
A Hierarchy of Monitoring Properties for Autonomous Systems

Sebastian Schirmer and Christoph Torens and Johann C. Dauer

DLR German Aerospace Center, Institute of Flight Systems, Dept. Unmanned Aircraft, Braunschweig, Germany

Jan Baumeister and Bernd Finkbeiner

CISPA Helmholtz Center for Information Security, Reactive Systems Group, Saarbrücken, Germany

Kristin Y. Rozier

Iowa State University, Laboratory for Temporal Logic, Iowa, USA

Monitoring capabilities play a central role in mitigating safety risks of current, and especially

future autonomous aircraft systems. These future systems are likely to include complex

components such as neural networks for environment perception, which pose a challenge for

current verification approaches; they are considered as black-box components. To assure that

these black-boxes comply with their specification, they must be monitored to detect violations

during execution with respect to their input and output behaviors. Such behavioral properties

often include more complex aspects such as temporal or spatial notions. The outputs can also be

compared to data from other assured sensors or components of the aircraft, making monitoring

an integral part of the system, which ideally has access to all available resources to assess the

overall health of the operation. Current approaches using handwritten code for monitoring

functions run the risk of not being able to keep up with these challenges. Therefore, in this

paper, we present a hierarchy of monitoring properties that provides a perspective for overall

health. We also present a categorization of monitoring properties and show how different

monitoring specification languages can be used for formalization. These monitoring languages

represent a higher abstraction of general-purpose code and are therefore more compact and

easier for a user to write and read, and we can validate their implementations independently

from the systems they reason about. They improve the maintainability of monitoring properties

that is required to handle the increased complexity of future autonomous aircraft systems.

I. Introduction
Future autonomous aircraft systems promise to support a multitude of applications such as cargo transportation,

inspection flights, and urban air mobility. These business cases depend on a high degree of automation to work.

Interestingly, however, the performance of the automation functions is no longer the main concern, since well-performing

vision-based autonomous flying systems already exist; instead the challenge lies in ensuring the safety of these functions

during operation [1]. To safely bound the behavior of such a complex automation function, ASTM International proposes

a run-time assurance architecture [2], simplified in Figure 1. At its core lies a safety monitor that switches to an assured

recovery control function when it detects a violation of a safety property. Here, ASTM defines assured as an “attribute

of an entity for which sufficient evidence exists to demonstrate that an acceptable level of rigor has been met” [2]. These

safety properties can range from simple threshold checks to more complex properties that include temporal and spatial

aspects. Further, meaningful safety properties often compare outputs of a monitored function to other assured sensors or

components of the aircraft, making monitoring an integral part of the system that requires a holistic system perspective.

Since current approaches using handwritten code for monitoring functions involve writing specialized code each

time that can be tricky to validate, and run the risk of not being able to keep up with increased system complexity,

we promote the use of standardized, formal monitoring specification languages in this paper. Specification languages

directly support notions like time and, therefore, allow system designers to concisely formalize more complex monitoring

properties like temporal properties. They are easier to read and write than lower-level code, present opportunities

for independent validation and re-use, and can serve as inputs to verified engines that generate the lower-level code

automatically. Hence formal specifications tend to be less error-prone and easier to maintain. Further, based on a

formalized specification that consists of properties to be monitored, several existing tools can automatically generate

monitor implementations that come with additional proven guarantees, such as bounds on the memory consumption.

In order to motivate the use of such a monitoring specification language, we first report on work that successfully

1

applied monitoring based on specification languages. Next, we present a hierarchy of monitoring properties that ranges

from low-level sensor properties to high-level operation properties, giving a holistic perspective on possibilities for

system monitoring. Further, we categorize different types of monitoring properties and showcase different monitoring

specification languages. Finally, we discuss the advantages and disadvantage of using such formal languages.

Related Work: Aerospace Regulations

Aviation standards and regulations offer a perspective on target systems that informs their monitoring. For instance,

Aerospace Recommended Practice (ARP) 4754A [3] from SAE International is the guidelines document for development

of civil aircraft and systems. Additionally, SAE International’s ARP4761 [4] provides guidelines for conducting the

safety assessment process on civil airborne systems and equipment. The terms used in both documents for developing

an aircraft as well as performing a safety assessment on the different process levels are item, system, and aircraft. An

item, is one or more hardware and/or software elements treated as a unit. An item is the lowest level of abstraction

during development. A system is a combination of inter-related items arranged to perform a specific function. A system

therefore represents a higher abstraction level than an item. The aircraft is the largest entity and therefore the highest

abstraction level in the development process of traditional aviation. Another important aspect in this context, which

is required between these process levels, is establishing bidirectional traceability. Requirements must be traced to

functions and systems as well as verification steps. As a result, it makes sense to organize runtime monitoring in a

similar hierarchy, considering these development process levels and respecting the required traceability.

Another regulatory document, the Jarus Specific Operation Safety Assessment (SORA) [5] provides guidelines for

conducting safety assessments of the recently-introduced specific categories of aircraft defined by the European Union

Aviation Safety Agency (EASA). The relevant term introduced in SORA is operation. The idea is that the operation can

be safe, even if the aircraft is not. For example, we consider a drone that is capable of photo and video documentation.

The drone is robust, but there is a possibility that every thousand hours the system will fail and the drone will fall to the

ground. From a certification perspective, the aircraft is not safe. However, the operation may be safe if flights only

occur in unpopulated areas, so the operation is therefore at an even higher level of abstraction than the aircraft.

The above-mentioned standards do not specifically address autonomy, such as adaptations to regulations for

certification of aerospace systems incorporating different levels of autonomy [6]. However, in the context of autonomy,

artificial intelligence, and machine learning in particular, EASA has recently published new guidance documents [7–10].

This is the first guidance document for the certification of machine learning (ML). There are four building blocks for

assuring the safety of ML components. Via safety assessments, learning assurance, and AI explainability, the safety

of the ML components can achieve certification. However, it is not completely possible to assure safety. As a result,

monitoring is necessary for further safety assurance. We can meet several objectives inside this guidance document

by monitoring aspects of input data. For example, one of these building blocks is called AI Safety Risk Mitigation.

Basically, this requires monitoring the input and output of the ML component for unsafe actions in order to mitigate risk,

similar to recovery control function in ASTM F3269-21. Further details on the analysis of monitoring aspects in the

standard appear in [11].

ASTM F3269-21 not only describes a reference architecture for assuring the safety of black-box systems, or systems

External Data

Safety Monitor

Complex Function

Recovery Control Function(s)

Switch

Fig. 1 A simplified version of the run-time assurance architecture proposed by ASTM F3269-21 to safely bound

a complex function using a safety monitor.

2

that are too complex to comply to traditional verification standards, but also introduces aspects of monitor coverage,

recovery function coverage, and run-time assurance system coverage. These aspects are required to guarantee that the

implemented architecture covers all critical tasks.

All of these standards provide guidance on what a monitor must achieve, but none provides guidance on how

a monitor should be implemented. Therefore, we discuss the advantages and disadvantages of formal specification

languages and how an implementation based on formal specifications addresses several of the mentioned concerns. The

research field of Runtime Monitoring is also referred to as Runtime Verification (RV). For more information on this field,

see [12], which classifies RV tools within a high-level taxonomy of concepts. Comparatively, this paper provides a

more concrete, domain-specific perspective on specification languages for runtime monitoring in aviation.

II. Runtime Monitoring Applied to Larger Cyber-physical Systems
We highlight three works that have successfully applied monitoring specification languages for developing and

assuring the safety of larger cyber-physical systems.

R2U2 Framework

R2U2∗ was first designed for the NASA SwiftUAS which is a 13-foot-wingspan, all-electric experimental platform

based upon a high-performance sailplane to monitor requirements derived from National Aeronautics and Space

Administration (NASA) and Federal Aviation Administration (FAA) processes and standards [13]. R2U2 is named

after the requirements it is designed to uphold [14] — a Responsive, Realizable, and Unobtrusive Unit dedicated to

monitoring a safety-critical cyber-physical system (CPS). The requirements ranged from value checks, over cross checks,

to flight rules.

Figure 2 gives a R2U2 tool chain overview that receives a specification of these requirements in form of a temporal

logic formula and a Bayesian Network. The temporal logic formula represents the monitor module and the Bayesian

Network the consecutive health reasoning module that uses monitor outputs. Both modules are synthesized on an FPGA

and integrated into the CPS. As temporal logic, a variant of Linear Temporal Logic (LTL) called Mission-time LTL [15]

(MLTL) is supported. LTL is propositional logic extended by temporal operators that allow to reason over sequences of

system events. For instance, the LTL formula cmd ∧ next cmd represents that a cmd event is expected in the current

step and another cmd event is expected in the next step, the LTL formula ¬dangerous_cmd until alt ≥ 200 <

states that no dangerous_cmd shall be given until an altitude of more than 200 meters is reached, the LTL formula

�(vel<10 m/s) states that the velocity shall always be smaller than 10 m/s, and ♦ land_cmd states that eventually a

landing command shall be given. The latter property is rather vague and can always be extended to a trace that satisfies

the property. This can be bound using Mission-time LTL which adds time bounds � = [C, C′] to the LTL operators

where C, C′ ∈ N0. For instance, ♦[0,30] land_cmd states that eventually within 30 time units the landing command must

eventually be given to satisfy the property. Using these operators, the requirements derived from NASA and FAA

documents could be compactly and rigorously expressed. For instance, the flight rule “after receiving a command (cmd)

for takeoff, the SwiftUAS must reach an altitude of 600 ft within 40 s” is stated as:

�((cmd = takeoff) → ♦[0,40] (alt ≥ 600)).

Safe Operation Monitoring with RTLola

In 2015, EASA introduced three categories of operations for unmanned aircraft systems [18] -– open, specific, and

certified. As novelty, the specific category uses a scaling of the certification rigor depending on the overall operational

risks. To assess this risk the so-called Specifc Operation Risk Assessment (SORA) [5] is an acceptable means of

compliance. The risks that determine certification requirements are subdivided into ground risk, i.e., population density

in combination with the size of the aircraft, and air risk, i.e., type of airspace and traffic density. Depending on this

risk, a set of operational safety objectives (OSO) vary in rigor, including airworthiness, manufacturer and operator

qualification, procedures, human factors, and reliance on external services and infrastructure. Runtime monitoring

plays an important role in this context, as it allows monitoring the boundary conditions of the operation to which the

operational permit was granted. Intuitively, this operational monitoring can be a geofence to guarantee containment of

the permitted operational volume [19]†. Beyond that, it can contribute to many of the OSOs including the monitoring of

environmental limits as well as limits of the assurance of components, e.g., data-link and GPS, environmental perception,

and aircraft performance limits. In conjunction with using formal methods, the monitoring of operational conditions

∗http://r2u2.temporallogic.org/
†https://www.dlr.de/content/de/video/2019/flugversuche-mit-dem-alaady-demonstrator-engl.html

3

IV. Types of Monitoring Properties
Here we introduce types of monitoring properties that extend arithmetic expressions. For each type, we state example

properties for the levels in the monitoring hierarchy. Further, we formalize some of the examples using different formal

specification languages. We will not give a detailed description of the specification languages, but we will show their

flavors and give pointers to further reading. Note that there is a trade-off between the complexity of a specification

language and its expressiveness. For instance, if the specification handles asynchronous communication, then it requires

additional operators to reason about asynchronously arriving data.

A. Temporal properties

Properties that reason about temporal behavior are the most common language features in RV. Section II already

depicted some examples using the temporal operators ♦ and � that represent eventually and always, respectively. Table 1

depicts some example properties for each abstraction level. Temporal properties range from properties that specify

real-time properties like “Each second, the lidar sensor shall produce a value” to properties on the order of events like

“The aircraft shall fullfil its mission to fly to waypoint G, reaching first waypoint A and then waypoint B in between”.

Latter can be formalized in LTL as (¬B until A) ∧ (¬G until B) that states that B does not hold until A is reached

and G does not hold until B is reached.

MLTL allows to add discrete-time bounds on the temporal operators, e.g, ♦[0,10] landing states that within ten time

steps the landingmust be satisfied. Both, LTL and discrete-time MLTL, assume a synchronous model for arriving data,

i.e., all inputs arrive at the same time. There are also languages like RTLola that leverage this aspect to asynchronously

arriving data. Yet, by adding new complexity to the specification language.

What all monitoring languages do have in common is, that certain properties are not monitorable. One example

is �♦ a that states that a must always eventually be satisfied. This property is not monitorable since one can always

extend the execution to falsify or satisfy it. The term monitorable is more formally defined by the introduction of ugly

prefixes [29].

Hierarchy Example property

Item-level Each second, the lidar sensor shall produce a value.

System-level The integral over one second of acceleration readings should reflect the change in velocity

within the last second.

Aircraft-level Whenever a command to increase altitude is given, a corresponding behavior shall be

observed by an altimeter reading within one second.

Mission-level The aircraft shall fullfil its mission to fly to waypoint G, reaching first waypoint A and then

waypoint B in between.

Operation-level Whenever an emergency helicopter enters the airspace, the aircraft shall trigger a safe

landing within 30 s.

Table 1 Example temporal monitoring properties for each abstraction level in the monitoring hierarchy.

B. Statistical properties

The previous section used atomic propositions – values that can be either true or false – to describe the properties.

For this, a preprocessing step that translates sensor or control values to atomic propositions is required. This is useful for

information flow properties like the one presented in Section IV.A, but to get a better understanding and to decide on the

health of a sensor, the monitor should work with the actual value. Consider the first property in Table 2 as an example.

This property can be described with the following logical formula � altitude_varies_at_most_five_meters.

However, much information is abstracted into the atomic proposition that should be part of the monitor description.

Instead of using temporal logic, we use stream-based specification languages as monitor descriptions. More concretely,

we use the RTLola framework presented in Section II. In RTLola, the previous example has the following specification:

1input altitude: Float64

2output avg_altitude @1Hz eval with altitude.aggregate(over: 1s, using: avg)

3trigger |avg_altitude - avg_altitude.offset(by: -1).defaults(to: avg_altitude)| > 5.0 "Deviation to high!"

6

In this specification, the monitor receives the actual sensor values, illustrated by the input stream altitude. It

then computes the average over a one-second window and compares the consecutive values of the output stream

avg_altitude. The output of the monitor can be quantitative, stream values that can be stored in a log-file or visualized

in a possible next step. Additionally, trigger streams like the one in Line 3 notify the user every time the property is

violated. These streams contain a boolean condition and a message sent if the condition is satisfied.

The previous example shows that RTLola supports different operators to handle the actual sensor values. These

are the standard arithmetic and boolean operators and specific operators to argue over time. One of these operators is

aggregate, which takes a timed window and an aggregation function as arguments besides a reference to a stream it

aggregates. The timed window can be either a discrete number or a real-time bound. The aggregation function needs to

be a list homomorphism, i.e., a function in which we can split the inputs arbitrarily, apply the function to the subparts,

and then combine these parts to handle the real-time window efficiently at runtime. Fortunately, common statistical

properties like the average fall into this class of properties and can be computed efficiently with a finite amount of

memory. However, statistical properties, such as computing the median over a real-time window, require storing all

received values, which would require an infinite amount of memory. In practice, online monitors that evaluate the

outcome during flight should be restricted to the former. This does not need to be a limitation for offline log-file analysis

purposes. All properties in Table 2 can be evaluated efficiently during flight.

Hierarchy Example property

Item-level The average altitude over one second should only vary each second by at most five meters.

System-level The perception module shall receive values by the lidar and camera sensor by a maximum

offset of 100 ms.

Aircraft-level The maximal path deviation of the aircraft within the last 30 s shall be at most ten meters.

Mission-level During flight, a progress percentage for reaching waypoint A shall be observed.

Operation-level At least two contingencies must still be possible with the current battery consumption.

Table 2 Example statistical monitoring properties for each abstraction level in the monitoring hierarchy.

C. Parametrized properties

In Section IV.B, we used properties in which the number of evaluations was bounded. However, there are properties

for which this assumption does not hold, such as the properties in Table 3. For a concrete example, we use the

mission-level property that checks if a waypoint is reached in a specified duration. For this property, we need to compute

specific information for each waypoint. However, we do not know the number of waypoints when building the monitor,

so the number of stream definitions is not bounded. RTLola supports parametrization for these kinds of properties.

These definitions now define a template where an input to the monitor can spawn an instance of the template. The

RTLola specification in Listing 1 gives an example formalization of the previously discussed property.

Hierarchy Example property

Item-level Whenever a specific actuator position is commanded, the corresponding actuator feedback

should be received within two seconds.

System-level Whenever a candidate landing site has been tracked by a perception algorithm, the tracked

candidate must be persistently tracked the next three seconds before it is classified as an

alternative landing site.

Aircraft-level Whenever an intruder aircraft is detected, the intruder must be characterized as threat when

entering the remain-well-clear volume.

Mission-level Whenever a new waypoint is added to the waypoint list, this waypoint shall be reached

within the specified time bound.

Operation-level A new polygon that represents a stay-out region, where the aircraft is not allowed to fly, is

added.

Table 3 Example parametrized monitoring properties for each abstraction level in the monitoring hierarchy.

7

This specification gets the current position of the vehicle with the input stream pos, the position of a new waypoint

with new_wp, and the duration in which the vehicle should reach this waypoint with timebound_new_wp_in_secs.

We then decide for each waypoint if this waypoint was reached by computing the distance between the waypoint and the

current position of the vehicle. This is described with the eval equation in reached(wp), similarly to the specification

presented in Section IV.B. Compared to the previous examples, the stream equation now defines stream templates

for which the monitor can have several instances. For this, the equation is annotated with a set of parameters – the

instance ID– bounded by the stream values defined in the spawn equation. The last equation close then defines when

an instance needs to be closed and is no longer available. Next, we define a template that counts the number of seconds

it takes to reach one waypoint and then check if this duration is smaller than the requested duration. Finally, we check

for each instance if the condition is satisfied and notify the user otherwise. We again use an aggregation function that

now aggregates all instances instead of aggregating values over time. This expressiveness, however, comes with a cost:

Because the number of instances is not bounded, neither is the memory or the execution time of the monitor.

1input pos: (Float32, Float32, Float32)

2input new_wp: (Float32, Float32, Float32)

3input timebound_new_wp_in_secs: UInt32

4

5output reached(wp) // Computes when a waypoint is reached

6spawn with new_wp

7eval with |pos - wp| < n

8close when reached(wp)

9

10output wp_timer (wp) // Represents the elapsed time since the new waypoint was provided

11spawn with new_wp

12eval @1Hz with wp_timer(wp).offset(by: -1).defaults(to: 0) + 1

13close when reached(wp)

14

15output violation (wp, duration) // Boolean template that checks whether the timer is exceeded

16spawn with (new_wp, timebound_new_wp_in_secs)

17eval with wp_timer(wp) > duration

18close when reached(wp)

19

20trigger violation.aggregate(using: ∃) "WARNING: Waypoint not reached in time."

Listing 1 A RTLola specification that uses parametrization to monitor whether a new waypoint is reached

within a specified time bound.

D. Spatial properties

Spatial properties allow to specify changes in space given a spatial model. Such a spatial model can be a weighted

graph as used by Spatio-Temporal Reach and Escape Logic (STREL) [30, 31] where nodes and edges have physical

and logical attributes that can change in time. The spatial representation is required since spatial operators explore the

possibility of an event. For example, to evaluate the property ”there must always be an emergency landing site within

one kilometer” requires the current position of the aircraft and the positions of the landing sites. To formalize such a

requirement, STREL extends temporal logic by spatial operators that are augmented by elements 3 of a distance domain

and a distance function 5 that maps paths of the weighted graph to the distance domain. Also, q represent a STREL

property that may use temporal operators such as � and ♦. The additional spatial operators are

• q1 reach
5

[31 ,32]
q2 that is satisfied if from a location where q1 is satisfied, we can reach a location where q2 is

satisfied while following a path in the spatial model such that the distance function 5 given this path stays within

[31, 32],

• escape
5

[31 ,32]
q that is satisfied if from the current location we can find a path where the distance function 5

evaluates to a distance within [31, 32] and forall locations in that path q is satisfied,

• somewhere
5

≤3
q that is satisfied if there is a location at a distance between 31 and 32 where q is satisfied,

• everywhere
5

≤3
q that is satisfied if all locations within a distance of 31 and 32 satisfy q.

Given the spatial model where these nodes represent alternative landing sites and the aircraft, the weights of the

edges represent the Euclidean distance in meters, and the distance function dist is the sum of weights along a path, the

above requirement can be formalized as � (somewheredist
[0,200]

(node = emergency_landing_site)).

Other spatial properties are given in Table 4. Note that the examples for item-level and system-level introduce

spatial properties given a spatial model that represents a network topology where weights on edges indicate the

8

latency. For example, given the hop distance function that counts the number of edges along a path, the requirement

“the mission manager (mm) must be directly connected to the ground control station (gcs)” can be specified as

(node = mm) reach
hop

[0,1]
(node = gcs).

Hierarchy Example property

Item-level The output of the sensor must be broadcasted to all subscribers with a latency of at most

one second.

System-level The mission manager must be directly connected to the ground control station.

Aircraft-level The average noise level within one kilometer of houses should always be less than 50 dB.

Mission-level There must always be an alternative trajectory leading to an alternative landing site within

200 m.

Operation-level There shall always be an emergency landing site within one kilometer.

Table 4 Example spatial monitoring properties for each abstraction level in the monitoring hierarchy.

Remark: There is a relationship between the property types. In fact, property types are often combined for a specific

property. For instance, statistical properties are often temporal since they are computed over consecutive values and are

not only limit to current input values.

V. Discussion of Using Monitoring Specification Languages
This section discusses advantages and disadvantages of using a formal language to specify monitoring properties.

Further, a comparison between a specified property and a handwritten monitor is depicted.

Disadvantages

There is no language to rule them all. We have presented three specification languages that complement each other.

Currently, there is no language that covers all property types. Further, to provide guarantees such as memory bounds,

some specification languages restrict their expressiveness to efficient fragments [23].

Mostly academic tools. There is active research on specification languages, new operators are added and previous

operators are changed, which can be hard to keep up. So far, there are only steps towards commercialization of Runtime

Monitoring tools based on specification languages, but no industrial tool yet.

Yet another language to learn. Formal methods and specification languages in particular are not part of standard

engineering education, which makes it sometimes difficult for engineers to apply such methods. The engineers require

clear benefits before investing in learning.

Never change a running system. Often there is legacy code that already contains monitor code. It is an investment to

extract this code, especially when the code was already approved.

There are properties that cannot be expressed. Specification languages have a clear syntax that has benefits like an

automated analysis of the written specification, but also downsides when the syntax of the language limits expressiveness.

Advantages

Formalization process helps to think about monitoring properties. When formalizing a requirement, the language

already guides towards specifying “good” monitoring properties and highlights aspects that might be missing. For

instance, properties can be inefficient to monitor or default values may need to be provided for accesses non-existing

past or future events.

Specification languages are concise and precise. When familiar with the language, specification are easy to write since

the syntax is concise and precise. Especially, during development, when properties change frequently, this helps improve

maintenance and also reduces errors when writing code by hand. This is especially important when considering future

autonomous aircraft systems that will include more and more black-box components that require monitoring capabilities.

Analysis of specification language. Formal specification languages are designed with analysis in mind. For instance,

RTLola is designed to analyze the memory to give bounds on the memory consumption of the generated monitor

implementation. Further, specification analysis can help to check consistency and to provide verified guarantees on the

behavior of the monitor [22] that help argue ASTM monitor coverage.

Automatic generation of monitor implementation. Monitors can be automatically derived given a specification. Previously

9

mentioned analysis also provide artifacts that help to safely integrate them. Further, the SW/HW implementation is

decoupled from the specification. This means one is not only limited to C-Code or VHDL-Code but can change them

on demand. Additionally, optimizations on specification level directly carry over to all implementations.

Closes gap between natural language and implementation. Operators like always, eventually, or aggregate(over: 1s,

using: avg) can be directly linked to natural language requirements. Hence, they have clear advantages when tracing

them for certification.

Monitoring is part of everyday software. However, monitoring based on a specification language is not yet. The

disadvantages show that there are challenges ahead. Most importantly, specification languages need to converge to a

stable version, maybe even with an industrial product, before they can be widely used in industry. Yet, the advantages

also show that monitoring specification languages have clear benefits especially for future autonomous aircraft systems.

These systems involve black-box components that require monitoring complex properties for integrating them safely

into the system.

Next, to illustrate the benefits of a monitoring specification language compared to handwritten code. We consider

the example monitoring property “when the command to increase altitude is given (i.e., > 0), then within the next

second the altitude should be increasing for at least three altimeter readings”. This property can be formalized in

MLTL as �(hgt_cmd> 0 → ♦[0B,1B] increase(alt, 3)) where increase(alt, 3) is an atomic proposition that

is computed outside the specification. The property can also be formalized in RTLola as depicted in Listing 2 where

increase(alt, 3) is computed within the specification. Line 4 shows how we check if the last three values of alt are

increasing, i.e., alt > alt’ > alt” where ’ indicates the previous value. Then in Line 5, if we receive an command

to increase altitude, we spawn a watchdog . The first value of this output is true and will be produced upon its first

activation that is after 1s, if the spawned output was not closed before. The close condition is based on the computation

in Line 4.

A corresponding handwritten monitor written in pseudo code is depicted in Listing 3 which for simplicity assumes that

both inputs arrive synchronously. Here, inputs are read in Line 19 and previous input values are updated correspondingly

from Line 21 to Line 32. To track the expiration of the time limit of one second due to a positive altitude command

(Line 34), the obligation variable is set to false and a separate thread is spawned (Lines 35-36) that sleeps for one second

and checks whether the obligation was satisfied in the meantime (Lines 5-11). The obligation represents an increase

in altitude over three consecutive altitude readings (Line 39). Given this explanation, it is clear how it matches the

monitor property. Yet, without such an explanation, it is quite hard to understand the task of the monitor. In contrast,

the specification language offers a more compact representation. Even if one is not familiar with the details of the

specification language, the property is more intuitive to understand since it is more compact and directly supports

temporal notions. Further, memory management and race conditions of concurrent computations are prone to errors and

can be avoided if a dedicated monitoring language is used.

1// Inputs

2input alt_cmd, alt: Float64, Float64

3// Outputs

4output increase_alt : Bool := alt.aggregate(by: -2, using: >)

5output watchdog_altitude @1Hz spawn when alt_cmd > 0.0 eval with true close when increase_alt

6trigger watchdog_altitude "Violation"

Listing 2 An RTLola specification that represents “when the command to increase altitude is given, then

within the next second the altitude should be increasing for at least three altimeter readings”

VI. Conclusion
Monitoring autonomous aircraft systems is a challenging task. It involves monitoring complex safety properties that

include notions of time and space. Further, system architectures that allow the monitor to access the overall systems are

becoming increasingly important, as the monitor needs a holistic perspective to assure the correctness of black-box

components such as neural networks. These challenges pose the risk that current monitoring approaches, which rely on

handwritten code, cannot keep up. In the paper, we have proposed the use of formal monitoring specification languages

to address these challenges. We first presented a hierarchy of monitoring properties. The hierarchy is based on the

existing levels of SAE ARP4761, such as item-, system-, and aircraft-level, but is extended to include mission- and

operation-level for autonomy. This allows separation of concerns such as “Are the functions of the aircraft working?”,

“Is the mission that the autonomous aircraft is supposed to fulfill being followed?”, and “Is the mission objective within

10

the operational limits?”. Then, we gave a categorization of different types of monitoring properties: temporal, statistical,

spatial, and parametrized. We used four specification languages, namely LTL, MLTL, RTLola, and STREL, to formalize

example requirements at different levels of the introduced hierarchy. The examples show that requirements can be

concisely expressed using dedicated temporal and spatial operators. Yet, there is no single specification language that

covers all property types. Further, there is a tradeoff between the number of operators, i.e., the complexity of the syntax,

and the assumptions on the system under scrutiny, e.g., synchronous or asynchronous semantics. We then discussed such

aspects when we presented the advantages and disadvantage of using a specification language for monitoring. Using an

handwritten monitor code example, we have showed how specification languages offer a higher level of abstraction:

monitoring properties can be formalized more compact and are easier to write and to understand. Hence, they improve

the maintainability of monitoring capabilities that is required to handle the increased complexity of future autonomous

aircraft systems.

1double alt_cmd, alt, alt_past_1, alt_past_2;

2bool watchdog_active, obligation;

3

4void timer(){ // Represents the time limit of the watchdog

5watchdog_active = true;

6sleep(1);

7if(!obligation){

8print("Violation");

9}

10watchdog_active = false;

11}

12

13void monitor() {

14int default_count = 2;

15watchdog_active = false;

16while(1) {

17//read inputs

18double tmp_alt = alt;

19alt_cmd, alt = read_blocking() // Reads inputs and blocks if no inputs are present

20// updates past values by respecting default values if value does not exist yet.

21if (default_count == 2){

22alt_past_1 = alt;

23alt_past_2 = alt;

24default_count--;

25} else if (default_count == 1){

26alt_past_2 = alt;

27default_count--;

28}

29else {

30alt_past_2 = alt_past_1;

31alt_past_1 = tmp_alt;

32}

33// activates watchdog if positive altitude command was given.

34if(alt_cmd > 0 && !watchdog_active){

35obligation = false;

36thread watchdog(timer); // Spawn a thread that executes the function timer(), see Line 5

37}

38// updates obligation if altitude was increasing for three consecutive altitude readings.

39obligation = alt > alt_past_1 && alt_past_1 > alt_past_2;

40}

41}

Listing 3 A handwritten monitor that represents “when the command to increase altitude is given, then within

the next second the altitude should be increasing for at least three altimeter readings”

Acknowledgments
This work was partially supported by the Aviation Research Program LuFo of the German Federal Ministry for Eco-

nomic Affairs and Energy as part of “Volocopter Sicherheitstechnologie zur robusten eVTOL Flugzustandsabsicherung

durch formales Monitoring”(No. 20Q1963C). This work was also supported in part by NSF:CPS Award #2038903,

NSF:CAREER Award #1664356, and NASA Cooperative Agreement Grant #80NSSC21M0121.

11

References
[1] Rein, W., “Autonomous Drones: Set To Fly, But May Not Comply; 5 Major Obstacles For Unmanned Aircraft Systems,”

, 2018. URL https://www.wileyrein.com/newsroom-articles-Autonomous-Drones-Make-It-Easier-to-Fly-

But-Harder-to-Comply.html.

[2] Nagarajan, P., Kannan, S. K., Torens, C., Vukas, M. E., and Wilber, G. F., “ASTM F3269 - An Industry Standard on Run Time

Assurance for Aircraft Systems,” AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, Inc., 2021.

URL https://elib.dlr.de/144352/.

[3] for Civil Aviation Equipment, T. E. O., “Guidelines for development of civil aircraft and systems,” EUROCAE ED-79A,

December 2010.

[4] SAE, “ARP4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and

Equipment - SAE International,” , Dec 1969. URL https://www.sae.org/standards/content/arp4761, [Online;

accessed 1. Dec. 2022].

[5] Joint Authorities for Rulemaking of Unmanned Systems, “JARUS Guidelines on Specific Operations Risk Assessment (SORA),”

, 2019. URL http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf.

[6] Fisher, M., Mascardi, V., Rozier, K. Y., Schlingloff, H., Winikoff, M., and Yorke-Smith, N., “Towards a Framework for

Certification of Reliable Autonomous Systems,” 20th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), Springer, 2021.

[7] European Union Aviation Safety Agency (EASA), “Artificial Intelligence Roadmap, A Human-Centric Approach to AI in Avia-

tion, Version 1.0,” https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-

roadmap-10-published, 2020.

[8] European Union Aviation Safety Agency (EASA), “Concepts of Design Assurance for Neural Net-

works (CoDANN),” https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-

Assurance-for-Neural-Networks-CoDANN.pdf, 2020.

[9] European Union Aviation Safety Agency (EASA), “Concepts of Design Assurance for Neural Networks (CoDANN)

II,” https://www.easa.europa.eu/document-library/general-publications/concepts-design-assurance-

neural-networks-codann-ii, 2021.

[10] European Union Aviation Safety Agency (EASA), “Concept Paper First Usable Guidance for Level 1 Machine

Learning Applications,” https://www.easa.europa.eu/easa-concept-paper-first-usable-guidance-level-1-

machine-learning-applications-proposed-issue-01pdf, 2021.

[11] Torens, C., Juenger, F., Schirmer, S., Schopferer, S., Zhukov, D., and Dauer, J. C., “Safe Autonomy for Urban Air Mobility,”

AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics, 2023.

[12] Falcone, Y., Krstić, S., Reger, G., and Traytel, D., “A taxonomy for classifying runtime verification tools,” International Journal

on Software Tools for Technology Transfer, Vol. 23, No. 2, 2021, pp. 255–284.

[13] Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., and Ippolito, C., “Towards real-time, on-board,

hardware-supported sensor and software health management for unmanned aerial systems,” International Journal of Prognostics

and Health Management, Vol. 6, No. 1, 2015.

[14] Rozier, K. Y., and Schumann, J., “R2U2: Tool Overview,” RV-CuBES 2017. An International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools, September 15, 2017, Seattle, WA,

USA, Kalpa Publications in Computing, Vol. 3, edited by G. Reger and K. Havelund, EasyChair, 2017, pp. 138–156.

https://doi.org/10.29007/5pch, URL https://doi.org/10.29007/5pch.

[15] Geist, J., Rozier, K. Y., and Schumann, J., “Runtime Observer Pairs and Bayesian Network Reasoners On-board FPGAs:

Flight-Certifiable System Health Management for Embedded Systems,” Runtime Verification - 5th International Conference,

RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings, Lecture Notes in Computer Science, Vol. 8734, edited

by B. Bonakdarpour and S. A. Smolka, Springer, 2014, pp. 215–230. https://doi.org/10.1007/978-3-319-11164-3_18, URL

https://doi.org/10.1007/978-3-319-11164-3_18.

[16] Kempa, B., Zhang, P., Jones, P. H., Zambreno, J., and Rozier, K. Y., “Embedding Online Runtime Verification for Fault

Disambiguation on Robonaut2,” Proceedings of the 18th International Conference on Formal Modeling and Analysis of Timed

Systems (FORMATS), Lecture Notes in Computer Science (LNCS), Vol. 12288, Springer, Vienna, Austria, 2020, pp. 196–214.

https://doi.org/10.1007/978-3-030-57628-8_12, URL http://research.temporallogic.org/papers/KZJZR20.pdf.

12

[17] Kempa, B., Johannsen, C., and Rozier, K. Y., “Improving Usability and Trust in Real-Time Verification of a Large-Scale

Complex Safety-Critical System,” Ada User Journal, Vol. September, 2022.

[18] European Union Aviation Safety Agency (EASA), “Specific Category - Civil Drones,” , 2022. URL https://www.easa.europa.

eu/domains/civil-drones/drones-regulatory-framework-background/specific-category-civil-drones.

[19] Torens, C., Nikodem, F., Dauer, J., Schirmer, S., and Dittrich, J. S., “Geofencing requirements for onboard safe operation

monitoring,” CEAS Aeronautical Journal, 2020. URL https://elib.dlr.de/135054/.

[20] Schirmer, S., and Torens, C., Safe Operation Monitoring for Specific Category Unmanned Aircraft, Springer International

Publishing, Cham, 2022, pp. 393–419. https://doi.org/10.1007/978-3-030-83144-8_16, URL https://elib.dlr.de/145080/.

[21] Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., and Torens, C., “RTLola Cleared for Take-Off: Monitoring

Autonomous Aircraft,” Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July

21-24, 2020, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 12225, edited by S. K. Lahiri and C. Wang,

Springer, 2020, pp. 28–39. https://doi.org/10.1007/978-3-030-53291-8_3, URL https://doi.org/10.1007/978-3-030-53291-8_3.

[22] Dauer, J. C., Finkbeiner, B., and Schirmer, S., “Monitoring with Verified Guarantees,” CoRR, Vol. abs/2110.11755, 2021. URL

https://arxiv.org/abs/2110.11755.

[23] Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M., Tentrup, L., and Torfah, H., “StreamLAB:

Stream-based Monitoring of Cyber-Physical Systems,” Computer Aided Verification, edited by I. Dillig and S. Tasiran, Springer

International Publishing, Cham, 2019, pp. 421–431.

[24] Finkbeiner, B., Oswald, S., Passing, N., and Schwenger, M., “Verified Rust Monitors for Lola Specifications,” Runtime

Verification, edited by J. Deshmukh and D. Ničković, Springer International Publishing, Cham, 2020, pp. 431–450.

[25] Baumeister, J., Finkbeiner, B., Schwenger, M., and Torfah, H., “FPGA Stream-Monitoring of Real-Time Properties,” ACM

Trans. Embed. Comput. Syst., Vol. 18, No. 5s, 2019. https://doi.org/10.1145/3358220, URL https://doi.org/10.1145/3358220.

[26] Fainekos, G. E., Sankaranarayanan, S., Ueda, K., and Yazarel, H., “Verification of automotive control applications using

S-TaLiRo,” 2012 American Control Conference (ACC), 2012, pp. 3567–3572. https://doi.org/10.1109/ACC.2012.6315384.

[27] Annpureddy, Y., Liu, C., Fainekos, G., and Sankaranarayanan, S., “S-TaLiRo: A Tool for Temporal Logic Falsification for

Hybrid Systems,” Tools and Algorithms for the Construction and Analysis of Systems, edited by P. A. Abdulla and K. R. M.

Leino, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 254–257.

[28] Jin, X., Donzé, A., Deshmukh, J. V., and Seshia, S. A., “Mining Requirements from Closed-Loop Control Models,” Proceedings

of the 16th International Conference on Hybrid Systems: Computation and Control, Association for Computing Machinery, New

York, NY, USA, 2013, p. 43–52. https://doi.org/10.1145/2461328.2461337, URL https://doi.org/10.1145/2461328.2461337.

[29] Bauer, A., Leucker, M., and Schallhart, C., “Runtime verification for LTL and TLTL,” ACM Transactions on Software

Engineering and Methodology (TOSEM), Vol. 20, No. 4, 2011, pp. 1–64.

[30] Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L., and Silvetti, S., “MoonLight: A Lightweight Tool for Monitoring Spatio-

Temporal Properties,” Runtime Verification, edited by J. Deshmukh and D. Ničković, Springer International Publishing, Cham,

2020, pp. 417–428.

[31] Loreti, M., Bortolussi, L., Bartocci, E., and Nenzi, L., “A Logic for Monitoring Dynamic Networks of Spatially-distributed

Cyber-Physical Systems,” Logical Methods in Computer Science, Vol. 18, 2022.

13

