
1. Introduction
The ocean plays a significant role in reducing human impact on the climate by absorbing and sequestering approx-
imately one quarter of anthropogenic carbon dioxide (CO2) emissions each year since the 1960s (Friedlingstein 
et al., 2021). Since the beginning of the Industrial Revolution, the ocean has absorbed about a third of the total 
anthropogenic emissions (Khatiwala et al., 2013; Sabine et al., 2004). The processes governing the large-scale 
distribution of ocean pCO2 and the drivers of seasonality are well understood (Crisp et al., 2022; Takahashi 
et al., 2002, 2009). Yet, the quantification of year-to-year variability and long-term changes in this carbon sink 
remains a challenge (Crisp et al., 2022; Hauck et al., 2020; McKinley et al., 2016, 2017). This quantification is 
necessary for climate policies worldwide in order to separate the impact of any mitigation policies from interan-
nual variability in the ocean carbon sink (Peters et al., 2017).

To quantify the variability and trend in the ocean carbon cycle, both global ocean biogeochemical models 
(GOBMs) and statistical approaches are used. The degree to which these methods agree builds confidence in 
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estimates of the ocean carbon sink and its variability (McKinley et al., 2020). GOBMs are mechanistic models 
which incorporate our knowledge of the processes that control the ocean carbon cycle and the resulting air-sea 
fluxes of carbon dioxide. While the models can be compared to observations to assess performance (Hauck 
et al., 2020), they do not directly incorporate observations of the partial pressure of carbon dioxide in the surface 
ocean (pCO2). The nine models included in the Global Carbon Budget tend to have significant mean and seasonal 
flux biases over basin-scale regions (Fay & McKinley, 2021).

Most observation-based products reconstruct the surface ocean pCO2 across the global ocean in both space and 
time from sparse measurements using statistical techniques. These observation-based products typically use 
machine learning to develop a nonlinear function between observations of surface ocean pCO2 and related vari-
ables that are observed with greater spatio-temporal coverage. The resulting function is then used to extrapolate 
pCO2 across the global ocean in both space and time. The Jena MLS approach reconstructs pCO2 using a diagnos-
tic model of mixed layer fluxes and statistical fits. In all products, air-sea fluxes of carbon dioxide are calculated 
from the resulting air-sea difference (ΔpCO2 = pCO!"#$%

2
  − pCO!"#

2
 ). While the resulting observation-based prod-

ucts show higher correlations and smaller root mean squared error (RMSE) against observations than do models 
(Bennington et al., 2022; Hauck et al., 2020), the limited physical interpretability of these statistical algorithms 
is a concern (Toms et al., 2020).

One way that has been proposed to improve the plausibility and confidence in machine learning based algorithms 
for geosciences is to explicitly incorporate physical knowledge of the system into the algorithm development 
workflow (Reichstein et al., 2019). This relatively new to the geosciences, and has typically been implemented 
using a modified cost function that penalizes unphysical results. Machine learning algorithms are trained by 
minimizing a cost function. This cost function is usually a sum of the Mean Squared Error (MSE) between the 
predicted output and the observed training data, plus a regularization term. This regularization term is used to 
penalize complexity in the resulting algorithm, so the algorithm will generalize better. Read et al. (2019) use a 
neural network approach to predict lake temperature profiles in Lake Mendota and Sparkling Lake. RMSE was 
smaller compared to predictions form a process based model. However, this standard neural network approach 
sometimes resulted in unphysical conditions. To improve upon the standard neural network approach, Read 
et al. (2019) modify their cost function to include a penalty for model predictions that cause excessive devia-
tion from energy conservation across timesteps, and also implement algorithm pre-training using output from a 
one-dimensional physical model. Their final neural network algorithm further reduces RMSE and provides the 
best prediction of lake temperature profiles.

For our problem of reconstructing full-coverage ocean pCO2 from heterogeneous in situ observations, how can 
we incorporate the physical mechanisms known to control the ocean carbon cycle? Previous machine learning 
approaches to reconstructing surface ocean pCO2 rely on the algorithm to decipher the ways in which atmospheric 
CO2, sea surface temperature (SST), chlorophyll-a (Chl-a), Mixed layer depth (MLD) climatology, Sea Surface 
Salinity (SSS), winds, geographic location, and time of year impact the resulting surface ocean pCO2. Each 
of these features impacts pCO2. Chl-a provides a measure of the biological production that removes dissolved 
inorganic carbon (DIC) from the surface ocean, thereby reducing surface ocean pCO2. MLD is a proxy for ocean 
stratification. During highly stratified times, the phytoplankton are held within the lit surface ocean, setting up 
biological production. During periods of deeper mixing, DIC from depth is brought to the surface, and an increase 
in surface ocean pCO2 occurs. But MLDs strongly co-vary with temperature. In other words, temperature has 
both direct and indirect effects on surface ocean pCO2. The direct effect of temperature, due to solubility and 
chemical equilibrium, is that increasing (decreasing) temperatures directly causes in an increase (decrease) of 
pCO2 (Takahashi et al., 2002). Temperature variations are also associated with biological production via strati-
fication and wintertime vertical mixing, processes that result in opposing pCO2 changes compared to the direct 
temperature effect on pCO2.

Early efforts in pCO2 reconstruction (Lefèvre & Taylor, 2002) relied only on SST and atmospheric pCO2. All 
current machine learning approaches (Denvil-Sommer et al., 2019; Gregor et al., 2019; Landschützer et al., 2014) 
have SST as an input. To build these reconstruction algorithms through data-driven training, the statistics must 
identify a single function that disentangles the competing effects SST on pCO2. In this work, we remove the 
direct temperature impact on pCO2, pCO2-T (Takahashi et al., 2002) from the target variable for the machine 
learning. This pre-processing step explicitly removes the well-known direct effect of temperature on pCO2 from 
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our regression. This means that the machine learning algorithm has to learn only the biogeochemical/physical 
component pCO2, supported by the information from SST and the other input variables.

The philosophy of the method described here is to apply pre-processing that removes from the target variable 
signals that are quantifiable based on prior knowledge. This leaves behind for the statistical fit the components 
that are not directly quantifiable. By removing known signals that influence the data, we aim to create a cleaner 
target variable for the machine learning. As described above, it is well-known that the pCO2 signal is a mix of 
influences from direct temperature impacts and biogeochemical/physical effects (Takahashi et al., 2002, 2009). 
We calculate pCO2-T from observations, remove this from observed pCO2, and then use an XGBoost (XGB) 
algorithm to reconstruct the remaining component, “pCO2-Residual.” The final estimate of pCO2 is the sum 
of pCO2-T and pCO2-Residual. In other studies from our research group, we have applied this philosophy in a 
substantially different way in developing and then extending the LDEO-Hybrid Data Physics (HPD) approach 
(Bennington et al., 2022; Gloege et al., 2022). In LDEO-HPD, the pre-existing knowledge is pCO2 estimated by 
hindcast ocean biogeochemical models. An XGB algorithm identifies relationships between observed driver data 
and model errors (model error = pCO!"#$%

2
  − pCO!"#$%&'()*+),

2
 ). Full-coverage model errors are estimated and then 

added to the original model fields to estimate full-coverage real-world pCO2.

While both of these approaches follow the philosophy of applying pre-processing to incorporate prior knowledge, 
use an XGB algorithm and have similar input data, they are otherwise independent. A critical distinction is that 
this pCO2-Residual method depends only on observations to both create the target variable and as algorithm input. 
In contrast, LDEO-HPD requires both observed pCO2 and ocean biogeochemical model fields to create the target 
variable, and then uses observations as input. Both approaches are useful, given that they could have different 
practical applications. The pCO2-Residual approach has the benefit that it could be applied before model outputs 
become available (Ciais et al., 2022). The merged model-data approach of LDEO-HPD can be used to make a 
data-constrained projection backward in time, before pCO2 observations are available (Bennington et al., 2022).

In the following sections, we introduce the pCO2-Residual approach and show that the resulting algorithm 
captures key physical processes of the surface ocean carbon cycle. Additionally, it performs modestly better than 
other data-only reconstruction approaches when compared to independent observations. The resulting model is 
used to estimate the air-sea CO2 fluxes for 1985–2019, and uncertainties are quantified.

2. Methods
2.1. pCO2-Residual
Our approach is to pre-process pCO2 data to remove the direct influence of temperature. This focuses the statis-
tical algorithm on the spatio-temporal variance in pCO2 due to biogeochemistry and other physical processes. 
Specifically, we calculate a residual (pCO2-Residual), the difference between observed pCO2 and the purely 
temperature (solubility and chemical equilibrium) driven component of pCO2 (pCO2-T, Takahashi et al. (2002)). 
We use a machine learning algorithm, eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin,  2016), to 
develop a function between observations and the pCO2-Residual, to reconstruct the residual across all space and 
time. For the final reconstruction of surface ocean pCO2, we add pCO2-T back to our residual. CO2 fluxes are then 
calculated using the reconstructed pCO2. These steps are described in detail below.

2.1.1. Pre-Processing SOCAT Observations
We calculate surface ocean pCO2 from the SOCAT v2021 monthly 1°  ×  1° gridded fCO2 product (Bakker 
et al., 2016). This is a quality-controlled data set containing observations of the fugacity of carbon dioxide (fCO2) 
in the surface ocean that is converted to surface ocean pCO2 according to Equation 1,

!"#2 = $"#2 ⋅ exp
(
%&'( ⋅ ) + 2*

+ ⋅ ,

)−1
 (1)

where Patm is the atmospheric pressure at sea level from ERA5, T is the SST in Kelvin from the National Oceanic 
and Atmospheric Administration (NOAA) optimally interpolated SST version 2 (OISSTv2), B and δ are virial 
coefficients from Weiss (1974), and R is the gas constant (Dickson et al., 2007). All data products are regridded 
from their native resolutions to the SOCAT resolution of 1° × 1° using bilinear interpolation. SOCAT fCO2 data 



Journal of Advances in Modeling Earth Systems

BENNINGTON ET AL.

10.1029/2021MS002960

4 of 19

are sparse in both space and time, with significant coverage gaps throughout the southern hemisphere, particu-
larly during winter. See Gregor et al. (2019) and Gloege et al. (2021) for details of data coverage.
2.1.2. Initial pCO2 Reconstruction
Calculation of the temperature influence on pCO2 requires a gridded field of the long-term mean pCO2. To esti-
mate this, we use SOCAT pCO2 data processed as in Section 2.1.1 and an XGBoost algorithm. Input features are 
the monthly observations and time/space variables on the first eight lines in Table 1. For the final pCO2-Residual 
algorithm, the only use of this direct pCO2 reconstruction is to determine the spatially resolved 1985–2019 
long-term mean pCO2 

(
!"#2

)
 , required for calculation of the pCO2-Residual target variable (Section 2.1.3 and 

Equation 2).
2.1.3. Calculating pCO2-Residual
We calculate the temperature driven component of pCO2 (pCO2-T) via Equation 2 (Takahashi et al., 2002),

!"#2$ = !"#2 ⋅ exp
(
0.0423 ⋅

(
%%$ − %%$

))
 (2)

where !"#2 is mean surface ocean pCO2 from the initial pCO2 reconstruction (Section 2.1.2), SST is temperature 
in Celsius from NOAA OISSTv2, and !!"  is the local long term mean in SST in Celsius from NOAA OISSTv2. 
All data products are regridded from their native resolutions to the SOCAT resolution of 1° × 1° using bilinear 
interpolation. The residual (pCO2-Residual) is calculated as the difference between observed pCO2 and pCO2T 
for all observations (Figure 1).

!"#
$%&'()*+

2
= !"#2 − !"#2, (3)

Product Variable Abbreviation Processing

NOAA OISSTv2 a Sea surface temperature SST –
SST anomaly SST' SST—monthly clim

Met Office: EN4 b Salinity SSS –
SSS anomaly SSS' SSS—monthly clim

NOAA: GLOBALVIEW c Atmospheric CO2 xCO2 –
ESA GlobColour d Chl-a Chl-a Log10(Chla)

Chl-a anomaly Chl-a' Chl a—monthly clim
deBoyer Montegut e Mixed layer depth MLD Log10(MLD)
SOCATv2020 f Partial pressure of CO2 pCO2 Equations 1 and 3
– Geographic location A sin(λ)

B sin(μ) cos(λ)
C −cos(μ) cos(λ)

– Time of year T0 sin
(

!∗2"

365

)

 
T1 cos

(

!∗2"

365

)

 

!"#2 Mean pCO2 pCO2 clim Equation 2 and Section 2.1.2

Note. Data products are regridded from their native resolutions to the SOCAT resolution of 1° × 1° using bilinear interpolation.
 aSource: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, Reynolds et al. (2002).  bSource: https://www.
metoffice.gov.uk/hadobs/en4/, Good et  al.  (2013).  cSource: https://gml.noaa.gov/ccgg/mbl/, Masarie  (2012).  dSource: 
http://www.globcolour.info/, Maritorena et  al.  (2010).  eSource: http://www.ifremer.fr/cerweb/deboyer/mld/home.php, de 
Boyer Montégut et al. (2004).  fSource: https://www.socat.info/, Bakker et al. (2016).

Table 1 
Summary of the Products, Variables, and Processing Steps Used for Feature and Target Data Sets

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
https://www.metoffice.gov.uk/hadobs/en4/
https://www.metoffice.gov.uk/hadobs/en4/
https://gml.noaa.gov/ccgg/mbl/
http://www.globcolour.info/
http://www.ifremer.fr/cerweb/deboyer/mld/home.php
https://www.socat.info/
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We examine the properties of the residual in Figure 2. In regions such as the subtropics, where pCO2 is primarily 
driven by the direct effects of temperature, mean absolute value of the residual is small (Figure 2a). Regions 
where the seasonal cycle of pCO2 is not dominantly controlled by temperature, such as the subpolar regions, have 
larger residuals. Thus, the subtropical regions have residuals on the order of 10 μatm, while subpolar regions 
may have residuals on the order of 100 μatm. Looking at the seasonality of the residual in Figures 2c and 2d, 
we see that during local winter, the residual is large and positive in the subpolar regions where vertical mixing 
returns DIC to the surface waters and pCO2 is increased even though temperatures are low. During local summer, 
the subpolar regions have negative residuals, where biological drawdown of DIC reduces the increase in pCO2 
expected from the increases in temperature. The seasonal residual is small in magnitude in the subtropical regions 
where temperature is primary driver of surface ocean pCO2. The pCO2-Residual in the observations is narrower 
than a Gaussian distribution (Figure 2b), perhaps because of sampling bias that oversamples regions with a small 
residual. There is a small positive mean. This non-zero mean is due to the increasing rate of sampling, with more 
observations occurring when the pCO2-Residual is larger in magnitude.

2.2. XGBoost
The machine learning algorithm XGBoost is used to reconstruct the pCO2-Residual across the global surface 
ocean for 1982–2019. XGBoost is a supervised machine learning algorithm that utilizes Extreme Gradient Boost-
ing (Chen & Guestrin, 2016) to predict a target variable (y), the pCO2-Residual, from multiple features (X) such 
as SST, SSS, chlorophyll-a, and MLD. The algorithm estimates a non-linear function such that f(X) ≈ y. The 
algorithm begins with a single initial guess of the pCO2-Residual (one value for the entire globe at all times). 
Then, decision trees made up of the features are added one by one, which adjust the initial guess to reduce the 
loss, or difference between the pCO2-Residual in the training data and the prediction. An example decision tree 
may increase the predicted pCO2-Residual because the observed chlorophyll-a observation is below a certain 
threshold. The process of adding trees is continued until the maximum number of trees permitted is reached, or 
when adding an additional tree does not improve the calculated cost function. Here, the cost function (loss) is the 
MSE between the training data and the predictions. The final prediction of pCO2-Residual is the sum of the initial 
guess and the result of all the decision trees.

The features and associated pCO2-Residuals are split into validation, training, and testing sets. The validation set 
is used to optimize the hyperparameters of the algorithm, namely, the number of trees used and maximum depth 

Figure 1. (a) Mean surface ocean pCO2 from the initial run. (b) Observed satellite sea surface temperature time series from 
location of yellow diamond in subplot (a). (c) Calculated pCO2-T (blue) and observed pCO2 (red dots) at yellow diamond 
located in panel (a). (d) The calculated pCO2-Residual, or the difference between observed pCO2 and calculated pCO2-T at 
location specified in panel (a).
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of each tree. Our final XGBoost algorithm uses 1,000 decision trees with a maximum depth of seven levels. The 
training set is used to build the function between the features and the residual; that is, the training set builds the 
decision trees. The testing set is withheld to test how well the function generalizes. Once the hyperparameters are 
determined, we separate the training data from the test data by month. Four months are used for training, and then 
the next month for testing, similar to Gregor et al. (2019), who shift years. This is repeated throughout the data 
set. This is done to reduce the number of individual cruises seen in both the training and test data, but to train on 
observations from all years. We develop five models by shifting our initial month of testing data, selecting every 
fifth month for testing, and our final estimate of the residual is the ensemble mean of the five predictions, which 
then utilizes all of the available training data (20% are still held out for testing).

2.3. Features
In order to reconstruct the residual across both space and time, datasets with approximately full global coverage 
are used (Table 1): SST and Chlorophyll-a (Chl-a) from satellite; SSS from in situ data (Good et al., 2013); 
MLD climatology from Argo floats (de Boyer Montégut et al., 2004); and the mixing ratio of atmospheric CO2 
from global stations (Masarie, 2012). Additional interannual anomalies are derived for SST, SSS, and Chl-a by 
subtracting the monthly climatology of the feature from a given month's observation. For example, is this June's 
chlorophyll value higher/lower/equal to its climatological June value? Geographic location and time of year are 
incorporated using an N-vector transformation of latitude and longitude which transforms the latitude and longi-
tude values to continuous values between 0 and 1, and a time transformation of day of year (D.O.Y.). We tested 
using self organizing maps to separate the ocean according to their feature properties into 5, 10, and 15 biomes, 
but improvement was negligible, so we maintain the simpler model (S4).

Figure 2. (a) Mean of the absolute value of the pCO2-Residual calculated from all observations in the SOCAT database. 
(b) Histogram of the calculated pCO2-Residual from SOCAT observations. (c) Mean pCO2-Residual calculated for all 
observations during the northern hemisphere winter (DJF). Panel (d) Same as panel (c) but for southern hemisphere winter 
(JAS).
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We tested the sensitivity of the reconstruction to the source of mean pCO2 
(
!"#2

)
 used in the calculation of 

pCO2T with Equation 2, which is then input to the pCO2-Residual calculation in Equation 3. Reconstructions 
using the Lamont-Doherty Earth Observatory (LDEO) pCO2 climatology (Takahashi et al., 2009) and the mean 
pCO2 of the SeaFlux observation-based products (Fay et al., 2021). The alternative sources of mean pCO2 did not 
significantly impact reconstructed pCO2 or resulting air-sea CO2 exchange, so we maintain our own method for 
the initial reconstruction of pCO2 (Section 2.1.2).

2.3.1. Chlorophyll-a
We utilize satellite Chlorophyll-a of GlobColour (Maritorena et al., 2010) for 1998–2019. We fill the missing 
winter months at the poles by linearly interpolating between the last month observed prior to the winter and the 
first month observed after winter. This results in lower chlorophyll values during winter than if we had used 
annual means to fill in the gaps. This same technique is used when any month is missing observations outside 
of the poles. Since no full year of satellite observations are available prior to 1998, we use the climatology of 
Chlorophyll-a calculated from 1998 to 2019 observations at all locations and months prior to 1998. Within 
the Large Ensemble Testbed (Gloege et al., 2021), we show that utilizing climatological chlorophyll prior to 
1998 introduced a mean uncertainty of 0.1 PgC/yr to the global air-sea CO2 exchange (Text S2 in Supporting 
Information S1).

2.4. Feature Importance
One of the benefits of the XGBoost algorithm is that it facilitates the determination of relative contributions by 
each of the features to the final estimate of pCO2-Residual. This is called feature importance. This tells us the 
relationships between pCO2-Residual and the input features that have been identified through model training. 
This supports assessment of the degree to which known physical and biogeochemical mechanisms are embodied 
in the reconstruction. In other words, this allows us to physically interpret our algorithm. Here we utilize SHap-
ley Additive exPlanations (SHAP) (Shapley,  1953) calculated using the SHAP module in Python (Lundberg 
et al., 2018), to examine both local and global interpretability of the resulting model.

SHAP computes the contribution of each feature to the final prediction, and solves the game theory problem of 
relative contributions of players, and therefore fairly distributed payouts, amongst players in cooperative games. 
In our case, SHAP calculates the importance of each predictor (feature) by starting with the mean values of all 
features, and the expected value of the pCO2-Residual. For a given month's reconstruction of the pCO2-Residual 
in a single grid cell, each feature is adjusted one-by-one to the observed value from its mean. As the features are 
adjusted, the change in the statistical expected value of the pCO2-Residual is calculated, and the difference from 
the previous expected value is determined. This difference is the feature importance. Since the ordering of the 
features matters, SHAP computes these attributions for every permutation of feature ordering, and final feature 
importance is the mean contribution by a given feature to the final reconstruction of the pCO2-Residual, across 
all ordering permutations.

2.5. Independent Data Sets
In our algorithm training, we use 80% of the observations contained within the SOCAT database, and hold out 
20% for testing. We also wish to examine how well the reconstruction method performs against independent obser-
vations not contained within the SOCAT database. We utilize two ocean time series locations: Bermuda Atlantic 
Time-Series Study (BATS) and Hawaii Ocean Time-Series (HOT). We also examine how well the reconstructed 
pCO2 compares to observations contained only in the LDEO data set (Takahashi et al., 2009) (data already in 
SOCAT are removed) and the GLobal Ocean Data Analysis Project version 2 (GLODAPv2 (Olsen et al., 2016)). 
For LDEO, pCO2 is directly measured. For the other datasets, pCO2 is calculated from observations of Total 
Alkalinity, DIC, and temperature using the PyCO2SYS package in Python (Humphreys et al., 2021). Uncertain-
ties for both directly measured pCO2 and indirectly calculated pCO2 are given in Table 3 of Gloege et al. (2021), 
and range from 2.5  μatm in LDEO (directly measured) to >12  μatm in GLODAPv2 (calculated). Given the 
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known larger biases in some of the other observation-based products in the 
1980s, we compare to observations within the time frame 1990–2019.

2.6. Regression Skill
To compare predicted pCO2 (P) to the observations (O), we examine the corre-
lation (r), bias, RMSE, mean absolute error (Mean AE), and median absolute 
error (Median AE). Bias, RMSE, Mean AE, and Median AE measure the 
size of the error in the predicted pCO2. Bias is calculated as the Mean Predic-
tion − Mean Observation (bias = ! − " ), and simply indicates whether the 
regression tends to over- or under-estimate pCO2. A large positive (negative) 
bias indicates a tendency to overestimate (underestimate) pCO2. However, a 
bias of small magnitude may be due to large, compensating biases. RMSE 

measures magnitude of the predicted error, but penalizes larger errors and outliers. It is calculated as the square 

root of the mean of the squared errors 
√

(! − ")2 . The Mean AE simply determines the average of the absolute 
value of the error, treating each error equally. The Median AE is the central value of the sorted absolute errors. 
The Pearson correlation coefficient (r) measures how much the observations and reconstruction tend to vary 
together, with values near +1 (−1) indicating a high tendency to vary together (opposite). It is calculated as the 
covariance between the predictions and the observations, divided by the product of their individual standard 
deviations.

2.7. Arctic and Coastal Zones
The pCO2-Residual product does not reconstruct coastal or Arctic Ocean pCO2, and thus only covers 89.6% of 
the global ocean. Before air-sea fluxes are calculated, coastal and Arctic regions not reconstructed by the data 
products must be filled. For consistent comparisons, these coastal areas are filled with the scaled coastal pCO2 
climatology (Landschützer et al., 2020) according to Fay et al. (2021) for the all data products shown here.

2.8. CO2 Flux Calculations
The bulk air-sea CO2 flux (FCO2) is calculated as:

!"#2 = $% ⋅$0 ⋅ (1 − &'()*+',&-.) ⋅
(
/"#0(+

2 − /"#+,1
2

)
 (4)

where Kw is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr 14C bomb flux esti-
mate according to Naegler (2009); K0 is the solubility calculated using EN4 salinity and OISST temperatures 
(Weiss, 1974); ice fraction is from the OISST product; pCO!"#

2
 is calculated from NOAA's marine boundary layer 

product, corrected for water vapor pressure using ERA5 mean sea level pressure; and pCO!"#

2
 is the reconstructed 

surface ocean pCO2 for a given product. All data products are regridded from their native resolutions to 1° × 1° 
using bilinear interpolation. For a consistent comparison Kw, K0, ice fraction, and pCO!"#

2
 from SeaFlux are 

used (Fay et al., 2021). The SeaFlux data set (Gregor & Fay, 2021) includes Kw for three wind speed products: 
CCMPv2, ERA5, and JRA55. Fluxes presented are the mean flux across the three wind products.

2.8.1. Other Observational-Based Products
We compare our reconstruction error statistics and air-sea carbon dioxide flux estimates to those of five other 
observation-based data products that use machine-learning or statistical modeling (Table 2). The harmonized 
pCO2 data products and resulting fluxes were obtained from SeaFlux (Fay et al., 2021; Gregor & Fay, 2021).

2.8.2. Anthropogenic Carbon Flux
Observation-based products that incorporate observations of surface ocean pCO2 include both natural and 
anthropogenic carbon in the resulting pCO2 and CO2 flux product. This is the net CO2 flux (Fnet = Fnatural + Fant) 
(Crisp et al., 2022). The natural outgassing of riverine carbon is understood to be the dominant component of 
Fnatural (Aumont et al., 2001; Crisp et al., 2022; Hauck et al., 2020). Additional non-riverine components such 
as outgassing due to ocean circulation change have been proposed for 1994–2007 (Gruber et al., 2019), with 

Product Reference

CSIR ML6 Gregor et al. (2019)
CMEMS Denvil-Sommer et al. (2019)
HPD Gloege et al. (2022)
MLS Rödenbeck et al. (2015)
MPI-SOMFFN Landschützer et al. (2014) and Landschützer et al. (2020)

Table 2 
Observation-Based Products Used for Comparison (Fay et al., 2021; 
Gregor & Fay, 2021)
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large uncertainty in magnitude and no evidence of long-term impact (Crisp 
et al., 2022); these are assumed to be zero here. To quantify the anthropo-
genic air-sea CO2 flux from our estimate of Fnet, Fnatural due to rivers must 
be subtracted. Quantifying Fnatural due to riverine carbon is a complex scien-
tific problem with substantial remaining uncertainties. Here, as in Gloege 
et al. (2022), we use an average of three estimates: Jacobson et al. (2007): 
(0.45 ± 0.18 PgC/yr), Resplandy et al.  (2018): (0.78 ± 0.41 PgC/yr), and 
Lacroix et al. (2020): (0.23 PgC/yr). The combined estimated efflux due to 
riverine carbon is 0.49 ± 0.26 PgC/yr, and we remove the efflux of 0.49 PgC/
yr from the estimated annual global air-sea CO2 fluxes calculated using pCO2 
from the pCO2-Residual method and from other observation-based products.

3. Results
3.1. Model Skill
The pCO2-Residual approach is an ensemble of five reconstructions. The test statistics for pCO2 for each of the 
five reconstructions and their mean are shown in Table 3. We have a mean test RMSE of 16.33 μatm, lower than 
the recent data product of Gregor et al. (2019) (17.16 μatm). Each run has a relatively small bias and is highly 
correlated with the test observations. The Mean Absolute Error (Mean AE) is near 11 μatm, and the Median 
Absolute Error (Median AE) is less than 8 μatm. For the ensemble, RMSE is lowest (below 10 μatm) in the 
subtropical regions as we would expect due to the small possible values of the residual there, and higher in the 
equatorial Pacific, Southern Ocean, and subpolar North Atlantic and subpolar North Pacific (not shown). The 
ensemble model bias and RMSE are stable over time, with no clear trends. Previous techniques have exhibited a 
higher bias in the 1980s (Gregor et al., 2019).

We tested this pCO2-Residual approach with the Large Ensemble Testbed in which a suite of Earth System 
Models are used to evaluate reconstruction performance given real-world sampling (Gloege et al., 2021) (Text 
S1 in Supporting Information S1). These tests demonstrate that pCO2-Residual can reconstruct pCO2 with higher 
skill than a similar algorithm that uses pCO2 as the target variable (Section 2.1.2). With respect to bias, improve-
ments are greatest in the poorly sampled regions in the southern hemisphere where temperature is a primary 
control on pCO2 (Figure S2 in Supporting Information S1). The phasing and amplitude of interannual to decadal 
variability is also improved across much of the open ocean in the pCO2-Residual approach compared to when 
pCO2 is the target variable (Figures S3 and S4 in Supporting Information S1).

3.2. Evaluation Against Independent Data
We examine the approach's ability to reconstruct surface ocean pCO2 in data sets not contained within the 
SOCAT data. At the ocean time series sites Hawaii (HOT) and Bermuda (BATS), reconstructed surface ocean 
pCO2 is highly correlated with observations (Figure 3, top row). The seasonal cycle is the dominant signal in 
these two datasets, and the correlation here primarily indicates how well these cycles are captured. It has previ-
ously been shown that subtropical mean and seasonality are very similar across observation-based products (Fay 
& McKinley, 2021; Gloege et al., 2022; Rödenbeck et al., 2015). These comparisons primarily tell us that the 
pCO2-Residual technique gives us the right phasing and amplitude of the seasonality at BATS and HOT. Further 
analysis (Section 3.4, Text S1, and Figure S2 in Supporting Information S1) indicates low bias in this region. 
More detailed analysis would be required to provide a detailed quantification of product skill in interannual vari-
ability and trend at BATS and HOT (Gloege et al., 2021, 2022).

GLODAP and LDEO are observations taken along ship transects traveled irregularly. These datasets provide 
groundtruth for spatial patterns of pCO2, but the variability timescales that they represent are less clear. They should 
not primarily represent seasonal variability given very limited regular reoccupation of the sampling sites (Olsen 
et al., 2016; Takahashi et al., 2009), but instead a variety of timescales from interannual to decadal. Correlations 
to the data are slightly lower than at BATS and HOT for all reconstruction approaches (Figure 3, bottom row). 
pCO2-Residual and LDEO-HPD (Gloege et al., 2022) perform marginally better than other observation-based 
data products. All approaches underestimate the amplitude of observed variability, except JENA-MLS. The unbi-
ased RMSE in pCO2-Residual is approximately equal to LDEO-HPD. A decadal breakdown of these Taylor 

Run 1 Run 2 Run 3 Run 4 Run 5 Mean

RMSE (μatm) 16.13 16.02 16.76 16.51 16.25 16.33
Bias (μatm) 0.28 0.50 −0.21 0.61 −0.30 0.18
Correlation 0.89 0.90 0.88 0.89 0.89 0.89
Mean AE (μatm) 10.88 10.87 11.20 11.13 10.92 11.00
Median AE (μatm) 7.41 7.49 7.57 7.68 7.46 7.52

Table 3 
pCO2 Test Statistics for Each of the Five Ensemble Members and Their 
Mean Values
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diagrams (Figure S5 in Supporting Information  S1) demonstrates that both pCO2-Residual and LDEO-HPD 
compare similarly to the data as other approaches in the 1990s. However, in the 2000s and 2010s, both are clearly 
closer to the observations. However, this doesn't necessarily indicate that these approaches will better capture the 
decadal variability of the globally integrated air-sea CO2 flux, and indeed the two approaches disagree substan-
tially on the magnitude of decadal variability in the globally integrated air-sea CO2 flux (Figure 6).

3.3. Physical Mechanisms
With additional analysis, we can reveal the relative contributions of features to the algorithm's prediction. The 
first column in Figure 4 shows the mean (1982–2019) importance of MLD; geographic location and D.O.Y.; SST; 
and Chl-a to the model's prediction of the pCO2-Residual. These are the dominant controls of the seasonal cycle 
of the pCO2-Residual within the algorithm. Here, we sum the importance of geographic location and D.O.Y., 
because there is no seasonal cycle in location, but there is geographic variation of the impact of D.O.Y. on the 
pCO2-Residual. The second column of Figure 4 examines the mean seasonal cycles of feature importance for 

Figure 3. Taylor diagrams (Taylor, 2001) of Correlation (along circumference), Standard Deviation (along radii), and root 
mean squared error (gray arcs centered at red star) of five previous observation-based approaches (Hybrid Data Physics in 
blue, MPI-SOMFFN in black, CSIR ML6 in red, CMEMS in green, and MLS in cyan) and the new pCO2-Residual technique 
(magenta). Bermuda Atlantic Time-Series Study is shown at the top left, Hawaii Ocean Time-Series at the top right, LDEO at 
bottom left, and GLobal Ocean Data Analysis Project at bottom right.
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each of these predictors for four biomes of Fay and McKinley (2014). The third column of Figure 4 shows the 
contributions of interannually varying predictors to the reconstructed pCO2-Residual.

The seasonal cycle of the pCO2-Residual is largely controlled by MLD, which has large mean feature impor-
tance (Figure 4a), but also large seasonal variations away from the equator (Figures 4e–4h). Deep winter mixing 
brings up DIC and increases pCO2, whereas shallower mixed layer depths set up biological production which 
decreases surface DIC. During northern hemisphere winter (DJF), the algorithm's estimate of the pCO2-Residual 
is significantly increased (decreased) by MLD in the northern (southern) hemisphere as expected. There is a 
small seasonal cycle in the feature importance of MLD along the equator. The geographic location and D.O.Y. 
significantly increases the pCO2-Residual on the mean in equatorial zones and decreases the pCO2-Residual in the 
Southern Ocean (Figure 4b). The small mean impact of these combined features in the subpolar northern regions 
is due to cancellation of significant seasonal variations in its importance to the reconstructed pCO2-Residual 
(Figures 4d–4f).

Figure 4. Mean feature importance and seasonal cycles and interannual variations in feature importance in sample biomes 
(μatm). (a) Mean feature importance of mixed layer depth (MLD). (b) Mean feature importance of Location and Day of Year 
(D.O.Y.). (c) Mean feature importance of sea surface temperature (SST). (d) Mean feature importance of Chl-a. (e) Mean 
seasonal cycles of feature importance of Location/D.O.Y., MLD, Chl-a, and SST in the North Pacific Subtropical Seasonally 
Stratified (NP STSS) biome. (f) Same as in (e) except for the Pacific Equatorial East (Pac Equ E) biome. (g) Same as in (e) 
except for the North Atlantic Subpolar Seasonally Stratified (NA SPSS) biome. (h) Same as in (e) except for the Southern 
Ocean STSS (SO STSS) biome. (i) Interannual variations in feature importance for SST, Chl-a, and xCO2 within the NP STSS 
biome. (j) Same as in (i) except for within the Pac Equ E biome. (k) Same as in (i) except for within the NA SPSS biome. (l) 
Same as in (i) except for within the SO STSS biome.
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While the direct impacts of SST have been set aside by the pre-processing (Equation 2), Figures 4g–4i show the 
importance of SST to the reconstructed residual. Summertime stratification sets up biological production, and 
wintertime deep mixing brings up older, remineralized DIC. We see that on the mean, the algorithm decreases 
its estimate of the residual in the warm equatorial regions and along the Gulf Stream, and increases its estimate 
in colder zones (Figure  4c). Small seasonal variations around this mean impact exist, with decreases in the 
residual seen in the summer hemisphere (Figures 4e, 4g and 4h). On the mean, Chl-a has a small impact on the 
model's prediction (Figure 4d); in other words, the magnitudes of the adjustments made because of Chl-a values 
are smaller than other features. We do see, however, a negative adjustment to the residual estimate at times and 
regions of strong biological production (Figure 4g) and smaller positive adjustments made in less productive 
regions (Figures 4e, 4f and 4h), or outside of the summer season.

The third column of Figure 4 examines the year-to-year variations in feature importance for those features with 
year-to-year changes (SST anomalies, xCO2, and Chl-a anomalies). Interannual anomalies in Chl-a do not cause 
significant adjustments to the residual for that year in any of the biomes (Figures 4i–4l). However, within the 
algorithm, interannual anomalies in SST do cause significant adjustments to the predicted pCO2-Residual, 
particularly in the eastern equatorial Pacific.

If we examine how xCO2 is used to adjust the initial guess of the pCO2-Residual in our algorithm, we see 
that low xCO2 during the early years of the reconstruction translates to a negative adjustment (decrease) in the 
pCO2-Residual (Figures 4i–4l). As the years progress, this contribution increases and becomes positive and large 
by the later years of the reconstruction. This is expected, as the ocean pCO2 increases following atmospheric 
pCO2. pCO2-T does not account for the long term trend in pCO2 since this is caused by the accumulation of DIC. 
The algorithm must learn why there is an increase in the pCO2-Residual over time, and as shown here, it correctly 
attributes this to the long-term growth of xCO2. Within the algorithm, interannual variability in the reconstructed 
pCO2 Residual is largely controlled by interannual anomalies in SST in all regions.

Considering the spatial impact of interannual variability, the contribution of the atmospheric CO2 mixing ratio 
(xCO2) in the pCO2-Residual prediction is homogenous in space (not shown), which distinguishes it from the 
spatially variable impacts of SST, MLD, and Chl-a (Figure 4). This is as expected because a single global-mean 
atmospheric xCO2 time series is used as a feature for all spatial points.

This analysis demonstrates that the XGBoost algorithm allows an additional layer of understanding to our pCO2 
reconstruction. Mixed layer depths, geographic location, time of year, and to a lesser extent, SST and Chl-a 
control the seasonal cycle of the pCO2-Residual within the algorithm. The long-term pCO2 trend is due to the 
long-term positive trend in atmospheric CO2, and year-to-year variations within the model are dominantly driven 
by SST.

3.4. Uncertainty
To quantify uncertainty in our pCO2 reconstruction, a quantile loss function is employed within the XGBoost 
regression. To do this, a custom evaluation function and loss function are provided to XGBoost as parameters. 
Random noise is added to the smoothed gradient to improve the performance of XGBoost with quantile loss 
(Descamps, 2020). Most machine learning loss functions aim to reduce the mean absolute error between the 
predicted value and the observation. The quantile loss function, however, is used to predict a specified quantile of 
the prediction, and the loss function is minimized when the reconstruction resides at a given quantile. A quantile 
is a value below which a fraction of observations lies. Thus, the 90% quantile for pCO2 will over-estimate the 
observed pCO2 90% of the time. We reconstruct the 5% quantile and the 95% quantile such that we are confident 
the true surface ocean pCO2 value lies between these reconstructions approximately 90% of the time. Thus, for a 
given point in space and time, the reconstructed pCO2 can be quantified with 90% confidence as:

!"#2 90% "$ = !"#2 ±
(
!"#95%ℎ

2 − !"#5%ℎ
2
)

2
 (5)

Figure 5 displays the mean value (1985–2019) of the second term of Equation 5, the value added and subtracted 
from the pCO2 reconstruction to create confidence bounds. We show the magnitude of uncertainty for both the 
90% (Figure 5a) and 67% (Figure 5b) confidence bounds. Confidence is highest, that is, there are the lowest 
uncertainties, within the subtropical oceans (±less than 10 μatm at 67% confidence). Uncertainties become larger 
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within the subpolar regions, and largest within the Southern Ocean and within the equatorial Pacific. The algo-
rithm cannot identify whether the uncertainty arises because of a lack of measurements of surface ocean pCO2 or 
from noise in the observations. However, uncertainty is largest in regions that are biologically productive, which 
could be substantial impacted by uncertainty of 30% for Chl-a observations, and highly dynamic regions such as 
eastern upwelling zones. Uncertainty also increases where there are few observations (off the southwestern tip of 
South America and in the Indian Ocean, for instance).

3.5. CO2 Fluxes
The mean air-sea CO2 fluxes reconstructed using the pCO2-Residual technique for 1985–2019 exhibit features 
common to other reconstructions (Figure 6a). The subpolar North Atlantic is a strong carbon sink, while the 
equatorial regions efflux carbon dioxide to the atmosphere. Subtropical regions are smaller carbon sinks, and the 
high latitude Southern Ocean and North Pacific are sources of carbon to the atmosphere. The globally integrated 
anthropogenic air-sea CO2 flux has become increasingly more negative, as atmospheric CO2 concentrations have 
increased. Using the same coastal filling and river correction for all products, we find that the CO2 sink recon-
structed by the pCO2-Residual approach is consistent with the other data products (Figure  6b). Year-to-year 
variability in the air-sea CO2 flux is largest in the reconstructions using the JENA MLS and pCO2-Residual 
approaches.

3.6. Uncertainty in CO2 Fluxes Due To pCO2 Convolution With Winds
In order to determine the uncertainty in CO2 flux caused by our uncertainty in surface ocean pCO2 when combined 
with uncertainty in the winds, we assume zero global mean bias in the pCO2 reconstruction. This assumption is 
supported by the analysis of Gloege et al. (2021) and our own analysis with the Large Ensemble Testbed (Text 
S1 in Supporting Information S1). Using a Monte Carlo approach, we randomly sample pCO2 from a normal 
distribution with mean values equal to our locally reconstructed pCO2 and standard deviation provided by the 
quantile loss reconstruction. We randomly sample every 1° by 1° grid box 500 times for every month and wind 
product, and then calculate the local and global air-sea fluxes. Figure 7a shows the resulting mean annual stand-
ard deviation of the air-sea flux from the Monte Carlo approach. While the pattern of flux uncertainty grossly 
mimics the pCO2 uncertainty pattern, there are important differences. The largest flux uncertainties are not seen 
where the pCO2 uncertainties are largest, such as the equatorial Pacific. Instead, the largest flux uncertainties are 
seen at high latitudes where there are moderate pCO2 uncertainties (Figure 5) and significant piston velocities 
(Figure 7b). In the equatorial Pacific, the flux impact of large pCO2 uncertainties are damped by the much smaller 
piston velocities.

Figure 7c shows the mean of the zonally integrated CO2 flux for the three wind products CCMP2, ERA5, and 
JRA55 (blue, orange, and green, respectively) as compared to the zonally integrated uncertainty, as one stand-
ard deviation of the zonally integrated flux from the Monte Carlo simulations (CCMP2, ERA5, and JRA55 as 

Figure 5. Mean pCO2 uncertainty within the (a) 90% and (b) 67% confidence bounds. At a given location, the shading 
represents the mean value that would be added and subtracted to form the confidence interval of reconstructed pCO2.



Journal of Advances in Modeling Earth Systems

BENNINGTON ET AL.

10.1029/2021MS002960

14 of 19

blue, orange, and green, respectively). While local standard deviations are a significant portion of the mean 
flux in some regions (e.g., subtropical North Atlantic), without a bias in the reconstruction, the reconstructed 
global air-sea flux has very small uncertainties caused by the uncertainty in pCO2 convolved with wind speeds 
(≈0.01 PgC/yr). However, uncertainties in piston velocities estimated by different wind products cause a stand-
ard deviation of annual fluxes of 0.04–0.10 PgC/yr (not shown). Combining these with the square root sum of 
squares, we estimate a total uncertainty from wind speeds, both due to the convolution with pCO2 uncertainty and 
the piston velocity, at 0.10 PgC/yr, one standard deviation, for the 67% confidence interval.

Fay et  al.  (2021) perform a complete uncertainty analysis for globally integrated CO2 flux estimates from 
observation-based pCO2 products. They account for differences across products (0.19 PgC/yr) and uncertainties 
in gas transfer parameterizations (0.39 PgC/yr, Wanninkhof (2014)). If we assume that this Monte-Carlo analysis 
of the convolution of winds with pCO2 for one product is representative, we can use the calculation above to 
replace the winds uncertainty of Fay et al. (2021) (0.09 PgC/yr) with 0.10 PgC/yr. Combining this again with 
square root sum of squares, we arrive at a total uncertainty of 0.45 PgC/yr. This is the same as found by Fay 
et al. (2021), indicating that the convolution of pCO2 with wind uncertainty is not a significant factor in the total 
uncertainty of globally integrated CO2 fluxes estimated from observation-based pCO2 products. However, for 
regional and local estimates in regions of high piston velocity, this factor does have the potential to be important 
(Figure 7a).

Figure 6. (a) Map of mean (1985–2019) anthropogenic air-sea CO2 Flux reconstructed by the pCO2-Residual Technique. 
(b) Annual mean (1985–2019) air-sea CO2 fluxes estimated by the pCO2-Residual (magenta), Hybrid Data Physics (blue), 
MPI-SOMFFN (black), CSIR ML6 (red), CMEMS (green), and MLS (cyan) data products. Mean of the nine Global Ocean 
Biogeochemical Models and one standard deviation shading in gray. Harmonized observation-based products begin in 1990 
(Gregor & Fay, 2021).
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4. Discussion
The new pCO2 reconstruction algorithm presented here captures expected relationships between input features 
and pCO2 output. This result is obtained by pre-processing the data with explicit physical knowledge so that 
the target variable for the machine learning has reduced complexity. By reconstructing the difference between 
observed pCO2 and the pCO2 that would result if only the direct effect of temperature altered surface ocean pCO2 
(Figures 1 and 2), the pCO2-Residual approach requires the machine learning algorithm to learn only the bioge-
ochemical/physical component of pCO2. This residual is small within the temperature-controlled subtropical 
regions and larger in more dynamic ocean areas (Figure 2). This approach tackles two of the five major barriers 
to adoption of machine learning approaches within the geosciences proposed by Reichstein et al. (2019): inter-
pretability and physical consistency.

In the pCO2-Residual algorithm, MLD, location, season, SST, Chl-a, and xCO2 impact the reconstructed pCO2 
in physically expected ways (Figure 4). MLD, location, and time of year strongly control the seasonal cycles of 
reconstructed pCO2, while atmospheric CO2 concentrations and SST control interannual variations. Year-to-year 
variations in Chl-a do not drive significant variability. This may be, in part, due to the small interannual variations 
in observed Chl-a, as observed in the North Atlantic (Bennington et al., 2009). It could also be due to correlations 
between Chl-a anomalies and other features, such as SST, that the algorithm uses to determine pCO2. These 
mechanistically interpretable connections between observed inputs and algorithm output are a step forward for 
pCO2 reconstruction.

pCO2-Residual reconstructed pCO2 has small RMSE and high correlations when compared to independent obser-
vations, and is one of the best performing observation-based approaches based on comparison to four independ-
ent datasets (Figure 3 and Figure S5 in Supporting Information S1). Uncertainties in reconstructed pCO2 are 
smallest in the subtropical ocean regions and largest in the equatorial Pacific and subpolar regions (Figure 5), 

Figure 7. Uncertainty in CO2 fluxes due to convolution of pCO2 with winds. (a) Standard deviation of annual CO2 flux 
from Monte Carlo simulations (mol C/m 2/yr). (b) Mean piston velocity, average of CCMP2, ERA5, and JRA55 (Kw: cm/hr). 
(c) Mean CO2 flux by latitude band (Tg C/yr) and wind product, and standard deviation of the mean flux caused by random 
sampling of pCO2 for each wind product.
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as expected given the small range of the pCO2-Residual target variable in these regions (Figure 2). The pattern 
of uncertainty in pCO2 is very similar to the pattern of test RMSE (not shown), and the magnitude of the global 
mean test RMSE (16.33 μatm) lies between the global mean uncertainty magnitude at the 67% confidence inter-
val (9.8 μatm) and the 90% confidence interval (19.71 μatm). Thus, our multiple approaches to understanding 
pCO2 uncertainty are internally consistent. Air-sea CO2 fluxes are in agreement with previous observation-based 
approaches (Figure 6), and exhibit high interannual variability, similar to MLS inversion approach (Rödenbeck 
et al., 2013). This may be due to the use of the tree-based XGBoost algorithm, as opposed to a neural network in 
which non-linearities are controlled by the activation function (Baughman & Liu, 1995).

Uncertainty in the air-sea CO2 fluxes due to the convolution of pCO2 and winds, as determined by a Monte Carlo 
approach, are largest where both piston velocities and pCO2 uncertainty are large (Figure 7). Although there 
are regions of significant local flux uncertainty, globally integrated air-sea CO2 flux uncertainty due to pCO2 
convolved with wind remains small (0.01 PgC/yr). Uncertainty due to the piston velocity itself is larger, with 
annual flux uncertainty ranging from 0.04 to 0.1 PgC/yr, for a total uncertainty bound due to winds of 0.10 PgC/
yr. This is consistent with our Large Ensemble Testbed analysis (Text S1 in Supporting Information S1) that 
suggests a pCO2-Residual global mean flux error is ≈0.1 PgC/yr. It is important to note that we have assumed no 
bias in the observations (Fay et al., 2021; Gloege et al., 2022). If observational bias exists, particularly in regions 
with moderate to high piston velocities, the flux uncertainty could be larger. This uncertainty estimate is only 
barely larger than the wind product uncertainty estimated by Fay et al. (2021), and does not change their compre-
hensive estimate of uncertainty in CO2 flux from observation-based products (0.45 PgC/yr) that also accounts for 
uncertainty in gas exchange parameterization and pCO2 reconstruction approaches.

Our group has also developed another algorithm that uses pre-processing to add physical information to the 
target variable. In LDEO-HPD (Gloege et al., 2022), this knowledge is the pCO2 estimated by GOBMs. In that 
approach, model-observation discrepancy is the target variable for the machine learning algorithm, and this is 
reconstructed and added to the original model output to estimate full pCO2 field. That approach requires having a 
suite of GOBMs for input, while here only observations are needed as input. As discussed in Introduction, while 
both LDEO-HPD and pCO2-Residual use pre-processing to reframe the target variable for the machine learning, 
they are separate approaches. Both approaches use similar observed features and are limited by the same sparsity 
of pCO2 observations, but their target variables are unique and the algorithms are separately trained.

The Global Ocean Carbon Budget 2020 (Friedlingstein et al., 2020) estimates an anthropogenic ocean carbon sink 
of −2.5 ± 0.4 PgC/yr for the period 2000–2019 based on a suite of ocean hindcast models. With pCO2-Residual, 
we estimate a similar anthropogenic flux of −2.35 ± 0.5 PgC/yr, after adjusting the net flux of −1.86 PgC/
yr for outgassing of riverine carbon. The trend in the ocean carbon sink since 2005 estimated by this method 
(−0.05 PgC/yr 2) is on the lower end of previous observation-based estimates (Figure 6).

Analysis with the Large Ensemble Testbed (Text S1 in Supporting Information  S1), demonstrates that 
pCO2-Residual provides an improved reconstruction of the mean and interannual to decadal variability over our 
initial reconstruction based on pCO2 alone. Previous work with the Large Ensemble Testbed (Gloege et al., 2021), 
demonstrated that MPI-SOMFFN reconstruction technique overestimated CO2 flux decadal amplitude by 21% for 
the global average, and 31% in the Southern Ocean (<35°S). Considering pCO2 in the Testbed, MPI-SOMFFN 
overestimates decadal variability amplitude by 33% globally, 37% in S. Ocean. In contrast, pCO2-Residual in 
Testbed has reduced overestimation of pCO2 decadal variability (24% globally, 28% S. Ocean). These amplitude 
comparisons are the median of 100 Earth System Model realizations for 1982–2016, with substantial spread 
across the individual members (Gloege et al., 2021).

In the real-world reconstructions from pCO2-Residual and MPI-SOMFFN (Figure 6a), the global and Southern 
Ocean CO2 flux decadal amplitude is 15% larger in pCO2-Residual than in MPI-SOMFFN (pCO2-Residual: 
1.1 PgC/yr globally, 0.59 PgC/yr S. Ocean; MPI-SOMFFN: 0.95 PgC/yr globally, 0.51 PgC/yr S. Ocean). The 
same approach as in Gloege et al. (2021) is used here to extract the decadal signal, but amplitude is defined as 
maximum-minimum since the true state is unknown. This finding is not inconsistent with the Testbed results 
discussed in the previous paragraph. Testbed results indicate the median skill of a reconstruction method across 
a range of climate conditions estimated by four ESMs, 25 ensembles members from each. In the real world, only 
one evolution of climate occurred. Real-world reconstructions over the last few decades should not be expected 
to linearly scale to the true decadal variability based on Testbed median skill estimates (Gloege et al., 2021). In 
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other words, its quite reasonable that, in the Testbed, pCO2-Residual would have less overestimation of decadal 
variability compared to another method, but at the same time estimate slightly greater variability from recent 
observations.

While Gregor et al. (2019) suggest ocean surface pCO2 reconstructions may have “hit a wall,” here we illustrate 
additional progress. The LDEO-HPD (Bennington et al., 2022; Gloege et al., 2022) and this pCO2-Residual tech-
nique, both applying physical knowledge for pre-processing in a machine learning workflow, offer improvements 
in skill based on comparisons to independent datasets (Figure 3 and Figure S5 in Supporting Information S1). In 
addition, pCO2-Residual offers improved reconstruction skill based on analysis with the Large Ensemble Testbed 
(Figures S2–S4 in Supporting Information S1), clearly explainable links between inputs and output (Figure 4), 
and new uncertainty quantification (Figure 7).

5. Conclusions
We develop a new machine learning approach to reconstruct global ocean pCO2, an approach that uses 
pre-processing to explicitly incorporate physical knowledge of the ocean carbonate system within a purely 
data-based approach. The pCO2-Residual approach improves upon previous machine learning approaches by 
removing the direct effect of temperature (Takahashi et al., 2002) from the target variable for the machine learn-
ing. The resulting algorithm exhibits mechanistically appropriate relationships between inputs and outputs. 
Spatially resolved estimates of uncertainties illustrate the differential impacts of pCO2 and wind uncertainties on 
CO2 fluxes. We find an ocean carbon sink within the range of previous observation-based approaches, but with 
a lesser trend since 2005.

Data Availability Statement
NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from 
their Web site at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html. Python scripts are available at 
https://github.com/valbennington/JAMES_pub_2022. Reconstruction available for download at: https://zenodo.
org/record/6438445.
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