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Abstract—Model Based Systems Engineering (MBSE) provides
a single platform capable of defining complex, multidisciplinary
systems, but commonly-used tools such as Systems Modeling
Language (SysML) lack the ability to formally validate and
verify these systems. Symbolic model checking operates on system
models of similar levels of abstraction to SysML, providing a
push-button technique for ensuring the possible behavior set
always obeys temporal requirements, e.g., for safe operation.
We propose a translation method from SysML activity diagrams
to the popular symbolic model checker nuXmv to enable their
formal verification in four main steps: main module definition,
submodule definition, activity diagram organization, and activity
diagram translation. We apply this process to the Autonomous
Artificial Pancreas System (AAPS) as a trade study. We then
verify and validate the AAPS nuXmv model against a set of
specifications derived from the AAPS safety requirements.

Index Terms—MBSE, SysML, nuXmv, Cameo, Activity Dia-
gram, Model Checking

I. INTRODUCTION

As systems continue to become larger and more complex,

so do the methodologies needed to design them. One increas-

ingly used methodology is Model Based Systems Engineering

(MBSE). MBSE provides a single platform capable of defining

large, complex, multidisciplinary systems at various levels of

abstraction. MBSE supports the development of requirements,

design, and analysis of entire systems through all phases of

the life cycle [1]; we focus on MBSE using Systems Modeling

Language (SysML) [2]. As the expectations of the capabilities

of modern systems have increased, so has the need to provide

robust validation and verification, especially in safety-critical

systems like medical devices.

The Center for Devices and Radiological Health (CDRH)

division of the FDA aims to provide “safe, effective, and

high-quality medical devices” through regulation, formally

capturing a firm’s removal or correction of incompliant devices

through recalls [3]. According to the Medical Device Recall

Report for FY2003 to FY2012, medical device software is the

leading cause of medical device recalls [4]. Medical device

software plays a critical role in the safety of medical devices.

This results in systems that are both safety-critical and highly

dependent on software to execute, creating an ideal use case

for model checking to provide formal system validation and

verification.

Artifacts for reproducibility including all models and specifications appear
at temporalllogic.org/research/SESS2022

We focus on validation and verification of the Autonomous

Artificial Pancreas System (AAPS). The AAPS is a hybrid

closed-loop insulin pump system designed for patients with

Type 1 diabetes and is similar to commercially available

devices like the Tandem T:slim X2 insulin pump with Control-

IQ technology and the Medtronic MiniMed 770G insulin

pump system. The AAPS consists of the Continuous Glucose

Monitor (CGM) and the AAPS module. The AAPS module

houses the system software and includes supplies of insulin

and glucagon. The goal of the AAPS is to maintain the pa-

tient’s blood glucose level within a predefined range, through

the administration of insulin or glucagon while minimizing

Human-Machine Interaction (HMI) through sensing and au-

tomation. The system functions in a cycle as follows: the

CGM measures the blood glucose level of the patient, the

CGM automatically transmits the blood glucose level to the

AAPS module, then the AAPS control algorithm determines

if the patient requires insulin or glucagon administration and

how much to administer, the AAPS then waits for the next

CGM measurement. This process repeats while the system is

operational. The AAPS also supports connectivity to wearable

devices, fitness applications, Blood Glucose Meter (BGM),

medical databases, and medical care providers.

We used the nuXmv symbolic model checker version 2.0.0

[5] to validate and verify the AAPS model. nuXmv provides

synchronous finite-state system analysis, taking as input a

system model and set of operational requirements, and re-

turning either a proof that the system always upholds the

requirements or a counterexample detailing a system trace

where it does not. Our translation takes advantage of the

Boolean and enumeration SMV modeling language variable

types [6].

Our translation from SysML to SMV also relies upon the

nuXmv expression definition constructs: constant expressions,

basic expressions, and simple and next expressions [6]. Since

the AAPS requirements either represent system invariants or

temporal pattern we can draw on timelines, we encapsulate

them precisely and unambiguously using Linear Temporal

Logic (LTL) [7].

We propose a process for translation from SysML to nuXmv

encompassing the SysML state machine and activity diagrams

used in the AAPS SysML definition. We demonstrate the

process by formally validating and verifying the AAPS and

release all artifacts necessary for formal verification and
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validation of any SysML system primarily defined by state

machine diagrams and activity diagrams.

To the best of our knowledge no previous research has ver-

ified a safety-critical medical device in nuXmv from this type

of SysML model, and existing translations don’t fully cover

state machine and activity diagrams. Some papers present

details regarding SysML state machine diagram [8], [9] and

block definition diagram [10], [11] conversion to NuSMV

for model checking, but do not cover activity diagrams.

Other papers discuss the translation of activity diagrams to

probabilistic models, then utilize other types of verification

tools such as the PRISM probabilistic, explicit model checker

[12], [13], [14]. Applying formal methods to safety-critical

medical devices is a burgeoning area of research [15], [16].

We aim to expand the use of formal medical device verification

via extending SysML translations to include state machine

diagram and activity diagrams and enable scalable verification

via symbolic model checking.

The remainder of the paper is organized as follows. The

SysML model, including a description of the AAPS system

diagram types, appears in Section II. Section III provides

the methodology we designed to translate the SysML state

machine diagram and activity diagrams to nuXmv. Example

automata and an example activity diagram further illustrate the

system and translation execution. Verification and validation

of the model, including example LTL specifications, appear

in Section IV. Section V discusses lessons learned. Section

VI concludes with avenues for future work in medical device

verification.

II. AUTONOMOUS ARTIFICIAL PANCREAS SYSTEM

SYSML MODEL

The AAPS system was developed in SysML. SysML con-

sists of nine different types of diagrams; the AAPS uses

two main diagram types: activity diagrams and state machine

diagrams. The activity diagrams hold most of the usable

information in the AAPS SysML model. Each activity diagram

describes a small system action, and the combination of all

activity diagrams accurately characterizes all possible system

actions. The activity diagrams are independent of each other,

and only connected through other diagram types. Typically,

SysML block definition diagrams connect the activity dia-

grams [17]; however, the AAPS SysML model connects the

activity diagrams through the state machine diagram, which

defines the higher-level system states.

In addition to these two main diagram types, the AAPS

model also contains a detailed set of requirements. We use

these requirements to generate the formal specifications re-

quired to prove the model functioned properly.

III. TRANSLATION FROM SYSML TO NUXMV

We use a four-step translation process to translate the

SysML model into nuXmv.

SysML to nuXmv Translation Process

1) Main Module Definition: Use the SysML state machine

diagram to define the main module in nuXmv

2) Submodule Definition: Define submodules from the

SysML state machine diagram

3) Activity Diagram Organization: Categorize activity dia-

grams into corresponding modules

4) Activity Diagram Translation: Convert activity diagram

information into nuXmv

A. Main Module Definition

The overall SysML state machine diagram is the highest-

level overview of the AAPS. We use this diagram to generate

the automaton shown in Figure 1.

Fig. 1. Full system automaton built from the system state machine diagram

The state machine diagram shows the high-level system

behavior and state switching between the different modes

within the AAPS. Figure 1 corresponds exactly to the system

modes in the state machine diagram. This automaton then

gives a baseline for writing the main module, the high-level

control module that defines transitions between the submod-

ules in nuXmv. We define operational and maintenance modes

as individual submodules in nuXmv due to their additional

complexity, while the main module defines Start Up and

Shutdown.

The AAPS main module has an enumerated mode variable

with StartUp, Operational, Maintenance, and Off

fields to define which mode the system was in. Boolean request

variables denote the state of each of the mode transitions; a

request must be active for the system to switch modes in the

next time step. Step III-A translates only the system modes

and transitions; we add all other definitions in later steps.

B. Submodule Definition

The AAPS state machine diagram also provides informa-

tion on the activities within the operational and maintenance
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modes. We use this additional information to develop the

automata in Figures 2 and 3. We model both automata as

submodules within the main module in nuXmv.

Fig. 2. Operational mode automaton showing the functional variable and the
five external device connections

The operational mode consists of a functional flag to de-

termine the AAPS state and five external device connections.

The OperationalMode module controls the state of the

functional variable and the status of each external device.

We define the Functionality enumerated variable with

four states: Functional, Degraded, Failed, and Off.

We define each external device as a separate submodule

within operational mode according to their respective activity

diagrams.

Fig. 3. Maintenance mode automaton showing the four maintenance activities
and the ready state

Maintenance mode consists of four maintenance tasks and a

ready state. We define a TaskRequest enumerated variable

to control the transitions into and out of the maintenance

tasks and a MaintenanceTask enumerated variable to

set the current state of maintenance mode. Each individual

maintenance task is a submodule within maintenance mode.

C. Activity Diagram Organization

We define 12 different modules from the state machine di-

agram: Main, OperationalMode, MaintenanceMode, CGMRe-

place, GlucagonRefill, IBIT, InsulinRefill, BGM, FitnessApp,

MCP, MedicalDB, and WearableDevice. The OperationalMode

and MaintenanceMode modules are inside of the Main module

within nuXmv. The maintenance task modules are inside of the

MaintenanceMode module, and the connected device modules

are inside of the OperationalMode module within nuXmv. We

assigned 42 of the 44 original SysML activity diagrams to a

module that best characterized its functionality. We omit the

two unassigned activity diagrams because they contribute little

to the understanding and functionality of the final model.

D. Activity Diagram Translation

Once we assign each activity diagram to a module, we then

translate the diagrams into the SMV modeling language. The

activity diagram translations vary widely; some were intensive

to model and required changes across several modules, while

others required changing only a single variable. This difference

in modeling intensity is related to the scope of the activity

diagrams. The simpler activity diagrams were low level and

only impacted a small area of the system, while some of the

activity diagrams, such as Respond to Critical System Failure

impacted several modules.

The Share Data with MCP activity diagram is one of the

simpler activity diagrams; see Figure 4. It details the process

of receiving a patient data request from the medical care

provider (MCP), authenticating the request, and accepting

the request for data or rejecting the request. We model this

entire diagram using a single enumerated variable called

PatientData in the MCP module in nuXmv. Table I lists

the possible values of PatientData.

Fig. 4. SysML Share Data with MCP activity diagram example

The MCP module needs to connect to the operational mode

module to exchange patient data; PatientData gets set to

None by default if the MCP is not connected. If nothing is

currently happening (PatientData is None), the variable
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TABLE I
PATIENT DATA ENUMERATION

Value Name Description

None No state of the activity diagram is currently happening

Requested The MCP has received a request

Authenticating Currently authenticating the request

Provided The MCP accepted the request, provided data

Rejected The MCP rejected the request

can remain in that state; a new request switches this variable to

Requested. After spending one time step in Requested,

it switches to Authenticating. The authentication part

of the activity diagram is self-looping, meaning the nuXmv

module always has the option to stay in that state. This

means that for every step spent in the Authenticating

mode, the model can choose between three different options:

Authenticating, Provided or Rejected. If the data

is provided, or the request is rejected, the variable will then

return to the None state, and the process may start over again.

We continually tested our model against the written specifi-

cations to ensure correctness. We also used other methods of

checking the model such as the nuXmv functions check_fsm

and print_reachable_states to ensure the model did

not have any deadlock states and ensure that the number of

states was within reason. In the final model, no deadlock states

exist, and the number of reachable states is within the expected

bounds, i.e., comparable to the original SysML specification.

The total number of reachable states for the AAPS nuXmv

model is 10977 out of 1.83459e13 possible states. This is

expected due to the large number of enumerated variable

combinations that are not allowed due to the SysML model

definition. There were several points during model develop-

ment where the check_fsm function returned a deadlock

state, revealing an incorrect transition or variable assignment

somewhere in our model. To fully verify and validate the

model requires specification checking [18].

IV. VERIFICATION AND VALIDATION OF MODEL

A. Specification Debugging via Universal Model

The universal model [19] contains all possible current and

future assignments for each variable; we utilized this model

in nuXmv to check if the written specifications are satisfiable.

A given LTL specification φ is satisfiable if and only if

the negation ¬φ produces a counterexample representing a

satisfying assignment when checked against the universal

model. We checked all LTL specifications, their negations,

and the conjunction of specifications for satisfiability, per

the specification debugging practice introduced in [19]. This

ensures that every specification is possible, not a tautology,

and that all specifications can hold in the same system at the

same time.

B. Specifications

We encapsulate the AAPS requirements as 29 LTL spec-

ifications [20] specifications and debug them. We also val-

idate our model with 11 LTL and 94 CTL specifications.

Our debugging effort includes code inspection and checking

for satisfiability using the universal model. Model checking

revealed spurious counterexamples caused by mistakes in the

specification set. These are unexpected “passing” results that

triggered further specification debugging. One such result

was a trace where the system entered a degraded state in

operational mode and switched to maintenance mode. At this

point, the system was allowed to switch back to operational

mode in a degraded state. This trace occurred because SysML

does not specify a prioritization of tasks to be performed.

We insert an assumption that the necessary maintenance tasks

are to be completed and the degraded flag resolved before

switching to operational mode.

We created four benchmarks using the information in the

SysML model to capture the level and type of functionality

that the system achieves. The verification specifications are

grouped and ordered based on system functionality. Table II

lists the benchmark levels and a brief description of each level.

We ordered the four benchmark levels by their importance to

the functionality of the AAPS from low level safety-critical

features to high level convenience features. If all the specifi-

cations in a benchmark pass, then the system is considered

to complete that benchmark functionality. We consider the

AAPS to meet minimum safety requirements if it passes the

first two benchmarks, meaning that the system works properly

in operational mode and responds appropriately if it enters a

degraded or failed state.

TABLE II
SYSTEM BENCHMARKS

Benchmark Description

Safety-Critical Medication properly administered while operational

Failure Safety Proper responses to system failures

Mode Transitions Pre-transition and post-transition conditions met

Connected Devices Alert messages sent and received

C. Results

We present a total of 132 specifications that span both

validation and verification of the model. The verification

specifications verify that the AAPS requirements hold for the

nuXmv translation of the model, and the validation specifica-

tions validate that the nuXmv model performs all the intended

functions, i.e., matches the SysML model [21]. We model-

checked 105 specifications to validate our nuXmv model,

while the remaining 29 specifications verify the AAPS require-

ments. We wrote all our specifications to ensure that nuXmv

returning a true value would validate or verify the respective

part of the system. NuXmv provides a counterexample trace

for false results, enabling us to find errors in the model and

correct them.

1) Validation: Out of our set of 105 validation specifica-

tions, 18 test specific system behaviors. These specifications

cover shutdown mode, maintenance mode, operational mode,

and app connectivity. The other 87 specifications serve to

ensure reachability for all valid variable assignments within

the AAPS nuXmv model. Table III provides a summary of

the validation results.
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TABLE III
SUMMARY OF VALIDATION RESULTS

Specification Type Number of Specs Result

Shutdown Mode 3 PASS

Maintenance Mode 10 PASS

Operational Mode 2 PASS

App Connectivity 3 PASS

Valid Variable Assignment 87 PASS

We wrote validation specifications in tandem with the trans-

lation of the model from SysML. We first wrote specifications

to validate the high level system aspects, writing the rest of the

validation specifications when the low-level functionality was

implemented in nuXmv. The following example is one of the

system behavior specifications used to validate maintenance

mode.

�¬{(IBIT = Running) ∧ [(Refill Insulin = Running) ∨

(Refill Glucagon = Running) ∨ (Replace CGM = Running)]}

The given LTL formula states that IBIT shall never run

while insulin needs refilling, glucagon needs refilling, or the

CGM needs replacing. We created three other variations of

this LTL formula to validate that the AAPS nuXmv model

only allows one maintenance task to run at any given time.

1) �¬{(Refill Insulin == Running) ∧ [(IBIT == Running) ∨
(Refill Glucagon == Running) ∨ (Replace CGM ==
Running)]}

2) �¬{(Refill Glucagon == Running) ∧ [(Refill Insulin ==
Running) ∨ (IBIT == Running) ∨ (Replace CGM ==
Running)]}

3) �¬{(Replace CGM == Running) ∧ [(Refill Insulin ==
Running) ∨ (Refill Glucagon == Running) ∨ (IBIT ==
Running)]}

We derived these specifications directly from the state

machine diagram in the SysML model. In the state machine

diagram, only one state can be active at any time unless other-

wise stated. In maintenance mode, only one of the maintenance

activities can be in progress at any given time. We then wrote

the above specifications to validate that the assertion held

true through our translation into nuXmv. Most of the other

validation specifications ensure that states are reachable and

that all variables are used. We wrote these validation checks

in pairs for each variable.

E♦FailF lag E♦¬FailF lag

The above specifications ensure that there exists at least

one state in the system where the FailFlag variable is

enabled, and at least one state where the FailFlag variable

is disabled. If either of these specifications return false, the

variable only has one possible assignment, and either the

model behavior needs to be fixed, or the variable has no

function and can be removed.

Model definition and specification are two of the main

takeaways from the validation specifications. The AAPS model

was already a fully defined model and we did not find any

major errors in the model. We did find some inconsistencies

in the model that needed to be properly defined when fully

verifying the AAPS. One of these inconsistencies was the exit

behavior of maintenance mode. The IBIT activity diagram

specifies that the system will return to operational mode if

the IBIT passes with no critical failures. This conflicts with

the general flow of the state machine diagram as well as the

Perform AAPS System Maintenance, Enable Maintenance Ac-

tivities, and Disable Maintenance Activities activity diagrams.

These diagrams all show that upon finishing a maintenance

activity, the system will not necessarily return to operational

mode, but may stay in maintenance mode and wait for another

maintenance request. We discovered this problem through

the failure of a validation specification designed to test if

operational mode is guaranteed after the IBIT completed if

there was no shutdown request. When the specification failed,

we reviewed the model and found the inconsistency. In this

case, we updated the specification to match the model and the

three other activity diagrams.

2) Verification: A total of 29 verification specifications,

distributed between each of the system benchmarks defined in

Table II verified the given AAPS requirements all hold over the

AAPS as defined. Table IV shows the specification breakdown.

TABLE IV
SUMMARY OF VERIFICATION RESULTS

Benchmark Number of Specs Result

Safety-Critical 6 PASS

Failure Safety 7 PASS

Mode Transitions 11 PASS

Connected Devices 5 PASS

1) �(((Mode = Operational) ∧ (PatientStatus == LowBS) ∧
¬(Functionality == Failed)) → (BloodSugarAdjustment ==
DeliverGlucagon))

2) �(((Mode = Operational) ∧ (PatientStatus == HighBS) ∧
¬(Functionality == Failed)) → (BloodSugarAdjustment ==
DeliverInsulin))

3) �(((Mode = Operational) ∧ (PatientStatus == Normal)) →
(BloodSugarAdjustment == None))

These three example LTL formulas verify medication ad-

ministration, the aspect of the system that is the most safety-

critical. We intentionally designed the example LTL formulas

to test the AAPS nuXmv model from the highest level possi-

ble. More specifically, the LTL formulas verify that when the

system is operational, the patient receives glucagon when their

blood sugar is low, insulin when their blood sugar is high, and

nothing when their blood sugar is within the normal range. All

29 verification specifications passed, indicating that the system

operates as originally designed.

V. DISCUSSION OF LESSONS LEARNED

This case study provides an example translation of a safety-

critical medical system SysML model into nuXmv for formal

verification and validation. Verification and validation allow

the system developers to have confidence in the model before

moving forward to future development. We were able to catch

model inconsistencies and specify necessary system behaviors

in the AAPS through this process.

Timing is one of the major difficulties when translating a

model from SysML to nuXmv. SysML does not have any
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native support for timing or step characteristics, while nuXmv

is inherently step-based with its states. We made several as-

sumptions about the model to overcome this difficulty because

we did not create the model ourselves. This timing information

would be known if we were the original system designers.

The timing definition is required to both translate the model

and write the specifications. We wrote the specifications in

tandem with the model translation to ensure that the timing

assumptions were consistent across both aspects. We primarily

dealt with these timing difficulties by using request variables,

where a variable would activate to signal the action in the

following time step.

Every SysML model will have differences depending on the

system being modeled. In the AAPS model, the important sys-

tem capabilities are located in the activity diagrams; however,

this may not be the case for all systems. The proposed process

will work to translate the state machine diagram and activity

diagrams to nuXmv, but some functionality may be missed

if a given model has important capabilities in other diagram

types.

VI. CONCLUSION

This paper explored the formal verification and validation of

a complex medical system SysML model through translation

to nuXmv. SysML is widely used across the industry for

modeling and system specification [22], making it a perfect

starting point for formal model verification. The SysML semi-

formal model is converted into nuXmv for formal system

safety verification. nuXmv is the ideal tool for this, giving the

ability to verify and validate all system safety specifications

while providing plenty of modularity for any system.

This process is scalable to any system size due to the

modularity provided. A further system breakdown may be

required for a larger system, and a smaller system could use a

more simplified approach. Symbolic model checking through

nuXmv provides a more efficient approach for larger models

and is more scalable than other explicit model checking

methods [7]. The use of nuXmv modules also eases the

additional system complexity.

This verification effort started as a project for an Applied

Formal Methods course [23]; this effort demonstrates that

engineers with an introductory background in formal methods

can successfully apply our techniques.

A. Future Work

The methodology proposed opens a new avenue into the

study of formal methods analysis in complex medical systems.

The provided system translation technique can be further

researched to include additional SysML elements such as a

more robust requirement translation process. The provided

technique is not currently easily workable into an automated

tool for use with SysML models, but future revision of the

process could yield a more straightforward and implementable

process.
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