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Abstract The ocean reduces human impact on the climate by absorbing and sequestering CO,. From
1950s to the 1980s, observations of pCO, and related ocean carbon variables were sparse and uncertain. Thus,
global ocean biogeochemical models (GOBMs) have been the basis for quantifying the ocean carbon sink.
The LDEO-Hybrid Physics Data product (LDEO-HPD) interpolates sparse surface ocean pCO, data to global
coverage by using GOBMs as priors, and applying machine learning to estimate full-coverage corrections.
The largest component of the GOBM corrections are climatological. This is consistent with recent findings

of large seasonal discrepancies in GOBMs, but contrasts the long-held view that interannual variability is a
major source of GOBM error. This supports extension of the LDEO-HPD pCO, product back to 1959, using

a climatology of model-observation misfits prior to 1982. Consistent with previous studies for 1980 onward,
air-sea CO, fluxes for 19592020 demonstrate response to atmospheric pCO, growth and volcanic eruptions.

Plain Language Summary The ocean removes carbon dioxide (CO,) from the atmosphere and
reduces climate change caused by humans. The magnitude of this removal can be estimated using computer
models of ocean physics, chemistry, and biology, as well as statistical extrapolations of observations. The
observational record is too sparse to directly reconstruct air-sea fluxes prior to 1982, but by combining models
and a statistical approach, we make an estimate for 1959-present that is substantially informed by observations.
The LDEO-Hybrid Physics Data product (LDEO-HPD) product for air-sea CO, exchange includes two periods,
with the first previously published for 1982-2018 and extended here to end in 2020, and the second being this
extension back in time. For 1959-1981, LDEO-HPD corrects models using the monthly average of data-based
corrections derived from the observed period, a choice justified by our finding that these monthly means are the
largest component of the needed corrections during the observed period. The LDEO-HPD product agrees much
better with independent observations than the models alone, and can be used to understand what controls year
to year changes in the ocean carbon sink.

1. Introduction

By absorbing and sequestering carbon dioxide from the atmosphere, the global oceans play a critical role in
modulating climate change. The ocean has absorbed 37% of fossil carbon emissions since the start of the indus-
trial age (Friedlingstein et al., 2022). Quantifying the redistribution of carbon emissions in the land biosphere,
ocean and atmospheric reservoirs supports climate policy (Peters et al., 2017). In order to estimate air-sea fluxes
of carbon dioxide, the driver of these fluxes, the partial pressure of carbon dioxide in the surface waters (pCO,)
must be estimated.

Global ocean biogeochemical models (GOBMs) explicitly simulate the physics, biology and chemistry of the
ocean carbonate system based on equations that represent the physical and biogeochemical processes. Forced
with winds and surface energy fluxes from observations for recent decades, the models estimate the state of
the ocean physics and biogeochemistry for the same decades. Output from these models include a vast array of
variables, including surface ocean pCO, and air-sea CO, flux. It has long been believed that GOBMs underrepre-
sent the magnitude of interannual variability of the ocean carbon sink (DeVries et al., 2019; Gruber et al., 2019;
Landschiitzer et al., 2015; Le Quéré et al., 2007), though the mechanisms of this proposed underrepresentation
have not been identified. More recently, the community has paid greater attention to the significant seasonal
biases in GOBMs (Hauck et al., 2020; Mongwe et al., 2018).

Observation-based products utilize sparse observations of pCO, from the Surface Ocean CO, ATlas (SOCAT)
(Bakker et al., 2016), and train a machine learning algorithm to relate these data to full-coverage observations of
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associated variables, such that pCO, can be estimated at all points in space and time. Although these algorithms
often do not explicitly include the known physics of the ocean carbonate system, the results do compare well to
independent observations of pCO, (Bennington et al., 2022; Denvil-Sommer et al., 2019; Gregor et al., 2019;
Landschiitzer et al., 2014). The mixed layer model of Rodenbeck et al. (2013, 2022) is another approach to
creating an observation-based product. It combines statistical fits to data and explicit representations of physical
processes.

Due to the sparsity of pCO, data, observation-based products have been limited to the period of in situ observa-
tions that started to become more numerous in the 1980s. For the period of 1959-1990, eight GOBMs were used
to quantify the historical air-sea CO, flux in the Global Carbon Budget 2021 (Friedlingstein et al., 2022). For
1990-2020, the average of of eight GOBMs and seven data products was used as the basis for this estimate. In all
prior Global Carbon Budget releases, for example, Friedlingstein et al. (2020), only the average of GOBMs were
used to estimate the ocean carbon sink.

To directly incorporate the physical knowledge contained within GOBMs into an observation-based prod-
uct, Gloege et al. (2022) utilized the machine-learning algorithm XGBoost (Chen & Guestrin, 2016) to learn
model-observation misfits of GOBM simulated surface ocean pCO,. The resulting data product (LDEO-HPD)
showed an improved fit compared to the independent data over other data products. The resulting historical
reconstruction of air-sea CO, fluxes from the extended LDEO-HPD is within the range of other data products,
and in agreement with 2010-2020 mean flux estimates from the Global Carbon Budget 2021 (Friedlingstein
et al., 2022).

LDEO-HPD estimated air-sea fluxes beginning in 1982. Here, we extend LDEO-HPD back in time by applying
the climatology of 20002020 estimated GOBM-observation misfits to the GOBMs for 1959-1981. As discussed
below, this approach is supported by the fact that much of the skill in LDEO-HPD against independent modern
observations is due to the climatological correction. This paper is organized as follows. We present the methods
and resulting estimated air-sea CO, fluxes for 1959-2020. We then briefly examine the resulting estimated flux
variability in four basins and globally.

2. Methods

The LDEO-HPD data product (Gloege et al., 2022) utilizes the nearly global coverage of satellite sea surface
temperature (SST) (Reynolds et al., 2002), sea surface salinity (SSS) (Good et al., 2013), chlorophyll-a (Maritorena
et al., 2010), geographic location, time of year, the climatology of mixed layer depth (de Boyer Montégut
et al., 2004), and the machine learning algorithm XGBoost (Chen & Guestrin, 2016) to create a nonlinear func-
tion between observations and the model-data misfit of surface ocean pCO,. Misfits to observed ocean surface
pCO, of the SOCATv2021 database (Bakker et al., 2016; Sabine et al., 2013) are calculated for each of eight (8)
GOBMs (Friedlingstein et al., 2022) (Table 1) separately. The machine learning algorithm is trained to learn
the relationship between driver data (SSS, SST, Chl-a, location, MLD, time of year) and observed pCO, misfit
(SOCAT-GOBM) where SOCAT data are available. This algorithm is used to estimate the model-data misfit from
the full-coverage driver data at all times and locations. The estimated model-specific misfits are full-coverage,
time-varying estimates of how the model pCO, field should be modified to bring model pCO, into agreement
with the real world. In other machine learning applications for this problem, statistics are used to directly estimate
real-world pCO, at all points in space and time. Our approach is to estimate how each model's pCO, output needs
to be adjusted to better represent reality. To clarify that our final step is to correct the models, we also use the term
“corrections” for the model-data misfits.

As shown in the Results, interannual variability of model-data misfits is generally small compared to the clima-
tological mean correction. Thus, we extend LDEO-HPD to the beginning of the model simulations at 1959 using
the monthly climatology of the 2000-2020 model-data misfit as the correction. For 1982-2020, the monthly and
interannually varying correction is used (Gloege et al., 2022). This misfit is separately calculated for, and applied
as a correction to, each of eight GOBMs.

Each of the GOBMs are independently adjusted with its unique correction field that varies at 1° latitude by 1°
longitude and monthly for 1982-2020, or climatologically for 1959-1981. The final pCO, reconstruction is the
ensemble mean of the eight corrected GOBM pCO, estimates (modeled pCO, + reconstructed correction).
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Table 1
Global Ocean Biogeochemical Models, Data Products, and Their Corresponding References

Global ocean biogeochemical model Data product Reference

CESM-ETHZ Doney et al. (2009)
FESCOM2-REcoM Gurses et al. (2021)
MICOM-HAMOCC (NorESM1-OCv1.2) Schwinger et al. (2016)
MOMG6-COBALT (Princeton) Adcroft et al. (2019)
MPIOM-HAMOCC6 (MPI) Paulsen et al. (2017)
NEMO-PlankTOMS Buitenhuis et al. (2013)
NEMO-PISCES (IPSL) Aumont et al. (2015)
NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)
LDEO-HPD Gloege et al. (2022), this paper
JENA MLS Rodenbeck et al. (2022)
CSIR ML6 Gregor et al. (2019)
MPI SOMFFN Landschiitzer et al. (2014)
CMEMS FFNN Denvil-Sommer et al. (2019)
pCO, Residual Bennington et al. (2022)

The complete description of the LDEO-HPD method and the resulting data product can be found in Gloege
et al. (2022).

2.1. CO, Flux Calculations

In our analysis of model-data misfits and of reconstruction skill against independent data, we consider pCO,. To
assess the global ocean carbon sink associated with these pCO, estimates, air-sea CO, exchange must be calcu-
lated. We use the same gas transfer velocity, solubility, winds, and ice for LDEO-HPD, other observation-based
products, and the GOBMs so that differences in these calculations do not factor into the resulting compari-
son (Fay et al., 2021). EN4.2.2 salinity (Good et al., 2013); ERAS winds, sea level pressure, and SST (Bell
et al., 2019, 2020); the wind scaling factor for ERAS (Gregor & Fay, 2021); and Hadley sea ice fractional cover-
age (Rayner et al., 2003) are used. Unreconstructed coastal areas in data products, which vary in area across the
products, are filled with the scaled coastal pCO, climatology (Landschiitzer et al., 2020), also following Fay
et al. (2021).

Air-sea CO, flux (FCO,) is estimated using a bulk parameterization (Equation 1),
FCOs = Ky - Ko - (1 = icefraciion) - (pCO3 = pCO5™) (1)

Where K is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr 14C bomb flux esti-
mate according to Wanninkhof (1992) and Sweeney et al. (2007) as in Gregor and Fay (2021); K, is the solubility
calculated using salinity and SST; pCOj™ is the water vapor corrected atmospheric partial pressure of CO, from
CarboScope (Rodenbeck, 2005); and pCO5* is the surface ocean pCO,.

Data products which incorporate observations of surface ocean pCO, include both natural and anthropogenic
carbon in the resulting pCO, and CO, flux product. This is the net CO, flux (F, FwatF
biogeochemical models exclude the natural outgassing of riverine carbon (F, ), which caused net CO, efflux

). Global ocean

net — ant

from the preindustrial ocean (Aumont et al., 2001). To quantify the anthropogenic air-sea CO, flux, this F, .
must be subtracted from our net flux, given that the models have been corrected toward pCO, observations

consistent with F

. Quantifying the global air-sea ux due to decomposition and outgassing of riverine
et ifying the global ai CO, flux d d positi d outgassing of riveri

carbon remains uncertain and is the topic of current research. Here, as in Gloege et al. (2022) and Bennington
et al. (2022), we use an average of three estimates: Jacobson et al. (2007) (0.45 + 0.18 PgCl/yr), Resplandy
etal. (2018) (0.78 + 0.41 PgC/yr), and Lacroix et al. (2020) (0.23 Pg C/yr +/— an assumed 50% uncertainty). The
combined globally integrated efflux due to riverine carbon is 0.49 + 0.26 Pg C/yr, and thus we remove the efflux
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Figure 1. (a) Seasonal climatology (2000-2020) of model-data misfit in the Princeton model according to HPD. (b) Standard
deviation of model-data misfit over 2000-2020 in the Princeton model, by season.

of 0.49 PgC/yr from the estimated annual air-sea CO, fluxes calculated using the LDEO-HPD and other data
products' pCO, for comparison of the global flux timeseries.

2.2. Box Model

The box model of McKinley et al. (2020) estimates the global-mean air-sea CO, flux that occurs in response
to the observed growth of atmospheric pCO,. It also has the option to include upper ocean heat content anom-
alies driven by the three most climatically impactful volcanic eruptions of the last 60 years: Agung in 1963, El
Chichon in 1982, and Mt Pinatubo in 1991 (Crisp et al., 2022). Comparing air-sea CO, fluxes estimated by the
box model for 1960-2019 allows consideration of flux variability with and without large volcanic influences
and puts LDEO-HPD into context with previous comparisons of the box model to observation-based products
(McKinley et al., 2020).

3. Results
3.1. Analysis of Model-Data Misfit

Given the lack of surface ocean pCO, observations prior to the 1980s, we must determine what correc-
tions (model-data misfits) to apply to the models prior to 1982. Extending the analysis of misfits begun by
Gloege et al. (2022), we examine both the climatological misfits and the interannual variability of the misfits
for 2000-2020. We choose only 2000-2020 to best capture interannual variability (Bennington et al., 2022),
as chlorophyll-a observations do not start until 1998 and a climatology of chlorophyll-a must be used prior
(Landschiitzer et al., 2014). Additionally, pCO, coverage is better for the decades after 2000 (Bakker et al., 2016),
so we have greater confidence in the estimated misfits.

The seasonal climatology and standard deviation of the model-data misfit for the Princeton GOBM is a represent-
ative example of the climatological misfit (Figure 1). Mean misfits are large in all seasons in the subpolar, equato-
rial, and Southern Ocean regions (Figure 1a). Interannual variability in the model-data misfit is quantified as the
misfit standard deviation (Figure 1b). Year-to-year changes in misfits are significantly smaller in magnitude than
the mean, typically less than 5 patm. Larger standard deviations can occur during the biologically productive
seasons in the subpolar regions and Southern Ocean. The equatorial Pacific exhibits moderate interannual vari-
ability in all seasons. This comparison between the magnitude of the climatological and interannually variable
misfit are similar across most of the ocean models (Gloege et al., 2022) (Figure S1 in Supporting Information S1).

3.2. Climatological Misfits Dominate Improvements

To understand how much skill we could gain in our reconstruction if we used only a climatological correction,
comparison to independent data is required. Data for such an assessment do not exist in sufficient number or
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Figure 2. Taylor diagrams (Taylor, 2001) depict the skill of each ocean model (squares), previous data products (Table 1,
crosses), LDEO-Hybrid Physics Data product (blue cross), and HPD ;. o0eyres- The ability to capture observed pCO,
variability for 1990-2020 is evaluated against two global datasets (a) GLODAP and (b) LDEO. The red star indicates the
standard deviation of each data set. Distance along the radius represents the ability to capture observed variability (standard
deviation). The distance along the circumference depicts correlation with the observations, and gray inlaid circles show
unbiased RMSE.

quality prior to the 1980s (Key et al., 2004); and begin to be more available only in the 1990s. To make the
needed comparison, we create an alternative reconstruction, HPD ;. ojoeymese: that applies the above-discussed
climatology of the model-data misfit for 2000-2020 to the entire reconstruction period (1959-2020). With
HPDClimalologyTesz’
to several datasets.

we can assess the impact of a climatological correction on reconstruction skill by comparison

Figure 2 compares the original uncorrected GOBMs (squares), and five observation-based products (crosses)
to GLODAP and LDEO observations for 1990-2020 (red stars). The SOCAT database does not contain these
GLODAP or LDEO observations, and thus, this is an independent assessment of reconstruction skill. The
observation-based products all have substantially greater skill than the uncorrected GOBMs, indicated by the fact
that they lie much closer to the red stars in the Taylor diagrams, which represents a correlation of 1 and the prod-
uct and data having the same variability.

HPD ;001 oayTest (solid blue diamond) lies almost as close to the observations (red star) as does LDEO-HPD. This
leads to an important finding, which is that most of LDEO-HPD's skill is due to the correction of the GOBM's
climatological mean state and seasonality (Fay & McKinley, 2021; Hauck et al., 2020; Mongwe et al., 2018)
rather than their interannual variability. The additional skill achieved by adding interannual variability to the
corrections (Figure 1b) is indicated by the difference between HPD . 1ogyes a2d LDEO-HPD, which is modest
for GLODAP (Figure 2a) and slightly larger for LDEO (Figure 2b). HPD y;010eymest 1as similar skill to other
currently available observation-based products (Table 1), and the additional increment of skill from the interan-
nual correction brings LDEO-HPD closest to the independent observations (Gloege et al., 2022).

These findings support the use of the 2000-2020 climatological correction as the basis for adjusting the GOBMs
for 1959-1981. For 1982-2020, interannually varying corrections are used (Section 2).

3.3. CO, Fluxes

Air-sea CO, fluxes for 1959-2020 from LDEO-HPD, the eight GOBMs, previously published observation-based
products, and HPD 100y Tes d€monstrate a long-term increasing trend punctuated by interannual variability
(Figure 3a). There most significant feature of this variability is the slowed growth in uptake during the 1990s
(Fay & McKinley, 2013; Hauck et al., 2020; Landschiitzer et al., 2015; Le Quéré et al., 2007; Lovenduski
et al., 2007, 2008).
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Figure 3. (a) Estimated air-sea CO, fluxes for 19592020 (Pg C/yr): LDEO-Hybrid Physics Data product (LDEO-HPD)
(blue), HPD ;1 010gyTest (€yan), unadjusted global ocean biogeochemical models (gray), Jena MLS (magenta), other
observation-based products (green); comparisons shown in separate panels in Figure S1 in Supporting Information S1.
HPDjipyaotogytest 18 1dentical to LDEO-HPD prior to 1982. (b) Map of mean air-sea CO, fluxes for 1960-1979, 1980-1999,
and 2000-2020 according to LDEO-HPD (mol C/yr).

In LDEO-HPD, interannual variability prior to 1982 is driven by only the GOBMs; only the mean flux and
seasonality have been adjusted with climatological model-data misfits (Figure S2 in Supporting Information S1).
The adjustment leads to a larger mean flux than most of the GOBMs (Figure 3a). From 1982 onward, the flux in
LDEO-HPD has similar anomaly timing to HPD ;. 100yest
differences are due to the interannually varying adjustments that are possible only during the observed period.

but these anomalies are of larger amplitude. These

This comparison indicates that LDEO-HPD likely underestimates the amplitude of interannual anomalies prior
to 1982, which is to be expected when there are no data to directly drive the reconstruction toward extremes
(Rodenbeck et al., 2022).

A riverine efflux of carbon is applied to the products so as to estimate the anthropogenic-only global-mean flux,
based on the average of several recent estimates (0.49 PgCl/yr, Section 2.1). Riverine efflux is highly uncertain and
has only been estimated for the long-term mean. Other possible choices of this value would shift the long-term
global mean of LDEO-HPD, as well as the other products shown in Figure 3a, by +0.2 PgC/yr (Section 2.1), but
would not impact variability or trends.

Examining the spatial patterns of the mean air-sea carbon dioxide fluxes for each 20 year period in Figure 3b,
we see a reduced Pacific equatorial efflux during 1980-1999 compared to the other periods, consistent with the
occurrence of multiple strong El Nifio events in this period (e.g., 1982-1983, 1997-1998). In the Northern extra-
tropics, the sink strengthening over time is evident.

Integrated flux anomalies at each latitude reveal the spatial distribution of interannual anomalies (Figure 4).
Consistent with the global timeseries (Figure 3a), the dominant feature is the long-term growth (red to blue) of
the ocean carbon sink at all latitudes.

BENNINGTON ET AL.
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a) Pacific Ocean Flux Anomalies The Pacific Ocean has large flux variability, with significant anoma-
60 lies occurring on interannual timescales within the equatorial region as a
: ? result of ENSO (McKinley et al., 2004, 2017; Rodenbeck et al., 2022). The
40 1‘" L] ‘ z i EQ Southern Ocean experiences significant carbon sink decadal variations
_ 20 (Gruber et al., 2019; Landschiitzer et al., 2015, 2016; Le Quéré et al., 2007,
o # » =l Lovenduski et al., 2007, 2008; McKinley et al., 2017; Ritter et al., 2017).
0 «‘ m “‘ . “ ' ' 3 ‘ Significant negative anomalies (greater uptake) occur in the 1980s to early
‘ ‘ ’ ¥ 1990s, with anomalies of greatest intensity in 1992-1995. After 1997, a
207 ; Y strong positive anomaly (reduced uptake) emerges. From 2009 on, the anom-
208 : i : . L aly is again strongly negative in the Southern Ocean. These decadal varia-
b) Atlantic Ocean Flux Anomalies tions remain after detrending (Figure S4 in Supporting Information S1). In
the Atlantic, latitudes north of 40°N have the most intense fluxes. This basin
60 . : ) is narrower than the others, and thus has a lower integrated flux and lower
104 EX amplitude interannual variability. The Indian Ocean exhibits significant vari-
! ability south of 10°S according to the reconstruction; however the region is
z 207 particularly sparse in observations to guide the reconstruction, which should
5 increase its uncertainty (Gloege et al., 2021).

204 Increased uptake occurs in the Pacific and Southern Oceans immedi-
ately following the eruptions of Agung (March 1963), El Chichon (March
40 . . . . ; 1982) and Mt. Pinatubo (June 1991); also seen in the detrended fluxes
o) Indian Ocean Flux Anomalies (Figure S2 in Supporting Information S1). In the equatorial Pacific, the El
20 Nifio events that tend to follow these eruptions also drive significant flux
0 anomalies (Eddebbar et al., 2019). After El Chichon and Pinatubo, slight
z negative anomalies also occur in the Southern Hemisphere Atlantic. The
-20 1 globally averaged box model of McKinley et al. (2020) parameterizes these
o eruptions as upper ocean heat content anomalies; and the estimated fluxes
' ' ' ' ' correlate highly with LDEO-HPD (Figure S3d in Supporting Information S1,

d) Southern Ocean Flux Anomalles K X
40 r=0.82). If the eruptions are neglected, the correlation decreases (r = 0.64).
- ' n ' ‘m When both timeseries are detrended, the correlations remain significant only
° 60 when the eruptions are included in the box model (with eruptions, r = 0.51,
T T p < 0.05; without, r = —0.23, p = 0.13). Thus, both the box model and the

1960 1970 1980 1990 2000 2010 2020 . . ; . .
spatial patterns of flux anomalies (Figure 4) indicates the potential for large
e volcanoes to impact interannual variability of the global ocean carbon sink
12 99 6 -3 0 3 6 9 12 TgC/°lat

Figure 4. Air-sea CO, flux anomalies in four ocean basins (TgC/yr/°lat).

since 1959. A more detailed study of this issue in the LDEO-HPD product
will be presented elsewhere.

4. Discussion and Conclusions

This work temporally extends the LDEO-HPD data product back in time to

begin in 1959. For 1982-2020, model-data misfits are calculated for each
model and each month as in Gloege et al. (2022). For 1959-1981, the monthly climatology of this correction
for 2000-2020 is applied independently to each of eight GOBMs. Across all years, the final LDEO-HPD pCO,
estimate is the average across the eight corrected models.

While it would be ideal to compare to observations prior to 1982, the TA and DIC measured by the high-quality
GEOSECS experiment is subject to sufficient inaccuracies that they were excluded from the GLODAP synthesis
products (Key et al., 2004). Thus, we compare to independent data from the modern era. With these comparisons,
we find that the substantial improvement over uncorrected GOBMs is due primarily to the correction of the model
mean and seasonality; that is, the climatological correction. This finding contrasts to a long standing percep-
tion that the primary weakness of GOBMs is their representation of interannual varability (Gruber et al., 2019;
Landschiitzer et al., 2015; Le Quéré et al., 2007), and suggests a need for reassessment of the mechanistic drivers
of errors in the models' mean state.
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There are significant regional biases in the mean and seasonality of many GOBMs (Fay & McKinley, 2021;
Hauck et al., 2020; Mongwe et al., 2018) that this observation-based approach can reduce substantially, bringing
the resulting estimates closer to observations (Figure 2). At the same time, this approach can preserve the GOBMs
capability to represent interannual variability (Figure 3) that occurs in response to external forcing and internal
ocean processes. Hauck et al. (2020) recently concluded that interannual variability is, in fact, well-represented
by the GOBMs. By combining the strengths of models and observations with the LDEO-HPD approach, we have
developed a robust approach to temporally extend this observation-based product back to 1959.

Another temporal extension on an observation-based product has recently been published, Jena MLS (Rodenbeck
et al., 2022). Comparing JENA-MLS to LDEO-HPD, we find the two estimates to be significantly correlated
(r=0.93, p =0; r =0.66, p = 0 when detrended). The two reconstructions span the range of model flux esti-
mates prior to 1990s (Figure 3b), after which observations better constrain the products. Jena-MLS has a signif-
icantly larger estimated trend in the ocean carbon sink over the reconstructed period. However, as discussed by
Rodenbeck et al. (2022) (their section A2), Jena-MLS in its current version overestimates the trend; thus, it likely
underestimates the sink for the pre-observation decades.

LDEO-HPD indicates that the ocean carbon sink increased over the last 60 years, consistent with the nearly expo-
nential growth of atmospheric pCO, (McKinley et al., 2020; Raupach et al., 2014; Ridge & McKinley, 2021).
Long-term growth of the sink has been punctuated by year-to-year variability. Consistent with many earlier
studies, we find that the equatorial Pacific and Southern Ocean have the largest integrated impact on variations
of the sink (Hauck et al., 2020; Landschiitzer et al., 2016; Le Quéré et al., 2000; McKinley et al., 2004, 2017,
Resplandy et al., 2015). In the equatorial Pacific, variability is associated with ENSO. The Southern Ocean
exhibits strong decadal timescale variations for which both internal and externally forced mechanisms have been
proposed (Gruber et al., 2019; Landschiitzer et al., 2015; McKinley et al., 2020). Better understanding the varia-
bility of ocean carbon uptake in the Southern Ocean and across the globe is an important task that can be facili-
tated by observation-based products such as LDEO-HPD.

Data Availability Statement

Open Data EN.4.2.2 data were obtained from https://www.metoffice.gov.uk/hadobs/en4/ and are © British Crown
Copyright, Met Office (2022), provided under a Non-Commercial Government Licence: http://www.national-
archives.gov.uk/doc/non-commercial-government-licence/version/2/ Project code (Python) freely available on
Github to prepare observational data for the machine learning algorithm, utilize XGBoost, and analyze the result-
ing reconstructed misfits: https://github.com/valbennington/LDEO_HPD_extension Final reconstructed CO,
fluxes available on Zenodo: https://zenodo.org/record/6647613.
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