
Runtime Verification Triggers Real-time, Autonomous

Fault Recovery on the CySat-I‹

Alexis Aurandtr0000´0003´2008´673Xs, Phillip H. Jonesr0000´0002´8220´7552s, and

Kristin Yvonne Rozierr0000´0002´6718´2828s

Iowa State University, Ames, IA 50010, USA

{aurandt, phjones, kyrozier}@iastate.edu

Abstract. CubeSats are low-cost platforms that are popular for conducting space-

borne experiments, however they are known to have high failure rates („25% fail-

ure rate). In order to improve the likelihood of success of Iowa State University’s

first CubeSat (CySat-I), we integrate Runtime Verification (RV) on the CySat-I

to allow for fault detection at runtime. Although CubeSats have been previously

identified as a possible target for RV, this is the first time that a RV engine has

been deployed on a CubeSat. We utilize the R2U2 runtime verification engine

due to its low overhead; we embed R2U2 directly on the On-Board Computer

(OBC) to monitor the current state of the CySat-I. R2U2 continuously monitors

the different subsystems on the CySat-I, and R2U2’s fault detection triggers pre-

defined fault recovery strategies. Since the Electrical Power System (EPS) is a

common source of failure, we specifically focus on this subsystem. We design

a list of twenty-two specifications from English requirements corresponding to

the EPS and translate them into Mission-time Linear Temporal Logic (MLTL).

We perform mock launches on Earth with external fault injection to illustrate that

R2U2 successfully reasons about faults and the CySat-I effectively performs fault

recovery. We demonstrate that the CySat-I can successfully recover from eight

unique EPS faults at runtime in a timely manner with no errors. During our mock

launches, R2U2 discovered a potential error in the manufacturer’s firmware re-

lated to the EPS’s under-voltage event monitoring, and this led to a more in-depth

investigation of the error by the manufacturers.

Keywords: Online Runtime Verification · R2U2 · Temporal Logic · Formal Spec-

ification · Fault Recovery · CubeSat

1 Introduction

Since the first CubeSat was launched in 2003, the number of CubeSats launched each

year has increased exponentially, and as of December 2021, a total of 1,663 CubeSats

have been launched [12, 24, 27]. This exponential growth in CubeSats is due to their

low-cost and capability for fast development. CubeSats allow for both academic insti-

tutions and commercial sectors to gain easy space access with limited resources and

time requirements. With the increase in popularity of CubeSats, the technology and re-

search behind CubeSats has also advanced. This has lead to a decrease in failure rate

over the years, but the failure rate is still troubling at approximately 25% [27].

‹ Supported by NSF:CPS Award 2038903. Reproducibility artifacts available at http://

temporallogic.org/research/CySat-NFM22.



2 A. Aurandt et al.

Failure within CubeSats is common due to a lack of proper integration and sys-

tem testing before launching [14, 24, 25]. Furthermore, universities tend to have higher

failure rates than their commercial counterparts due to more constrained resources and

development schedules [13, 14, 24, 26]. If more time is dedicated to integration and

system testing, most causes of failure could be discovered before the satellite is ever

launched. Since fast development time is one of the attributes that make CubeSats at-

tractive, most CubeSats will never have fully exhaustive integration and system testing

before becoming spaceborne. Runtime Verification (RV) provides a unique mitigation.

RV adds an independent check for real-time triggering of appropriate fault recovery

strategies. Additionally, RV is a useful tool for finding errors in the system during test-

ing on Earth; it provides different coverage than traditional system testing to allow for

finding difficult errors with less effort.

Most CubeSat failures originate in the Electrical Power System (EPS), Attitude

Determination and Control System (ADCS), and the communications system [2,13,24].

These subsystems are mission-critical; if any of these subsystems fail, the entire satellite

experiences failure. A recent study formally verified a CubeSat’s ADCS at design time

to provide runtime assurance [8]. Also, [15] provides a case study of deploying runtime

verification on a simulated CubeSat communications system. We focus on the EPS as

it has never been evaluated for formal verification and it contributes to approximately

one-third of CubeSat failures [13].

The CySat-I’s Onboard Computer (OBC) has strict real-time constraints as it is re-

sponsible for commanding and monitoring all the other subsystems. The OBC is also re-

stricted to 2MB of program memory [6]. The Realizable, Responsive, Unobtrusive Unit

(R2U2) is a unique RV engine in that it requires little overhead and has a fast response

time [18, 21]. In addition, R2U2 has been previously deployed on several resource-

constrained hard real-time systems [3, 9, 10]. The CySat-I team selected R2U2 as the

RV engine due to its configurability for resource-constraints, real-time verdict stream-

ing, and proven unobtrusive monitoring of other real-time systems, e.g., [4,10,19]. Our

implementation of fault recovery with the aid of R2U2 is currently planned to launch

onboard the CySat-I in October 2022.

We contribute (1) elicitation of twenty-two realistic EPS specifications from English

requirements translated into Mission-time Linear Temporal Logic (MLTL), (2) external

fault injection to demonstrate that the CySat-I autonomously recovers from eight unique

EPS faults in real-time, and (3) firmware error discovery during testing with the help of

R2U2. Our categorization technique for the elicitation of EPS specifications is general-

izable for application to other mission-critical systems. The remainder of the paper is

organized as follows. Section 2 outlines the CySat-I architecture. Section 3 details the

implementation of R2U2 on the CySat-I. Section 4 describes the development of the

twenty-two specifications. Our mock launch setup with external fault injections appears

in Section 5. We analyze the mock launch results and plot data revealing a firmware er-

ror in Section 6. In Section 7, we draw conclusions and explore future plans.

2 System Description

The CySat-I is a 3U CubeSat (10cm x 10cm x 30cm) that was designed by students

at Iowa State University through the Aerospace Department’s Make to Innovate pro-

gram [17]. The CySat-I is composed of a mix of commercial off-the-shelf (COTS) and





4 A. Aurandt et al.

(0.8%), which leaves plenty of room for the CySat-I mission software (180KB). We

translated the CySat-I mission requirements from the Endurosat EPS user manual [5,7]

and the CySat-I concept of operations manual [11] into MLTL specifications. MLTL

concisely captures the strict temporal mission requirements and is a native language

of R2U2 [18, 21]. We compiled the specifications and loaded the specification binaries

onto the OBC’s SD card. The OBC loads the specifications once into R2U2 upon ini-

tial boot-up. FreeRTOS, a real-time operating system, manages the OBC’s tasks [1].

FreeRTOS launches a five second periodic task that will gather and process status infor-

mation from the EPS, input the signals into R2U2, and store the false output verdicts

produced by R2U2 into an array. The OBC evaluates this array, and whenever a false

output verdict occurs (i.e., a specification is violated), a predefined mitigation strategy

is triggered. Figure 2 illustrates this integration of R2U2 into the CySat-I.

4 Runtime Specification Development

We elicit specifications according to the categorization scheme presented in [20] and

used, e.g., in [3], including patterns for “operating range,” “rate of change,” “control

sequence,” and “physical model relationship” specifications. 1

Satellite power up. During the first thirty minutes after launch from the International

Space Station (ISS), it is strictly required by the ISS that a CubeSat can only have

its EPS and OBC subsystems powered on. Specification (1) captures this requirement.

Since the FreeRTOS task that runs R2U2 is launched every five seconds, the Gr0,360s

part of this specification covers the first thirty minutes of the mission (i.e., 5 seconds

* 360 = 30 minutes). During this time, all power buses (except for the 3.3 volt bus

required for the OBC) and all enable signals must be in the off/disabled state.

Gr0,360st 5V Bus Enabled^ LUP 5V Bus Enabled^

 LUP 3.3V Bus Enabled^ ADCS Active

^ Payload Enabled^ UHF Enabled^

 Boost Board Enabledu (1)

Power bus requirement. Specification (2) captures that any time the UHF is enabled at

least thirty minutes after launch, then the latch-up protected (LUP) 3.3 volt bus must

also be enabled. The LUP 3.3 volt bus is a UHF input required for proper operation.

The Gr360,Ms part of the specification established that this specification must hold from

thirty minutes after launch till the end of the mission indicated by M . Corresponding

requirements for the boost board and payload form specifications (3) and (4).

Gr360,MstUHF EnabledÑ LUP 3.3V Bus Enabledu (2)

Gr360,MstBoost Booard EnabledÑ 5V Bus Enabledu (3)

Gr360,MstPayload EnabledÑ 5V Bus Enabledu (4)

1 All twenty-two specifications with categorization appear here: http:// temporallogic.org/

research/CySat-NFM22.



Runtime Verification Triggers Fault Recovery on the CySat-I 5

Under-voltage event. Whenever the EPS’s output power buses fall below a given volt-

age threshold, the EPS’s lifetime under-voltage event counter increments [5]. Specifi-

cation (5) uses this information to compare the current value (value at mission time i)

of this status value to its previous value (value at mission time i ´ 1). If these are not

equal, then an under-voltage event has occurred. In this specification, Gr0,Ms checks

that the requirement holds from the beginning to the end of the mission.

Gr0,MstNum Under V oltagei ““ Num Under V oltagei´1u (5)

I2C communication. The OBC communicates with the EPS over an I2C bus interface.

It was documented in [2] that I2C communication errors can cause EPS failure. To

mitigate this mode of failure, we instrumented the OBC’s I2C driver to report and ac-

cumulate communication errors (e.g., NACKs, transaction timeouts). Specification (6)

detects whenever a new I2C error occurs. If the total number of I2C errors at the current

mission-time does not equal the total number of errors at the previous mission time,

then this specification does not hold. In the event that R2U2 detects the failure of this

specification, it triggers the fault mitigation action of resetting the I2C bus.

Gr0,MstNum I2C Errorsi ““ Num I2C Errorsi´1u (6)

5 Evaluation Methodology

Fig. 3. Mock Launch. Left: The physical CySat-I PC/104 stack without the external structures

(e.g., solar panels) and its setup during the mock launches. Right: Mock launch sequence.

We conduct mock launches to evaluate the correct implementation of our speci-

fications, deployment of R2U2 within the CySat-I, and implementation of our fault

recovery mechanisms. Within the CySat-I PC/104 stack, the EPS communicates with

the OBC via an I2C bus. The EPS also has a UART connection available over a USB

port. Endurosat provides a GUI that can interact with the EPS’s UART interface while

the EPS is plugged into the PC/104 stack. This setup is depicted in Figure 3. We lever-

age this GUI during mock launches to inject power bus faults by turning buses on/off

and subsystem enable faults by enabling/disabling different subsystems. As shown in



6 A. Aurandt et al.

Figure 3, a mock launch consists of: 1) powering on the EPS and OBC (i.e., emulating

the CySat-I being launched from the ISS), 2) FreeRTOS on the OBC starting the R2U2

task that runs every five seconds, 3) FreeRTOS starting simplified tasks for the other

subsystems, and 4) all subsystem tasks waiting thirty minutes before starting modified

operation. We record and analyze the input status signals of R2U2 and the output ver-

dicts generated by R2U2 during the mock launch fault-injection campaigns. These logs

allow us to determine if faults are being detected as expected and if fault mitigation

strategies are being appropriately triggered.

6 Results and Analysis

Fig. 4. EPS Fault Recovery. (a) The power status of the 5 volt, LUP 5 volt, and LUP 3.3 volt buses.

(b) The enable status of the ADCS, payload, UHF, and boost board. An ’X’ marker indicates an

injection of an external fault. (c) (d) (e) (f) Output from R2U2 correctly determining the current

state of specification (1), (2), (3), and (4) respectively. A shaded region indicates a time range

where the OBC does not care about the output of R2U2 within its fault recovery.

R2U2 is a stream-based RV engine that reevaluates specifications at each time step

creating an implicit global operator. Therefore, we reduce our specifications that we

instruct R2U2 to reason over as depicted in Figure 4 and 5. Recall that specification (1)

is only applicable for the first thirty minutes after launch, specifications (2), (3), and

(4) are only applicable after the first thirty minutes, and specifications (5) and (6) are

always applicable. In order to apply a specification for a certain time interval, the OBC

monitors the current time step of R2U2. If not within the applicable time interval for

a specification, the OBC does not care what R2U2 is outputting and does not apply a

mitigation action, which is indicated by the shaded region in Figure 4.

Figure 4 illustrates an approximately hour-long mock launch with fault recovery

for four unique specification faults (i.e., specification (1), (2), (3), and (4)).2 Within the

first thirty minutes, none of the plotted power buses or subsystem enables are allowed

2 All eight specification faults appear here: http:// temporallogic.org/research/CySat-NFM22.





8 A. Aurandt et al.

References

1. Amazon Web Services: The FreeRTOS™ Reference Manual (2017)

2. Bouwmeester, J., Langer, M., Gill, E.: Survey on the implementation and reliability of

cubesat electrical bus interfaces. In: CEAS Space Journal, vol. 9, pp. 163–173 (2017).

https://doi.org/10.1007/s12567-016-0138-0

3. Cauwels, M., Hammer, A., Hertz, B., Jones, P., Rozier, K.Y.: Integrating Runtime Ver-

ification into an Automated UAS Traffic Management System, pp. 340–357 (09 2020).

https://doi.org/10.1007/978-3-030-59155-7 26

4. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-

time system architecture. In: Proceedings of SciTech Forum. p. Online. 2021-0566, AIAA

(January 2021). https://doi.org/https://doi.org/10.2514/6.2021-0566

5. Endurosat: Electrical Power System (EPS I & EPS I Plus) - I2C Protocol User Manual (2019)

6. Endurosat: Onboard Computer (OBC) Type II - User Manual (2019)

7. Endurosat: Electrical Power System (EPS I & EPS I Plus) User Manual (2020)

8. Gross, K.H., Clark, M., Hoffman, J.A., Fifarek, A., Rattan, K., Swenson, E., Whalen, M.,

Wagner, L.: Formally verified run time assurance architecture of a 6u cubesat attitude control

system. In: AIAA Infotech Aerospace, p. 0222 (2016)

9. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket

control system. In: NASA Formal Methods Symposium. pp. 151–159. Springer (2021).

https://doi.org/10.1007/978-3-030-76384-8 10

10. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime

verification for fault disambiguation on robonaut2. In: Bertrand, N., Jansen, N. (eds.) Formal

Modeling and Analysis of Timed Systems. pp. 196–214. Springer International Publishing,

Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 12

11. Kilcoin, M., Kempa, B., Goldenberg, J., Nelson, M., Gonzalez-Torres, T.: Cysat-1 concept

of operations (2020), https:// iastate.box.com/s/zf6xbwwc3jb9hwshc6hc52evx2e60s13

12. Kulu, E.: Nanosatellite & cubesat database, https://www.nanosats.eu/database

13. Langer, M., Bouwmeester, J.: Reliability of cubesats - statistical data, developers’ belief,

and the way forward. In: Proceedings of the 30th Annual AIAA/USU Conference on Small

Satellites (2016)

14. Langer, M., Weisgerber, M., Bouwmeester, J., Hoehn, A.: A reliability estimation tool for

reducing infant mortality in cubesat missions. In: 2017 IEEE Aerospace Conference (2017).

https://doi.org/10.1109/AERO.2017.7943598

15. Luppen, Z.A., Lee, D.Y., Rozier, K.Y.: A case study in formal specifications and run-

time verification of a cubesat communications system. In: AIAA SciTech Forum (2021).

https://doi.org/10.2514/6.2021-0997

16. Nelson, M.E.: Implementation and evaluation of a software defined radio based radiometer.

Master’s thesis (2016)

17. Nelson, M.E., Lee, D.Y., Kilcoin, M., Gordon, L., Brown, W.: Preparing cysat-1: A look

at iowa state university’s first cubesat. In: Proceedings of the 34th Annual Small Satellite

Conference (2020)

18. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for

system health management of real-time systems. In: Proceedings of the 20th International

Conference on Tools and Algorithms in Construction and Analysis of Systems (TACAS).

vol. 2413, pp. 357–372. Springer-Verlag, Lecture Notes in Computer Science (LNCS) (2014)

19. Rozier, K.Y.: R2U2 in Space: System and Software Health Management for Small Satellites.

In: Spacecraft Flight Software Workshop (FSW) (December 2016), https://www.youtube.

com/watch?v=OAgQFuEGSi8



Runtime Verification Triggers Fault Recovery on the CySat-I 9

20. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and autonomy. In:

Proceedings of 8th Working Conference on Verified Software: Theories, Tools, and Exper-

iments (VSTTE 2016). LNCS, vol. 9971, pp. 1–19. Springer-Verlag, Toronto, ON, Canada

(July 2016)

21. Rozier, K.Y., Schumann, J.: R2U2: Tool Overview. In: RV-CuBES 2017. An International

Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for

Runtime Verification Tools. Kalpa Publications in Computing, vol. 3, pp. 138–156. Easy-

Chair (2017). https://doi.org/10.29007/5pch

22. STMicroelectronics: STM32CubeIDE User Manual (2020)

23. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure for logic

solving. In: International joint conference on automated reasoning. pp. 367–373. Springer

(2014)

24. Swartwout, M.A.: The first one hundred cubesats: A statistical look (2013)

25. Venturini, C., Braun, B., Hinkley, D., Berg, G.: Improving mission success of cubesats. In:

Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites (2018)

26. Venturini, C.C.: 8 steps improving small set mission success, https://aerospace.org/article/

8-steps-improving-small-sat-mission-success

27. Villela, T., Costa, C.A., Brandão, Alessandra, M., Bueno, F.T., Leonardi, R.: Towards the

thousandth cubesat: A statistical overview. In: International Journal of Aerospace Engineer-

ing, vol. 2019 (2019). https://doi.org/10.1155/2019/5063145


