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Abstract The design of safety-critical systems often requires design space explo-
ration: comparing several system models that differ in terms of design choices, capa-
bilities, and implementations. Model checking can compare different models in such
a set, however, it is continuously challenged by the state space explosion problem.
Therefore, learning and reusing information from solving related models becomes
very important for future checking efforts. For example, reusing variable ordering in
BDD-based model checking leads to substantial performance improvement. In this
paper, we present a SAT-based algorithm for checking a set of models. Our algo-
rithm, FuseIC3, extends IC3 to minimize time spent in exploring the common state
space between related models. Specifically, FuseIC3 accumulates artifacts from the
sequence of over-approximated reachable states, called frames, from earlier runs when
checking new models, albeit, after careful repair. It uses bidirectional reachability;
forward reachability to repair frames, and IC3-type backward reachability to block
predecessors to bad states. We extensively evaluate FuseIC3 over a large collection
of challenging benchmarks. FuseIC3 is on-average up to 5.48× (median 1.75×) faster
than checking each model individually, and up to 3.67× (median 1.72×) faster than
the state-of-the-art incremental IC3 algorithm. Moreover, we evaluate the perfor-
mance improvement of FuseIC3 by smarter ordering of models and property grouping
using a linear-time hashing approach.
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1 Introduction

In the early phases of design, there are several models of the system under develop-
ment constituting a design space [3, 29, 34]. Each model in such a set is a valid design
of the system, and the different models differ in terms of core capabilities, assump-
tions, component implementations, or configurations. We may need to evaluate the
different design choices, or to analyze a future version against previous ones in the
product line. Model checking can be used to aid system development via a thorough
comparison of the set of models. Each model in the set is checked one-by-one against
a set of properties representing requirements. However, for large and complex design
spaces, such an approach can be inefficient or even fail to scale to handle the com-
binatorial size of the design space. Nevertheless, model checking remains the most
widely used method in industry when dealing with such systems [8, 29, 32, 34, 36].

We assume that different models in the design space have overlapping reachable
states, and the models are checked sequentially. In a typical scenario, a model-
checking algorithm doesn’t take advantage of this information and ends up re-
verifying “already explored” state spaces across models. For large models this can
be extremely wasteful as every model-checking run re-explores already known reach-
able states. The problem becomes acute when model differences are small, or when
changes in the models are outside the cone-of-influence of the property being checked,
i.e., although the reachable states in the models vary, none of them are bad. There-
fore, as the number of models grows, learning and reusing information from solving
related models becomes very important for future checking efforts.

We present an algorithm that automatically reuses information from earlier
model-checking runs to minimize the time spent in exploring the symbolic state
space in common between related models. The algorithm, FuseIC3, is an extension
to one of the fastest bit-level verification methods, IC3 [9], also known as property
directed reachability (PDR) [27]. Given a set of models and a safety property, FuseIC3
sequentially checks each model by reusing information: reachable state approxima-
tions, counterexamples (cex), and invariants, learned in earlier runs to reduce the
set’s total checking time. When the difference between two subsequent models is
small or beyond the cone-of-influence of the property, the invariant or counterexam-
ple from the earlier model may be directly used to verify the current model. Other-
wise, FuseIC3 uses reachable state approximations as inputs to IC3 to only explore
undiscovered reachable states in the current model. In the former, verification com-
pletes almost instantly, while in the latter, significant time is saved. When the stored
information cannot be used directly, FuseIC3 repairs and patches it using an efficient
SAT-based algorithm. The repair algorithm is the main strength of FuseIC3, and uses
features present in modern SAT solvers. It adds “just enough” extra information to
the saved reachable states to enable reuse. We demonstrate the industrial scalabil-
ity of FuseIC3 on a large set of 1,620 real-life models for the NASA NextGen air
traffic control system[29, 34], selected benchmarks from HWMCC 2015[6], and a set
of seven models for the Boeing AIR6110 wheel braking system[8]. Our experiments
evaluate FuseIC3 along two dimensions; checking all models with the same property,
and checking each model with several properties. Lastly, we evaluate the impact of
smarter model ordering and property grouping on the performance of FuseIC3.
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1.1 Related Work

The idea of reusing model-checking information, like variable orderings, between
runs has been extensively used in BDD-based model checking leading to substantial
performance improvement[41, 4]. Similarly, intermediate SAT solver clauses and in-
terpolants are reused in bounded model checking[33, 38]. Reusing learned invariants
in IC3 speeds up convergence of the algorithm[15]. These techniques enable efficient
incremental model checking and are useful in regression verification[42] and cover-
age computation[16]. FuseIC3 is an incremental algorithm and is applicable in these
scenarios.

Product line verification techniques, e.g., with Software Product Lines (SPL),
also verify models describing large design spaces[23, 22, 20, 5]. The several instances
of feature transition systems (FTS)[21] describe a set of models. FuseIC3 relaxes this
requirement and can be used to check models that cannot be combined into a FTS.
It outputs model-checking results for every model-property pair in the design space
without dependence on any feature. Nevertheless, SPL instances can be checked using
FuseIC3. Large design spaces can also be generated by models that are parametric
over a set of inputs [26]. Parameter synthesis[17] can generate the many models in a
design space that can be checked using FuseIC3. The parameterized model-checking
problem[28] deals with infinite homogeneous models. In our case, the models in a
set are heterogeneous and finite. The paradigm of “just-assume” (JA) verification
[30] provides a semantic approach to derive a debugging set of properties to fix
before verifying others, implying a property; our incremental algorithm can speed
up JA-verification by reusing information across different property checking runs.

The work most closely related to ours is a state-of-the-art algorithm for incre-
mental verification of hardware[15]. It extends IC3 to reuse the generated proof, or
counterexample, in future checker runs. It extracts minimal inductive subclauses from
an earlier invariant with respect to the current model. In our analysis, we compare
FuseIC3 with this algorithm, and show that with the same amount of information
storage, FuseIC3 is faster when checking large design spaces.

1.2 Contributions

We present a query-efficient SAT-based algorithm for checking large design spaces,
and incremental verification. Our contributions are summarized as follows:

1. Fully automated, general, and scalable algorithm for checking design spaces.
2. Systematic methodology to reuse reachable state approximations to guide bad-

state search in IC3. Our novel procedure to repair state approximations requires
little computation effort and is of individual interest.

3. Extensive experimental analysis using real-life benchmarks and comparison with
existing state-of-the-art incremental algorithm for IC3.

4. We make all reproducibility artifacts and source code publicly available 1.

This article is an expanded version of a peer-reviewed conference paper presented at
FMCAD 2017 [25] and extends it along the following new contributions:

5. More detailed explanations, and theorems and proofs supporting the correctness
of the several sub-algorithms (Section 3.3).

1 http://temporallogic.org/research/FMCAD17/
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6. Overview of locality-sensitive hashing [1] techniques to mine model specifications
expressed as And-Inverter-Graph circuits (Section 4.1).

7. Heuristics to organize the design space, i.e., partially order models in a set and
group properties based on similarity, to enable higher reuse of reachable state
approximations and improve performance (Sections 4.2 and 4.3).

8. Detailed experimental results incorporating model ordering and property group-
ing heuristics with an in-depth analysis (Section 5).

1.3 Structure

Section 2 details background information, overviews the typical IC3 algorithm, and
defines the notation used throughout the paper. Section 3 presents the FuseIC3 al-
gorithm. Locality-sensitive hashing and its usage as a heuristic to measure similarity
is detailed in Section 4. A large-scale experimental evaluation forms Section 5, and
Section 6 concludes by highlighting future work and possible extensions.

2 Preliminaries

2.1 Definitions

Definition 1 A Boolean transition system, or model M is represented using the
tuple (Σ,Q,Q0, δ) where

1. Σ is a finite set of atomic propositions or state variables,
2. Q is a finite set of states,
3. Q0 ⊆ Q is the set of initial states,
4. δ : Q×Q is the transition relation.

A sequence of states π = s0 → s1 → . . . → sn is a path in M if s0 is an initial state,
each si ∈ Q for 0 ≤ i ≤ n, and for 0 < i < n, (si, si+1) ∈ δ, i.e., there is a valid
transition from state si to state si+1. A state t in a model is reachable iff there exists
a path such that sn = t.

Definition 2 A safety property is a Boolean formula ϕ over Σ.

A transition system M is SAFE, represented as M |= ϕ, iff ϕ holds in all reachable
states of M . Similarly, M is UNSAFE, represented as M 6|= ϕ, iff ϕ does not hold in
atleast one reachable state of M .

Definition 3 A state variable a ∈ Σ is called an atom, and literal l is an atom a

or its negated form ¬a. A conjunction of literals, i.e., l1 ∧ l2 ∧ . . . ∧ lk, for k ≥ 1, is
called a cube. A disjunction of a set of literals, i.e., l1 ∨ l2 ∨ . . . ∨ lk, for k ≥ 1, is
called a clause. A Boolean formula containing a conjunction of clauses is said to be
in Conjunctive Normal Form (CNF).

A primed variable a′, such that a ∈ Σ, represents a in the next time step. If ψ is
a Boolean formula over Σ, ψ′ is obtained by replacing each variable in ψ with the
corresponding primed variable. We assume that a cube (or clause) c can be treated
as a Boolean formula, set of literals, or set of states depending on the context it is
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used. For example, in the formula c ⇒ φ we treat c as a Boolean formula, in the
statement c1 ⊆ c2 we treat c1 and c2 as sets of literals, and if we say a state t is in c,
i.e., c(t) = 1, then we treat c as a set of states. Similarly, a Boolean formula ψ can
be treated as a set of clauses or cubes, or a set of states depending on the context
it is used. A clause c can be weakened (or strengthened) to clause ĉ by adding (or
removing) literals such that ĉ ⊇ c (or ĉ ⊆ c).

Definition 4 Two finite sets ψ1 and ψ2 overlap iff ψ1 ∩ ψ2 6= ∅.

For transition systems M = (Σ,QM , Q0M
, δM ) and N = (Σ,QN , Q0N

, δN ) the set
of reachable states are RM = {s ∈ QM | s is reachable in M} and RN = {s ∈ QN |
s is reachable in N}, respectively.

Definition 5 Given two transition system models M = (Σ,QM , Q0M
, δM ) and N =

(Σ,QN , Q0N
, δN ), we say that M and N are related iff there exists a transformation

function τ such that δN = τ(δM ).

The transformation function may be defined by a set of rules that map transitions
in model M to transitions in model N . We assume the existence of such a transfor-
mation function. Note that RM ∩ RN 6= ∅ for related models M and N . A set of
models is a collection of related models. Parameter instantiation generates a set of
models from meta-models representing design-spaces [26], or software-product lines
[23]. Moreover, updates to a sequential circuit design in regression verification, either
due to a bug fix or feature addition, generate related transitions systems [42].

2.2 Safety Verification

The safety verification problem is to decide whether model M = (Σ,Q,Q0, δ) is
UNSAFE or SAFE with respect to a safety property ϕ, i.e., whether there exists
an initial state in Q0 that can reach a bad state in ¬ϕ, or generate an inductive
invariant I that satisfies three conditions:

1. Q0 ⇒ I 2. I ∧ δ ⇒ I ′ 3. I ⇒ ϕ

In SAT-based model checking algorithms [9, 7, 35, 40], the verification problem is
solved by computing over-approximations of reachable states in M , and using them
to either construct an inductive invariant, or find a counterexample.

2.3 Overview of IC3

IC3/PDR [9, 10, 27, 31, 39] is a novel SAT-based verification method based on
property directed invariant generation. Given a model M = (Σ,Q,Q0, δ), and a
safety property ϕ, IC3 incrementally generates an inductive strengthening of ϕ to
prove whether M |= ϕ. It maintains a sequence of frames S0 = Q0, S1, . . . Sk such
that each Si, for 0 < i < k, satisfies ϕ and is an over-approximation of states
reachable in i-steps or less. If two adjacent frames become equivalent, IC3 has found
an inductive invariant and the property holds for the model. If a state violating
the property is reachable, a counterexample trace is returned. Throughout IC3’s
execution, it maintains the following invariants on the sequence of frames:
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1. for i > 0, Si is a CNF formula, i.e., conjunction of clauses,
2. Si+1 ⊆ Si,
3. Si ∧ δ ⇒ S′

i+1, and
4. for i < k, Si ⇒ ϕ.

Each clause added to the frames is an intermediate lemma constructed by IC3 to
prove whether M |= ϕ. The algorithm proceeds in two phases: a blocking phase, and
a propagation phase. In the blocking phase, Sk is checked for intersection with ¬ϕ.
If an intersection is found, Sk violates ϕ. IC3 continues by recursively blocking the
intersecting state at Sk−1, and so on. If at any point, IC3 finds an intersection with
S0, M 6|= ϕ and a counterexample can be extracted. The propagation phase moves
forward the clauses from preceding Si to Si+1, for 0 < i ≤ k. During propagation, if
two consecutive frames become equal, a fix-point has been found and IC3 terminates.
The fix-point I represents the strengthening of ϕ and is an inductive invariant that
satisfies the three conditions of Section 2.2.

2.4 SAT with Assumptions

In our formulation, we consider sat queries of the form sat(φ, γ), where φ is a CNF
formula, and γ is a set of assumption clauses. A query with no assumptions is simply
written as sat(φ). Essentially, the query sat(φ, γ) is equivalent to sat(φ ∧ γ) but the
implementation of the former is typically more efficient. If φ ∧ γ is:

1. sat, get-sat-model() returns a satisfying assignment.
2. unsat, get-unsat-assumptions() returns a unsatisfiable core β of the assumption

clauses γ, such that β ⊆ γ, and φ ∧ β is unsat.

We abstract the implementation details of the underlying sat solver, and assume
interaction using the above three functions.

2.5 Notation

We reduce the task of verifying a set of models by restricting the description of our
algorithm to two related models M = (Σ,QM , Q0M

, δM ) and N = (Σ,QN , Q0N
, δN )

in the set. Each model has to be checked against a safety property ϕ. Assume that
model M is checked first. The algorithm computes frame sequence R and S for M
and N , respectively. |R| denotes number of frames in the sequence R.

2.6 Problem Definition

Given two related models M = (Σ,QM , Q0M
, δM ) and N = (Σ,QN , Q0N

, δN ), and
a safety property ϕ, let R = R0, R1, R2, . . . , Rm be the sequence of frames computed
by IC3 that satisfies the invariants of Section 2.3. We want to reuse the reachable
state approximations of M to model-check property ϕ against model N , i.e., com-
pute frame sequence S = S0, S1, S2, . . . , Sn for model N that satisfies invariants of
Section 2.3 by reusing frame sequence R such that Si+1 = R̂i+1, where R̂i+1 = Ri+1

if Si ∧δN ⇒ R′
i+1, otherwise R̂i+1 is obtained by strengthening or weakening clauses

in Ri+1 such that ∀c ∈ Ri+1, we have Si ∧ δN ⇒ ĉ′ and Si ∧ δN ⇒ R̂i+1.
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3 Algorithm

In this section, we present the main contribution of our paper, FuseIC3. We start
with the core idea behind the algorithm by giving the intuition behind recycling
IC3-generated intermediate lemmas. We then provide a general overview of different
sub-algorithms that help FuseIC3 achieve its performance. We next describe the two
main components: basic check and frame repair of FuseIC3.

3.1 Intuition

Recall that frames computed by IC3 represent over-approximated states. When M

is checked with IC3, frames R0, R1, . . . , Rj , are computed such that Ri ∧δM ⇒ R′
i+1

for i < j (invariant 3, Section 2.3). In the classical case, checking N after M requires
resetting and restarting IC3, which then computes frames S0, S1, . . . , Sk for N . Due
to the reset, all intermediate lemmas are lost and verification for N has to start
from the beginning. However, since M and N are related, the frames for M and N

overlap, and therefore, frames for M can be recycled and potentially reused in the
verification for N . The idea is illustrated using Venn diagrams in Fig. 1.

In Fig. 1a, the parallelogram and ellipse represent clauses c1 and c2, respectively,
in frame Ri+1 such that Ri+1 = c1 ∧ c2, and the triangle represents states reachable
from Ri in one step, i.e., Ri ∧ δM . So, Ri ∧ δM ⇒ R′

i+1. Now consider a scenario
in which we recycle the clauses in Ri+1 when verifying N . The triangle and the
rectangle in Fig. 1b represent the states reachable from Si in one step. If we were to
make Si+1 = Ri+1, we end up with Si ∧ δN 6⇒ S′

i+1 since c1 doesn’t contain some
states reachable from Si. Therefore, we have to modify c1 such that the invariant
holds. Fig. 1c and 1d show the two possible modifications of c1. In the former case,
we add states (Si ∧ δN ) \ c1 to c1 such that ĉ1 = c1 ∪ (Si ∧ δN ) \ c1. In the latter, we
over-approximate c1 to ĉ1 such that Si ∧ δN ⇒ ĉ1 (a trivial over-approximation is to
make c1 equal to the set of all states). Irrespective of the approach used, we end up
with Si ∧δN ⇒ R̂′

i+1 = S′
i+1, where R̂i+1 = ĉ1 ∧c2. Then we check the (i+1)-th step

over-approximation for intersection with ¬ϕ and IC3 continues. In this way, reusing
clauses from model M , saves a lot of effort in rediscovering these clauses for model
N .

3.2 Overview

FuseIC3 is a bidirectional reachability algorithm. It uses forward reachability to reuse
frames from a previously-checked related model, and IC3-type backward reachability
to recursively block predecessors to bad states. The algorithm description appears
in Fig. 2.

FuseIC3 takes as input the initial states Q0 and the transition relation δ for
the current model, and a safety property ϕ. The internal state maintained by the
algorithm is last invariant, last cex, and the frames R computed for the last model
verified. Initially, the state is empty. Lines 1–2 perform basic checks in an attempt
to reuse proofs from an earlier run to verify the current model. Lines 4–15 loop
until an invariant or a counterexample is found. FuseIC3 maintains a sequence of
frames S0, S1, . . . , Sk for the current model being checked. Whenever a new frame
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(a) (b)

(c) (d)

Fig. 1 Intuition behind repairing frames computed for one model by IC3, and reusing them
for checking another related model in the design space.

bool FuseIC3 (Q0, δ, ϕ)
1: if CheckInvar(Q0, δ, last invariant, ϕ) : return true

2: if SimulateCex(Q0, δ, last cex, ϕ) : return false

3: k ← 0, Sk ← Q0 # first frame is initial state

4: while true : # main FuseIC3 loop

5: while sat(Sk ∧ ¬ϕ) : # blocking phase

6: s← get-sat-model()
7: if not recursive block(s, k) :
8: last cex ← extract cex(), return false

9: k ← k + 1
10: Sk ← FrameRepair(k − 1)
11: for i← 1 to k − 1 : # propagation phase

12: for each new clause c ∈ Si :
13: if not sat(Si ∧ c ∧ δ ∧ ¬c′) : add c to Si+1

14: if Si ≡ Si+1 : # found fix-point invariant

15: last invariant ← Si, return true

frame FrameRepair (int i)
1: if not sat(Si ∧ δ ∧ ¬R′

i+1
) : return Ri+1

2: G ← FindClauses(Si, δ, Ri+1)

3: R̂i+1 ← Ri+1 \ G
4: for each clause c ∈ G :
5: ĉ← ExpandClause(Si, δ, c)
6: ĉ← ShrinkClause(Si, δ, c, ĉ)

7: R̂i+1 ← R̂i+1 ∧ ĉ

8: return R̂i+1 # repaired frame Ri+1

Fig. 2 High-level description of FuseIC3. Parts of the algorithm for typical IC3 are based on
the description in [27, 31].

Sk is introduced in line 10, the algorithm reuses a frame from R after repairing it
with FrameRepair. The repaired frame is added to Sk, which after propagation in
lines 11–15, is checked for intersection with a bad state. A typical execution of IC3



Algorithm for Checking Design Spaces 9

follows until a new frame is introduced. Upon termination, R is replaced with the
current set of frames S, and last invariant and last cex are updated accordingly.

FrameRepair takes as input an integer i. It checks if Ri+1 can be used as
is in line 1. If yes, Ri+1 is returned. Otherwise, the frame is repaired in lines 2–
7. FindClauses finds violating clauses in Ri+1. Each of these clauses is repaired
in lines 4–7 using ExpandClause and ShrinkClause. After repair, the updated
frame R̂i+1 is returned.

The models in a set are checked sequentially. When FuseIC3 is run on the first
model in the set, it reduces to running typical IC3. During propagation and when
k < |R|, only repaired clauses (from FrameRepair) and discovered clauses for the
current model are propagated. When k ≥ |R|, FrameRepair returns an empty
frame and all clauses from earlier frames take part in propagation.

3.3 Basic Checks

It is possible that the changes in design between two models are very small, and
are outside the cone-of-influence of the verification procedure. Therefore, although
the models are different, they might have the same over-approximated inductive
invariant with respect to the property being checked. A similar argument applies for
two models that fail a property. In this case, a counterexample for the first model
might be a valid counterexample for the second model. Both these checks can be
carried out in very little time as explained below. For the case when M and N have
different state variables, cone-of-influence with respect to variables in N is applied
on the invariant/counterexample before performing the checks.

Inductive Invariant. If IM is an inductive invariant for M with respect to a safety
property ϕ, it satisfies the following three conditions:

1. Q0M
⇒ IM ,

2. IM ∧ δM ⇒ I ′
M , and

3. IM ⇒ ϕ.

If model differences between M and N are small, or changes in N are outside the
cone-of-influence of IM , then N |= ϕ iff the above conditions hold for N , i.e.,

1. Q0N
⇒ IM ,

2. IM ∧ δN ⇒ I ′
M , and

3. IM ⇒ ϕ.

Counterexample Trace. If M 6|= ϕ, then IC3 generates a counterexample trace
s0, s1, . . . sk to prove satisfaction of ¬ϕ such that

1. s0 ∈ Q0M
,

2. (si, si+1) ∈ δM for i < k, and
3. sk ∈ ¬ϕ.

We simulate the counterexample trace for M on N and check if it satisfies the
above three conditions (using k + 1 sat calls). If the conditions are satisfied, the
counterexample trace is a valid trace in N , and we conclude that N 6|= ϕ.

To summarize, if changes in two subsequent models are outside the cone-of-
influence of the proofs generated by IC3, verification completes almost instantly.
The pseudo-code for these two basic checks is given in Fig. 3.
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bool CheckInvariant (Q0, δ, invariant I, ϕ)
1: if not sat(Q0 ∧ ¬I) and not sat(I ∧ δ ∧ ¬I)

and not sat(I ∧ ¬ϕ) : return true

2: else return false

bool SimulateCex (Q0, δ, trace s, ϕ)
1: if not sat(s0 ∧Q0) : return false

2: if not sat(sk ∧ ¬ϕ) : return false

3: for i← 0 to len(s) :
4: if not sat(si ∧ δ ∧ s′

i+1
) : return false

5: return true # valid counterexample

Fig. 3 CheckInvariant evaluates the last known invariant against the current model, and
returns true if invariant holds, otherwise false. SimulateCex simulates the last known coun-
terexample on the current model, and returns true if successful, otherwise, false.

FindClauses (frame S, δ, frame R)
1: for each clause ci ∈ R : # configure solver assertions

2: introduce auxiliary variable yi

3: for each literal l ∈ c′

i
:

4: add assertion ¬l ∨ yi to solver

5: G ← ∅ # set is initially empty

6: while sat(S ∧ δ, (¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yk)) :
7: α← get-sat-model()
8: for each y1, y2, . . . yk :
9: if α(yi) == ⊥ :

10: add ci to G and remove yi from sat query

11: return G # set of violating clauses

Fig. 4 FindClauses algorithm to find all violating clauses ci ∈ R such that S ∧ δ 6⇒ c′. Upon
termination, the set G contains all violating clauses.

3.4 Frame Repair

We want to find all clauses in frame Ri+1 that are responsible for the violation of
Si ∧ δN ⇒ R′

i+1. The satisfiability model is a pair of states (a, b) such that a ∈ Si,
b 6∈ Ri+1, and (a, b) ∈ δM . In other words, b is missing from some, or all clauses
in Ri+1. If all such missing states are added to clauses in Ri+1, resulting in R̂i+1,
the condition Si ∧ δN ⇒ R̂′

i+1 becomes valid and R̂i+1 can be reused in checking N .
Adding these states one-by-one requires several calls to the underlying sat solver and
is infeasible in practice (reduces to all-sat). Instead, we approximate the violating
clauses in Ri+1. The over-approximation ends up adding several states to Ri+1 that
are in the post-image of multiple states in Si. As the first step in repairing the frame,
we find all such violating clauses.

Find Violating Clauses: Let’s assume frame Ri+1 is composed of a set of clauses
C = {c1, c2, . . . cn}. There are clauses G ⊆ C such that the assertion Si ∧ δN ⇒ c′

is violated for all c ∈ G. Set G can be found by brute-forcing the assertion check for
all clauses in C. However, such an approach doesn’t scale since IC3 frames can have
thousands of clauses. Algorithm FindClauses, which is inspired by the Invariant
Finder algorithm in [15], efficiently finds all such violating clauses. The pseudo-code
for the algorithm is given in Fig. 4.
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FindClauses takes as input frame S = Si, transition relation δ = δN , and frame
R = Ri+1. Upon termination, it returns all violating clauses. An auxiliary variable yi

is introduced for each clause ci in R in line 2. Lines 3–4 are equivalent to adding the
assertion ci ⇒ yi to the solver. Lines 6–10 loop until the query in line 6 is sat. On
every iteration of the loop, there is at least one yi that is assigned false. Clauses ci

corresponding to all such yi are added to G and yi is removed from the query. When
the query becomes unsat, G contains all violating clauses in R, and is returned. In
practice, multiple yi are assigned false which helps terminate the loop faster.

Theorem 1 Given the current frame sequence S, transition relation δ, and frame
sequence to reuse R, the FindClauses algorithm (Fig. 4) returns all violating
clauses ci ∈ R such that S ∧ δ 6⇒ c′

i.

Proof For each clause ci ∈ R, we introduce an auxiliary variable yi. For each literal
l ∈ c′

i, we add the assertion ¬l ∧ yi to the solver. Let’s assume ci = l1 ∨ l2 ∨ . . . ∨ lk.
We add asertions ¬l′1 ∨ yi, ¬l′2 ∨ yi, . . . , ¬l′k ∨ yi to the solver. Therefore, the overall
assertion for clause ci added is (¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi). Now

(¬l′1 ∨ yi) ∧ (¬l′2 ∨ yi) ∧ . . . ∧ (¬l′k ∨ yi)

⇔ (¬l′1 ∧ ¬l′2 ∧ . . . ∧ ¬l′k) ∨ yi

⇔ ¬(l′1 ∨ l′2 ∨ . . . ∨ l′k) ∨ yi

⇔ ¬c′
i ∨ yi

⇔ c′
i ⇒ yi

Therefore, the operation performed in lines 1–4 of FindClauses is equivalent to
adding the assertion c′

i ⇒ yi for each clause ci ∈ R. Initially, the set of violating
clauses G is empty. For the sake of argument, let’s assume R contains only one
clause c1. If c1 = l1 ∨ l2 ∨ . . .∨ lk, then the assertions added to the solver are ¬l′1 ∨y1,
¬l′2 ∨ y1, . . . , ¬l′k ∨ y1. Moreover, the sat query of line 6 adds the assertions S ∧ δ,
and assumes ¬y1. Combined, these assertions are equivalent to (S ∧ δ ∧ ¬y1 ∧ ¬c′

1)
or (S ∧ δ ∧ ¬y1 ∧ ¬R′). There are two cases to consider. If the assertion is

1. unsat: The post-image of all states in S is in R, and c1 is not a violating clause.
Therefore, FindClauses terminates and returns G = ∅.

2. sat: We know that the sat model for S ∧ δ ∧ ¬y1 ∧ ¬R′ is a pair of states (a, b′)
such that a ∈ S, (a, b′) ∈ δ, but b′ 6∈ R′, and an assignment to y1. Since R

contains only one clause, b′ 6∈ R′ if and only if b′ 6∈ c′
1. In other words, none of

the literals in c′
1 match the literal assignments in state b′. Therefore, ¬l′1, ¬l′2, . . . ,

¬l′k are true, which makes ¬c′
1 true. The only possible assignment to y1 is false.

Therefore, since c1 is a violating clause, the corresponding auxiliary variable is
assigned false. Clause c1 is added to G in lines 9–10, and the sat query is updated.

Therefore, upon termination G = ∅ or G = {c1} if S ∧ δ ∧ ¬R′ is unsat and sat, re-
spectively. The argument for R containing only one violating clause can be extended
to multiple clauses. If a state b′ in the sat model is missing from multiple clauses in
R, their corresponding auxiliairy variables get assigned to false, and all such clauses
are added to G and the query updated. On every iteration of the loop in lines 6–10,
a new state pair is found until all violating clauses have been removed from R and
added to G. Therefore, upon termination, set G contains all violating clauses ci ∈ R

such that S ∧ δ 6⇒ c′
i. ⊓⊔
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ExpandClause (frame S, δ, clause c)
1: v ← all primed variables in δ
2: l← all variables in clause c′

3: B ← v\l # variables not in clause c
4: ĉ← c # initially ĉ = c
5: while |B| > 0 and sat(S ∧ δ ∧ ¬ĉ′) :
6: α← get-sat-model()
7: randomly pick any b′ ∈ B
8: if α(b′) == ⊤ : add b to clause ĉ
9: else if α(b′) == ⊥ : add ¬b to clause ĉ

10: remove b′ from B
11: if sat(S ∧ δ ∧ ¬ĉ′) : return ∅

12: return ĉ # expanded clause; S ∧ δ ⇒ ĉ′

Fig. 5 ExpandClause algorithm to add literals to violating clause c such that S ∧ δ ⇒ ĉ′.
Upon termination, an empty clause is returned if expansion fails.

After discovering all violating clauses, FuseIC3 attempts to expand them, by
adding literals, before reusing Ri+1 to check model N . In the trivial case, each
violating clause can be removed from Ri+1. However, doing this is quite wasteful.
For example, consider a frame in which all clauses are violating. Reusing this frame
entails restarting IC3 from an empty frame, a scenario we want to avoid. Instead,
we rely on efficient use of the sat solver to over-approximate the violating clauses.
Expand Violating Clauses: A clause c is violating if none of its literals match the
literals in state b (recall the model (a, b) to the sat query Si ∧ δN ⇒ R′

i+1). If any
literal from b is added to c, resulting in ĉ, then b ∈ ĉ. Fundamentally, we want to add
literals to clause c without actually enumerating all such b such that the assertion
Si ∧ δN ⇒ ĉ′ holds. A literal can be added as is, or in its negated form. Adding both
makes the assertion trivially valid. For example, consider a system with variables
x, y, z, and a violating clause c = (x ∨ y). Our aim is to add states to c. Either z
or ¬z can be added to c, but not both. However, deciding what to add to make
the assertion valid is beyond the scope of a sat solver. Instead, we use an efficient
randomized algorithm, ExpandClause, to add literals to clause c. The pseudo-code
for the algorithm is given in Fig. 5.

ExpandClause takes as input frame S = Si, transition relation δ = δN , and the
violating clause c ∈ Ri+1. Initially, ĉ = c. Lines 1–3 find all variables that are missing
from c and store them in set B. The loop in lines 4–9 is repeated until set B becomes
empty, or the query S∧δ ⇒ ĉ′ becomes valid. In the latter case, enough literals have
been added to expand c and the algorithm can terminate. From the sat model α,
randomly pick an assignment to a variable in B. If the assignment is true, add the
variable as is to ĉ, otherwise, negate variable and add to ĉ. The added variable is
removed from B and the loop continues. When all possible variables have been added
to ĉ and the assertion is still sat, return ĉ to be the empty clause (c = true, or set
of all states) in line 10.

Theorem 2 Given the current frame sequence S, transition relation δ, and violat-
ing clause c, the ExpandClause algorithm (Fig. 5) weakens violating clause c to
generate clause ĉ such that Si ∧ δ ⇒ ĉ′.

Proof In line 3, B contains all primed variables not in clause c′. Initially, ĉ′ = c′. The
sat model of the query S ∧ δ∧ ¬ĉ′ is pair of states (a, b′) such that a ∈ S, (a, b′) ∈ δ,
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ShrinkClause (frame S, δ, clause c, clause ĉ)
assert(not sat(S ∧ δ ∧ ¬ĉ′))

1: v ← {literals in ĉ} \ {literals in c}
2: c̃← c
3: for each l ∈ v :
4: g ← v \ l # drop literal l
5: if not sat(S ∧ δ ∧ ¬c′,¬g′) :
6: v ← {literal j | j′ ∈ get-unsat-assumptions()}

7: return c̃← c̃ ∨
∨

{literals in v}

Fig. 6 ShrinkClause algorithm to remove excess literals from clause c while maintaining
S ∧ δ ⇒ c′.

but b′ 6∈ ĉ′. We know that b 6∈ ĉ if none of the literals in ĉ match a literal in state b.
If we pick a literal in b and add it to ĉ, then b ∈ ĉ. The variable corresponding to the
added literal is removed from B and the loop repeats. On every iteration of the loop
in lines 5–10, multiple states are added to ĉ. The loop terminates when S ∧ δ ∧ ¬ĉ′

is unsat, or B is empty. In the former case, ExpandClause returns ĉ, while in the
latter, c is weakened to ĉ = true (all states are reachable from S) and returned. ⊓⊔

Shrink Expanded Clauses: Due to the randomized nature of ExpandClause, we may
end up adding more states than required to the expanded clauses. As a last step in
repairing the frame, we remove the excess states added from all such clauses, albeit,
maintaining the over-approximation. FuseIC3 uses unsat assumptions generated in
the proof for Si ∧ δ ⇒ ĉ′ to shrink clause ĉ to c̃. The ShrinkClause algorithm
strengthens ĉ by dropping a subset of the newly added literals from ĉ. The pseudo-
code for the algorithm is given in Fig. 6.

ShrinkClause takes as input frame S = Si, transition relation δ = δN , violating
clause c, and the expanded clause ĉ. Set v contains all literals that were added to
clause c by ExpandClause to generate clause ĉ. Lines 2–5 loop until enough literals
have been dropped from ĉ such that the Si ∧δN ∧¬c′ ∧¬v′ is valid. On each iteration
of the loop, a literal l to drop from v is chosen. If the assertion is unsat, we can
successfully drop l from v, and replace v with the unsat assumption literals in the
query. However, if the assertion is sat, l is a required literal in v and needs to be
retained, so we try dropping another literal.

Theorem 3 Given the current frame sequence S, transition relation δ, and violating
clause c, the ShrinkClause algorithm (Fig. 6) strengthens clause ĉ to generate
clause c̃ such that S ∧ δ ⇒ c̃′ and |c̃| ≤ |ĉ|.

Proof In line 1, v contains literals added to weaken c to ĉ, i.e., all literals that are
added to c such that S ∧ δ ∧ ¬ĉ′ is unsat. Initially, c̃ = c. On every iteration of
the loop in lines 3–6, we pick a literal l to drop from ĉ. If S ∧ δ¬c′ ∧ ¬g′ is sat,
where g = v \ l, then l is a required literal and we try dropping another literal.
If S ∧ δ¬c′ ∧ ¬g′ is unsat, we extract the unsat core of the assumption literals.
The unsat core is not necessarily minimal. v is made equal to the unsat assumption
literals and the loop repeats. Upon termination, v contains the minimum literals
that when added to c to give c̃ are enough to ensure that S ∧ δ ⇒ c̃′. ⊓⊔

The violating clause may appear in future frames in R (due to the propagation
phase when checking M). The modification is reflected in all occurrences of the
clause. All such violating clauses in Ri+1 are repaired.
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Theorem 4 Given the current frame sequence Si and transition relation δ for model
N , and frame sequence Ri+1 for model M , the FrameRepair algorithm (Fig. 2)
repairs frame Ri+1 to R̂i+1 such that Si ∧ δ ⇒ R̂′

i+1.

Proof The proof follows from Theorems 1, 2, and 3. All violating clauses in Ri+1

are found by the FindClauses algorithm. (Theorem 1). The ExpandClause algo-
rithm (Theorem 2 weakens every violating clause c ∈ Ri+1 to generate clause ĉ. The
expanded clause ĉ is then strengthened to clause c̃ by the ShrinkClause algorithm
(Theorem 3). The repaired clause is added R̂i+1. Therefore, upon termination, the
FrameRepair algorithm returns repaired frame R̂i+1 such that Si ∧ δ ⇒ R̂′

i+1. ⊓⊔

The repaired frame R̂i+1 is added to the set of frames for N at step i + 1.
Therefore, Si+1 = R̂i+1. Clauses are propagated from frames Sj , for j ≤ i, to Si+1,
which is then checked for intersection with bad states, and the normal execution of
blocking and propagation phases of IC3 follows.

4 Organizing the Design Space

If M and N have similar reachable states, FuseIC3 can reuse most of the reachability
clauses learned for M when verifying N . However, determining models that have
similar states is hard. The situation worsens when we are dealing with design spaces
containing hundreds of models. We use two preprocessing heuristics to organize the
design space: partially order the models, and group similar properties, that improve
the performance of FuseIC3. We use locality-sensitive hashing [1] to order models in
the design space, and group properties. We assume that the transition relation δ, for
a model M , is a CNF formula over current- and next-state variables.

4.1 Hashing Techniques and Similarity Measure

Traditional hashing techniques map data from one domain to another. An ideal hash
function h is an injective function that maps arbitrary sized data to data of fixed
size. For example, a mapping from a string of characters to a 32-bit integer. Formally,
H : U → V , where U and V are the domain of input objects, and fixed size hash
value, respectively. Ideally, for two objects X,Y ∈ U ,

1. H(X) = H(Y ) for X = Y , and
2. H(X) 6= H(Y ) for X 6= Y .

A good hash function produces a large change in output for small changes in input.
Hashing techniques find widespread use in databases, cryptography, and DNA se-
quencing [14] to find duplicates. Two objects X and Y are same, or equivalent, if
H(X) = H(Y ). However, traditional hashing techniques do not allow to find objects
that are similar, e.g., the words “color” and “colors” are similar, but not same; a
hash function will produce vastly different outputs for these two inputs.

Locality-sensitive hashing (LSH) [1] is a technique that finds similar objects.
LSH hashes inputs such that similar items map to the same bucket. In contrast to
traditional hashing, LSH aims to maximize the probability of a collision for similar
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items. An LSH scheme for a universe of objects U , and similarity function S : U×U →
[0, 1] is a probability distribution over a set H of hash functions such that

PrH∈H[H(X) = H(Y )] = S(X,Y ) for any X,Y ∈ U

Hash collisions capture the similarity between two objects. Possible measures
for the similarity function include Euclidean distance, Jaccard similarity, Hamming
distance, edit distance, etc. For our heuristic to partially order models in the design
space, we use LSH with Jaccard distance as the similarity function. The Jaccard
similarity coefficient for two sets X and Y is given by

S(X,Y ) = J(X,Y ) =
|X ∩ Y |

|X ∪ Y |

The goal of LSH is to find all similar objects in U based on their Jaccard similarity.
The MinHash algorithm [11] is used to estimate the Jaccard similarity coefficient.
Assuming that objects correspond to text documents, for every document Di, we
compute k minhash signatures using random hash functions. A minhash signature
for a document D using a random hash function h is given by

hmin(D) = min({h(x) | x ∈ D})

The signatures for each of the n documents are then divided into b bands of r rows
each such that b ∗ r = k. Two documents are similar if they share the exact same
minhash signature on all rows of atleast one band. Figure 7 shows locality-sensitive
hashing on a set of five documents. D1 and D3 are similar because they have the
exact same minhash signatures for all rows in band 1. Documents D2 and D4 are
also similar as they have signatures in all rows of band 5.

Fig. 7 Locality-sensitive hashing to find similar documents. D1 and D3, and D2 and D4 are
similar from bands 1 and 5, respectively because they have the exact same minhash signatures
on all rows of at least one band.

The probability that two documents A and B share the same signatures on all
rows of atleast one band is given by 1 − (1 − J(A,B)r)b and can be estimated using
the step function approximation ( 1

b
)

1

r [37]. To estimate the values of b and r for
k = 400 and a Jaccard similarity threshold of t = 0.9, we have

(1

b

)

1

r = t ⇒
( 1

b = 20

)

1

r = 20 = 0.86 ≈ 0.9
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Locality-sensitive hashing with minhash signatures will map documents that have
their Jaccard coefficient higher than t to the same bands with high probability. For
more details on locality-sensitive hashing with minhash we refer the reader to [37].
An important point to note is that LSH gives an O(n) approximate algorithm to
find similarities, compared to the quadratic algorithm for pairwise similarity. For
our heuristics, the k hash functions for minhash signatures are generated by Mur-
murHash3 [2] with different seed values.

4.2 Partial Model Ordering (MO)

Let model-set M = {M1,M2, . . . ,Mn} consist of related models of a design space.
Locality-sensitive hashing is a favorable technique to find similar models in the design
space; there is a high probability that models contain the same transition relation
clauses. If the CNF formula is expressed in DIMACS CNF format2 then a clause can
be interpreted as a string of integers separated by whitespace and terminated with
0, and the CNF formula is a set of strings. Therefore, the transition relation δMi

can be viewed as a text document Di containing strings representing clauses. Our
LSH routine takes as input a set of documents corresponding to every model in the
model-set. The heuristic works as follows:

1. Find groups of similar models using locality-sensitive hashing.
2. Consecutively check models in a group using FuseIC3 with a property ϕ.

The different groups are checked in random order. We use a Jaccard similarity coef-
ficient of 0.9 for partial model ordering.

4.3 Property Grouping (PG)

Model checking techniques are computationally sensitive to the cone-of-influence
(COI) size. Therefore, grouping properties based on overlap between support vari-
ables, or clauses containing support variables, in the COI of the property can speed
up checking. Property affinity [12, 13] based on Jaccard similarity can compare the
degree of overlap between COI. We generalize affinity to measure overlap between
clauses. For two properties, ϕi and ϕj , let Ci and Cj , respectively, denote the clauses
containing support variables in the cones of influences of the properties with respect
to a model M . The affinity αij is then

αij =
|Ci ∩ Cj |

|Ci| + |Cj | − |Ci ∩ Cj |

If αij is larger than a given threshold, then properties ϕi and ϕj are conjoined
together. The model M is then checked against ϕi ∧ ϕj . If verification fails, the
violated property is removed from the conjunction, and the remaining property is
checked. The heuristic works as follows:

1. Find groups of similar properties using locality-sensitive hashing (approximate).
2. Conjoin similar properties that have affinity larger than a threshold (exact).

2 http://www.satcompetition.org/2009/format-benchmarks2009.html
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3. Consecutively check conjoined properties using FuseIC3 with a model M .

The document to hash consists of clauses containing support variables, and the
safety property clauses. The groups are checked in random order. We use a Jaccard
similarity coefficient of 0.9 for finding similar properties, and a property affinity
threshold of 0.95 for grouping properties.

5 Experimental Analysis

In this section, we report on our extensive experimental analysis with FuseIC3. We
summarize the setup used for the experiments, briefly detail our benchmarks, and
end with experimental results.

5.1 Setup

FuseIC3 is implemented in C++ and uses MathSAT5[18] as the underlying SMT
solver. It takes SMV models or AIGER files as input. The IC3 part of FuseIC3 is
based on the description in [27] and ic3ia.3 We compare the performance of FuseIC3
with typical IC3 (typ), and incremental IC3 (inc). The algorithm for incremental IC3

is part of IBM’s RuleBase model checker[4]. We implemented inc based on the de-
scription in [15] to the best of our understanding. We study the impact of partial
model ordering (MO) and property grouping (PG) heuristic on the performance of
FuseIC3. Locality-sensitive hashing using minhash signatures is implemented as a
preprocessing Python script. All experiments were performed on Iowa State Univer-
sity’s Condo Cluster comprising of nodes having two 2.6GHz 8-core Intel E5-2640
processors, 128 GB memory, and running Enterprise Linux 7.3. Each model-checking
run had exclusive access to a node, which guarantees that no resource conflict with
other jobs will occur.

5.2 Benchmarks

We evaluate FuseIC3 over a large collection of challenging benchmarks. The bench-
marks are derived from real-world case studies and modified benchmarks from the
Hardware Model Checking Competition (HWMCC) [6] 2015.

5.2.1 Air Traffic Controller (ATC) Models

The benchmark consists of a large set of 1,620 real-world models representing differ-
ent possible designs for NASA’s NextGen air traffic control (ATC) system[29]. The
set of models are generated from a contract-based, parameterized nuXmv model.
Each model is checked against 34 safety properties. The entire evaluation consists of
34 model-sets (one for each property) containing 1,620 models.

3 https://es-static.fbk.eu/people/griggio/ic3ia/
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5.2.2 Selected Benchmarks from HWMCC 2015

We consider a total of 548 benchmark models from the single safety property track[6].
Of the 548, 110 models are solved using our implementation of IC3 within a timeout
of 5 minutes. To create a model-set, we generate 200 mutations of each of the 110
benchmarks. The original model is mutated to only modify the transition system
of the cone-of-influence reduced model, and not the safety property implicit in the
AIGER file; 1% of the assignments are randomly modified. An assignment of the
form g = g1 ∧ g2 is selected with probability 0.01 and changed to g = 0, g = 1,
g = ¬g1 ∧ g2, g = g1 ∧ ¬g2, g = ¬g1 ∧ ¬g2, g = g1 ∧ g2, g = g1, g = ¬g1, g = g2,
or g = ¬g2, with equal probability. Therefore, the full evaluation consists of 110
model-sets, each consisting of one property and 200 models.

5.2.3 Wheel Braking System (WBS) Models

The benchmark consists of seven real-world models representing possible designs for
the Boeing AIR6110 wheel braking system[8]. Each model is checked against ∼250
safety properties. However, the properties checked for each model are not the same.
We evaluate FuseIC3 using this benchmark to measure performance when a model
is checked against several related or similar properties. Each model is checked using
a timeout of 120 minutes.

5.3 Results

5.3.1 Air Traffic Controller (ATC) Models

Each of the 34 model-sets are checked using a timeout of 720 minutes per algo-
rithm. The models in a set are checked in random order, and then using the model
ordering (MO) heuristic. We experiment with ten different random orderings and
report averaged results. Table 1 gives a summary of the results. FuseIC3 is median
1.75× (average 5.48×) faster compared to typical IC3, and median 1.34× (average
3.67×) faster compared to incremental IC3. On the other hand, incremental IC3 is
median 1.29× (average 1.3×) faster than typical IC3. The model ordering heuristic
improves the performance of FuseIC3 making it median 2.23× (average 6.89×) and
1.87× (4.47×) faster than typical and incremental IC3, respectively. We use a value
of k = 20, 000 with b = 500, and r = 40 for the heuristic. It takes ∼30 minutes to
find a partial order among 1,620 models. The impact of model ordering is clearly
evident: two similar models share the reachable state space, and FuseIC3 is able to
reuse several reachable state clauses.

Fig. 8a shows time taken by the algorithms on each model-set. FuseIC3 is almost
always faster than typical IC3, and incremental IC3. However, for model-sets (corre-
sponding to property IDs 4 and 18–22) containing models that trivially satisfy/falsify
a property, typical IC3 is faster; both incremental IC3 and FuseIC3 require a certain
overhead in extracting information from the last checker run. FuseIC3 tries minimiz-
ing the time spent in exploring the common state space between models. In terms
of the IC3 algorithm, this relates to time spent in finding bad states and blocking
them at earlier steps (blocking phase). Fig. 8b shows time taken by each algorithm in
blocking discovered bad states. FuseIC3 spends considerably less time in the blocking
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Table 3 Comparison between typical IC3, Incremental IC3, and FuseIC3 for AIR6110 Wheel
Braking System (time is in minutes).

Model
Typical IC3 Incremental IC3 FuseIC3 FuseIC3 + PG

Time Time v/s typ Time v/s typ v/s inc Time v/s typ v/s inc

M1 4.36 5.02 0.87 3.72 1.17 1.35 2.03 2.14 2.47
M2 15.78 16.65 0.95 14.80 1.07 1.13 5.64 2.79 2.95
M3 12.43 13.48 0.92 11.24 1.11 1.20 4.34 2.86 3.10
M4 12.45 13.66 0.91 11.09 1.12 1.23 4.67 2.66 2.92
M5 15.92 17.04 0.93 14.71 1.08 1.16 6.03 2.64 2.82
M6 16.85 17.79 0.95 17.04 0.99 1.04 6.57 2.56 2.70
M7 12.95 13.67 0.95 12.12 1.07 1.13 4.59 2.82 2.97

90.73 97.31 0.95 84.72 1.11 1.20 34.57 2.66 2.92
(total) (total) (median) (total) (median) (median) (total) (median) (median)

safety properties were distributed in 73 groups, and each group was checking against
a model. The PG heuristic improves model checking performance making FuseIC3
upto 2.86× faster than typical IC3, and upto 3.10× faster than incremental IC3.
The boost in performance is primarily due to the reduced number of model checking
runs for groups compared to checking each property individually.

6 Conclusions and Future Work

FuseIC3, a SAT-query efficient algorithm, significantly speeds up model checking of
large design spaces. It extends IC3 to minimize time spent in exploring the state
space in common between related models. FuseIC3 spends less time during the block-
ing phase (Fig. 8b and Fig. 9b) due to success in reusing several clauses, has to learn
fewer new clauses, and makes fewer SAT queries. The smallest salvageable unit in
FuseIC3 is a clause; due to this granularity, FuseIC3 is able to selectively reuse
stored information and is faster than the state-of-the-art algorithms that rely on
reusing a coarser CNF invariant [15]. FuseIC3 is industrially applicable and scalable
as witnessed by its superior performance on a real-life set of 1,620 NASA air traffic
control system models (achieving an average 5.48× speedup), and benchmarks from
HWMCC 2015 (achieving an average 3.18× speedup). Despite spending significant
time in learning new clauses for the Boeing wheel braking system models, FuseIC3 is
still faster than the previous best algorithm, typical IC3, when checking properties
in random order; FuseIC3’s performance improves by ordering models in a set, and
checking similar properties together.

Ordering of models and properties in the design space improves the performance
of FuseIC3, much like variable ordering in BDDs. Heuristics for optimizing model
ordering are a promising topic for future work. Faster hashing and cone-of-influence
computation techniques will greatly benefit faster ordering of models and property
grouping. Preprocessing the models and properties, based on knowledge about the
design space, before checking them with FuseIC3 may remove redundancies in the
design space. Online property grouping algorithms [24] can by extended to dynami-
cally reorder properties based on information reuse and semantic information learned
during a model checking. Exploring synergies between offline and online property
grouping algorithms is a promising research direction. We plan to extend FuseIC3
to checking liveness properties by using it as a safety checker[19]. The variation in
the COI-overlap across properties for a model impacts the performance of FuseIC3



Algorithm for Checking Design Spaces 23

understanding the relationship between COI variations and clause reuse by FuseIC3
is future work. We also to plan to investigate extending FuseIC3 to reuse interme-
diate results of SAT queries, generalized clauses, and IC3 proof obligations across
models. Finally, since checking large design spaces is becoming commonplace, we
plan to develop more model-set benchmarks and make them publicly available.

Acknowledgements Thanks to NSF CAREER Award CNS-1664356 for supporting this
work. We thank Armin Biere for discussion and feedback on the use of hashing to find the
exact same models in a design space.
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19. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In:
FMCAD, pp. 52–59 (2012)

20. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with snip. (STTT) pp. 1–24 (2012)

21. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: Foundations for verifying variability-intensive sys-
tems and their application to ltl model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

22. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: ICSE, pp. 321–330 (2011)

23. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software prod-
uct lines. In: ICSE, pp. 335–344 (2010)

24. Dureja, R., Baumgartner, J., Ivrii, A., Kanzelman, R., Rozier, K.Y.: Boost-
ing verification scalability via structural grouping and semantic partitioning of
properties. In: Formal Methods in Computer Aided Design (FMCAD), pp. 1–9
(2019). doi: 10.23919/FMCAD.2019.8894265

25. Dureja, R., Rozier, K.Y.: FuseIC3: An Algorithm for Checking Large Design
Spaces. In: Proceedings of the 17th International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’17, pp. 164–171. FMCAD Inc, Austin, TX
(2017)

26. Dureja, R., Rozier, K.Y.: More Scalable LTL Model Checking via Discovering
Design-Space Dependencies (D3). In: D. Beyer, M. Huisman (eds.) Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 309–327.
Springer International Publishing, Cham (2018)

27. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property
Directed Reachability. In: FMCAD, pp. 125–134 (2011)

28. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: CADE, pp. 236–254 (2000)

29. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: Automated air traffic control design space exploration. In: CAV (2016)

30. Goldberg, E., GÃĳdemann, M., Kroening, D., Mukherjee, R.: Efficient verifica-
tion of multi-property designs (The benefit of wrong assumptions). In: Design,
Automation Test in Europe (DATE), pp. 43–48 (2018). doi: 10.23919/DATE.
2018.8341977

31. Griggio, A., Roveri, M.: Comparing Different Variants of the IC3 Algorithm for
Hardware Model Checking. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 35(6), 1026–1039 (2016)



Algorithm for Checking Design Spaces 25

32. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H.: On modelling and verifying railway interlockings: Tracking train lengths.
Science of Computer Programming 96(3) (2014)

33. Marques-Silva, J.: Interpolant learning and reuse in sat-based model checking.
Theoretical Computer Science 174(3), 31 – 43 (2007)

34. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing dif-
ferent functional allocations in automated air traffic control design. In: FMCAD
(2015)

35. McMillan, K.L.: Interpolation and sat-based model checking. In: W.A. Hunt,
F. Somenzi (eds.) Computer Aided Verification, pp. 1–13. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2003)

36. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP—B. In:
HVC (2013)

37. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, New York, NY, USA (2011)

38. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Incremental bounded model checking for embedded software. Formal Aspects of
Computing (2016)

39. Somenzi, F., Bradley, A.R.: IC3: Where Monolithic and Incremental Meet. In:
FMCAD, pp. 3–8 (2011)

40. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: For-
mal Methods in Computer-Aided Design, pp. 1–8 (2009). doi: 10.1109/FMCAD.
2009.5351148

41. Yang, B., Bryant, R.E., O’Hallaron, D.R., Biere, A., Coudert, O., Janssen, G.,
Ranjan, R.K., Somenzi, F.: A performance study of bdd-based model checking.
In: FMCAD, pp. 255–289 (1998)

42. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: ICSM,
pp. 115–124 (2009)


