for 0 < i < 2t with i # ¢,
let A}, be a subset of [k1W1] vertices in A,, that have no neighbour in Y. Let I1 = {qo, q1,---,q2t}-

As in the proof of (1), from the inductive hypothesis, there is a P’-rainbow copy of T7”. Hence
there is an ordered bigraph S, obtained from 7" by ordering V3 (T") and V5(T"), with nonempty trace
relative to P’, and so with nonempty trace relative to C, by the second bullet of 5.5.

Let C' = (4] (i € );C} (£ +1 < j < 2()). Since C is T-support-uniform, and (x, 7)-support-
invariant, and x < 1/2 (and so each |C}| > £|C;), and the trace of S relative to C is nonempty, it
follows that there is a C’-rainbow induced sub-bigraph H of G, with P-ordering isomorphic to S,
where some vertex v' € V(H) N A, is mapped by the isomorphism to v. Choose v’ € Y adjacent
to v'; such a vertex exists since Y covers Ag,. But then u' has no other neighbour in V(H), since
Y misses A, for all i € {0,...,2t} \ {t}. Choose p1,...,ps € I\ {qo,...,q2}. (This is possible
since |[I| > 2t + 1+ s.) Since v/ € Y C Cj U ---U (), there exists j with 1 < j < £ such that
u' € C}. For 1 < i < s, choose z; € Xf" adjacent to w'. (This is possible since u’ is wanted.)
Then z; is nonadjacent to all vertices in Va(H), since all of these vertices are wanted and belong to
Cpq U---UCy,. Thus adding v’ and 21, ...,xs to H gives a P-rainbow copy of T', a contradiction.
This proves (2).

Since |I| = 2r¢, we may partition I into ¢ “intervals” each containing 2r elements of I, say

Ii,...,I;. More exactly, we partition I into Iy,..., Iy, where each of these sets has cardinality 2r,
and for 1 < h < ¢ </, every element of I is less than every element of I;. For 1 < h < ¢ let Dy,
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be the union of the sets A; (i € I). Then D = (Dy,..., Dy C, ..., Cy) is a parade. By (2) and
5.5, D is A-top-concave. Now C is 7-support-uniform, and (k, T)-support-invariant, and A-bottom-
concave; and so C' = (4; (1 € 1);CY,...,C}) is T-support-uniform, (2k,7)-support-invariant, and
2X\-bottom-concave, since |C}| > |C;|/2 for each i. Thus D is 2A-bottom-concave; and by 5.5, D
is also 7-support-uniform and (2, 7)-support-invariant. In summary then, D is 7-support-uniform,
(2K, T)-support-invariant and 2\-concave. Hence D satisfies the hypotheses of 4.1, and so there is a
D-rainbow, and hence P-rainbow, copy of T', a contradiction. This proves 5.6. |

Finally we can prove 1.6, which we restate:
5.7 For every forest bigraph H, there exists € > 0, such that every e-coherent bigraph contains H.

Proof. We may assume that H is a tree bigraph. Let K, d satisfy 5.6. We may assume by increasing
d that d > 1. Choose € > 0 such that 2Ked < 1. We claim that every e-coherent bigraph contains
T. Let G be an e-coherent bigraph. It follows that |V1(G)|, [Va(G)| > e~ > 2Kd > 2K. Hence for
i=1,2, |Vi(G)|/K > [|Vi(G)|/(2K)], and so we may choose K subsets of V;(G), pairwise disjoint
and each of cardinality [|V;(G)|/(2K)] > ed|V;(G)|. These sets, in order, form a parade of length
(K, K) and width at least ed(|V1(G)|, |Va(G)|), and so by 5.6, G contains H. This proves 5.7. |
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