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Abstract The ocean reduces human impacts on global climate by absorbing and sequestering CO, from
the atmosphere. To quantify global, time-resolved air-sea CO, fluxes, surface ocean pCO, is needed. A
common approach for estimating full-coverage pCO, is to train a machine learning algorithm on sparse in

situ pCO, data and associated physical and biogeochemical observations. Though these associated variables
have understood relationships to pCO,, it is often unclear how they drive pCO, outputs. Here, we make two
advances that enhance connections between physical understanding and reconstructed pCO,. First, we apply
pre-processing to the pCO, data to remove the direct effect of temperature. This enhances the biogeochemical/
physical component of pCO, in the target variable and reduces the complexity that the machine learning must
disentangle. Second, we demonstrate that the resulting algorithm has physically understandable connections
between input data and the output biogeochemical/physical component of pCO,. The final pCO, reconstruction
agrees modestly better with independent data than most other approaches. Uncertainties in the reconstructed
pCO, and impacts on the estimated CO, fluxes are quantified. Uncertainty in piston velocity drives substantial
flux uncertainties in some regions, but does not increase globally integrated estimates of uncertainty in CO,
fluxes from observation-based products. Our reconstructed CO, fluxes show larger interannual variability than
smoother neural network approaches, but a lesser trend since 2005. We estimate an air-sea flux of —1.8 PgC/
yr (anthropogenic flux of —2.3 + 0.5 PgC/yr) for 1990-2019, agreeing with other data products and the Global
Carbon Budget 2020 (—-2.3 + 0.4 PgClyr).

Plain Language Summary The ocean absorbs carbon dioxide from the atmosphere, moderating the
human impact on Earth's climate. To quantify how much carbon dioxide is removed from the atmosphere each
year, we must know how much gas is exchanged at each location across the ocean over time. The observations
necessary to quantify this gas exchange are very sparse and require gap-filling in both space and time. Because
of the heterogeneity of this gas exchange, complex relationships between the ocean observations with near
global coverage and ocean carbon are determined using machine learning algorithms and other statistical
techniques. A concern is that these statistical algorithms do not require inputs to be linked to outputs in a
manner consistent with ocean carbon cycle process understanding. Here, we develop a novel machine learning
approach that starts by removing known physical signals from the data to create a cleaner signal for the
computer algorithm to learn. Additional analysis demonstrates appropriate mechanistic links between algorithm
inputs and outputs.

1. Introduction

The ocean plays a significant role in reducing human impact on the climate by absorbing and sequestering approx-
imately one quarter of anthropogenic carbon dioxide (CO,) emissions each year since the 1960s (Friedlingstein
et al., 2021). Since the beginning of the Industrial Revolution, the ocean has absorbed about a third of the total
anthropogenic emissions (Khatiwala et al., 2013; Sabine et al., 2004). The processes governing the large-scale
distribution of ocean pCO, and the drivers of seasonality are well understood (Crisp et al., 2022; Takahashi
et al., 2002, 2009). Yet, the quantification of year-to-year variability and long-term changes in this carbon sink
remains a challenge (Crisp et al., 2022; Hauck et al., 2020; McKinley et al., 2016, 2017). This quantification is
necessary for climate policies worldwide in order to separate the impact of any mitigation policies from interan-
nual variability in the ocean carbon sink (Peters et al., 2017).

To quantify the variability and trend in the ocean carbon cycle, both global ocean biogeochemical models
(GOBMs) and statistical approaches are used. The degree to which these methods agree builds confidence in
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estimates of the ocean carbon sink and its variability (McKinley et al., 2020). GOBMs are mechanistic models
which incorporate our knowledge of the processes that control the ocean carbon cycle and the resulting air-sea
fluxes of carbon dioxide. While the models can be compared to observations to assess performance (Hauck
et al., 2020), they do not directly incorporate observations of the partial pressure of carbon dioxide in the surface
ocean (pCO,). The nine models included in the Global Carbon Budget tend to have significant mean and seasonal
flux biases over basin-scale regions (Fay & McKinley, 2021).

Most observation-based products reconstruct the surface ocean pCO, across the global ocean in both space and
time from sparse measurements using statistical techniques. These observation-based products typically use
machine learning to develop a nonlinear function between observations of surface ocean pCO, and related vari-
ables that are observed with greater spatio-temporal coverage. The resulting function is then used to extrapolate
pCO, across the global ocean in both space and time. The Jena MLS approach reconstructs pCO, using a diagnos-
tic model of mixed layer fluxes and statistical fits. In all products, air-sea fluxes of carbon dioxide are calculated
from the resulting air-sea difference (ApCO, = pCO*" — pCO;5™). While the resulting observation-based prod-
ucts show higher correlations and smaller root mean squared error (RMSE) against observations than do models
(Bennington et al., 2022; Hauck et al., 2020), the limited physical interpretability of these statistical algorithms
is a concern (Toms et al., 2020).

One way that has been proposed to improve the plausibility and confidence in machine learning based algorithms
for geosciences is to explicitly incorporate physical knowledge of the system into the algorithm development
workflow (Reichstein et al., 2019). This relatively new to the geosciences, and has typically been implemented
using a modified cost function that penalizes unphysical results. Machine learning algorithms are trained by
minimizing a cost function. This cost function is usually a sum of the Mean Squared Error (MSE) between the
predicted output and the observed training data, plus a regularization term. This regularization term is used to
penalize complexity in the resulting algorithm, so the algorithm will generalize better. Read et al. (2019) use a
neural network approach to predict lake temperature profiles in Lake Mendota and Sparkling Lake. RMSE was
smaller compared to predictions form a process based model. However, this standard neural network approach
sometimes resulted in unphysical conditions. To improve upon the standard neural network approach, Read
et al. (2019) modify their cost function to include a penalty for model predictions that cause excessive devia-
tion from energy conservation across timesteps, and also implement algorithm pre-training using output from a
one-dimensional physical model. Their final neural network algorithm further reduces RMSE and provides the
best prediction of lake temperature profiles.

For our problem of reconstructing full-coverage ocean pCO, from heterogeneous in situ observations, how can
we incorporate the physical mechanisms known to control the ocean carbon cycle? Previous machine learning
approaches to reconstructing surface ocean pCO, rely on the algorithm to decipher the ways in which atmospheric
CO,, sea surface temperature (SST), chlorophyll-a (Chl-a), Mixed layer depth (MLD) climatology, Sea Surface
Salinity (SSS), winds, geographic location, and time of year impact the resulting surface ocean pCO,. Each
of these features impacts pCO,. Chl-a provides a measure of the biological production that removes dissolved
inorganic carbon (DIC) from the surface ocean, thereby reducing surface ocean pCO,. MLD is a proxy for ocean
stratification. During highly stratified times, the phytoplankton are held within the lit surface ocean, setting up
biological production. During periods of deeper mixing, DIC from depth is brought to the surface, and an increase
in surface ocean pCO, occurs. But MLDs strongly co-vary with temperature. In other words, temperature has
both direct and indirect effects on surface ocean pCO,. The direct effect of temperature, due to solubility and
chemical equilibrium, is that increasing (decreasing) temperatures directly causes in an increase (decrease) of
pCO, (Takahashi et al., 2002). Temperature variations are also associated with biological production via strati-
fication and wintertime vertical mixing, processes that result in opposing pCO, changes compared to the direct
temperature effect on pCO,,.

Early efforts in pCO, reconstruction (Lefévre & Taylor, 2002) relied only on SST and atmospheric pCO,. All
current machine learning approaches (Denvil-Sommer et al., 2019; Gregor et al., 2019; Landschiitzer et al., 2014)
have SST as an input. To build these reconstruction algorithms through data-driven training, the statistics must
identify a single function that disentangles the competing effects SST on pCO,. In this work, we remove the
direct temperature impact on pCO,, pCO,-T (Takahashi et al., 2002) from the target variable for the machine
learning. This pre-processing step explicitly removes the well-known direct effect of temperature on pCO, from
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our regression. This means that the machine learning algorithm has to learn only the biogeochemical/physical
component pCO,, supported by the information from SST and the other input variables.

The philosophy of the method described here is to apply pre-processing that removes from the target variable
signals that are quantifiable based on prior knowledge. This leaves behind for the statistical fit the components
that are not directly quantifiable. By removing known signals that influence the data, we aim to create a cleaner
target variable for the machine learning. As described above, it is well-known that the pCO, signal is a mix of
influences from direct temperature impacts and biogeochemical/physical effects (Takahashi et al., 2002, 2009).
We calculate pCO,-T from observations, remove this from observed pCO,, and then use an XGBoost (XGB)
algorithm to reconstruct the remaining component, “pCO,-Residual.” The final estimate of pCO, is the sum
of pCO,-T and pCO,-Residual. In other studies from our research group, we have applied this philosophy in a
substantially different way in developing and then extending the LDEO-Hybrid Data Physics (HPD) approach
(Bennington et al., 2022; Gloege et al., 2022). In LDEO-HPD, the pre-existing knowledge is pCO, estimated by
hindcast ocean biogeochemical models. An XGB algorithm identifies relationships between observed driver data
and model errors (model error = pCOm*de! — pCOSOCAT observed) Fyll-coverage model errors are estimated and then
added to the original model fields to estimate full-coverage real-world pCO,.

While both of these approaches follow the philosophy of applying pre-processing to incorporate prior knowledge,
use an XGB algorithm and have similar input data, they are otherwise independent. A critical distinction is that
this pCO,-Residual method depends only on observations to both create the target variable and as algorithm input.
In contrast, LDEO-HPD requires both observed pCO, and ocean biogeochemical model fields to create the target
variable, and then uses observations as input. Both approaches are useful, given that they could have different
practical applications. The pCO,-Residual approach has the benefit that it could be applied before model outputs
become available (Ciais et al., 2022). The merged model-data approach of LDEO-HPD can be used to make a
data-constrained projection backward in time, before pCO, observations are available (Bennington et al., 2022).

In the following sections, we introduce the pCO,-Residual approach and show that the resulting algorithm
captures key physical processes of the surface ocean carbon cycle. Additionally, it performs modestly better than
other data-only reconstruction approaches when compared to independent observations. The resulting model is
used to estimate the air-sea CO, fluxes for 1985-2019, and uncertainties are quantified.

2. Methods
2.1. pCO,-Residual

Our approach is to pre-process pCO, data to remove the direct influence of temperature. This focuses the statis-
tical algorithm on the spatio-temporal variance in pCO, due to biogeochemistry and other physical processes.
Specifically, we calculate a residual (pCO,-Residual), the difference between observed pCO, and the purely
temperature (solubility and chemical equilibrium) driven component of pCO, (pCO,-T, Takahashi et al. (2002)).
We use a machine learning algorithm, eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016), to
develop a function between observations and the pCO,-Residual, to reconstruct the residual across all space and
time. For the final reconstruction of surface ocean pCO,, we add pCO,-T back to our residual. CO, fluxes are then
calculated using the reconstructed pCO,. These steps are described in detail below.

2.1.1. Pre-Processing SOCAT Observations

We calculate surface ocean pCO, from the SOCAT v2021 monthly 1° X 1° gridded fCO, product (Bakker
etal., 2016). This is a quality-controlled data set containing observations of the fugacity of carbon dioxide (fCO,)
in the surface ocean that is converted to surface ocean pCO, according to Equation 1,

)]

B+25)’1

PCO: = FCO; - exp ((Pun - =

where P, is the atmospheric pressure at sea level from ERAS, T'is the SST in Kelvin from the National Oceanic
and Atmospheric Administration (NOAA) optimally interpolated SST version 2 (OISSTv2), B and é are virial
coefficients from Weiss (1974), and R is the gas constant (Dickson et al., 2007). All data products are regridded
from their native resolutions to the SOCAT resolution of 1° X 1° using bilinear interpolation. SOCAT fCO, data
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g;;:;lrfmlry of the Products, Variables, and Processing Steps Used for Feature and Target Data Sets
Product Variable Abbreviation Processing
NOAA OISSTv2? Sea surface temperature SST =
SST anomaly SST' SST—monthly clim
Met Office: EN4® Salinity SSS -
SSS anomaly SSS' SSS—monthly clim
NOAA: GLOBALVIEW® Atmospheric CO, xCO, -
ESA GlobColour? Chl-a Chl-a Log,,(Chla)
Chl-a anomaly Chl-a’' Chl a—monthly clim
deBoyer Montegut® Mixed layer depth MLD Log,,(MLD)
SOCATv2020f Partial pressure of CO, pCO, Equations 1 and 3
- Geographic location A sin(4)
B sin(y) cos(4)
C —cos(u) cos(4)
_ Time of year T, i </:625” )
E cos (5%)
pCO, Mean pCO, pCO, clim Equation 2 and Section 2.1.2

Note. Data products are regridded from their native resolutions to the SOCAT resolution of 1° X 1° using bilinear interpolation.

aSource: https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, Reynolds et al. (2002). ®Source: https://www.
metoffice.gov.uk/hadobs/en4/, Good et al. (2013). “Source: https://gml.noaa.gov/ccgg/mbl/, Masarie (2012). 4Source:
http://www.globcolour.info/, Maritorena et al. (2010). ®Source: http://www.ifremer.fr/cerweb/deboyer/mld/home.php, de
Boyer Montégut et al. (2004). fSource: https://www.socat.info/, Bakker et al. (2016).

are sparse in both space and time, with significant coverage gaps throughout the southern hemisphere, particu-
larly during winter. See Gregor et al. (2019) and Gloege et al. (2021) for details of data coverage.

2.1.2. Initial pCO, Reconstruction

Calculation of the temperature influence on pCO, requires a gridded field of the long-term mean pCO,. To esti-
mate this, we use SOCAT pCO, data processed as in Section 2.1.1 and an XGBoost algorithm. Input features are
the monthly observations and time/space variables on the first eight lines in Table 1. For the final pCO,-Residual
algorithm, the only use of this direct pCO, reconstruction is to determine the spatially resolved 1985-2019
long-term mean pCO, (1702), required for calculation of the pCO,-Residual target variable (Section 2.1.3 and
Equation 2).

2.1.3. Calculating pCO,-Residual

We calculate the temperature driven component of pCO, (pCO,-T) via Equation 2 (Takahashi et al., 2002),
pCOLT = pCO; - exp (0.0423 : (SST - SST)) @)

where pCO, is mean surface ocean pCO, from the initial pCO, reconstruction (Section 2.1.2), SST is temperature
in Celsius from NOAA OISSTv2, and S.ST is the local long term mean in SST in Celsius from NOAA OISSTv2.
All data products are regridded from their native resolutions to the SOCAT resolution of 1° X 1° using bilinear
interpolation. The residual (pCO,-Residual) is calculated as the difference between observed pCO, and pCO,T
for all observations (Figure 1).

pcoé{esidlml — pC02 — pCOzT (3)
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Figure 1. (a) Mean surface ocean pCO, from the initial run. (b) Observed satellite sea surface temperature time series from
location of yellow diamond in subplot (a). (¢) Calculated pCO,-T (blue) and observed pCO, (red dots) at yellow diamond
located in panel (a). (d) The calculated pCO,-Residual, or the difference between observed pCO, and calculated pCO,-T at
location specified in panel (a).

We examine the properties of the residual in Figure 2. In regions such as the subtropics, where pCO, is primarily
driven by the direct effects of temperature, mean absolute value of the residual is small (Figure 2a). Regions
where the seasonal cycle of pCO, is not dominantly controlled by temperature, such as the subpolar regions, have
larger residuals. Thus, the subtropical regions have residuals on the order of 10 patm, while subpolar regions
may have residuals on the order of 100 patm. Looking at the seasonality of the residual in Figures 2¢ and 2d,
we see that during local winter, the residual is large and positive in the subpolar regions where vertical mixing
returns DIC to the surface waters and pCO, is increased even though temperatures are low. During local summer,
the subpolar regions have negative residuals, where biological drawdown of DIC reduces the increase in pCO,
expected from the increases in temperature. The seasonal residual is small in magnitude in the subtropical regions
where temperature is primary driver of surface ocean pCO,. The pCO,-Residual in the observations is narrower
than a Gaussian distribution (Figure 2b), perhaps because of sampling bias that oversamples regions with a small
residual. There is a small positive mean. This non-zero mean is due to the increasing rate of sampling, with more
observations occurring when the pCO,-Residual is larger in magnitude.

2.2. XGBoost

The machine learning algorithm XGBoost is used to reconstruct the pCO,-Residual across the global surface
ocean for 1982-2019. XGBoost is a supervised machine learning algorithm that utilizes Extreme Gradient Boost-
ing (Chen & Guestrin, 2016) to predict a target variable (y), the pCO,-Residual, from multiple features (X) such
as SST, SSS, chlorophyll-a, and MLD. The algorithm estimates a non-linear function such that f{X) ~ y. The
algorithm begins with a single initial guess of the pCO,-Residual (one value for the entire globe at all times).
Then, decision trees made up of the features are added one by one, which adjust the initial guess to reduce the
loss, or difference between the pCO,-Residual in the training data and the prediction. An example decision tree
may increase the predicted pCO,-Residual because the observed chlorophyll-a observation is below a certain
threshold. The process of adding trees is continued until the maximum number of trees permitted is reached, or
when adding an additional tree does not improve the calculated cost function. Here, the cost function (loss) is the
MSE between the training data and the predictions. The final prediction of pCO,-Residual is the sum of the initial
guess and the result of all the decision trees.

The features and associated pCO,-Residuals are split into validation, training, and testing sets. The validation set
is used to optimize the hyperparameters of the algorithm, namely, the number of trees used and maximum depth
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Figure 2. (a) Mean of the absolute value of the pCO,-Residual calculated from all observations in the SOCAT database.
(b) Histogram of the calculated pCO,-Residual from SOCAT observations. (c) Mean pCO,-Residual calculated for all
observations during the northern hemisphere winter (DJF). Panel (d) Same as panel (c) but for southern hemisphere winter
(JAS).

of each tree. Our final XGBoost algorithm uses 1,000 decision trees with a maximum depth of seven levels. The
training set is used to build the function between the features and the residual; that is, the training set builds the
decision trees. The testing set is withheld to test how well the function generalizes. Once the hyperparameters are
determined, we separate the training data from the test data by month. Four months are used for training, and then
the next month for testing, similar to Gregor et al. (2019), who shift years. This is repeated throughout the data
set. This is done to reduce the number of individual cruises seen in both the training and test data, but to train on
observations from all years. We develop five models by shifting our initial month of testing data, selecting every
fifth month for testing, and our final estimate of the residual is the ensemble mean of the five predictions, which
then utilizes all of the available training data (20% are still held out for testing).

2.3. Features

In order to reconstruct the residual across both space and time, datasets with approximately full global coverage
are used (Table 1): SST and Chlorophyll-a (Chl-a) from satellite; SSS from in situ data (Good et al., 2013);
MLD climatology from Argo floats (de Boyer Montégut et al., 2004); and the mixing ratio of atmospheric CO,
from global stations (Masarie, 2012). Additional interannual anomalies are derived for SST, SSS, and Chl-a by
subtracting the monthly climatology of the feature from a given month's observation. For example, is this June's
chlorophyll value higher/lower/equal to its climatological June value? Geographic location and time of year are
incorporated using an N-vector transformation of latitude and longitude which transforms the latitude and longi-
tude values to continuous values between 0 and 1, and a time transformation of day of year (D.O.Y.). We tested
using self organizing maps to separate the ocean according to their feature properties into 5, 10, and 15 biomes,
but improvement was negligible, so we maintain the simpler model (S4).
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We tested the sensitivity of the reconstruction to the source of mean pCO, ( pC02> used in the calculation of

pCO,T with Equation 2, which is then input to the pCO,-Residual calculation in Equation 3. Reconstructions
using the Lamont-Doherty Earth Observatory (LDEO) pCO, climatology (Takahashi et al., 2009) and the mean
pCO, of the SeaFlux observation-based products (Fay et al., 2021). The alternative sources of mean pCO, did not
significantly impact reconstructed pCO, or resulting air-sea CO, exchange, so we maintain our own method for
the initial reconstruction of pCO, (Section 2.1.2).

2.3.1. Chlorophyll-a

We utilize satellite Chlorophyll-a of GlobColour (Maritorena et al., 2010) for 1998-2019. We fill the missing
winter months at the poles by linearly interpolating between the last month observed prior to the winter and the
first month observed after winter. This results in lower chlorophyll values during winter than if we had used
annual means to fill in the gaps. This same technique is used when any month is missing observations outside
of the poles. Since no full year of satellite observations are available prior to 1998, we use the climatology of
Chlorophyll-a calculated from 1998 to 2019 observations at all locations and months prior to 1998. Within
the Large Ensemble Testbed (Gloege et al., 2021), we show that utilizing climatological chlorophyll prior to
1998 introduced a mean uncertainty of 0.1 PgC/yr to the global air-sea CO, exchange (Text S2 in Supporting
Information S1).

2.4. Feature Importance

One of the benefits of the XGBoost algorithm is that it facilitates the determination of relative contributions by
each of the features to the final estimate of pCO,-Residual. This is called feature importance. This tells us the
relationships between pCO,-Residual and the input features that have been identified through model training.
This supports assessment of the degree to which known physical and biogeochemical mechanisms are embodied
in the reconstruction. In other words, this allows us to physically interpret our algorithm. Here we utilize SHap-
ley Additive exPlanations (SHAP) (Shapley, 1953) calculated using the SHAP module in Python (Lundberg
et al., 2018), to examine both local and global interpretability of the resulting model.

SHAP computes the contribution of each feature to the final prediction, and solves the game theory problem of
relative contributions of players, and therefore fairly distributed payouts, amongst players in cooperative games.
In our case, SHAP calculates the importance of each predictor (feature) by starting with the mean values of all
features, and the expected value of the pCO,-Residual. For a given month's reconstruction of the pCO,-Residual
in a single grid cell, each feature is adjusted one-by-one to the observed value from its mean. As the features are
adjusted, the change in the statistical expected value of the pCO,-Residual is calculated, and the difference from
the previous expected value is determined. This difference is the feature importance. Since the ordering of the
features matters, SHAP computes these attributions for every permutation of feature ordering, and final feature
importance is the mean contribution by a given feature to the final reconstruction of the pCO,-Residual, across
all ordering permutations.

2.5. Independent Data Sets

In our algorithm training, we use 80% of the observations contained within the SOCAT database, and hold out
20% for testing. We also wish to examine how well the reconstruction method performs against independent obser-
vations not contained within the SOCAT database. We utilize two ocean time series locations: Bermuda Atlantic
Time-Series Study (BATS) and Hawaii Ocean Time-Series (HOT). We also examine how well the reconstructed
pCO, compares to observations contained only in the LDEO data set (Takahashi et al., 2009) (data already in
SOCAT are removed) and the GLobal Ocean Data Analysis Project version 2 (GLODAPv2 (Olsen et al., 2016)).
For LDEO, pCO, is directly measured. For the other datasets, pCO, is calculated from observations of Total
Alkalinity, DIC, and temperature using the PyCO2SYS package in Python (Humphreys et al., 2021). Uncertain-
ties for both directly measured pCO, and indirectly calculated pCO, are given in Table 3 of Gloege et al. (2021),
and range from 2.5 patm in LDEO (directly measured) to >12 patm in GLODAPv2 (calculated). Given the
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Table 2 known larger biases in some of the other observation-based products in the
Observation-Based Products Used for Comparison (Fay et al., 2021; 1980s, we compare to observations within the time frame 1990-2019.
Gregor & Fay, 2021)
e LG 2.6. Regression Skill
CSIR ML6 Gregor et al. (2019) . . .

) To compare predicted pCO, (P) to the observations (O), we examine the corre-
st Sl ol i (D) lation (r), bias, RMSE, mean absolute error (Mean AE), and median absolute
HPD Gloege et al. (2022) error (Median AE). Bias, RMSE, Mean AE, and Median AE measure the
MLS Rédenbeck et al. (2015) size of the error in the predicted pCO,. Bias is calculated as the Mean Predic-

MPI-SOMFEN  Landschiitzer et al. (2014) and Landschiitzer et al. (2020)  tion — Mean Observation (bias = P — 0), and simply indicates whether the

regression tends to over- or under-estimate pCO,. A large positive (negative)
bias indicates a tendency to overestimate (underestimate) pCO,. However, a
bias of small magnitude may be due to large, compensating biases. RMSE
measures magnitude of the predicted error, but penalizes larger errors and outliers. It is calculated as the square

root of the mean of the squared errors \/ (P — 0)>. The Mean AE simply determines the average of the absolute
value of the error, treating each error equally. The Median AE is the central value of the sorted absolute errors.
The Pearson correlation coefficient (r) measures how much the observations and reconstruction tend to vary
together, with values near +1 (—1) indicating a high tendency to vary together (opposite). It is calculated as the
covariance between the predictions and the observations, divided by the product of their individual standard
deviations.

2.7. Arctic and Coastal Zones

The pCO,-Residual product does not reconstruct coastal or Arctic Ocean pCO,, and thus only covers 89.6% of
the global ocean. Before air-sea fluxes are calculated, coastal and Arctic regions not reconstructed by the data
products must be filled. For consistent comparisons, these coastal areas are filled with the scaled coastal pCO,
climatology (Landschiitzer et al., 2020) according to Fay et al. (2021) for the all data products shown here.

2.8. CO, Flux Calculations

The bulk air-sea CO, flux (FCO,) is calculated as:
FCO; =K, - KO- (1 - icefracrirm) : (pcogea - pCO;Im) (4)

where K| is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr 14C bomb flux esti-
mate according to Naegler (2009); KO is the solubility calculated using EN4 salinity and OISST temperatures
(Weiss, 1974); ice fraction is from the OISST product; pCO5™ is calculated from NOAA's marine boundary layer
product, corrected for water vapor pressure using ERAS mean sea level pressure; and pCO;* is the reconstructed
surface ocean pCO, for a given product. All data products are regridded from their native resolutions to 1° x 1°
using bilinear interpolation. For a consistent comparison K, KO, ice fraction, and pCO4™ from SeaFlux are
used (Fay et al., 2021). The SeaFlux data set (Gregor & Fay, 2021) includes K, for three wind speed products:
CCMPv2, ERAS, and JRASS. Fluxes presented are the mean flux across the three wind products.

2.8.1. Other Observational-Based Products

We compare our reconstruction error statistics and air-sea carbon dioxide flux estimates to those of five other
observation-based data products that use machine-learning or statistical modeling (Table 2). The harmonized
pCO, data products and resulting fluxes were obtained from SeaFlux (Fay et al., 2021; Gregor & Fay, 2021).

2.8.2. Anthropogenic Carbon Flux

Observation-based products that incorporate observations of surface ocean pCO, include both natural and
anthropogenic carbon in the resulting pCO, and CO, flux product. This is the net CO, flux (F,,, = F a1 T Fond)
(Crisp et al., 2022). The natural outgassing of riverine carbon is understood to be the dominant component of
F,ur (Aumont et al., 2001; Crisp et al., 2022; Hauck et al., 2020). Additional non-riverine components such

as outgassing due to ocean circulation change have been proposed for 1994-2007 (Gruber et al., 2019), with
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Table 3 large uncertainty in magnitude and no evidence of long-term impact (Crisp
pCO, Test Statistics for Each of the Five Ensemble Members and Their et al., 2022); these are assumed to be zero here. To quantify the anthropo-

Mean Values

genic air-sea CO, flux from our estimate of F,, F, due to rivers must

net> © natural

Runl Run2 Run3 Run4 Run5 Mean be subtracted. Quantifying F,, ., due to riverine carbon is a complex scien-

tific problem with substantial remaining uncertainties. Here, as in Gloege

RMSE (patm) 1613 1602 1676 1651 1625 1633 et al. (2022), we use an average of three estimates: Jacobson et al. (2007):
i () 028 050 021 061 030 018 (45 + 0.18 PgC/yr), Resplandy et al. (2018): (0.78 + 0.41 PgC/yr), and
Correlation 0.89 0.90 0.88  0.89 089  0.89 Lacroix et al. (2020): (0.23 PgC/yr). The combined estimated efflux due to
Mean AE (patm) 10.88 10.87 11.20 11.13 1092 11.00 riverine carbon is 0.49 + 0.26 PgCl/yr, and we remove the efflux of 0.49 PgC/
Median AE (patm) 7.41 7.49 757 768 746 752  yrfrom the estimated annual global air-sea CO, fluxes calculated using pCO,
from the pCO,-Residual method and from other observation-based products.

3. Results

3.1. Model Skill

The pCO,-Residual approach is an ensemble of five reconstructions. The test statistics for pCO, for each of the
five reconstructions and their mean are shown in Table 3. We have a mean test RMSE of 16.33 patm, lower than
the recent data product of Gregor et al. (2019) (17.16 patm). Each run has a relatively small bias and is highly
correlated with the test observations. The Mean Absolute Error (Mean AE) is near 11 patm, and the Median
Absolute Error (Median AE) is less than 8 patm. For the ensemble, RMSE is lowest (below 10 patm) in the
subtropical regions as we would expect due to the small possible values of the residual there, and higher in the
equatorial Pacific, Southern Ocean, and subpolar North Atlantic and subpolar North Pacific (not shown). The
ensemble model bias and RMSE are stable over time, with no clear trends. Previous techniques have exhibited a
higher bias in the 1980s (Gregor et al., 2019).

We tested this pCO,-Residual approach with the Large Ensemble Testbed in which a suite of Earth System
Models are used to evaluate reconstruction performance given real-world sampling (Gloege et al., 2021) (Text
S1 in Supporting Information S1). These tests demonstrate that pCO,-Residual can reconstruct pCO, with higher
skill than a similar algorithm that uses pCO, as the target variable (Section 2.1.2). With respect to bias, improve-
ments are greatest in the poorly sampled regions in the southern hemisphere where temperature is a primary
control on pCO, (Figure S2 in Supporting Information S1). The phasing and amplitude of interannual to decadal
variability is also improved across much of the open ocean in the pCO,-Residual approach compared to when
pCO, is the target variable (Figures S3 and S4 in Supporting Information S1).

3.2. Evaluation Against Independent Data

We examine the approach's ability to reconstruct surface ocean pCO, in data sets not contained within the
SOCAT data. At the ocean time series sites Hawaii (HOT) and Bermuda (BATS), reconstructed surface ocean
pCO, is highly correlated with observations (Figure 3, top row). The seasonal cycle is the dominant signal in
these two datasets, and the correlation here primarily indicates how well these cycles are captured. It has previ-
ously been shown that subtropical mean and seasonality are very similar across observation-based products (Fay
& McKinley, 2021; Gloege et al., 2022; Rodenbeck et al., 2015). These comparisons primarily tell us that the
pCO,-Residual technique gives us the right phasing and amplitude of the seasonality at BATS and HOT. Further
analysis (Section 3.4, Text S1, and Figure S2 in Supporting Information S1) indicates low bias in this region.
More detailed analysis would be required to provide a detailed quantification of product skill in interannual vari-
ability and trend at BATS and HOT (Gloege et al., 2021, 2022).

GLODAP and LDEO are observations taken along ship transects traveled irregularly. These datasets provide
groundtruth for spatial patterns of pCO,, but the variability timescales that they represent are less clear. They should
not primarily represent seasonal variability given very limited regular reoccupation of the sampling sites (Olsen
et al., 2016; Takahashi et al., 2009), but instead a variety of timescales from interannual to decadal. Correlations
to the data are slightly lower than at BATS and HOT for all reconstruction approaches (Figure 3, bottom row).
pCO,-Residual and LDEO-HPD (Gloege et al., 2022) perform marginally better than other observation-based
data products. All approaches underestimate the amplitude of observed variability, except JENA-MLS. The unbi-
ased RMSE in pCO,-Residual is approximately equal to LDEO-HPD. A decadal breakdown of these Taylor
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Figure 3. Taylor diagrams (Taylor, 2001) of Correlation (along circumference), Standard Deviation (along radii), and root
mean squared error (gray arcs centered at red star) of five previous observation-based approaches (Hybrid Data Physics in
blue, MPI-SOMFFN in black, CSIR ML6 in red, CMEMS in green, and MLS in cyan) and the new pCO,-Residual technique
(magenta). Bermuda Atlantic Time-Series Study is shown at the top left, Hawaii Ocean Time-Series at the top right, LDEO at
bottom left, and GLobal Ocean Data Analysis Project at bottom right.
diagrams (Figure S5 in Supporting Information S1) demonstrates that both pCO,-Residual and LDEO-HPD
compare similarly to the data as other approaches in the 1990s. However, in the 2000s and 2010s, both are clearly
closer to the observations. However, this doesn't necessarily indicate that these approaches will better capture the
decadal variability of the globally integrated air-sea CO, flux, and indeed the two approaches disagree substan-
tially on the magnitude of decadal variability in the globally integrated air-sea CO, flux (Figure 6).
3.3. Physical Mechanisms
With additional analysis, we can reveal the relative contributions of features to the algorithm's prediction. The
first column in Figure 4 shows the mean (1982-2019) importance of MLD; geographic location and D.O.Y.; SST;
and Chl-a to the model's prediction of the pCO,-Residual. These are the dominant controls of the seasonal cycle
of the pCO,-Residual within the algorithm. Here, we sum the importance of geographic location and D.O.Y.,
because there is no seasonal cycle in location, but there is geographic variation of the impact of D.O.Y. on the
pCO,-Residual. The second column of Figure 4 examines the mean seasonal cycles of feature importance for
BENNINGTON ET AL. 10 of 19
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Figure 4. Mean feature importance and seasonal cycles and interannual variations in feature importance in sample biomes
(patm). (a) Mean feature importance of mixed layer depth (MLD). (b) Mean feature importance of Location and Day of Year
(D.0.Y.). (c) Mean feature importance of sea surface temperature (SST). (d) Mean feature importance of Chl-a. (¢) Mean
seasonal cycles of feature importance of Location/D.0O.Y., MLD, Chl-a, and SST in the North Pacific Subtropical Seasonally
Stratified (NP STSS) biome. (f) Same as in (e) except for the Pacific Equatorial East (Pac Equ E) biome. (g) Same as in (e)
except for the North Atlantic Subpolar Seasonally Stratified (NA SPSS) biome. (h) Same as in (e) except for the Southern
Ocean STSS (SO STSS) biome. (i) Interannual variations in feature importance for SST, Chl-a, and xCO, within the NP STSS
biome. (j) Same as in (i) except for within the Pac Equ E biome. (k) Same as in (i) except for within the NA SPSS biome. (1)
Same as in (i) except for within the SO STSS biome.

each of these predictors for four biomes of Fay and McKinley (2014). The third column of Figure 4 shows the
contributions of interannually varying predictors to the reconstructed pCO,-Residual.

The seasonal cycle of the pCO,-Residual is largely controlled by MLD, which has large mean feature impor-
tance (Figure 4a), but also large seasonal variations away from the equator (Figures 4e—4h). Deep winter mixing
brings up DIC and increases pCO,, whereas shallower mixed layer depths set up biological production which
decreases surface DIC. During northern hemisphere winter (DJF), the algorithm's estimate of the pCO,-Residual
is significantly increased (decreased) by MLD in the northern (southern) hemisphere as expected. There is a
small seasonal cycle in the feature importance of MLD along the equator. The geographic location and D.O.Y.
significantly increases the pCO,-Residual on the mean in equatorial zones and decreases the pCO,-Residual in the
Southern Ocean (Figure 4b). The small mean impact of these combined features in the subpolar northern regions
is due to cancellation of significant seasonal variations in its importance to the reconstructed pCO,-Residual
(Figures 4d—4f).
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While the direct impacts of SST have been set aside by the pre-processing (Equation 2), Figures 4g—4i show the
importance of SST to the reconstructed residual. Summertime stratification sets up biological production, and
wintertime deep mixing brings up older, remineralized DIC. We see that on the mean, the algorithm decreases
its estimate of the residual in the warm equatorial regions and along the Gulf Stream, and increases its estimate
in colder zones (Figure 4c). Small seasonal variations around this mean impact exist, with decreases in the
residual seen in the summer hemisphere (Figures 4e, 4g and 4h). On the mean, Chl-a has a small impact on the
model's prediction (Figure 4d); in other words, the magnitudes of the adjustments made because of Chl-a values
are smaller than other features. We do see, however, a negative adjustment to the residual estimate at times and
regions of strong biological production (Figure 4g) and smaller positive adjustments made in less productive
regions (Figures 4e, 4f and 4h), or outside of the summer season.

The third column of Figure 4 examines the year-to-year variations in feature importance for those features with
year-to-year changes (SST anomalies, xCO,, and Chl-a anomalies). Interannual anomalies in Chl-a do not cause
significant adjustments to the residual for that year in any of the biomes (Figures 4i—41). However, within the
algorithm, interannual anomalies in SST do cause significant adjustments to the predicted pCO,-Residual,
particularly in the eastern equatorial Pacific.

If we examine how xCO, is used to adjust the initial guess of the pCO,-Residual in our algorithm, we see
that low xCO, during the early years of the reconstruction translates to a negative adjustment (decrease) in the
pCO,-Residual (Figures 4i—41). As the years progress, this contribution increases and becomes positive and large
by the later years of the reconstruction. This is expected, as the ocean pCO, increases following atmospheric
pCO,. pCO,-T does not account for the long term trend in pCO, since this is caused by the accumulation of DIC.
The algorithm must learn why there is an increase in the pCO,-Residual over time, and as shown here, it correctly
attributes this to the long-term growth of xCO,. Within the algorithm, interannual variability in the reconstructed
pCO, Residual is largely controlled by interannual anomalies in SST in all regions.

Considering the spatial impact of interannual variability, the contribution of the atmospheric CO, mixing ratio
(xCO,) in the pCO,-Residual prediction is homogenous in space (not shown), which distinguishes it from the
spatially variable impacts of SST, MLD, and Chl-a (Figure 4). This is as expected because a single global-mean
atmospheric xCO, time series is used as a feature for all spatial points.

This analysis demonstrates that the XGBoost algorithm allows an additional layer of understanding to our pCO,
reconstruction. Mixed layer depths, geographic location, time of year, and to a lesser extent, SST and Chl-a
control the seasonal cycle of the pCO,-Residual within the algorithm. The long-term pCO, trend is due to the
long-term positive trend in atmospheric CO,, and year-to-year variations within the model are dominantly driven
by SST.

3.4. Uncertainty

To quantify uncertainty in our pCO, reconstruction, a quantile loss function is employed within the XGBoost
regression. To do this, a custom evaluation function and loss function are provided to XGBoost as parameters.
Random noise is added to the smoothed gradient to improve the performance of XGBoost with quantile loss
(Descamps, 2020). Most machine learning loss functions aim to reduce the mean absolute error between the
predicted value and the observation. The quantile loss function, however, is used to predict a specified quantile of
the prediction, and the loss function is minimized when the reconstruction resides at a given quantile. A quantile
is a value below which a fraction of observations lies. Thus, the 90% quantile for pCO, will over-estimate the
observed pCO, 90% of the time. We reconstruct the 5% quantile and the 95% quantile such that we are confident
the true surface ocean pCO, value lies between these reconstructions approximately 90% of the time. Thus, for a
given point in space and time, the reconstructed pCO, can be quantified with 90% confidence as:

(pCOgSrh _ pcogrh)
2

pCO, 90% CI = pCO, + Q)]

Figure 5 displays the mean value (1985-2019) of the second term of Equation 5, the value added and subtracted
from the pCO, reconstruction to create confidence bounds. We show the magnitude of uncertainty for both the
90% (Figure 5a) and 67% (Figure 5b) confidence bounds. Confidence is highest, that is, there are the lowest
uncertainties, within the subtropical oceans (+less than 10 patm at 67% confidence). Uncertainties become larger
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patm

Figure 5. Mean pCO, uncertainty within the (a) 90% and (b) 67% confidence bounds. At a given location, the shading
represents the mean value that would be added and subtracted to form the confidence interval of reconstructed pCO,.

within the subpolar regions, and largest within the Southern Ocean and within the equatorial Pacific. The algo-
rithm cannot identify whether the uncertainty arises because of a lack of measurements of surface ocean pCO, or
from noise in the observations. However, uncertainty is largest in regions that are biologically productive, which
could be substantial impacted by uncertainty of 30% for Chl-a observations, and highly dynamic regions such as
eastern upwelling zones. Uncertainty also increases where there are few observations (off the southwestern tip of
South America and in the Indian Ocean, for instance).

3.5. CO, Fluxes

The mean air-sea CO, fluxes reconstructed using the pCO,-Residual technique for 1985-2019 exhibit features
common to other reconstructions (Figure 6a). The subpolar North Atlantic is a strong carbon sink, while the
equatorial regions efflux carbon dioxide to the atmosphere. Subtropical regions are smaller carbon sinks, and the
high latitude Southern Ocean and North Pacific are sources of carbon to the atmosphere. The globally integrated
anthropogenic air-sea CO, flux has become increasingly more negative, as atmospheric CO, concentrations have
increased. Using the same coastal filling and river correction for all products, we find that the CO, sink recon-
structed by the pCO,-Residual approach is consistent with the other data products (Figure 6b). Year-to-year
variability in the air-sea CO, flux is largest in the reconstructions using the JENA MLS and pCO,-Residual
approaches.

3.6. Uncertainty in CO, Fluxes Due To pCO, Convolution With Winds

In order to determine the uncertainty in CO, flux caused by our uncertainty in surface ocean pCO, when combined
with uncertainty in the winds, we assume zero global mean bias in the pCO, reconstruction. This assumption is
supported by the analysis of Gloege et al. (2021) and our own analysis with the Large Ensemble Testbed (Text
S1 in Supporting Information S1). Using a Monte Carlo approach, we randomly sample pCO, from a normal
distribution with mean values equal to our locally reconstructed pCO, and standard deviation provided by the
quantile loss reconstruction. We randomly sample every 1° by 1° grid box 500 times for every month and wind
product, and then calculate the local and global air-sea fluxes. Figure 7a shows the resulting mean annual stand-
ard deviation of the air-sea flux from the Monte Carlo approach. While the pattern of flux uncertainty grossly
mimics the pCO, uncertainty pattern, there are important differences. The largest flux uncertainties are not seen
where the pCO, uncertainties are largest, such as the equatorial Pacific. Instead, the largest flux uncertainties are
seen at high latitudes where there are moderate pCO, uncertainties (Figure 5) and significant piston velocities
(Figure 7b). In the equatorial Pacific, the flux impact of large pCO, uncertainties are damped by the much smaller
piston velocities.

Figure 7c shows the mean of the zonally integrated CO, flux for the three wind products CCMP2, ERAS, and
JRASS (blue, orange, and green, respectively) as compared to the zonally integrated uncertainty, as one stand-
ard deviation of the zonally integrated flux from the Monte Carlo simulations (CCMP2, ERAS, and JRASS as
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Figure 6. (a) Map of mean (1985-2019) anthropogenic air-sea CO, Flux reconstructed by the pCO,-Residual Technique.
(b) Annual mean (1985-2019) air-sea CO, fluxes estimated by the pCO,-Residual (magenta), Hybrid Data Physics (blue),
MPI-SOMFEN (black), CSIR ML6 (red), CMEMS (green), and MLS (cyan) data products. Mean of the nine Global Ocean
Biogeochemical Models and one standard deviation shading in gray. Harmonized observation-based products begin in 1990
(Gregor & Fay, 2021).

blue, orange, and green, respectively). While local standard deviations are a significant portion of the mean
flux in some regions (e.g., subtropical North Atlantic), without a bias in the reconstruction, the reconstructed
global air-sea flux has very small uncertainties caused by the uncertainty in pCO, convolved with wind speeds
(~0.01 PgCl/yr). However, uncertainties in piston velocities estimated by different wind products cause a stand-
ard deviation of annual fluxes of 0.04-0.10 PgC/yr (not shown). Combining these with the square root sum of
squares, we estimate a total uncertainty from wind speeds, both due to the convolution with pCO, uncertainty and
the piston velocity, at 0.10 PgC/yr, one standard deviation, for the 67% confidence interval.

Fay et al. (2021) perform a complete uncertainty analysis for globally integrated CO, flux estimates from
observation-based pCO, products. They account for differences across products (0.19 PgC/yr) and uncertainties
in gas transfer parameterizations (0.39 PgC/yr, Wanninkhof (2014)). If we assume that this Monte-Carlo analysis
of the convolution of winds with pCO, for one product is representative, we can use the calculation above to
replace the winds uncertainty of Fay et al. (2021) (0.09 PgC/yr) with 0.10 PgC/yr. Combining this again with
square root sum of squares, we arrive at a total uncertainty of 0.45 PgC/yr. This is the same as found by Fay
et al. (2021), indicating that the convolution of pCO, with wind uncertainty is not a significant factor in the total
uncertainty of globally integrated CO, fluxes estimated from observation-based pCO, products. However, for
regional and local estimates in regions of high piston velocity, this factor does have the potential to be important
(Figure 7a).
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Figure 7. Uncertainty in CO, fluxes due to convolution of pCO, with winds. (a) Standard deviation of annual CO, flux
from Monte Carlo simulations (mol C/m?/yr). (b) Mean piston velocity, average of CCMP2, ERAS5, and JRAS55 (Kw: cm/hr).
(c) Mean CO, flux by latitude band (Tg C/yr) and wind product, and standard deviation of the mean flux caused by random
sampling of pCO, for each wind product.

4. Discussion

The new pCO, reconstruction algorithm presented here captures expected relationships between input features
and pCO, output. This result is obtained by pre-processing the data with explicit physical knowledge so that
the target variable for the machine learning has reduced complexity. By reconstructing the difference between
observed pCO, and the pCO, that would result if only the direct effect of temperature altered surface ocean pCO,
(Figures 1 and 2), the pCO,-Residual approach requires the machine learning algorithm to learn only the bioge-
ochemical/physical component of pCO,. This residual is small within the temperature-controlled subtropical
regions and larger in more dynamic ocean areas (Figure 2). This approach tackles two of the five major barriers
to adoption of machine learning approaches within the geosciences proposed by Reichstein et al. (2019): inter-
pretability and physical consistency.

In the pCO,-Residual algorithm, MLD, location, season, SST, Chl-a, and xCO, impact the reconstructed pCO,
in physically expected ways (Figure 4). MLD, location, and time of year strongly control the seasonal cycles of
reconstructed pCO,, while atmospheric CO, concentrations and SST control interannual variations. Year-to-year
variations in Chl-a do not drive significant variability. This may be, in part, due to the small interannual variations
in observed Chl-a, as observed in the North Atlantic (Bennington et al., 2009). It could also be due to correlations
between Chl-a anomalies and other features, such as SST, that the algorithm uses to determine pCO,. These
mechanistically interpretable connections between observed inputs and algorithm output are a step forward for
pCO, reconstruction.

pCO,-Residual reconstructed pCO, has small RMSE and high correlations when compared to independent obser-
vations, and is one of the best performing observation-based approaches based on comparison to four independ-
ent datasets (Figure 3 and Figure S5 in Supporting Information S1). Uncertainties in reconstructed pCO, are
smallest in the subtropical ocean regions and largest in the equatorial Pacific and subpolar regions (Figure 5),
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as expected given the small range of the pCO,-Residual target variable in these regions (Figure 2). The pattern
of uncertainty in pCO, is very similar to the pattern of test RMSE (not shown), and the magnitude of the global
mean test RMSE (16.33 patm) lies between the global mean uncertainty magnitude at the 67% confidence inter-
val (9.8 patm) and the 90% confidence interval (19.71 patm). Thus, our multiple approaches to understanding
pCO, uncertainty are internally consistent. Air-sea CO, fluxes are in agreement with previous observation-based
approaches (Figure 6), and exhibit high interannual variability, similar to MLS inversion approach (Rédenbeck
et al., 2013). This may be due to the use of the tree-based XGBoost algorithm, as opposed to a neural network in
which non-linearities are controlled by the activation function (Baughman & Liu, 1995).

Uncertainty in the air-sea CO, fluxes due to the convolution of pCO, and winds, as determined by a Monte Carlo
approach, are largest where both piston velocities and pCO, uncertainty are large (Figure 7). Although there
are regions of significant local flux uncertainty, globally integrated air-sea CO, flux uncertainty due to pCO,
convolved with wind remains small (0.01 PgC/yr). Uncertainty due to the piston velocity itself is larger, with
annual flux uncertainty ranging from 0.04 to 0.1 PgCl/yr, for a total uncertainty bound due to winds of 0.10 PgC/
yr. This is consistent with our Large Ensemble Testbed analysis (Text S1 in Supporting Information S1) that
suggests a pCO,-Residual global mean flux error is ~#0.1 PgC/yr. It is important to note that we have assumed no
bias in the observations (Fay et al., 2021; Gloege et al., 2022). If observational bias exists, particularly in regions
with moderate to high piston velocities, the flux uncertainty could be larger. This uncertainty estimate is only
barely larger than the wind product uncertainty estimated by Fay et al. (2021), and does not change their compre-
hensive estimate of uncertainty in CO, flux from observation-based products (0.45 PgC/yr) that also accounts for
uncertainty in gas exchange parameterization and pCO, reconstruction approaches.

Our group has also developed another algorithm that uses pre-processing to add physical information to the
target variable. In LDEO-HPD (Gloege et al., 2022), this knowledge is the pCO, estimated by GOBMs. In that
approach, model-observation discrepancy is the target variable for the machine learning algorithm, and this is
reconstructed and added to the original model output to estimate full pCO, field. That approach requires having a
suite of GOBMs for input, while here only observations are needed as input. As discussed in Introduction, while
both LDEO-HPD and pCO,-Residual use pre-processing to reframe the target variable for the machine learning,
they are separate approaches. Both approaches use similar observed features and are limited by the same sparsity
of pCO, observations, but their target variables are unique and the algorithms are separately trained.

The Global Ocean Carbon Budget 2020 (Friedlingstein et al., 2020) estimates an anthropogenic ocean carbon sink
of —2.5 + 0.4 PgCl/yr for the period 2000-2019 based on a suite of ocean hindcast models. With pCO,-Residual,
we estimate a similar anthropogenic flux of —2.35 + 0.5 PgCl/yr, after adjusting the net flux of —1.86 PgC/
yr for outgassing of riverine carbon. The trend in the ocean carbon sink since 2005 estimated by this method
(—0.05 PgC/yr?) is on the lower end of previous observation-based estimates (Figure 6).

Analysis with the Large Ensemble Testbed (Text S1 in Supporting Information S1), demonstrates that
pCO,-Residual provides an improved reconstruction of the mean and interannual to decadal variability over our
initial reconstruction based on pCO, alone. Previous work with the Large Ensemble Testbed (Gloege et al., 2021),
demonstrated that MPI-SOMFFN reconstruction technique overestimated CO, flux decadal amplitude by 21% for
the global average, and 31% in the Southern Ocean (<35°S). Considering pCO, in the Testbed, MPI-SOMFFN
overestimates decadal variability amplitude by 33% globally, 37% in S. Ocean. In contrast, pCO,-Residual in
Testbed has reduced overestimation of pCO, decadal variability (24% globally, 28% S. Ocean). These amplitude
comparisons are the median of 100 Earth System Model realizations for 1982-2016, with substantial spread
across the individual members (Gloege et al., 2021).

In the real-world reconstructions from pCO,-Residual and MPI-SOMFEN (Figure 6a), the global and Southern
Ocean CO, flux decadal amplitude is 15% larger in pCO,-Residual than in MPI-SOMFEN (pCO,-Residual:
1.1 PgClyr globally, 0.59 PgCl/yr S. Ocean; MPI-SOMFEN: 0.95 PgC/yr globally, 0.51 PgC/yr S. Ocean). The
same approach as in Gloege et al. (2021) is used here to extract the decadal signal, but amplitude is defined as
maximum-minimum since the true state is unknown. This finding is not inconsistent with the Testbed results
discussed in the previous paragraph. Testbed results indicate the median skill of a reconstruction method across
arange of climate conditions estimated by four ESMs, 25 ensembles members from each. In the real world, only
one evolution of climate occurred. Real-world reconstructions over the last few decades should not be expected
to linearly scale to the true decadal variability based on Testbed median skill estimates (Gloege et al., 2021). In
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other words, its quite reasonable that, in the Testbed, pCO,-Residual would have less overestimation of decadal
variability compared to another method, but at the same time estimate slightly greater variability from recent
observations.

While Gregor et al. (2019) suggest ocean surface pCO, reconstructions may have “hit a wall,” here we illustrate
additional progress. The LDEO-HPD (Bennington et al., 2022; Gloege et al., 2022) and this pCO,-Residual tech-
nique, both applying physical knowledge for pre-processing in a machine learning workflow, offer improvements
in skill based on comparisons to independent datasets (Figure 3 and Figure S5 in Supporting Information S1). In
addition, pCO,-Residual offers improved reconstruction skill based on analysis with the Large Ensemble Testbed
(Figures S2-S4 in Supporting Information S1), clearly explainable links between inputs and output (Figure 4),
and new uncertainty quantification (Figure 7).

5. Conclusions

We develop a new machine learning approach to reconstruct global ocean pCO,, an approach that uses
pre-processing to explicitly incorporate physical knowledge of the ocean carbonate system within a purely
data-based approach. The pCO,-Residual approach improves upon previous machine learning approaches by
removing the direct effect of temperature (Takahashi et al., 2002) from the target variable for the machine learn-
ing. The resulting algorithm exhibits mechanistically appropriate relationships between inputs and outputs.
Spatially resolved estimates of uncertainties illustrate the differential impacts of pCO, and wind uncertainties on
CO, fluxes. We find an ocean carbon sink within the range of previous observation-based approaches, but with
a lesser trend since 2005.

Data Availability Statement

NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from
their Web site at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html. Python scripts are available at
https://github.com/valbennington/JAMES_pub_2022. Reconstruction available for download at: https://zenodo.
org/record/6438445.
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