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Special eccentricities of rational four-dimensional ellipsoids

DAN CRISTOFARO-GARDINER

A striking result of McDuff and Schlenk asserts that in determining when a four-
dimensional symplectic ellipsoid can be symplectically embedded into a four-
dimensional symplectic ball, the answer is governed by an “infinite staircase”
determined by the odd-index Fibonacci numbers and the golden mean.

There has recently been considerable interest in better understanding this phenom-
enon for more general embedding problems. Here we study embeddings of one
four-dimensional symplectic ellipsoid into another, and we show that if the target is
rational, then the infinite staircase phenomenon found by McDuff and Schlenk can
be characterized completely. Specifically, in the rational case, we show that there is
an infinite staircase in precisely three cases: when the target has “eccentricity” 1, 2,
or % In each of these cases, work of Casals and Vianna shows that the corresponding
embeddings can be constructed explicitly using polytope mutation; meanwhile, for
all other eccentricities, the embedding function is given by the classical volume
obstruction, except on finitely many compact intervals, on which it is linear.

Our work verifies in the special case of ellipsoids a conjecture by Holm, Mandini,
Pires and the author. The case where the target is the ellipsoid E (4, 3) is also
interesting from the point of view of this Cristofaro-Gardiner—Holm—Mandini—
Pires work: the “staircase obstruction” introduced in that work vanishes for this
target, but nevertheless a staircase does not exist. To prove this, we introduce
a new combinatorial technique for understanding the obstruction coming from
embedded contact homology which is applicable in other situations where the
staircase obstruction vanishes, and so is potentially of independent interest.

53D05; 57R58

Dedicated to my father on the occasion of his 85th birthday

1 Introduction

1.1 The main theorem

A symplectic embedding of one symplectic manifold (M1, w1) into another (M>, w3)

is a smooth embedding
V: My — M,
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such that U*w, = w;. Determining whether or not a symplectic embedding exists can
be very subtle, even in simple examples. For example, define the (open) symplectic
ellipsoid

121 |2 |Zn |2

+...+n
ai dp

E(ay,....,ay) =7 <1} cCc* =R?*",

This inherits a symplectic form by restricting the symplectic form on R?”. Define the

symplectic ball
B¥(A):=E(,...,M).

In [16], McDuff and Schlenk determined exactly when a four-dimensional symplectic
ellipsoid can be symplectically embedded into a four-dimensional symplectic ball.
Specifically, they computed the function

c(a) :=min{A | E(1,a) — B*(1)}

for a > 1, where here and below the arrow denotes a symplectic embedding. They
found that the function c(a), which they show is continuous, has a surprisingly rich
structure:

Theorem 1.1 [16] e Forl <a < 1%, the function c(a) is given by an “infinite
staircase” determined by the odd-index Fibonacci numbers.

2 . .
e Fora > (%7) , we have c¢(a) = +/a; in other words, the only obstruction to the
embedding problem is the classical volume obstruction.

2 . .
e Fort*<a< (%) , we have c(a) = +/a, except on finitely many intervals on

which it is linear.

In fact, they compute the function precisely — see [16] — but we do not need their
exact result here. To explain the nomenclature in the first bullet point in Theorem 1.1,
the authors show that the interval [1, 7#] can be decomposed into an infinite sequence of
intervals on which the graph of ¢ alternates from lying on the line through the origin to
being horizontal. In particular, the graph of ¢ qualitatively can be described an infinite
staircase.

The McDuff-Schlenk result mentioned above has sparked considerable interest in better
understanding this staircase phenomenon. To elaborate, we say here and below that a
continuous, nondecreasing, real-valued function on [1, c0) has an infinite staircase if it
has infinitely many singular points, namely points where the function is not differen-
tiable. For example, define the four-dimensional polydisc P(a,b) := D?*(a) x D?(b).
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Frenkel and Miiller [11] studied embeddings of an ellipsoid into P(1, 1), and found an
infinite staircase determined by the Pell numbers for the analogue of the function c(a)
with polydisc target. Usher [17] studied embeddings into other polydiscs and found
infinitely many infinite staircases.

In a different direction, Casals and Vianna [4] found a connection between certain
infinite staircases and polytope mutation, which we will further discuss below. Bertozzi,
Holm, Maw, McDuff, Mwakyoma, Pires and Weiler [2] studied embeddings into
Hirzebruch surfaces and found infinitely many infinite staircases, with singular points
converging from above. The author and Kleinman [10] studied embeddings into E(1, 2)
and E (2, 3) and found connections with the theory of Ehrhart functions; the author
and Hind [7] found a connection between the McDuff—Schlenk staircase and certain
higher-dimensional embedding problems.

Despite all the above results, we still do not have a good sense of how characteristic this
staircase phenomenon actually is for four-dimensional symplectic embedding problems.
The aim of this work is to answer this question completely when the target is a rational
ellipsoid. It turns out that, in this case, infinite staircases are in fact quite rare and can
be understood completely; it seems plausible that this holds more generally.

To make all this precise, for fixed b > 1, define the function
(1) cp(a) =min{A | E(1,a) - E(A, Ab)}.

Then the function cj(a) is precisely the McDuff—Schlenk function considered above.
The function cp(a) is a continuous function, for example by [10, Lemma 5.1], but is
not in general C'!, as seen for example by the McDuff-Schlenk result above. Following
for example McDuff [15], we call b the eccentricity of the ellipsoid E(1, b).

We can now state our main result:

Theorem 1.2 Fix arational b > 1. Then, unless b € {1, 2, %}, we have cp(a) = +/a /b,
except for finitely many compact intervals, on which it is linear.

Note that the quantity /a/b represents the classical volume obstruction here. (Sym-
plectic embeddings must preserve volume.)

In view of Theorem 1.2, it is natural to ask what is known about ¢, (a) when b € {1,2, 3}.
In fact, it was previously shown [10] that, in each of these cases, the function c¢j(a)
starts with an infinite staircase, determined by an infinite sequence that generalizes
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the odd-index Fibonacci numbers. So, from the point of view of infinite staircases for
embeddings into rational ellipsoids, Theorem 1.2 is an optimal result.! These infinite
staircases have the same form as the McDuff—Schlenk one; that is, they consist of
intervals on which the function alternates between being linear, with a graph lying on
the line through the origin, and being constant.

We also emphasize that, recently, Casals and Vianna [4] have introduced a beautiful
method for explicitly constructing the embeddings required for the infinite staircase
in the b € {1, 2, %} case using polytope mutation and almost toric fibrations. Thus, in
view of Theorem 1.2, the embeddings required for all infinite staircases arise this way,
in the case of ellipsoids. It seems worth exploring whether the other infinite staircases
mentioned above can be constructed in a similar way.

In view of Theorem 1.2, it is natural to ask the following:
Question 1.3 Are there irrational numbers b for which cp (a) has an infinite staircase?

The results of Bertozzi, Holm, Maw, McDuff, Mwakyoma, Pires, Weiler and Usher
mentioned above give Question 1.3 additional intrigue.

1.2 Reflexive polygons

Theorem 1.2 verifies in a special case a recent conjecture of the author and Holm,
Mandini and Pires.

To explain this in more detail, and to partly explain the motivation for this conjecture,
we need to recall some terminology from (for example) Choi, Cristofaro-Gardiner,
Frenkel, Hutchings and Ramos [5] and our [6]. Let Q C R? be a region in the first
quadrant. We define the toric domain corresponding to €2 to be the subset

Xo = {(z1.22) | (r|z1|%, 7|22|%) € Q} Cc C" = R?",

with the symplectic form inherited from the standard from on R%”. For example, when
Q is a triangle with legs on the axes, Xg is an ellipsoid; when 2 is a rectangle with
legs on the axes, Xq is a polydisc.

A toric domain Xg is called a convex toric domain if €2 is a convex, connected, open
subset of the first quadrant containing the origin, and is called rational if 2 has rational

n fact, Theorem 1.2 was originally conjectured in [10, Conjecture 1.8].
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vertices. We can define the ellipsoid embedding function cgq (a) for any convex toric
domain analogously to the definition of ¢;(a). For example, the author with Holm,
Mandini and Pires [9, Theorem 1.2] showed that the ellipsoid embedding function for
any closed symplectic toric four-manifold agrees with the embedding function of a
rational convex toric domain.

As mentioned above, it seems natural to try to understand how characteristic infinite
staircases are for embedding problems. When the target is a rational convex toric
domain, conjecturally there is a complete characterization. Namely, recall that a convex
polygon with integral vertices is called reflexive if its dual polygon is also integral. It is
known that this is equivalent to the polytope having one interior lattice point.

We can now state the conjecture introduced at the beginning of this section:

Conjecture 1.4 [9] The embedding function cg (a) of a rational convex toric domain
has infinitely many singular points only if some scaling of 2 is reflexive.

An integral triangle with vertices (m, 0), (0, 0) and (0, n) with m > n is reflexive if and
only if
(m,n) €{(3,2),4,2),(3,3)}.

Indeed, if n = 1, then the triangle has no interior lattice points at all; if n > 3, then
the triangle contains the (3, 3) triangle, which has exactly one interior lattice point, so
there are too many interior lattice points unless n = m = 3; and if n = 2, there are no
interior lattice points if m = 2, and too many if m > 4.

In particular, our main Theorem 1.2 therefore implies the following corollary:
Corollary 1.5 Conjecture 1.4 holds for four-dimensional ellipsoids.
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2 Proof of the main theorem

We now explain the proof of the main theorem.
2.1 Outline of the argument

We begin by explaining the basic idea behind the argument.

It is already known that, for fixed b, if a is sufficiently large then the function ¢ (a) is
given by the volume obstruction, by [3, Theorem 1.3]. It was also recently proved as a
special case of [9, Proposition 2.1] that if the function ¢ (a) has finitely many singular
points, then it is piecewise linear except on intervals where it coincides with the volume
curve. So, we only have to understand whether or not infinitely many singular points

can ocCcur.

In Section 2.2, we apply a recent theorem by the author, Holm, Mandini and Pires to
find a unique point ag, determined by b, where singular points must accumulate if
infinitely many of them exists. Next, we show in Sections 2.3 and 2.4 that, for all but
four values of b, this number ag is small enough that one can understand enough about
cp(a) for 1 <a < ag + ¢ to rule out the possibility of infinitely many singular points
around agp. The part of the argument in Section 2.4 uses the theory of “embedded
contact homology” (ECH) capacities, which we explain there, while the part of the
argument in Section 2.3 is completely elementary.

Three of the four possible values for b from above correspond to the 1,2 and % cases,
where an infinite staircase in fact exists. The fourth value corresponds to b = %; this
turns out to be a delicate and interesting case, since the “staircase obstruction” — see
Section 2.2 — vanishes. We treat this case separately in Section 2.5; our proof here
also uses ECH capacities, together with a powerful theorem by McDuff [14], stating
that these capacities give sharp obstructions to ellipsoid embeddings; the method we
introduce here is potentially of independent interest and will be used in an update of [9]
in other situations where the staircase obstruction vanishes; see Remark 2.13. The
proof of Theorem 1.2 is then given in Section 2.6.
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2.2 Computing the accumulation point

In [9], the author and collaborators show that, for a large class of symplectic 4—manifolds,
any infinite staircase must accumulate at a unique point characterized as a solution
to a certain quadratic equation. We will want to use these results here, to find this
accumulation point. We begin by summarizing the relevant mathematics, in the special
case of ellipsoids.

Any rational ellipsoid E(1, p/q) has a negative weight sequence

(w; wi, ..., Wg),

defined by the procedure in [6, Section 2]. The weights can be read off from the
triangle Ay /4, with vertices (0, 0), (1,0) and (0, p/q); this should be regarded as the
“moment polytope” of the ellipsoid.

More precisely, the number w is the smallest real number such that Ay /4, C Ay w: SO,
in this case, we have w = p/q. To find the w;, we look at the complement of A ,/,
in Ay p/q- This is itself a triangle, which is affine equivalent to a right triangle A
with legs on the axes. The w; are then given as follows. We take w; to be the largest
number such that Ay, 4, C AW then, if this inclusion is not surjective, we look at
the complement of Ay, ), in AM | which is itself a triangle affine equivalent to a right
triangle A with legs on the axes; we then take w5 to be the largest number such that
Aw,.w, C AP and iterate until the complement of Ay wy 10 AW is empty. For the
details, see [6].

We remark that the wy, ..., wy as described above are also called the weight sequence
of the triangle A,

‘We now define
per(E(l, p/q)) =3w—Y w;, vol(E(L, p/q)) = w? =3 w},

where (w; wy, ..., wy) is the negative weight sequence. The term vol(E(1, p/q)),
which we denote by vol for short, is the volume of E(1, p/q), appropriately normalized;
the term per(E (1, p/q)), which we denote by per, should be regarded as the perimeter.

We now have the following, from [9]:

Theorem 2.1 ([9, Theorem 1.10], in the special case of an ellipsoid) Let b be a
rational number. Then, if the ellipsoid embedding function cp(a) has infinitely many
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singular points, they must accumulate at ag, the unique solution to

2
) az—(&—Z)a—i-l:O,

vol

with ag > 1. Moreover, cp(a) = /a/b.

We note that Theorem 2.1 provides an obstruction to the existence of infinite staircases:
if one exists, then we must have cp(ag) = \/m ; Theorem 1.10 of [9] produces
a similar obstruction for any convex toric domain target of finite type. For future
reference, we will call this obstruction the staircase obstruction; this obstruction is a
central part of [9].

Theorem 2.1 can be used here to prove the following key lemma. Recall that the a
values for the Fibonacci staircase terminated at @ = t*. We now define an analogue
of t# that varies with b. Assume now that b = k/[. The analogue of t# is defined
implicitly by the following lemma:

Lemma 2.2 Fixb =k/[. Then, if the graph of c(a, b) has infinitely many nonsmooth
points, they must accumulate at

Lk k41414 /(k+1+1)2—4kl)>
077 2k ’

and cp(ap) = /ao/b.

For the benefit of the reader, we connect with the Fibonacci staircase by noting that if
k=1=1, then

::/lﬁ(k+l+1+\/(k+l+1)2—4kl)2:T4'
2k

We will call ¢ the accumulation point.

Proof By Theorem 2.1, the accumulation point ag must occur at the unique solution
to (2) that is at least 1, and we must have cp(ag) = +/ao/b.

To compute ag explicitly, we need to compute the terms per and vol. We already
computed above that w = k/[. Next, we compute

AW = Akji—1,k/1-
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As mentioned above, the remaining weights w; can be interpreted as the weight sequence
for Ag/1—1,k/1- We now apply a result of McDuff and Schlenk from [16]; specifically,
in [16, Lemma 1.2.6], it is shown that, for any A; ,/, with p/g in lowest terms, the
weight sequence (ay, ..., ay) satisfies

_r_q_1 2_P
IZa,—q+l e IZal g

In the present situation, then, we find

per:%—(li—l)(kLH 1 ):k+l+1

; ] I —1 " k=l ]
) o= (5 = (A1) A <

It is now convenient to use another version of (2). That is, it is shown in [9] that the
solutions to (2) are the same as the solutions to

a+1—\/aoﬁ:0.
vol

Plugging in for per and vol from above, we therefore get

a—i—l—(k-l—l—i—l)‘/%zo.

Thus, we see that a’ = (I/k)a satisfies

ka' —(k +1+1)Va' +1=0,

hence the result. O

2.3 The accumulation point is usually small

We now collect some elementary arguments to show that, for most k and /,

k(k+l+1+\/(k+l+1)2—4kl)2
1 2k ’

is quite small.

Lemma 2.3 Assume that | # 1 and that (k,l) ¢ {(3,2), (5,2),(4,3),(5,3),(5,4)}.
Then

@(k+l+l+\/(k+l+l)2—4kl)2<k+l+1
/ 2k [ ’
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Proof We proceed in five steps.
Step 1 Here we prove the following claim:
Claim 2.4 If] > 7 andk # I, then (k + + 1)2 — 4kl < (k — 11 — 2).

Proof We know that
(k—=31-2) =i 2 Lpi 2k li4 L2+ &
We also know that
(k+14+1)%—dkl =k>+1% 4+ 1 -2kl +2k +2I.
Hence, the claim is true if and only if
BPR_kGi-)+21+ 2 <o.

We know that %l - % > 0 (since [ > 2). We also know that k >/ + 1. Hence, we know
that

kG- )+ Y+ B RO -G03R

The larger of the two roots of —%l 2+ %l + % is smaller than 7. So, since
9,2, 31 91
—Tel"+ 1ol +3%5 <0
if [ > 7, the result follows. O

Step 2 Claim 2.4 is very useful when / > 7. We need a slightly different version of
this claim to handle most of the other /.

Claim 2.5 If [ >3 and k > [ + 6, then (k + 1 + 1) — 4kl < (k — 11 = 2)?.

Proof From the proof of Claim 2.4, we know that Claim 2.5 is true if and only if

BPR-k(Bi-2)+21+ 2 <o.

We know that %l — % > (0. We also know that k > [ 4+ 6. Hence,
152 3; 14\, 97, 21 _ 1552 3; 14\, 97, 21
k(G =F)+3l+ 5 =gl -0 +0(31—F)+31+ 35
= 755 (2251% + 17601 — 7056).

Since
2251% + 17601 — 7056 > 0

if [ > 3, the result follows. O
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Step 3 Using these two claims, we can now take care of almost every case.

More precisely, in this step, assume that either / > 7, or / > 3 and k > [ + 6. Then, by
Claims 2.4 and 2.5, we know that

[ 2k 2k

~|

]i(k+l+l+\/(k+l+l)2—4kl)2<k(k+l+1+ (’“%“%)2)2

C(k+ 342
B 4kl
12 9 9 9
:4k2+3kl+?k+ﬁﬂ+g+ml
4kl
_1 3,12, 90,9 9
=7 (k+ 31+ B+ !+ gox *+ 708)
We know that k > 1 and [/ k < 1. Hence, we know that

37,12, 91 9 91
(k4 31+ R+ Zpl+ cor+0r) Sk+I+1.

This completes the proof of Lemma 2.3 in the case where [ > 7, or/ >3 and k > [ + 6.

Step 4 Now assume that [ = 2 and let k > 8; we will now prove Lemma 2.3 in this
case.
As k > 6, we know that
K22k +9< (k—1)%.
We therefore know that

Ji(k+l+1+\/(k+l+1)2—4kl)2_k(k+3+\/(k+3)2—8k)2
T 2k

[ 2k [

_1(k+3+k—3)°
=7 4k

121
14k% + 11k + 52
]
1

4k
11 121
1(k+ 64k>

where, in the last inequality, we have used the fact that k > 8. Thus, Lemma 2.3 holds
in this case as well.

Step 5 The previous steps have proved Lemma 2.3 under the assumption that [ > 7,
or/>3andk>[+6,or] =2and k > 8.
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Thus, it remains to check Lemma 2.3 in the following cases:
(k. 1) €{(7.2).(7.3).(8,3).(7.4).(9.4).(6.5).(7.5).(8.5).(9.5). (7.6). (11, 6);.

We can compute directly that Lemma 2.3 holds for these as well. |

2.3.1 Rounding up the nonintegral stragglers We can deal with the (5, 2), (5, 3)
and (5, 4) cases by using the following simple fact:
Claim 2.6 Ifb = (k,l) €{(5,2),(5,3),(5,4)}, then

k(k+1+14+/(k+1+1)2—4kI\> b(lb]+2)2
7( 2% ) NI

Proof This is verified by direct computation. O

2.3.2 The integral case It is easy to see that Lemma 2.3 is not true when [/ = 1.
However, the following is true:

Lemma 2.7 Letk >3 and let]l = 1. Then

k(k+1+1+/(k+1+1)2—4ki 2<k(k+3)2
2k (k+1)%°

)

Proof First, if kK > 4, then
(k +2)% —4k < (k + 1)%.
We now show that this implies Lemma 2.7 for k > 4. Indeed, in this case we have

/i(k+l+1+\/(k+l+1)2—4kl)2:k(k+2+ \/my

/ 2k 2k
k+2+k+1\2
<k +2+k+5
2k
. k+ 3V
. )
Since s
kt+3 _k+3
k k+1

if k > 4 (in fact, even if k > 2), the result follows in this case.

Thus, we need only consider the case where k = 3. But this can be verified by direct
computation. |
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2.4 Bounding the graph of c;(a) from below

The aim of this section is to prove the following lemma, which will make use of the
estimates on the accumulation point from Section 2.3.

Lemma 2.8 Assume that (k,1l) ¢ {(1,1),(2,1),(3,2),(4,3)}. Let

<k(k+l+1+\/(k+l+1)2—4kl)2
a J—
=1 2k

and assume that cp(a) is equal to the volume obstruction. Then

(3) cp(x) = cpla)
for x < a sufficiently close to a, and
@) cp(¥) = ~cp(a)

fora < x close to a.

To motivate for the reader why this lemma will be useful for us, we remark that
we will later show that the inequalities (3) and (4) can be upgraded to very useful
equalities under the assumptions of the lemma, using some general properties of the
function ¢ (a); we defer this short argument to later in the paper, focusing on the
obstructive theory in this section.

The proof of Lemma 2.8 will use the theory of “ECH capacities”, defined in [12]. The
ECH capacities of a symplectic 4—manifold (X, w) are a sequence of nonnegative real
numbers

0<co(X,0) < =cx(X, @) <--- <00

that are monotone with respect to symplectic embeddings. That is, if there is a sym-
plectic embedding
(X1, 01) > (X2, 02),

then we must have
5) (X1, 01) < cp (X2, w2)

for all k. Hence, ECH capacities are obstructions to the existence of a symplectic
embedding. ECH capacities are defined using “embedded contact homology”’; for more,
see for example the survey article [13].

Algebraic & Geometric Topology, Volume 22 (2022)
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In the case of ellipsoids, the ECH capacities have been computed in [12]. The result is
that ¢ (E(a, b)) is the (k+1)% smallest element in the matrix
(ma +nb)mmnyez-oxZo-

Using ECH capacities, we can now prove the following lower bound, which we will
then use to prove Lemma 2.8:

Lemma 2.9 Fix any real number b > 1. Then:

e cpla)=1forl<a<bh.

e cpla)=a/bforb<a<|b|]+1.

« cpl@) = ([b] +1)/b for [b] +1 <a = (lb] +1)*/b.

o cp(a@)=a/([b] +1) for (|b] +1)?/b<a<|b]+2.

« cpla) = ([b] +2)/([b] +1) for |b] +2 <a < b(|b] +2)*/(|b] + 1)*.

e If b is an integer, then cp(a) > a/(b + 1) for (b +1)2/b<a <b +3.

e If b is an integer, then cp(a) > (b+3)/(b+1) for b+3 <a <b(b+3)?/(b+1)>.

Concerning the statement of the lemma, we remark, for example, that it might be
the case that various bullets points are vacuously true — for example, for b = 1.2,
(lb] +1)?/b> |b] +2.

Proof To prove the first bullet point, we note that £ (1, a) includes into E(1, b) for
a < b; since ¢1(E(1,a)) = c1(E(1,b)) = 1, this inclusion is optimal by (5), in the
sense that no larger scaling of E(1,a) also embeds, so the bullet point holds.

To prove the second and third bullet points, we note first that ¢|5 )41 (E(1,b)) = b.
Then, with b <a < [b] + 1, we have c¢|5)1+1(E(1,a)) = a, so that the second bullet
point follows by (5); and with @ > |b] + 1, we have ¢ |5 4+1(E(1,a)) = [b] + 1, hence
the third bullet point follows by (5).

To prove the fourth and fifth bullet points, we note first that ¢|p |4, (E(1,b0)) = [b] + 1.
Then, if a > |b| + 2, we have ¢ 12 (E(1,a)) = |b]| + 2, hence the fifth bullet point
follows by (5). If (|b| +1)2/b < a < |b] +2, then, as (|b] + 1)2/b > |b] + 1, we
must have ¢ |42 (E(1,a)) = a, hence the fourth bullet point follows by (5).

To prove the sixth and seventh bullet points, we note that if b is an integer, then
cp+3(E(1,h))=b+1. Then, if b+2 <a <b+3, we have cp43(E(1,a)) = a, hence
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the sixth bullet point follows by (5), since, for a in the domain of the sixth bullet point,
b+2<a<b+3.Ifa>b+3, wehave cp13(E(1,a)) = b+ 3, hence the seventh
bullet point follows by (5). a

We can now prove the main result of this section.

Proof of Lemma 2.8 Recall that the volume obstruction is given by \/c% . We can
find the point a; on the domain of the i bullet point of Lemma 2.9, where the volume
obstruction agrees with the lower bound given by each bullet point by setting this lower
bound equal to the volume obstruction, and solving for the point a;. Doing this gives

(|p] +1)? (6] +1)?
a3=————"—, a4=—"——

ay=az=>,

b 9 4 b 9
(bl +2Y? _(b+1)? _(b+3\2
aS_b(LbJ—i—l Cas=— ar=b(3)

We also compute that, on each of these intervals, away from a; the lower bound given
by Lemma 2.9 is strictly larger than the volume bound.

‘We next observe that, for a, ..., a4, ae, it follows from Lemma 2.9 that the bounds
(3) and (4) required by Lemma 2.8 hold. More precisely, (3) and (4) for a; and a,
follow from the first two bullet points; (3) and (4) for a3 and a4 follow from the third
and fourth; for ag, this follows from the third and sixth.

Now assume first that (k, /) is such that the assumptions of Lemma 2.3 hold. Then the
accumulation point ag is bounded by k// +1// + 1, which in turn is less than or equal
to |[k/l] + 2. Thus, if a < ap, then a is in the domain of one of the first four bullet
points of Lemma 2.9. Thus, if ¢p(a) = \/c%, then a € {ay, ..., a4}, since, at any
other point in the i interval, ¢} is bounded from below by a function that is strictly
larger than the volume bound. So the conclusions of Lemma 2.3 hold in this case by
the analysis in the previous paragraph.

Next, assume that (k,[) € {(5,2), (5,3),(5,4)}. Then, by Claim 2.6, ay is strictly
bounded from above by b(|b ] +2)2/(|b] +1)? forb =k/[. Thus, if a < ag, then a is
in the domain of one of the first five bullet points, but is not the right endpoint point of
the fifth and in particular must be strictly smaller than as; hence, if ¢ (a) = \/m , then,
as in the previous paragraph, a € {ay, ..., as}, so that the conclusions of Lemma 2.3
hold in this case as well.

Finally, assume that / = 1 and k > 3. Then b = k /[ is an integer. By Lemma 2.7, the
accumulation point ag is strictly bounded from above by b(b + 3)%/(b + 1). Hence,
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if a < ayp, then a is in the domain of either the first three bullet points, or the sixth or
seventh; moreover, it is not the right endpoint of the seventh and in particular must be
strictly smaller than a. It follows that if c;(a) = \/m, thena € {ay,...,as,as}, and
s0, just as in the previous paragraphs, the conclusions of Lemma 2.3 hold as well. O

2.5 The E (1, %) case

To deal with the case where b = %, the staircase obstruction from Theorem 1.2 is not
sufficient, since in this case agp = 3 and we will see in Proposition 2.10 below that
c4/3(3) = va/ % = % We need to prove the following:

Proposition 2.10 For ¢ sufficiently small,

casz(@) = +3)
if3<a<3+e, and
cassla) =3,
if3—e<a<3.

The proof of Proposition 2.10 is rather delicate, and will be the topic of this section.
The result itself is loosely analogous to the difficult [16, Theorem 1.1.2.ii], although
we use a different method in our proof; it is not clear how to generalize the method
in [16] to our situation, since it exploits the convergents of t#, while in our case the
analogous number, ag = 3, does not have any interesting convergents at all. The main
challenging fact that we need to prove is the following:

Proposition 2.11 We have
(6) cas3(a) < 3(a+3)

fora > 3.

Proof To prove (6), we want to show that there exists a symplectic embedding
E(l,a) = L@+3)E(1, ).

By rescaling, it is equivalent to find an embedding

12 12a
@ E(a+3’a+3

Since ¢4 /3 is continuous in a, we can in addition assume that « is irrational, which is

) S EG,4).
convenient for some of the arguments below.
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To find this embedding, we use in general terms a technique first introduced in
[10; 12; 16; 14].

Namely, McDuff showed in [14] that the obstruction coming from ECH capacities is in
fact sharp for four-dimensional ellipsoid embeddings. In other words, the existence
of embeddings like (7) can be approached through purely combinatorial considera-
tions. In principle, since there are infinitely many ECH capacities ¢, this requires
checking infinitely many potential obstructions. However, in [10], this was rephrased
in rational cases in terms of “Ehrhart functions”, defined below. Ehrhart functions are
a classical object of study in enumerative combinatorics which are often amendable to
computations.

More precisely, we can apply [10, Lemma 5.2] to conclude that an embedding (7) exists
if and only if

®) L7snia.@tnsiza® = Liys,. ()

for all positive integers ¢. Here, 7y, denotes? the triangle with vertices (u, 0) and (0, v),
and L denotes its Ehrhart function

LTu,v (t) = #{ZZ N Ttu,tv}-

Our method is now loosely inspired by the proof in [8, Lemma 3.2.3] (see also [8,
Remark 3.2.6]), although there is a new idea needed here, which we will comment on
below.

As in the proof in [8, Lemma 3.2.3], we will first observe that (8) holds when a = 3. In
fact, strict inequality holds in (8), as we will see below. The idea is now to vary a and

see how L, (t) changes. As in [8, Lemma 3.2.3], we do this by decom-

a+3)/12.(a+3)/12a
posing the region between T(,413)/12,(a+3)/124 for some a and T(343)/12,(3+3)/(12-3)

into two regions Ry and Rp, and comparing the number of lattice points U and D.

More precisely, for a positive integer z, we let Ry be the region bounded by the y—axis,
the line L given by the equation (12/(a + 3))x + (12a/(a + 3))y =t and the line L,
given by the equation 2x + 6y =¢. Let Rp be the region bounded by these two lines
and the x—axis. Let U denote the number of lattice points in Ryy and D the number of
lattice points in Rp. We note that the lines L; and L, intersect at the point (%t, 11—2[)
We have illustrated the setup in Figure 1.

2The paper [10] actually uses the convention that Tu,v denotes the triangle with vertices (0, u), (v, 0) and
(0, 0), but this triangle has the same number of lattice points as the triangle defined using the conventions
in this paper.
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(0.57)
(0,¢(a+3)/(12a))

(31,0) (5t(a+3).0)
Figure 1: The regions Ry and Rp that we want to compare. The lines L
and L, are also labeled for the convenience of the reader. The two line
segments correspond to the kind of horizontal slices that we make in order to
compare lattice point counts.

We now have the following key lemma:

Lemma 2.12 e U<D.
e If't is congruent to 4 modulo 12, thenU < D —1.

Up to this point, our method in this section has been mostly parallel to the method
in [8] described above. However, at this point, the ideas in [8] no longer seem to work,
and something new is needed. The new technique we introduce here is to compare the
lattice points in Ry and Rp by comparing the number of lattice points on horizontal
slices at integer height; see Figure 1. It turns out that we can get the inequality we need
by establishing the analogous inequality for each slice individually, which is a priori
considerably stronger than what is required.

The details are as follows:

Proof We begin with the proof of the first bullet point.
Let ét >y > %t be an integer. We define
y1= I_él J —Jo.
Then 0 < y; < 11—2t. We will show that, for each yg, the number of lattice points

in Ry with y—coordinate yg is no more than the number of lattice points in Rp with
y—coordinate y1, which will imply the first bullet point of the lemma.

In other words, if we define

X1 = ﬁ(z(a +3)—12ayg), xp:= %(l —6Y0)
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and
X3:=2(t—6y1), x4:= L5(t(a+3)—12ay),

then we need to show that
©) [x2] — [max(0,x1)] +1 =< [x4] —[x3]+ L.
We now explain why (9) holds.

Our argument will be as follows. Assume that x3 is not an integer; note that x; is never
an integer, since a is irrational. Then we will show below that

(10) lx2] = [x1] < [xa] —|x3].
Next, in the case where x3 is an integer, we will show that
(11) lx2] —[x1] < [xa] —|x3] + 1.

The equations (10) and (11) will imply (9), since | x2 | —[max(0, x1)]+1 < [x2]—|x1].
We now explain why (10) and (11) hold. We know that
lx2] = [x1] = 5t = {3t} —3yo— 151 (a +3) +ayo + {{51(a + 3) —ayo}.

Here, {-} denotes the fractional part function, defined by {z} = z — | z]. We also know
that

lxa] — lx3) = 5t(a+3)—ay1 — {{51(@a+3)—ay1} — 51 + {5t} +3y1.

We first prove (10) in the case where x3 is not an integer, which is the heart of the
argument.

To do this, we want to show, in view of combining the previous two equations, that
1=2{3t}=3(yo+y1)—gt (@+3)+a(yo+y1)+{i5t (@+3)—ay: } +{{5t (a+3)—ayo}
<0.
Substituting for y;, we have that the above expression is equal to
t—2{4t} 3| L] —Lt(a+3)+allt] +56,
where
§:={5t(a+3)—ayo} +{5t(a+3)+ayo—alit]}.

So, collecting I_%IJ terms, we want to show that

t—2{3t}+(@—=3)|tt]—%t(@+3)+5=<0.
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Equivalently, we want to show that
(12) —2{dt} —(@a-3){it}+8 <0.

Since, for any two numbers m and n, we have? {m} + {n} < {m +n} + 1, we know
that

(13) §<{it+afit}}+1.

The terms {17}, {4} and {37 +a{¢}} only depend on the equivalence class of 7,
modulo 6. So, to bound the left-hand side of (12) using the above bound for §, we can
assume ¢ € {0, ..., 5}. With this additional assumption, we then have

(14)  {Fr+allt}) ={dr+ait} ={ia-3)} < ia-3) = (a—3){it}.
Combining (13) and (14), we thus have that
(15) —2{t}—(@a-3){ii}+s < 2{3t}+1=0,

where, for the very last equality, we have used the fact that x3 is not an integer, so that
t is odd. This proves (12), and hence (10).

When x3 is an integer, all of the proof of (10) holds, except that, in the very last line,
{1t} =0, so that the very last equation (15) must be replaced by the bound

—2{3t}—(@-3){gt}+8 <1,
hence the weaker bound (11).
We now explain the proof of the second bullet point.

The argument for the first bullet point still holds to imply that U < D. To get the
sharper bound, we show that, under the assumption that ¢ is congruent to 4 modulo 12,
as yo above ranges over all integers between ét and 1—12t, the corresponding y1 is never

_ 11
v =t
Indeed, the y; corresponding to yg is maximized for yy = [%t], so, in this case,
y1 = L%ZJ — [éﬂ Now,
1 1 1
|5t [zt =[1t] - L.
since ¢ is congruent to 4 modulo 12, which is strictly less than y’.

3Indeed, the equation is invariant under adding integers to m or n, so we can assume 0 <m,n < 1, in
which case it is immediate.
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Thus, since (%t -6y, y’ ) is a lattice point in Rp, not accounted for by the counts in
the proof of the first bullet point, the sharper estimate asserted by the second bullet
points holds. a

We now explain how to use the lemma to prove the proposition. Continue to assume as
above that a is irrational.

We first observe that

(16) L7?a+3)/12,(a+3)/(12a)(t) = L7'1/2,1/6 (t) +D-U-d,

where d is the number of lattice points on the left boundary of D, not including the
possible lattice point (%z, 1—12t) defined above.
We can solve for d explicitly. Namely, assume that there is a lattice point (m,n)
satisfying

2m+6n =t.
Then it follows that # must be an even integer. Conversely, assume that 7 is an even
integer, and (x, y) is on the line L,. Then we have

X = %(t —6y).

In particular, for any integer y < %t such that (x, y) is on the line L, x must be an
integer as well. It follows that

(17) d=151]
when 7 is even; if ¢ is odd then we have d = 0.

We know from Lemma 2.12 that D > U; however, the —d term is not in general
nonnegative, so, to prove (8), we need to compute the difference

L2176 = L7i/3.1/4 (1)

Each of the two terms in the above expression are Ehrhart functions of rational triangles,
so they are readily computed. In particular, using the formulas in [1, Theorem 2.10
and Exercise 2.34], each is a periodic polynomial of degree 2, with leading order
term ﬁtz. The linear term for Ly, 5, ,,(¢), by [1, Theorem 2.10] is %t. The linear
term for LT1/2,1/6 (t)is %t when ¢ is even, and %t when 7 is odd, by [1, Exercise 2.34].

To compute the constant terms, we use the fact that the period of L7, , , (7) divides 6,
and the period of L7, 5 , , () divides 12; indeed, the basic structure theorem for Ehrhart
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functions (see for example [1, Theorem 3.23]) states that the period for a rational convex
polytope divides the least common multiple of the denominators of the vertices.

More precisely, we first compute the constant terms for L /2.1/6 (). We begin by
computing
LTl/z,l/s(O) = L7'1/2,1/6(1) =1,

LTI/2,1/6(2) = L71/2,1/6(3) =2,
L7516 4) = L7'1/2,1/6(5) = 3.

Now, since L; , , 6(?) is a periodic polynomial, with period dividing 6, we can define
Co, ..., Cs to be the constant terms for this periodic polynomial, ie C; is the constant
term when ¢ is congruent to i modulo 6. We can then compute the constant terms by
using the computations above, namely
Co=1-5072-50 =1, C3=2-503>-33) =3,
Ci=1-412-3() =3, Ci=3-Z@-5#=3
C=2-72*- 5@ =1 Cs=3-25-306) =4
We can compute the constant terms Cy), ..., C{, by the same method. We omit the
details, which are analogous to above, for brevity, only giving the result:

!/ _5 /_1 1_5 ! __ /_7
/A | 5 /2 /r _ 5 ;1 17
Ce=5 Cr=3 Cyg=3 Co=3, Clp=3 Ci1=r2

Having computed both Ehrhart functions explicitly, and applying the formula (17)
for d, we now see that

LT7i/s0,60) = Lri)5,,,(0) =d

except when ¢ is congruent to 4 mod 12, in which case the difference in the Ehrhart
functions is d — 1. The proposition now follows from (16), in combination with
Lemma 2.12. |

We can now prove Proposition 2.10:

Proof We just showed that cq/3(a) < %(a +3) for a > 3. In particular, as an immediate

consequence, ¢4/3(3) = 3, since a symplectic embedding must be volume-preserving,
and then
(18) ca3la) <3

for a <3, since E(1,a) C E(1,3) for a in this range.
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To find the lower bounds needed to prove the proposition, we again use the theory of
ECH capacities.

More precisely, we first compute
c0(E(1,3) =4, cio(E(l,a))=a+3

for 3 <a < 4. Hence, c4/3(a) > %(a + 3) for 3 <a <4, by (5). Combining this with
the matching upper bound (6) then implies that c4/3(a) = %(a + 3) for a in this range.

We next compute
2(E(1.3) =% c2A(E(la)=2

for a > 2. Hence, c4/3(a) > % for 2 <a <3, by (5). Combining this with the matching
upper bound (18) then implies that c4/3(a) = % for a in this range. a

Remark 2.13 The above method is useful for other staircase analysis. In particular,
in an update of [9], we plan to use it to show that there is no infinite staircase for three
particular reflexive polytopes for which the staircase obstruction does not vanish, but
there is still no infinite staircase. The case of reflexive polytopes is important to this
work in view of Conjecture 1.4.

2.6 Completing the proof of Theorem 1.2

We can now complete the proof of our main theorem:

Proof of Theorem 1.2 As explained in Section 2.1, it follows from known results
that cp(a) = \/m for a sufficiently large with respect to b; it also follows from
known results that the function cp(a) is piecewise linear away from the limit of distinct
singular points. So we just have to analyze the case of infinitely many distinct singular
points.

Let b =k /I, where k and [ are relatively prime, and recall the number

k(k+l+1+\/(k+l+1)2—4kl)2
=T 2k

)

from Lemma 2.2.

Assume that there are infinitely many singular points s;. Then, by Lemma 2.2, the s;
must accumulate at ag, and cp(ag) must equal the volume obstruction. We now argue
that there is a contradiction if b ¢ {1, 2, %}
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Namely, if b ¢ {1, 2, % %}, then we know from Lemma 2.8 that (3) and (4) hold at ag.

We now claim that this implies that the graph of ¢ (ag) would locally be given by these
lines near ag — which is an absurdity, since ap was the limit of distinct singular points.

To see why this final claim is true, we need the following two properties for the function
cp(a):
e Monotonicity cp(x1) < cp(xz) if x1 < x5.

e Subscaling c¢;,(€x;) <{Lcp(xy) for any £ > 1.

The first bullet point is immediate, since E(1,x1) C E(1, x3) if x; < x,. The second
follows by a short scaling argument; see for example [9, Proposition 2.1] for the details.

With these two properties, we can now verify the final claim —in view of the lower
bounds (3) and (4), monotonicity would then imply that (3) is an equality for x < ag
close to ag, and subscaling would then imply that (4) is an equality for x > ag close
to ap.

Ifb = %, then it follows from Proposition 2.10 that ¢ (ag) has a unique singular point
near ag, namely ag itself. Thus, in this case ag also can not be the limit of distinct
singular points. |
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