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QUANTUM AFFINE ALGEBRAS, GRADED LIMITS AND FLAGS

MATHEUS BRITO, VYJAYANTHI CHARI, DENIZ KUS, AND R. VENKATESH

Abstract. In this survey, we review some of the recent connections between the
representation theory of (untwisted) quantum affine algebras and the representation
theory of current algebras. We mainly focus on the finite-dimensional representations of
these algebras. This connection arises via the notion of the graded and classical limit
of finite-dimensional representations of quantum affine algebras. We explain how this
study has led to interesting connections with Macdonald polynomials and discuss a
BGG-type reciprocity result. We also discuss the role of Demazure modules in this
theory and several recent results on the presentation, structure and combinatorics of
Demazure modules.

1. Introduction

Quantized enveloping algebras were introduced independently by Drinfeld (1985) and
Jimbo (1986) in the context of integrable systems and solvable lattice models and give
a systematic way to construct solutions to the quantum Yang-Baxter equation. The
quantized algebra associated to an affine Lie algebra is called a quantum affine algebra.
The representation theory of these has been intensively studied for nearly thirty-five
years since its introduction. It has connections with many research areas of mathematics
and physics, for example, statistical mechanics, cluster algebras, dynamical systems, the
geometry of quiver varieties, Macdonald polynomials to name a few. In this survey, we
mainly focus on the category of finite-dimensional representations F, of quantum affine
algebras and their connections to graded representations of current algebras. The fact
that this category is not semi-simple gives a very rich structure and has many interesting
consequences. The category is studied via the Drinfeld realization of quantum affine
algebras and irreducible objects are parametrized in terms of Drinfeld polynomials. The
classical version of F,; was studied previously in [19], [33], and the irreducible finite-
dimensional representations of the affine algebra and the loop algebra were classified in
those papers.
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However, we still have limited information on the structure of finite-dimensional repre-
sentations of quantum affine algebras except for a few special cases. For example, we do
not even know the dimension formulas in general. One way to study these represen-
tations is to go from quantum level to classical level by forming the classical limit, see for
instance [39] for a necessary and sufficient condition for the existence of the classical limit.
The classical limit (when it exists) is a finite-dimensional module for the corre-sponding
affine Lie algebra. By restricting and suitably twisting this classical limit, we obtain the
graded limit which is a graded representation of the corresponding current algebra, see
Section 4 for more details. Most of the time we get a reducible indecompos-able
representation of affine Lie algebra (or current algbera) on passing to the classical
(graded) limit. A similar phenomenon is observed in modular representation theory: an
irreducible finite-dimensional representation in characteristic zero becomes reducible on
passing to characteristic p. Many interesting families of representations from F, admit
this graded limit, for instance, the local Weyl modules, Kirillov-Reshetikhin modules,
minimal affinizations, and some of the prime representations coming from the work of
Hernandez and Leclerc on monoidal categorification.

In [39] the authors introduced the notion of local Weyl modules for a quantum affine
algebra. They are given by generators and relations, are highest weight modules in a
suitable sense and satisfy a canonical universal property. In particular, any irreducible
module in Fq is a quotient of some Weyl module. It was conjectured in [39] (and proved
there for sl,) that any local Weyl module has a tensor product decomposition into
fundamental local Weyl modules, see Section 3.2.6 for more details. This conjecture
stimulated a lot of research on this topic and the general case was established through
the work of [30, 58, 88]. The work of Kirillov and Reshetikhin [76] has a connection with
the irreducible representations of quantum affine algebras corresponding to a multiple of
a fundamental weight. These modules are referred as Kirillov-Reshetikhin modules in
the literature, because they conjectured the classical decomposition of these modules in
their paper. The study of Kirillov-Reshetikhin modules has been of immense interest in
recent years due to their rich combinatorial structures and several applications to
mathematical physics [64, 65]. Many important conjectures on the character formulas of
these modules and their fusion products were made from physical considerations and they
stimulated lots of research, see [59, 91, 92] and the references therein.

One of the very natural questions that arises from the work of [61] is: what is the small-est
representation from F, that corresponds to a given finite-dimensional irreducible
representation of the underlying simple Lie algebra g? The second author introduced
the notion of a minimal affinization in [20] with this motivation and it was further stud-ied
in [21, 34, 35]. One introduces a poset for each dominant integral weight, such that each
element of the poset determines a family of irreducible representations in F,. The
irreducible modules that correspond to the minimal elements of this poset are minimal
affinizations. Kirillov-Reshetikhin modules are the minimal affinizations of multiples of
the fundamental weights. Our final example of graded limits comes from the work of
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Hernandez and Leclerc [67] on the monoidal categorification of cluster algebras. The au-
thors defined an interesting monoidal subcategory of F, in simply-laced type and proved
that for g of type A, and D4, it categorifies a cluster algebra of the same type, i.e., its
Grothendieck ring admits a cluster algebra structure of the same type as g. The prime
real representations of this subcategory are the cluster variables and these are called the
HL-modules. A more detailed discussion of HL-modules can be found in Section 4.1.8.

Even though the study of graded representations of current algebras is mainly motivated
by their connection with the representations of quantum affine algebras (via graded
limits), they are now of independent interest as they have found many applications
in number theory, combinatorics, and mathematical physics. They have connections
with mock theta functions, cone theta functions [12, 13, 15], symmetric Macdonald
polynomials [14, 27, 71], the X = M conjecture [2, 59, 91], and Schur positivity [55, 101]
etc. One of the very important families of graded representations of current algebras
comes from g-stable Demazure modules. A Demazure module by definition is a module
of the Borel subalgebra of the affine Lie algebra. If it is g-stable, then it naturally
becomes a module of the maximal parabolic subalgebra which contains the current
algebra. By restriction, we get a graded module of the current algebra. These modules
are parametrized by pairs consisting of a positive integer and a dominant weight, and
given such a pair (£, A), the corresponding g-stable Demazure module of the current
algebra is denoted by D(€,A). These modules include all well-known families of graded
representations of current algebras. For example, any local Weyl module of the current
algebra is isomorphic to a level one Demazure module D(1, A) when g is simply-laced.

The limit of a tensor product of quantum affine algebra modules is not necessarily
isomorphic to the tensor product of their classical limits. So, we need to replace the
tensor product with something else in order to study the limit of a tensor product of
quantum affine algebra modules. Examples suggest that the fusion product introduced
by Feigin and Loktev [50] is the correct notion that should replace the tensor product. It
is a very important and seemingly very hard problem to understand the fusion products
of g-stable Demazure modules of various levels. One would like to find the generators
and relations and the graded character of these modules, but very limited cases are
known [3, 42, 54, 91].

The survey is organized as follows. We begin by stating the foundational results, includ-
ing the definition of local Weyl modules and the classification of irreducible modules in
Section 2. In Section 3, we discuss various well-studied families of finite-dimensional
representations of quantum affine algebras and review the literature on the presentation of
these modules, their classical limit, and the closely related graded limits. Later we move
on to the study of graded finite-dimensional representations of current algebras. We
relate the local Weyl modules to the g-stable Demazure modules and discuss the
connection between the characters of the local Weyl modules and Macdonald polynomi-
als. We also discuss the BGG-type reciprocity results and briefly mention some recent
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developments on tilting modules, generalized Weyl modules, and global Demazure mod-
ules. In the end, we collect together some results on Demazure modules.

Acknowledgements. Part of this paper was written while the second author was vis-
iting the Max Planck Institute, Bonn, in Fall 2021. She gratefully acknowledges the
financial support and the excellent working conditions provided by the institute.

2. The simple and untwisted affine Lie algebras

In this section we collect the notation and some well-known results on the structure and
representation theory of affine Lie algebras.

2.1. Conventions. We let C (resp. Q, Z, Z., N) be the set of complex numbers (resp.
rational numbers, integers, non-negative integers, positive integers). We adopt the con-
vention that given two complex vector spaces V, W the corresponding tensor product
V Bc W will be just denoted as V BIW.

Given an indeterminate t we let C[t] (resp. C[t,t™!], C(t)) be the ring of polynomials
(resp. Laurent polynomials, rational functions) in the variable t. For s Z, m,r & Z,
with m > r, set

-t _ o m [m]!
T- 1’ [m]! = [m][m - 1]; (1], t- m

For any complex Lie algebra a we let U(a) be the corresponding universal enveloping
algebra. Given any commutative associative algebra A over C define a Lie algebra
structure on a@ A by

[xBa,yBbl= [x,y]l@ab, x,y@a, a,bAA.In

[sl =

the special case when A is C[t] or C[t, t™1] we set
alt]= aBC[t], L(a)= aBC[t*!].

2.2. Simple and affine Lie algebras.

2.2.1. The simple Lie algebra g. Let g denote a simple finite-dimensional Lie algebra
over C and let h be a fixed Cartan subalgebra of g and R the corresponding set of roots.
Let | = {1,...,n} be an index set for the set of simple roots {a4,...,a,} of R and
{w1, ..., w,} a set of fundamental weights. Given A, u @ h? we say that

A2 U&= A-pulll X Z.qa;.
il
Let P, Q (resp. P*, Q") be the Z-span (resp. Z.-span) of the fundamental weights
and simple roots respectively and let R* = R n Q*. We denote by 8 @ R* the highest
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root in R* and let (, ) be the form on h? induced by the restriction of the Killing form
kK:gBg—> C of g. We assume that it is normalized so that (8,0) = 2 and set

do = 2/(a, @), di= do, of = diaj, @ = diw;, ai;= (a,a), 1<i,j<n.
Let W be the Weyl group of g; recall that it is the subgroup of Aut(h?) generated by
the reflections s;, i B |, defined by:
siA) = A- (A, o)y, iEI.

Fix a Chevalley basis {x*, h; : a @ R*, i @1} of g and set for simplibcity x; =*x*.The
elements x , hi,iii I generaEe g as a Lie algebra. Given a = _“_1 rio; @R + let

ha B h be given by hq = do [, Z—hi and note that the elements s, a B R*, defined by
sa(A) = A = A(hg)a are elements of W and we have s; = Sq,-

Let n* be the subalgebra generated by the elements {x;" :i @1}. Then,

M
nt = Cx*, b*=hBn*, g=b*@An"

al@R*

We have a corresponding decomposition of U(g) as vector spaces
U(g) 8 U(n")BU(h)BU(n*) =BU(n ) BU(b").
2.2.2. The affine Lie algebra. The (untwisted) affine Lie algebra § and its Cartan
subalgebra R are defined as follows:
g= L(g)BCcECd, R=hBCcREC
with commutator given by requiring c to be central and
XBt,yRt] = [X,y]Bt™ + rbs,0k(x, y)c, [d,xBt]=rxB@t".

Here x,y B g, r,s @Z and 6, m is the Kronecker delta symbol. Setting ho = —hg + c we
see that the set {h;,d : 0< i < n} is a basis for R.

Regard an element A @ h? as an element of K¥ by setting A(c) = 0 = A(d). Define
elements 6, ap and the affine fundamental weights A;, 0 < i < n, of B by:

6(d)=1, 6(hRBCc)=10, ap= -0+ 06, Ao(c)=1, No(hBCd) =0,
/\i(hj)= 6i,j, /\i(d)= 0, i|, J{O,,n}

The subset
P={a+rs:aBRB{0}, rBZ}\{0}BhD
is called the set of affine roots. The set of affine simple roots is {a; : i B 1§ where

P={0,1,...,n}. The corresponding set of positive roots is given by:

®* = {ta+ (r+ 1)§:aBR" B{0},r@Z,} BR".
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Set
n XI’]
= ZA, +25 M®™*= Z,A;+2Z6
i=0 i=0

Let @ (resp. ®*) be the Z-span (resp. Z.-span) of the affine simple roots. The affine
Weyl group W is the subgroup of Aut(l#?) generated by the set {s; : i @ 1® where

si(A) = A= Ah)oy, 1B ABH.
Clearly W is a subgroup of W and we have an isomorphism

X
we8we za;?

il

|3t will also be convenient to introduce the extended affine Weyl group W = W
i Zw.
izl i

Setting xé = Xe t*1 we observe that g ib generated by the elements {x*, hi :i @1}
fd}. The root space corresponding to an element +a + s§ @ R with al@ R* isC(x* Et®)
and to an element r§ is (h @t"), s,r @Z and r = 0. We shall just denote a non-zero
element of the one-dimensional root space corresponding to ta, a @ R* \ N6 bylx* and
let hg = [x*, x7]. Theasubo?lgebras n* and b arg defined in the obvious way and we have

bt = gBt*'C[t]@n*, b* = hBAnd

This gives rise to an analogous triangular decomposition

U(p) B U(b )BU(MEU(NnB) =BU(nb) BU(b*).

2.2.3. The loop algebra L(g) and the current algebra g[t]. It is trivial to see that
L(g) B Cd is the quotient of gbby the center Cc. The action of d obviously induces a Z-
grading on L(g) and the current algebra g[t] is a graded subalgebra of L(g). Moreover g[t]
Cc BICd can also be regarded as a maximal parabolic subalgebra of g, naely

gltiBCcBCd =Fpe@n-.

We make the grading on L(g) and g[t] explicit for the reader’s convenience. For r 1 Z we
declare g B t" to be the r-th graded piece and note that for r,s Z, we have
[glt", glt®] = gBt™*. This grading induces a grading on the corresponding enveloping
algebras as well once we declare a monomial of the form (a; Bt")---(a,@t"™), a; B g, rs
Z, 1< s< ptohave grade (ri + -+ + rp).
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2.2.4. Ideals in L(g). The affine Lie algebra is clearly not simple; the center spans a
one-dimensional ideal. One can prove using the explicit realization that this and the
derived algebra L(g) @ Cc are the only non trivial proper ideals inlg. The following
result is well-known, a proof can be found for instance in [25, Lemma 1].

Lemma. For all f @ C[t, t™] the subspace gBfC[t, t™1] is an ideal in L(g). Moreover any
ideal in L(g) must be of this form. In particular all ideals are of finite codimension.
Writing f = (t- ap)™---(t- ax)™* witha, = as for 1< r = s< k we see that we have
an isomorphism of Lie algebras

L(g) Clt, t™2] 5 ¥ Clt, t71]

- =  Wop —— - U4
gBfClt,t1]  ° () o (t-a)"

We shall sometimes refer to the finite-dimensional quotient of L(g) defined by f
C[t, t™1] as the truncation of L(g) at f.
2.3. Representations of simple and affine Lie algebras.

2.3.1. Finite-dimensional representations of g. We say that a g-module V is a
weight module if,

M
V = Vi, Vu={vBEBV :hv= p(h)v, Bh@h}
ueh?
and we let wt(V) = {p B h?: [yu = 0}. If wt(V) B P and dimV, < o= forall u@ P, we let
ch(V) be the formal sum uzp (dimVy) e, where ey, varies over a basis of the group
ring Z[P].

Given A @ P* let V(A) be the g-module generated by an element v, with defining
relations:

hiva = A(hi)va, xTva = 0, (x7)MM)*lyy =0, 1< i< n.
It is well-known [69] that V (A) is a weight module with wt(V (A)) BA - Q* and that it is
also an irreducible and finite-dimensional g-module. The set wt(V (A)) is W -invariant and
dimV (A), = dimV (A)w, forall w@B W.

Any finite-dimensional g-module is isomorphic to a direct sum of copies of V(A), AB P *.

2.3.2. Integrable and positive level representations of g. The notion of a weight
module and its character for ghare defined as for simple Lie algebras with h replaced by h.
QVe say that a g-module V is integrable if it is a weight module and the elements x*,
B, ack locally nilpotently. We say that V is of level r B Z if cv = rv for allv@V
; ifr > 0 (resp. r < 0) then we say that V is of positive level (resp. negative level).
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Given A B Po* let V(M) be the grmodule generated by an element v, with defining
relations:

hiva = A(hi)va, xTva = 0, (x))MM)*1yy =0, 0< i< n.
Again it is well-known [73] that V (A) is an integrable irreducible module with positive
level A(c) and

dimV(A)y= 0 == puBA- @, dimV(A),< oo, pu@Pb

dimV(A), = dimV(A)y,, wBW, paPpPb
Notice that the preceding properties show immediately that V (A) is infinite-dimensional

as long as A 1 Z6. In the case when V is irreducible the following was proved in [19]. The
complete reducibility statement was proved in [48].

Theorem. Any positive level integrable lg-module V with the property that dimV, < oo
for all LB P is isomorphic to a direct sum of modules of the form V (A\)PA B P *.

There is a completely similar theory for negative level modules.

2.3.3. Demazure modules. Given ABP* and wEB W (resp. A @ PB w B W9 the
Demazure module V\(A) is the b-submodule (resp. b-submodule) of V (A) generated
by the one dimensional subspace V (A)wa. The Demazure modules are always finite-
dimensional; in the case of g this statement is trivial while for |g the statement follows
from the fact that wt(V(A)) @A - Q0. For AR P* and w R W, (resp. A @ P*h
w B W) it is a result from [72, 85] that as a U(b)-module (resp. U(b)-module) Vy(A) is
generated by v,,» with relations: hv,, = (WA)(h)vwa, for all h @ h (resp. for all h @ h) ahd
(x2)P**vur = 0, p2 max{0,-wA(hs)}, aBR"

(resp.(hBt™ ) vyr = 0, rBZ,, (X PP*'vur = 0, p2 max{0, -wA(hy)}, aBRIANSE).

These relations were simplified in [42] and [80] and we refer to Theorem 6.1.1 for a
precise statement.

Lemma. Suppose that A B P*, wR W, and i B 1 are such that (wA)(h;) £ 0. Then
X; V(A)wr = 0. An analogous statement holds for V (A) with A pbr .

Proof. If wA - a; B wt(V (A)), then A = w™la; B wt(V (A)). On the other hand our
assumptions force (wA)(h;) = 0 or wla; B R~ where the latter condition ends in a
contradiction to wt(V (A)) BA-Q*. Hence (wA)(h;) = 0and x;V (A)wa = O follows.

As a consequence of this lemma we see immediately that
AP, wEaW, (wA)(h)B-Z,, BiBl == gltlVu () B Vi (M).

We call these b-submodules the g-stable Demazure modules.
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2.3.4. Level zero modules for § and finite-dimensional modules for L(g) and
g[t]. A level zero module for B is one on which the center acts trivially, in particular it
can be regarded as a module for L(g) @Cd. More generally given any representation V

of g one can define a L(g) B Cd-module structure on L(V ) = V BC[t, t™] by:

(xBt")(vEt?) = xvBt™, d(vBt")=rvBt, r,sBZ, x0(g.

The only finite-dimensional representations of lg are those on which L(g) @ Cc acts
trivially. We give a proof of this fact for the reader’s convenience. Note that by working
with the Jordan—Holder series it suffices to prove this for irreducible finite-dimensional
representations. Thus, let V be a finite-dimensional irreducible representation of Ig.
Then it is easily seen that there exists a vector 0 = v BV such that the following hold:

(x; Bt )v =0, (hi@t)v = ajsv, aBR*, i@, r@Z, sBZ,, cv=~2v, dv= ay,
where a,a;s B C fors> 0and ajo@Z, and €@ Z. Then
[d,hi@t°]v = s(hij@t’)v == 0= sa;sv == a;s=0, s> 0.

Working with the sl striple {x"it‘s, X~ B, h - sk(x*, xi')c} we see that we must have
aio - sfk(x", x'} 2.0 for all s > 0 and this forces € = 0. Hence V must be a finite-
dimensional representation of L(g) @ Cd. Suppose that ajo > 0 for some i @ I. Then
working again with the triple {x t‘s,lx @ts, hii= sk(x ,x )} wei*seei"that(x Bts)v =
0 for all s > 0. Since these elements have d-eigenvalues a + s they must be linearly

in('jependent which is a contradiction. It follows that a;o = O for all i @ | and then it is
easily seen that V must be the trivial L(g) B Cc-module.

Consider however, the commutator subalgebra L(g) @ Cc of go The preceding argu-
ments show that the center must act trivially on any finite-dimensional representation.
Hence it suffices to study finite-dimensional representations of L(g). To construct ex-
amples we introduce for each a @ C* the evaluation homomorphism ev, : L(g) = g
which sends x BIt" = a"x for x @B g and r @ Z. Given a representation V of g let ev,V
be the pull-back L(g)-module. The following was proved in [32, 19].

Proposition.

(i) Any irreducible finite-dimensional representation of L(g) is isomorphic to a ten-
sor product of the form evy V (A)R--- evakV (Ag) for some k > 1, pairwise
distinct elements a;,...,ax @ C*, and elements Ay, ..., A B P*. Moreover any
tensor product of irreducible finite-dimensional representations is either ir-
reducible or completely reducible.

(ii) Suppose that V is an irreducible finite-dimensional module of L(g). Then L(V )
is a direct sum of irreducible modules for L(g) B Cd. Any level zero integrable
irreducible module for g with finite-dimensional weight spaces is obtained as a
direct summand of L(V ).

(iii) A similar result holds for finite-dimensional modules of g[t] once we also allow

the module evg V (A).
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Level zero modules for g are not completely reducible. The simplest example is the
adjoint representation where the center is a proper submodule which does not have
a complement. Finite-dimensional modules for L(g) and g[t] are also not completely
reducible. For instance the g-stable Demazure modules are usually reducible and in-
decomposable. A simple exercise, left to the reader, is to verify this in the case when
B= §l,, A = NAp and w = s;35.

We shall fre(i|_uently be interested in Z-graded modules for g[t]. These are Z-graded vector
spaces V = oz V [m] which admit an action of g[t] satisfying (g@t")V [m]BV [m +r] for
allmBZ andr B Z,. In particular each graded piece V [m] is a module for g. If dimV
[m] < oo for all m @ Z we define the graded character as the formal sum

X
chgrV = chg V [m]q™.

mEZz

The module ev, V (A) for g[t] is graded if and only if a = 0. The g-stable Demazure
modules are also graded where the grading is given by the action of d; namely V, (A)[r] =
{vBVyw(A):dv=rv}

Given a Z-graded vector space V and an integer s @ Z let t,V be the grade shifted
vector space obtained by declaring (tsV )[r] = V[r - s].

2.3.5. The monoid P* and an alternate parametrization of finite-dimensional
modules. Let P* be the free abelian multiplicative monoid generated by elements w; 5,
iBl, aBC* and let P be the corresponding group generated by these elements.

ForA@P* letwya, = Q i”=1 wi)‘gh‘). Clearly any element of P * can be written uniquely as
a product Wra, " W a for some multisubset {A1, ..., Ac} @ P * and distinct elements a;

C*, 1< s< k. Then pkart (i) of Proposition 2.3.4 can be reformulated as follows.

Proposition. There exists a bijective correspondence between P* and isomorphism
classes of finite-dimensional irreducible representations of L(g) given by

W= Whya; Wa,a 2 [V (w)] = [eva, V(A1) -+ evy V (A)]-

Moreover if w,w B P* then V(w) BV (w’) is completely reducible and has V (ww’) as a
summand.

2.3.6. Annihilating ideals. Suppose that V is a finite-dimensional representation of
L(g). Then the discussion in Section 2.2.4 shows that there exists f B C[t, t™!] such
that

{aBL(g):av=0 forall vV} = gBfC[t, t™!].
In particular V becomes a module for the truncated Lie algebra gRC[t, t™1]/(f). In the
case when V is irreducible the discussion so far proves that f = (t - a1)---(t - ag) for
some distinct element a4,...,ac B C*.



Suppose that V; and V, are modules for the truncation of L(g) at f; and f, respec-
tively and let f be the least common multiple of the pair. Then V; 2V, is a module for the
truncation at f.

3. The quantized simple and affine enveloping algebras
3.1. Definitions and the Hopf algebra structure.
3.1.1. The Drinfeld-Jimbo presentation. Let g be an indeterminate and set q; =
q%, i @1, and go = g. The quantized enveloping algebra U,(g) (also called the quantum

affine algebra) is the associative algebra over C(q) generated by elements X *, Kiﬂ, D*1,
i B lband relations:

KiK;1=1, DD_1=1, Kin=KjKi, DKi=KiD, I,Jlb

-1
KiX¥K-1 = %X, DX*D™! = gq*foix*, [X*, X[]= 6”&, i,j@Ib
i j j j i j g - gt
xe m 1- ai,j tyl-ajj-my* £\m A b ; :
(-1) Jo(xE) At E(XE)™ =0, 0, BIRi= .
m=0 m Qi

The Hopf structure on this algebra is given by
A(D) = DBED, A(K;) = K;BK;,
A(X")= X BEK + 18X, T A(X;7)= X7 B1+ K- BX, ;
S(Ki) = K7*, S(D)=D""', S(X7)=-XTK', S(X7)=-KiX;,
o(Ki) = 1= 9(D), o(X{)=0.

Set
Y

C = KoKg, Kg= K. .6,

1
il

where c; are such that hg = - cihi. The quantized enveloping algebra Uq(g) is the
Hopf subalgebra generated by the elements X %, K til, i@,

3.1.2. The Drinfeld presentation of Us(#). An alternate presentation of the quan-
tum affine algebra was given by Drinfeld.

The algebra U,(lg) is isomorphic to the C(q)-associative algebra with unit given by
generators c*1/2, X o K, 1, d* hi,, fori @1, r,s @Z with s = 0 subject to the following
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relations:
c¥2¢2 = 1= ddt = kik™ = k'k;, c*'/? are central,
kikj = kjki, kihj,r = hj,rki, dk| = kid, dhi'rd_l = qrhi,r
kixt ki 1= gt Fix: dxt d™! = g'xt,,

5T I,r?

1 ch—-c’ }[
_ £ _ 2.t
hies hysl = 8r-s=lraile, ——  [hin xiil = £ Jraile Vo,
r G — Qg
+ + _ LAt — taij + 2t - +
Xire1Xjs = & "X X i1 T Qi XX s T X 541X rs
(r=s)/2 A+ _ ~(r=s)/2 K-
+ _ ¢ ¢i,r+s c ¢i,r+s
[i),(r y,sx ]= 5i,j -1 ’
qi — qi
_ayk M + + ot + _ e _
(-1) ‘ Xino * Xingw X5 sXing e - Xingm = 0 ifi=j,
oBSm k=0 q

for all sequences of integers ny,...,Nm, where m= 1-a;;, i,j @1, Sy is the symmetric
group on m letters, and the ¢ are determined by equating powers of u in the formal
power series

+ X + + +1 1 X +
o7 (u) = ¢ ., u = kiTexp £(qi- q77)  hisu

r=0 r=1

Note that ¢, = 0 for r > 0. The quantized loop algebra U,(L(g)) is the algebra with

*

generators x;, k¥ v his, r,s@Z withs= 0andi B and the same relations as above

where we replace c/2 by 1. Moreover we have a canonical inclusion U,(g) “=> Uq(L(g))
given by mapping X - x#,, ki > K;* i @1.

Explicit formulae for the Hopf algebra structure in terms of these generators are not
known. However the following partial information on the coproduct is often enough for
our purposes [37, 44].

Proposition. Let
X X
X* = Cla)x®, X*(i)= C(q)x* i@l

Jlr’
iz, rez iBI\{i}, rBZ
Then
(i) Modulo Uy (B)X B Uq((X*)? + Ug()X B U4 (ghX*(i), we have

X k
A" ) = x/ B+ kBx f+ ¢

1,

+5 +
B k>0,

i=1



¥-1
AX ) = x{_ B1+ kB 5o+ b Bx ", k>0
j=1
(ii) Modulo U4 (B)(X )2 BU4 (X" + Ug(h)X BULX*(i), we have
¥-1
A(x7 ) = x7 Bki+ 18X, + Xi - B, k>0,
i=1
X k
Ax; )= x) BRI+ 18X S0+ X G, Bo, k> 0.
j=1
(iii) Modulo U4 (B)X B U4(8X*, we have

A(hi,k) = hi,k1+ lhi,k, kZ\{O}.

3.2. Representations of quantum algebras. The classification of finite-dimensional
and integrable representations of the quantum algebras is essentially the same as that of
the corresponding Lie algebras, once we impose certain restrictions. Thus we shall only
be interested in type 1 modules for these algebras; namely we require that the elements
K’i-'1 act semi-simply on the module wilgh eigenvalues in q?. The character of such a
representation V is given by ch(V) = w dim(Vy)ey, where Vi, = {v BV : Ki“v =

oM™y, i@}

3.2.1. The irreducible modules. Let P* (resp. P4) be the free abelian monoid
(resp. group) generated by elements w; , with a@ C(q)*. Clearly we can regard P* asa
submonoid of P*. Define wt: P* - P * by extending the assignment wt w;, = w; toa
morphism of mondids. ‘

Part (i) of the next result was proved in [33] while part (ii) was proved in [83], [98].
Theorem.

(i) There is a bijection w - [V4(w)] between elements of P; and isomorphism
classes of finite-dimensional irreducible representations of Uy(L(g)). Moreover if
w,w BP* then Vy(ww’) is a subquotient of V,(w) BV,(w’).

(ii) Given A P * there exists a unique (up to isomorphism) finite-dimensional
irreducible Uq(g)-module V4(A). Moreover chV4(A) = chV (A) and for A, uBIP *
we have that Vq(A+ p) is a summand of V(M) @V4(p). An analogous statement
holds for positive level integrable representations of Uq(g).

Remark. (1) It is worth emphasizing that in general chV4(w) = chV (w) for w
P*.



14 MATHEUS BRITO, VYJAYANTHI CHARI, DENIZ KUS, AND R. VENKATESH

(2) The elements wi, @ P* are called the fundamental weights and the associated
representations are called fundamental representations.

3.2.2. The category F,. We shall be interested primarily in the category F, of finite-
dimensional representations of Uy(L(g)). The Hopf algebra structure of Uy(L(g)) en-
sures that F, is a monoidal tensor category. Roughly speaking this means that Fq is
an abelian category which is closed under taking tensor products and duals. However,
since the Hopf algebra is not co-commutative it is not true in general that the modules
V BW and W BV are isomorphic. One has also to be careful to distinguish between left
and right duals say V? and 2V ; in one case we have an inclusion of C "> V BV?and in
the other case a projection ®V BV - C = 0. The tensor product defines a ring structure
on the Grothendieck group of this category. A very interesting fact proved in [60] is that
the Grothendieck ring is always commutative.

We shall say that an irreducible representation in F is prime if it cannot be written in
a nontrivial way as a tensor product of two objects of Fy. It is trivially true that any
irreducible representation is isomorphic to a tensor product of prime representations. It
follows that to understand irreducible representations it is enough to understand the
prime ones. However, outside g = sl, the classification of prime objects seems to be a
very hard and perhaps wild problem. We shall nevertheless, give various examples of
families of prime representations in this section and the next, including some coming
from the connection with cluster algebras.

Our next definition is entirely motivated by the connection with cluster algebras. Namely
we shall say that an object V of Fy is real if V is irreducible for all r 2 1. As a con-
sequence of the main result of [66] it is enough to require V? to be irreducible. Again, it is
hard to characterize real representations. A well-known example of Leclerc shows in [81]
that there are prime representations which are not real.

The notion of prime and real objects can obviously be defined for the finite-dimensional
module category of any Hopf algebra, and in particular for irreducible finite-dimensional
representations of g and L(g). For g it is an exercise to prove that the representations
V(A), A @ P* are prime and not real if A = 0. In the case of L(g) it then follows from
Proposition 2.3.4 that the prime irreducible representations are precisely ev, V (A), A
P*, a @ C. Moreover, it also follows that these representations are never real if A = 0.
So these notions are uninteresting in these examples.

As in the case of L(g) the objects of F, are not completely reducible. In fact these
categories behave more like the category O for simple Lie algebras and some of these
similarities are explored in this article.
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3.2.3. Representations of quantum loop sl,. In this case the study of the irre-
ducible objects in Fy is well-understood and we briefly review the main results from
[33]. Givenr @Z, and aBC(q)* let

Wi1,a,r = Wi1,agr-1W1,aqr-3 ° - W1,ag-r+1.
Note that wi,a0 is the unit element of the monoid Pq+ forallal@ C(q)*. Then
Va(wi,a,r) Bug(siy) Volrw).
Moreover
Vo(wi,a,) BVq(w1n,s) FVg(wiarwips) & ab™ B{g*™*?P) :0< p< min{r,s}}.

In particular, the modules V4(w1,a,) are prime and real. If ab™! = q*{*s-2P) for some
0 < p < min{r, s} then we have a non-split short exact sequence,

0-> V1 - Vq(wl,a,r) Vq(wl,b,s) - Vz - 0,
where
Vi Vq(wl,aq(f’P),p) Vq(wl,bq(p’r),ﬁs—p): vV, Vq(wl,aqu’l,r—p—l) Vq(wl,aqp*l,s—p—l)
if ab™t = q~(r*s-2pP) while if ab™ = q("*-2P) then
Vi Vq(wl,aqp"l,r—p—l) Vq(wl,aq‘P‘l,s—p—l); Vs Vq(wl,aq“"f),p) Vq(wl,bq("P),Hs—p)-
Any irreducible module in F, is isomorphic to a tensor product of representations of the
form Vg(w1,ar), r@Z,, aBC(q)*. More precisely, if w &P *qthen

\Y (UJ) Vq(wllal,ﬁ) e Vq(wllak,rk)'

for a unique choice of k > 1 and pairs (as, rs), 1 < s < k satisfying asar‘n1 = q*(rs+rm-2p)
forany 0< p< min{rs,rm}, 1< s= m< k.

3.2.4. Local Weyl modules for quantum loop algebras. We identify the monoid P,
with the monoid consisting of I-tuples of polynomials (mt;(u))iz, mi(u) & C(q)[u] m;(0) =
1, via

Wi a - (1 - 6i,jau)j|.

For w P; the local Weyl module Wq(w) is the Uq(L(g))-module generated by an
element vy with relations

x:rvw =0= (Xijo)degni(uhl\,w’ d)ii"rvw = Vii:rVw, rez
where vy B C(q) are defined by

X"" + tr deg 1t ni(q_lu)

Yi,«ru =gl '
r=0

i w = (mi(u))ier-
mi(qiu) ’

The following was proved in [39].
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Proposition. Let w P’;. Then dim Wgy(w) < o= and W4(w) has a unique irreducible
quotient Vq(w). If w' P then the modules Wq(w) and W, (w') are isomorphic if and
only if w = w". The module V4(ww’) is a subquotient of Wq(w) BWq(w').

3.2.5. The fundamental local Weyl modules. It was proved in [22] that Wq(wi ) B
Vq(wia). In general it is not true that local Weyl modules are irreducible but we will
discuss conditions for these later in the paper.

3.2.6. Local Weyl modules and tensor products. Suppose that w, w’ P"q and
let M, M’ be any quotient of Wq(w) and W4(w’) respectively. Let vy and vy also denote
the images of these elements in M and M'. Then using the formulae for comultiplication
one can prove that we have the following sequence of surjective maps:

Wo(ww') @ Ug(L(g))(vw Bvy) @ Vo(ww).
In particular Vq(ww') is a subquotient of M A M.

Suppose that w = wj, 4, - - " Wi a, P,*; the discussion so far establishes the existence
of a map of Uq(L(g))-modules

d)(l) . Wq(w) % Vq(wil,al) e Vq(wik,ak)'

If we assume that aj, ..., ax are such that a;/as P gN for all 1 < j < s < k, then the
results of [1, 23, 100] show that this map is surjective. It was conjectured in [39] that
¢w is an isomorphism. Clearly to prove the conjecture it suffices to establish an equality
of dimensions. This equality was proved in that paper for sl,. In the general case the
conjecture was established through the work of [30, 58, 88]. We will discuss this further
in the next section.

Assuming from now on that ¢ is an isomorphism we study the question of the ir-
reducibility of Wq(w). A sufficient condition for W,(w) to be irreducible is to require
that a;/as P g% for all 1 £ j = s < k; this was known through the work of [1, 23]. A
precise statement was given in [23, Corollary 5.1] when g is of classical type and for some
of the exceptional nodes. The following result summarizes the results of [23] for classical
cases.

Theorem. (i) Suppose that g is of classical type and i,j @ | and a,b @ C(q)*.
Then
ab™ P gl == Vi(wiawje) FV(wia) BVe(w)e) =BWg(wiaw;p),

where S(i, j) is given as follows:

If g is of type A,:
S(i,j)={2+ 2k-i-j:max{i,j} < k< min{i+j - 1,n}}.

If g is of type B,, and aj is short:



S(1,1) = {4k-2:1< k< n},
S(i,1) = S(i,1) = {4k - 2i+ 1: i< k< n},

S(i,j) = {4+ 4k- 2i- 2j: max{i,j} £ k< n}@B{4k - 2- 2]|j-i]:
max{i,j} < k< n},i,j> 1.

If g is of type C,, and a; is long:
S(1,1)= {2k+ 2: 1< k< n}
S(i,1)=5(1,i)={2k-i+3:1< k< n},i>1,

S(i,j)={2+2k-i-j : max{i,j} < k< n}@{2+2k-]i-j| : max{i,j} <
k< n},ij> 1.

If g is of type D,, and 1 and 2 denote the spin nodes:
e S(1,1) = S(2,2)= {2k-2:2< k< n, k= 0 mod 2}
e 5(1,2)=5S(2,1)= {2k-2:3< k< n, k= 1 mod 2}
e S(1,j)=5S(2,j)={2k-j :j £ k< n}=S(j,2)=S(,1), j= 3.
e S(i,j) = {2+ 2k-i-j: max{i,j} £ k< n}B{-2+ 2k- [|i-j] :
max{i,j} < k< n},i,j 2 3.

(ii) Given w = Wi, a; * * * Wj,,a, the module Wq(w) is irreducible if

aa]tpg*le) 1<r<ss<k

Remark. More recently an alternative approach to describing the set S(i, j) was given
in [62, Theorem 2.10] and [63, Section 6] by relating it to the poles of the universal
R-matrix. It is nontrivial to see that those conditions are equivalent to the explicit
description given in the preceding theorem.

3.2.7. A-forms and classical limits. Let A = Z[q, q '] and define Ua(g) to be the
A-subalgebra of Uy(®) generated by the elements (X ,*)"/[r],!, i Ib Then

Uq(B) = Ua(®) Ba C(q).
For @ C* we let C, be the A-module obtained by letting q act as ¢ and set
Uo(B) = Ua(®) Ba Cy.

The algebra U(p) is isomorphic to the quotient of U;(fg) by the ideal generated by
Ki = 1,D - 1, i @b Similar assertions hold for U,(g) and Uq(L(g)) as well. Part (i) of
the following was proved in [83], [98] while part (ii) was proved in [39].

Theorem.
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(i) Suppose that A B Po* and 9@ C*. There exists a Ua(g)bsubmodule Va(A) of
Vq(A) such that
Vq(A) B Va(X) Ba C(q).
In particular Vo(A) = Va(A) Ba C, is @ module for Uy(g) band if o= 1 or if @is not
a root of unity then we have chV,(A) = chVg4(A). Analogous statements hold for
the Uq(g) representations Vq(A), A B P *.
(i) Let P, be the submonoid of P* generated by elements wi,, a @ A and let
w@P,. Then Wy(w) admits a Ua(L(g))-submodule Wa(w) and
Wo(w) B Wa(w) Ba C(q).
In particular Wy(w) = Wa(w) Ba C, is a Uy(L(g))-module, and chW,(w) =
Wqy(w) if @ = 1 or if 9 is not a root of unity. If My is any Uq(L(g))-module
quotient of Wy(w) let M4 be the image of Wa(w). Then,
Mg 2 Ma Ba C(a), M, ¥ M, B4 C,,
and M, is a canonical quotient of W,(w).
Remark.

e The modules Vi(A), A ®+ and Vi(w), w @ P, are modules for the universal

enveloping algebra of U(L(g)) and are called the classical limit of V4(A) and
Vq(w) respectively.

e |t is worth noting again, that in part (i) of the theorem the module V,(A) is

irreducible for U,(®) if ¢ is not a root of unity. This is false in part (ii).

4, Classical and Graded limits

In this section we discuss various well-studied families of finite-dimensional representa-

tions of quantum affine algebras. We review the literature on the presentation of these

modules, their classical limits and the closely related graded limits.

4.1. Classical and Graded Limits of the Quantum Local Weyl modules.

4.1.1. Relations in the classical limit. Suppose that w B P * gnd let Vq(w) bethe

unique irreducible quotient of Wg(w) (see Section 3.2.4). Since W,(w) is finite-

dimensional the corresponding classical limits (see Theorem 3.2.7) W;(w) and Vi(w)
are finite-dimensional modules for L(g). Let vy = v @1 B W;(w). The following was

proved in [39].
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Lemma. Suppose that w = Wi a, Wi a P"A. The following relations hold in
W, (w):
hVw = wt w(h)Vw, hB(t- ai(1))---(t- ax(1))Clt, t™]Vw = 0,

(x} BC[t,t ™ ])Vw =0, h@h, aBR".

Remark. With a little more work one can actually prove that there exists an integer N
N such that W;(w) is a module for the truncation of L(g) by the polynomial (t -
ar(1)N -+ (t- ar(1).

4.1.2. Graded Limits: the modules V|,.. In the rest of this section we shall restrict
our attention to the submonoid P ; which is generated by the elements wiq for i @ |
and r B Z.

In this case the results of Section 4.1.1 imply that W;(w) is a module for the trun-

cation of L(g) at (t - 1)N for some N sufficiently large. Using the isomorphism of Lie
algebras

C[t, t™1] C[t] C[t]

(t- )N (t- 1)N (tN)

we see that we can regard W;(w) as a module for the truncation of g[t] at tN. We shall
denote this module by W,c(w). We call this the graded limit of Wy(w). In fact if M is
any quotient of Wq(w) we can define a corresponding module Mo for g[t] using the
isomorphisms of Lie algebras and call this the graded limit of M.

=

g gL

This terminology of course requires justification. Recall that the action of d on g[t]
defines a Z.-grading on it: the r-th graded piece is g@t". The adjoint action of d on
U(g[t]) also gives a Z,-grading. Hence one can define the notion of a graded g[t]-module
V to be one which admits a compatible Z-grading namely:
M
V = V [s], (gBt)V[s]AV[r+ s].

skZ

The general belief is that when M is a quotient of W,(w) with w PZ+ then Mioc is a
graded g[t]-module. This is far from clear in general and is hard to prove even in specific
cases. In the rest of the section we will discuss certain families of modules where the
corresponding graded limit is in fact a graded g[t]-module.

Remark. In the discussion that follows we shall see that the classical or graded limit
depends only on wt w. So there is a substantial loss of information when we go to the
limits. However, the character and the underlying Uq(g)-module is the same and this
is one reason for our interest in this study.
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4.1.3. Kirillov—Reshetikhin modules. We begin by discussing this particular family
of modules since this was essentially the motivation for the interest in graded limits.

Given i @I, r@N and sBZ set

s-r+l.

Wi r = wi'qs+r—1wi'qs+r—3 e wi'g

Notice that in the case i = 1 these elements were introduced in Section 3.2.3 in the case of
sl, where they were denoted as w1,qs,r Since we were working in a more general situation.
The corresponding irreducible Uq(L(g))-module is called a Kirillov—Reshetikhin module.
This is because of an important conjecture that they had made; they predicted the
existence of certain modules for the quantum loop algebra with a specific decomposition as
Uq(g)-modules (see also [64]). In [22] it was proved that the conjectured modules were of
the form V4 (wi s ) for all classical Lie algebras and for some i @1 in the exceptional cases.
Moreover the following presentation was given (see Corollary 2.1 of [22]) for the module
Vl(wi,s,r)-

Theorem. The L(g)-module Vi(wis ) is generated by an element v; s, with relations:
XeVisr = 0, (hBt )i, = rwi(h)vis,, ((x Bt)-x"B1)vis, = 0, (x @)1y, ¢ =0,
where aBR*, hBhand k@ Z.

Here we have used the fact that wt w;, = rw;. Notice that these relations are inde-
pendent of s. Moreover,

(hBt*) - h)vis,= 0 == (hB(t- 1)Vvis,=0, 0=kBZ,

and similarly for the third relation in the presentation above. It follows that V|oc(wis,r)
is the g[t]-quotient of Wioc(w s,r) by imposing the additional relation: (x; Bt)vy, . = 0.

Later, in [31], a more systematic self contained study of these modules was developed
and the graded g-module decomposition of these modules was calculated. One can think of
this as a graded version of the Kirillov—Reshetikhin character formula. The results of [31]
led to the definition of graded limits and more generally resulted in the development of the
subject of graded (not necessarily finite-dimensional) representations of g[t]. We say
more about this study in later sections of the paper.

4.1.4. Minimal Affinizations. The notion of minimal affinizations was introduced
and further studied in [21, 34, 35]. Perhaps the simplest place to explain what this
notion means is in the case of sl,. Since we have only one simple root we denote the
generators of P* by wi,. If W= w4, ---w1a B P then itis not hard to see that there
exists a Uq(g)—n'?odule M such that ‘ ‘

Vo(w) By, (g) Volkw) B M.

Moreover, it was shown in [33] that M = 0 unless V4(w) is a Kirillov—Reshetikhin
module:

M=0 ¢ w-= W1 ,aqk-1 """ W1 aq-k+1, aC(q)X
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Using the results of [33] we can also give precise conditions under which V4(w) and
V4(w') are isomorphic as Uq(g)-modules.

It is natural to ask what analogs of these results hold in the higher rank case. It
was known essentially from the beginning (see [45]) that if g is not of type A, there does
not exist a corresponding Uq(L(g))-module structure on V4(A). On the other hand it
is also clear that there were many pairs w,w B P * with Vq(w) By, (g) Vq(w'). So this
motivated the question: given A @ P +, is there a “dmallest” Uq(g)-module containing a
copy of V4(A) which admits an action of the quantum loop algebra. This question can
be more formally stated as follows.

Given w,w B P* we say that V4(w) is equivalent to V4(w’) if they are isomorphic as
Uq(g)-modules. Denote the equivalence class corresponding to w by [Vg(w)lg. In
particular,

[Vq(w)]g = [Vq(w’)]g = wtw= wtw.
The converse statement is definitely false, this is already the case in sl,.

Define a partial order on the set of equivalence classes by: [Vq(w)]g £ [V4(w')]g if for all
LB P* either

dim Homy,(g)(Vq(H), Vq(w)) £ dim Homy, g)(V4(H), Vq(w'))
or there exists v > p (i.e. v— p@Q*\{0}) such that

dim Homy, (g)(Vq(v), Va(w)) < dim Homy, (g)(V4(v), Va(w')).
It was proved in [21] that minimal elements exist in this order and an irreducible repre-
sentation corresponding to a minimal element was called a minimal affinization. When g

is not of type D or E the explicit expression for the elements w P; which give a
minimal affinization are given by

w = Wiy,sq,r ° ”wik'iss)'(rlk-'l i1 < i < <y,
Sp+1 ~— Sp = Qdiprp + dip+1rp+1 + (dJ -1- aj,,-+1), 1< p< k-1,
j=ip

where either 9= 1 for all por 9= -1 for all p and w; s is the element of Pq" which was
introduced in Section 4.1.3. In types D and E the preceding formulae still correspond to
minimal affinizations under suitable restrictions. Unfortunately these are far from being
all of them; the difficulty lies in the existence of the trivalent node (see [36, 37]). The
problem of classifying all the minimal elements was studied in [95] but the full details
are still to appear.

The equivalence classes of Kirillov—Reshetikhin modules are clearly minimal affiniza-
tions. The following result was conjectured in [86] and proved in [82, 89, 90]. It again
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justifies the use of the term graded limit. We do not state the result in full generality
in type D but restrict our attention to the minimal affinizations discussed here.

Theorem. Assume that w @ P,* is as in the discussion just preceding the theorem.
Then Vioc(w) is the g[t]-module generated by an element v with relations:

x'vw = 0, (h Bt“)vw = Siowt w(hi)vw (x'Bt)vw =0 (x @1t Wity =0,
P
foralli@1 and forall =, siai BR* with s; < 1.

The g-module decomposition of the minimal affinizations was computed in rank two in
[21]. In the case of A, the graded limit is irreducible and so its character is just the
character of Vq(wt w). The g-module decomposition in type B and D, was partially
given in [86] and the result in complete generality is in [89, 90] for types B, C and for
certain minimal affinizations in type D. Moreover, in [99] Sam proved a conjecture
made in [26] that the character of minimal affinizations in types BC D are given by a
Jacobi-Trudi determinant.

4.1.5. Tensor products and Fusion products. Before continuing with our justifica-
tion for the term graded limit, we discuss the following natural question. Suppose that
M and M’ are U,(L(g))-modules which have a classical (resp. graded) limit. Is it true
that M B M’ has a classical limit and how does this relate to the tensor product of the
classical (resp. graded) limits? The answer to this question is far from straightforward;
even if MEM ' does have a classical limit it is easy to generate examples where (MEM )1 is
not isomorphic to M; @M’ as L(g)-modules. For instance if we take g = sl, and M
= Vg(wyq2), M = Vg(w,1) thén the module M B M’ is a cyclic Uq(L(sl2))-module and
so the classical limit is a cyclic indecomposable module for L(sl,). However the ten-sor
product of the classical limits is V (w1) BV (w1) (equivalently ev, V (w) Bev; V (w)) which
is completely reducible.

The g-module structure however is unchanged in the process. This is because it is
known that the process of taking classical limits preserves tensor products for the sim-ple
Lie algebras. If we work with the graded limit then again it is false that the graded
character of (M B M')joc is the same as Mqc M'loc. However in many examples the
graded limit of the tensor product coincides with an operation called the fusion product
defined on graded g[t]-modules. This notion was introduced in [50] and we now recall
this construction.

Let V be a finite-dimensional cyclic g[t]-module generated by an element v and for

relZ, set |

M
F'V = U(gltl)[s] -v

0<s<r
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Clearly F'V is a g-submodule of V and we have a finite g-module filtration
0BFOV BFV @ ---BFkV =V,

for some k @ Z,. The associated graded vector space grV acquires a graded g[t]-
module structure in a natural way and is generated by the image of v in grV. Given a
g[t]-module V and z @ C, let V? be the g[t]-module with action

(xBt)w = (xB(t+ z)")w, xBg rRAZ,, wiRV.

Let Vs, 1 £ s £ p, be cyclic finite-dimensional g[t]-modules with cyclic vectors vg, 1 <
s< pand let zy,..., 2, be distinct complex numbers. Then the module V* &---BV, *is
cyclic with cyclic generator vi @ - - Bvy. The fusion product V * B-- 2B V,° is de-fined to
be grV,'B- - B4 °. For ease of notation we shall use V1&- - -BV for V, '@- - -BV, *. z

It is conjectured in [50] that under some suitable conditions on Vs and v, the fusion
product is independent of the choice of the complex numbers z;, 1 £ s < k, and this
conjecture is verified in many special cases by various people (see for instance [30], [41],
[49], [51] [58], [75], [91]). In all these cases the conjecture is proved by exhibiting a graded
presentation of the fusion product which is independent of all parameters. This is much
like what we have been doing to justify the use of graded limit and the coincidence is
not accidental. In almost all of these papers the proof of the Feigin—Loktev conjecture
involves giving a presentation of the graded limit of certain Uq(L(g))-modules.

4.1.6. A presentation of Wj,.(w). We return to our discussion in Section 3.2.6. Re-
call that we had discussed that given w P,+ we can write w = Wi, 2, - Wi ,a SO that

there is a surjective map of Uq(L(g))-modules
Wq(w) = Vo(wiy,a,) B+ --BVg(wi,a) = 0.
It has been conjectured in [38] that

Yk Yk
dimWg(w) = dim Vg(wi,,a,) = dim Wg(wi,,a,), (4.1)
s=1 s=1
where the second equality is a consequence of Section 3.2.5. Since the dimension is
unchanged when passing to the graded limit it suffices to prove that

Yk
dimW|oc(w) = dim V|oc(wi5,as). (4.2)
s=1
Using Lemma 4.1.1 and the discussion in Section 4.1.2 we see that W ,c(w) is the quotient
of the module Wioc(wtw) which is generated as a g[t]-module by an element wg with
defining relations:

(h@tCtww = 0, hvy = wtw(h)wy, x'wy = 0, (x)V@M*y, = 0.
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Notice that by Theorem 4.1.3 we know that
Vh\‘/loc(wi) Wloc(wi,a)-

Choosing distinct scalars zy, . . ., zx consider the fusion product Wioc(w;, )28 - -W|oc(wik)zk .
It is not too hard to prove that this module is a quotient of Wioc(wtw). We get
Yk
dim Wiec(wtw) 2 dimWjpc(w) 2 dim Wi (wi,).
s=1
The following result was established in [39] for sl,. Using this the result was established
in [30] in the case of sl,.1 where a Gelfand-Tsetlin type basis was also given for Woc(w).

These bases were further studied in [96, 97]. In [58] the theorem was proved for simply-
laced Lie algebras. Finally in [88] the result was established for non-simply laced types.

Theorem. We have an isomorphism of g[t]-modules:
V'{/Ioc(Wtw) Wioc(w) Wloc(wil)zl T Wloc(wik)zk; wiw = wj, + -+ Wj,.

Clearly this theorem establishes the conjecture in [22] and also the conjecture of Feigin—
Loktev for this particular family of modules.

Remark. Although the preceding theorem is uniformly stated the methods of proof
are very different. In [30, 39] the proof goes by writing down a basis and then doing a
dimension count. In [58] the proof proceeds by showing that W ,.(wtw) is isomorphic
to a stable Demazure module in a level one representation of the affine Lie algebra (see
Section 2.3.2 for the relevant definitions). This isomorphism fails in the non-simply
laced case. Instead it is proved in [88] that the module has a flag by stable level one
Demazure modules and this plays a key role in the proof. We return to these ideas in
the later sections of this paper.

4.1.7. Tensor products of Kirillov—Reshetikhin modules. It was proved in [23]
that the tensor products of Kirillov—Reshetikhin modules Vq(wil,sl,rl)' - BVq(w; 5o )kis
irreducible as long as si—-sp, 1 < i = p < k lie outside a finite set. A precise description of
this set was also given in that paper when g is classical. Set
X k
V = Vq(wil,sl,rl)"'Vq(wik,sk,rk): A= FrsWi .
s=1
We now discuss the results of [91] on the structure of Vi,c. Thus, let V|, be the
g[t]-module generated by a vector v satisfying the relations:

n"[tlv= 0= (h@tC[t])v, hv= A(h)v, h&h,
X

(Fi(z)");v=0, iBI, r>0, s< - min{r, rp},

p: ip=i
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where (Fi(z)")s denotes the coefficient of z° in the r-th power of
X
Fi(z) = (x; Bt™)z ™ @u(glt)[z]].

m=0

The following is the main result of [91].
Theorem. We have an isomorphism of graded g[t]-modules

z z 7
Vloc Vloc(wil,sl,rl) e 'Vloc(wik,sk,rk) k Vloc-

Again, the conjecture of Feigin—Loktev for this family of modules is a consequence of
this presentation. The proof of the Feigin—Loktev conjecture when ry = ry = -+ = ry
and g simply-laced was proved earlier in [58] by identifying the fusion product with a
g-stable Demazure module. In general the connection with Demazure modules or the
existence of a Demazure flag (as in the case of local Weyl modules) is not known.

4.1.8. Monoidal categorification and HL-modules. Our final example of graded
limits comes from the work of David Hernandez and Bernard Leclerc on monoidal cate-
gorification of cluster algebras. We refer the reader to [103] for a quick introduction to
cluster algebras. For the purposes of this article it is enough for us to recall that a cluster
algebra is a commutative ring with certain distinguished generators called cluster vari-
ables and certain algebraically independent subsets of cluster variables called clusters.
Monomials in the cluster variables belonging to a cluster are called cluster monomials.
There is also an operation called mutation; this is a way to produce a new cluster by
replacing exactly one element of the original cluster by another cluster variable.

The remarkable insight of Hernandez—Leclerc was to relate these ideas to the representa-
tion theory of quantum affine algebras associated to simply-laced Lie algebras. Broadly
speaking they prove that the Grothendieck ring of a suitable tensor subcategory admits
the structure of a cluster algebra. A cluster variable is a prime real representation in
this category (see Section 3.2.2 for the definitions) and we call these the HL-modules.
Suppose that V,V " are irreducible modules in this subcategory. Assume that their iso-
morphism classes correspond to cluster variables which belong to the same cluster. Then V
BV " is an irreducible module. The operation of mutation in this language corresponds to
the Jordan—Holder decomposition of the corresponding tensor product.

We now give one specific example of their work and relate it to our study of graded
limits. We assume that g is of type A,. Let k : {1,...,n} > Z be a height function;
namely it satisfies |k(i+ 1) - k(i)] = 1 for 1< i < n. Let P* be the submonoid of P *
generated by elements w; q«ie1, | B 1. Let F be the full subCategory of F, consisting f
finite-dimensional Uq(L(g))-modules whose Jordan—Holder constituents are isomorphic
to V4(w) for some w P*K. It was shown in [67] that F, is closed under taking tensor
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products and that its Grothendieck ring has the structure of a cluster algebra of type
A.. The following result was proved in [67] when k(i) = i mod 2, in [68] when k(i) = i
and in complete generality in [16].

Theorem. Suppose that V4(w) is a prime real object of F,. Then w must be one of
the following:

wilqk(i)il, wilqk(i)+1wi'qk(i)—1, i |,
Wi,a; Wiz,a; * * " Wi y,a-; Wj,ay, l<i<js<n,

where i; < --+ < ix-1 is an ordered enumeration of {p :i< p< j, k(p- 1) = k(p+ 1)}
and a; = g if k(i +1) = k(i) @1 and a5 = q*ls)* jf k(is) = k(is-1)+1 fors> 2.
Conversely the irreducible representation associated to any w as above is a real prime
object of F.

4.1.9. Graded Limits of HL-modules in F,. Continue to assume that g is of type
Apandforl< i< j<nsetajj= o+ ---+a; @R". It follows from the discussion in
Section 3.2.5 that Vioc(w; gxin+1) B Wioc(w; geine1). The discussion in Section 4.1.3 gives
a presentation for Vioc(w; qxiv1w; q«in-1) since this is a special example of a Kirillov—
Reshetikhin module. The following was proved in [17] and shows that the graded limits
of HL-modules are indeed graded.

Theorem. Suppose that g is of type A, and w = w2, - Wja, BP™ isasin Theorem
4.1.8. Then Vioc(w) is the quotient of W,c(w) by the submodule generated by the
additional relations:

(x, Bt)ww = 0, al@{ai,, dii;, ", %i,_,,i)

We remark that the result in [17] is more general in the sense that it gives a presentation
of the graded limit of the tensor product of an HL-module with the Kirillov—Reshetikhin
modules in this category. Here again the result shows that tensor products specialize
to fusion products. A problem that has not been studied so far is to understand the
graded limit of a tensor product of V4(w) B V4(w’) for an arbitrary pair w, w BP * apd the
connection with the fusion product of the graded limits of V4(w) and V4(w").

The graded characters of the limits of HL-modules have been studied in [14] and [4]
in different ways. In the first paper a character formula was given as an explicit linear
combination of Macdonald polynomials. In [4] the authors studied the g-module de-
composition of the graded limit. The multiplicity of a particular g-type is given by the
number of certain lattice points in a convex polytope. Moreover, considering a particu-lar
face of that polytope encodes in fact the graded multiplicity.

A comparable study of HL-modules in other types is only partially explored. A first
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step was taken in [24] in type D, but it does not capture all the prime objects in the
category F,. There are important differences from the A, case and some new ideas
seem to be necessary.

4.1.10. Further Remarks. As we said, there are other subcategories of representa-
tions of F; which were shown by Hernandez-Leclerc to be monoidal categorifications of
(infinite rank) cluster algebras. However, it is far from clear what subset of P * is an
index set for the prime representations corresponding to the cluster variables. Hence
little is known about the characters or the graded limits of these representations.

Another example of prime representations comes from the theory of snake modules
studied in types A, and B, in [87, 18]. Again the problem of studying the graded limits
of these modules is wide open.

5. Demazure modules, Projective modules and Global Weyl modules

Our focus in this section will be on the study of graded representations of g[t]. We
begin by establishing the correct category G of representations of the current algebra
and introduce the projective objects and the global Weyl modules. We then relate the
study of local Weyl modules in Section 4 to the g-stable Demazure modules introduced
in Section 2.3.3. Next we discuss the characters of the local Weyl modules and relate
them to Macdonald polynomials. Finally, we discuss BGG-type reciprocity results. We
conclude the section with some comments on the more recent work of [47], [52], [46] [74].

5.1. The category G. The study of this category was initiated in [26] and we recall
several ideas from that paper. Recall from Section 4.1.2 that we have a Z.-grading on
g[t] and its universal enveloping algebra. Define G to be the category whose objects are
Z-graded representations V = BmpzV [M] of g[t] with dimV [m] < o= forall mB@Z. The
morphisms in the category are grade preserving maps of g[t]-modules.

Define the restricted dual of an object V in G by

M
vE= VIm], VEm]= V[-m]°

m@zZ

Clearly V2 is again an object of G.

For any object V of G, each graded subspace V[m] is a finite-dimensional g-module
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and we define the graded g-character of V to be the element of Z[P][[q*!]]:
X

X
chgr V = dim Homg(V (A), V [m])g™ ch V (A)

P *XmZ X

= dimV[m],aMe, = pula)ey, pula) B Z:[[q*"]].

HEP mBEZ ueP

It is clear that for all r @ Z we have chg (T:V) = q" chg V, where T, is as defined in
Section 2.3.4).

Finally, note that G is an abelian category and is closed under taking restricted duals.
If V and V' are objects of G then V BV ' is again an object in G if dimV < eo,

5.1.1. Finite-dimensional objects of G. It is straightforward that if V is a simple
object of G, then V is concentrated in a single grade. In particular V must be a finite-
dimensional irreducible g-module. In other words V E t,,evgV (A) for some A B P*
where evy is the evaluation g[t] > g, x Bt" = 8p,rx. From now we set

V(A, m)= tmevoV(A).

Another example of finite-dimensional modules in G are the g-stable Demazure modules
Vw(A), ABPb (see Section 2.3.3) and the local Weyl modules studied in Section 4.1.6. We
give a direct definition of those objects as g[t]-modules here for the reader’s conve-nience,
and we also drop the™for ease of notation.

Given A @ P * the local Weyl module Woc(A) is the g[t]-module generated by an el-
ement v, and relations:

xfva= 0, (h@t)vy= 6 0A(h)va, (x,)MM)*lyya =0, @I, h@Eh.

Setting grvy = r we see that W,(A) can be regarded as an object of G and we denote
this as Wioc(A, r). Clearly Woc(A, r) = t.W)oc(A, 0). It was proved in [39] that the local
Weyl modules are finite-dimensional with unique irreducible quotients.

Given wu B P* and € @ N, let D(¢, u) be the quotient of W\,.(1) by the submodule
generated by elements

(x; Bt )My, if mg < dod, (x,Bte)v,, oBR*
where sq and mq are determined by
U(hg) = (sq - 1)dg® + Mg, 0< Mg < dgof.
The following was proved in [42].

Proposition. Suppose that A @ Pb and w B WCcis such that wA(h;) < Ofor alli @1 and

assume that A(c) = €. The module V (A) is isomorphic to t,D (8, u) where u&@P * is given
by u(h;) = -w.wA(h;) and r = wA(d).
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Remark. An analogous presentation of non-stable Demazure modules is given in [80]
and we discuss this in the next section. These modules however are not objects of G.

5.1.2. Relation between local Weyl and Demazure modules. The following
corollary of Proposition 5.1.1 is easily established.

Corollary. If g is simply-laced then
D(1, ) B Wige(n), n@P*.

Proof. It suffices to prove that the following relation holds in Wc(l):
(x; @t*M))v, = 0, aBR".
But this follows by using
(x& t“(h“))vp = (X+a t)u(h“)(X_Lu(h“)HVu = 0.

Here the first equality is established by a simple calculation and using the relations in
Wioc(H). The second equality holds since Wioc(p) is finite-dimensional and

Xivy= 0 == (xg)*h«*ly, = 0.

In the non-simply laced case it is not true in general that Wioc(n) 2 D(1, u). However
it was proved in [88] that W.c(i) admits a decreasing filtration where the successive
qguotients are isomorphic to t,D(1, u,) for some r @ Z and u, @ P*. In fact one can
make a more precise statement which can be found in Section 6.2.

5.1.3. Projective modules and Global Weyl modules. Given (A, r)BP* x Z set
P (A, r) = U(g[t]) By V (A, r).

It is not hard to check that P (A, r) is an indecomposable projective object of G and
that there exists a surjective map P (A, r) = V (A, r) = 0 of g[t]-modules. Equivalently
P (A, r) is the g[t]-module generated by an element v, of grade r subject to the relations:

xfva= 0, hvy= Ah)vy, (x))*")*1vy =0, iBI,hEh.

The global Weyl module W (A, r) is the maximal quotient of P (A, r) such that wtW (A, r)
A - Q*. Equivalently it is the quotient of P (A, r) obtained by imposing the additional
relations (xi+ Bt¢)va = Oforalli @1 and k > 0. Clearly we have the following sequence of
surjective maps

P(A,r): W(Ar): WpelA,r): V(A r).
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5.1.4. The algebra A, and the bimodule structure on W (A, r). Let h[t], =
hBtC[t] and for AR P * and vy B W (A, r)) non-zero of grade r let
Ir = {uBU(h[t]:) :uva = 0}, Ax = U(h[t]:)/h.
Clearly A, is commutative and graded. Moreover W (A, r) is a (g[t], Ax)-bimodule where
the right action of A, is given by:
(gva)a = gava, g@U(g[t]), alA,.
To see that the action is well-defined, one must prove that
(n*BCt)(hBf)va=0, (h'= AMh)(hBf)vy = 0, (x )M I(h@f)vy =0

foralli @1, h,h" B h and f B C[t]. However, all relations are immediate to check. It
was proved in [39] (for the loop algebra; the proof is essentially the same for the
current algebra) that A, can be realized as a ring of invariants as follows. Consider the
polynomial ring C[x;  :i @1,1 < r £ A(h;)]. The direct product of symmetric groups

SA = Si(hy) X X Sk(h,)
acts on this ring in an obvious way and we have
Ay B Clxi,:iB1,1< r< Ah)]>.
The grading on A, is given by requiring the grade of x; . being r. Let I, be the maximal
graded ideal in A). The local Weyl module can then be realized as follows:
Wioc(A, r) = W(A, r) Ba, Ar/Ir.

A nontrivial consequence of the dimension conjecture discussed in Section 4.1.6 (see [39],
[25] for more details) is the following result.

Proposition. The global Weyl module W (A) is a free A\-module of rank equal to the
dimension of W ,¢(A).

The algebra A plays an important role in the rest of the section.

5.2. The category O for g. Before continuing our study of the category G, we dis-cuss
briefly, the resemblance of the theory with that of the well-known category O for semi-
simple Lie algebras.

The objects of O are finitely generated weight modules (with finite-dimensional weight
spaces) for g which are locally nilpotent for the action of n*. The morphisms are just g-
module maps. Given A B h? one can associate to it a Verma module M (A) which is
defined as
M (A) = U(g) Bly(p) Cva,

where Cv, is the one-dimensional b-module given by hvy, = A(h)vy and n*vy, = 0. It
is not hard to prove that M (A) is infinite-dimensional and has a unique irreducible
quotient denoted by V (A) and any irreducible object in O is isomorphic to some V (A).
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Moreover V (A) is finite-dimensional if and only if A @ P*; in particular M(A) is re-
ducible if ABIP*.

The modules M (A) have finite length and the multiplicity of V (i) in the Jordan—Holder
series of M (A) is denoted by [M(A) : V (u)]. The study of these multiplicities has been
of great interest and there is extensive literature on the subject. Perhaps the starting
point for this study is the famous result of Bernstein—Gelfand—-Gelfand (BGG) which we
now recall.

The category O has enough projectives, which means that for A h? there exists
an indecomposable module P (A) which is projective in O and we have surjective maps

P(A): M(A): V(A).
The following theorem (known as BGG-reciprocity) was proved in [10].

Theorem. Given A B h? there exist A1, ..., A, B h? such that the module P (Ay) has a
decreasing filtration Po = P(Ao) P, AP, B---BIP, BP,y; = {0}, and

Pi/Pii ® M(N), O<isr

Moreover if we let [P (A) : M ()] be the multiplicity of M () in this filtration then we
have [P (A) : M(p)] = [M(p) : V(N)].

Remark. Although the filtration is not unique in general, a comparison of formal char-
acters shows that the filtration length and the multiplicity [P (A), M ()] (see [70, Section
3.7]) is independent of the choice of the filtration.

More generally a module in O which admits a decreasing sequence of submodules where
the successive quotients are Verma modules is said to admit a standard filtration. In
the rest of this section we shall discuss an analog of this result for current algebras.

We will also explore other ideas stemming from the formal similarity between O and G.
For instance it is known that dim Homg(M(A), M(p)) < 1 and that any non-zero map
between Verma modules is injective and we shall discuss its analog for current algebras.
We shall also discuss an analog of tilting modules; in the category O these are defined to
be modules which admit a filtration where the successive quotients are Verma modules
and also a filtration where the successive quotients are the restricted duals of Verma
modules. It is known that for each A B h? there exists a unique indecomposable tilting
module which contains a copy of M (A).

5.3. BGG reciprocity in G. In the category G the role of the Verma module is
played by the global Weyl module. However, in general the global Weyl module W (A, r), A
P * does not have a unique finite-dimensional quotient in G; for instance the modules
Wioc(A, r) and V (A, r) are usually not isomorphic and we have

W(A, r): WA, r): V(A ).
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However both quotients have a uniqueness property; Wioc(A, r) is unique in the sense
that any finite-dimensional quotient of W (A, r) is actually a quotient of W o¢(A, r) and
V (A, r) is the unique irreducible quotient of W (A, r). The further difference from the cat-
egory O situation is that the global Weyl module is not of finite length. In spite of these
differences, one is still able to formulate the appropriate version of BGG-reciprocity.
Such a formulation was first conjectured in [9] and proved there for sl,[t]. The result
was proved in complete generality in [27] for twisted and untwisted current algebras; as
usual the case of A(zzn) is much more difficult and one has to work with the hyperspecial
current algebra. A key ingredient in the proof is to relate the character of the local Weyl
module to specializations of (non)symmetric Macdonald polynomials (see Section 5.4.1
for a brief review).

The following is the main result of [27].

Theorem. Let (A,r) @ P* x Z,. The module P (A, r) admits a decreasing series of
submodules: Po = P(A,r)@Py B P, B--- such that

Pi/Pi+1 2 W(W,s;), forsome (ui,s;))BP*x Z,,

and
[P(A,r) : W(wi, si)] = [Wioc(ui, si) : V(A, r)].

5.3.1. Tilting modules. We discuss the construction of tilting modules and some of
their properties. These ideas were developed in [5, 6, 7] and one works in a suitable
subcategory of G. Thus, let Gpgg be the full subcategory of objects M of G such that
M[j] = O forall j @0 and

S

wt(M) B conv Wi, MHi,...,UsBP 7

i=1
where conv W denotes the convex hull of the Weyl group orbit W . An object M in
the category Gpqq is called tilting if it admits two increasing filtrations:

MoBMB---BM, B---, Megm@---gM"@---

such that Mi;1/M; (resp. M*1/M') is isomorphic to a finite direct sum of modules
of the form W,c(A, r) (resp. to a sum of dual global Weyl modules W (A, r)?) where
(A, r) @ P* x Z. One can also work with a dual definition of tilting modules, where one
requires that the module has decreasing filtrations and the successive quotients are
isomorphic to the dual local Weyl modules and the global Weyl modules respectively.
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The following was proved in [6, Section 2].

Theorem. For (A, r) @ P* x Z there exists an indecomposable tilting module T (A, r)
in Gpgg Which maps onto the local Weyl module W .c(A, r) and such that

TT(A0)=TWMAr), TAALDE T(ws)e (A, r)= (W s).

Any indecomposable tilting module in Gpgq is isomorphic to T (u, s) for some (u,s) AP *
x Z and any tilting module in Gpqq is isomorphic to a direct sum of indecomposable tilting
modules.

The proof of the theorem relies on the following necessary and sufficient condition for
an object of Gpgq to admit a filtration by dual global Weyl modules. Namely:

M admits a filtration by costandard modules if and only if Exth(Wmc(u,s),M) =
0, B(u,s)BP* x Z.

Remark. This equivalence was established in [6] in the case when g is of type A. This
is because the proof depended on knowing Theorem 5.3 which at that time had only
been proved when g is of type A. However the proof given there goes through verbatim
for any g.

5.3.2. Tilting modules for sl and in Serre subcategories. The existence of tilting
modules is proved in a very abstract way. In [7] an explicit realization of the dual
modules was given in the case of sl,. In this case we identify P* with Z,. Recall
also the algebra A, defined in Section 5.1.4; in this special case it is just the ring of
symmetric polynomials in A-variables.

Theorem. Suppose that g = sl, and let (A\,r) @ Z, x Z,. The module T(A,r)? is a
free right Ax-module and T(A, r) B t, T(A, 0). Moreover,

T(1,0°8 w(1,0), T(A 028 t_,, A ,W(L,0), r)= ) A= 2.

L
s=0

where
1

(1:t)n= (1_ t)(l_ t2)(1— tn)




34 MATHEUS BRITO, VYJAYANTHI CHARI, DENIZ KUS, AND R. VENKATESH

Very little is known about the structure or the character of the tilting modules in general.

A theory of tilting modules was also developed for Serre subcategories of G which are
defined as follows. Given a subset ' @ P * x Z, we define a full subcategory G(I') whose
objects M satisfy additionally

M:V(Ar)]=0=(Ar)AT.
The category G(I)pqq is now defined in an obvious way. If I = P* x J, where J is an
(possibly infinite) interval in Z, then the existence of tilting modules holds with Gpgq
and P * x Z replaced by G(I)pqq and I respectively (see [5, Proposition 4.2 and Theorem

4.3]). The local and dual global Weyl modules in this setting are obtained by applying
a certain natural functor to the standard and costandard modules in G.

5.3.3. Socle and Radical Filtration for local Weyl modules. The local Weyl
module W)oc(A) has a natural increasing grading filtration induced from its graded mod-
ule structure. This filtration coincides with the radical filtration (see [77, Proposition
3.5]) which is defined as follows. For a module M of U(g[t]) the radical filtration is
given by
--Brad"(M)B---Brad*(M)Brad®(M) = M

where rad(M) is the smallest submodule of M such that the quotient M/rad(M) is
semi-simple and rad*(M) is defined inductively by

rad“(M) = rad(rad**(Mm)).
In particular, M
rad (Wiec(A)) = U(g[t])[s]va.
s>0
There is another natural filtration on a module M, called the socle filtration. It is given
as follows
0= soc’(M)Bsoct(M)@---Bsock(M)@---,
where soc(M) = soc!(M) is the largest semi-simple submodule of M and socX(M) is
defined inductively by

socX(M)/sock (M) = soc(M/sock(M)).

A module M of U(g[t]) is called rigid if the socle filtration coincides with the radical
filtration. This is in particular the case, if M is a finite-dimensional graded module such
that M/rad(M) and soc(M) are both simple. We remind the reader that when g is of
type ADE the local Weyl module is isomorphic to a level one Demazure module and
hence embeds in a highest weight module for the affine Lie algebra. Given A &P *, letw
W bé&such that A= w1 (woA + Ag) B P *. Sikce V(A) is an irreducible integrable module
for g, it follgws that any b-submodule of M = V,,(A) must contain the highest weight
vector vp. Hence any g[t]-submodule of M contains the g[t]-module U (g[t])va. In
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other words soc(M) must be simple and we must have soc(M) = U(g[t])va & V (A]n, 0).
So, we get

Lemma. Let g be of type ADE. Then soc(Wioc(A)) € V (A]n, 0).

It was proved in [77] that when g is of type ADE the local Weyl module is rigid.
However, in general the socle of the local Weyl module is not simple and we give the
counterexample given in [77, Example 3.12]. In type C,, the socle of the local Weyl
module Wioc(2w; + w,) (the short root is a;) is isomorphic to V (0, 3) BV (w2, 2).

5.3.4. Maps between local Weyl modules. We apply the discussion on the socle of
Wioc(A, r) to study morphisms between local Weyl modules when g is of type ADE. For
the purposes of this section it will be convenient to think of W,c(A, r) as modules for the
subalgebra g[t] @ Cc B Cd of g where we let ¢ act as 1 and the action of d is

given by the grading. Recall the Bruhat order on W given by u < w if some substring
of some reduced word for w is a reduced word for u.

Proposition. Assume that g is of type ADE and let (A, r), (1,s)@P* x Z. Then,
dim HomG(WIoc(}\: I’), Wloc(ur S)) <1

with equality holding if and only if there exist w1, w, @ W and A B PP such that the
following hold:

Wy < Wy, Wi(A+ Ag+ rd) = A= wr(u+ Ag+ sb).
Moreover, any non-zero map between local Weyl modules is injective.

Proof. Let @ : Wioc(A, r) = Wioc(H, s) be a non-zero homomorphism. We first prove
that this implies that there exist wy, w, B W and A B Pb* with wy(A+ Ao+ rd) = A=
Wy (L + Ao +s8). To see this assume that wi(A+Ag+rd) = Aand wo(p+Ag+s8) = A
with A, A" B By* and let Wioc(1,s) "> V (A') be the inclusion which exists since Wioc(H, S)
is isomorphic to a stable Demazure module in V (A). Since the image of ¢ is non-zero it
must include the simple socle of Wioc(M,s). This in turn implies that A" is a weight of
Wioc(N, r)" > V(A). It follows that A-= A" must be a sum of affine positive roots. On the
other hand since @(w,) = 0 it follows that A + Ag + r§ must be a weight of V (A’) and
hence A is also a weight of V (A'). This forces A" - A to be a sum of positive affine roots
and also shows that A = A'. To see that ¢ is injective, we note that otherwise both the
kernel and the cokernel of ¢ would have to contain v, which is absurd.

Finally to see that the dimension of the homomorphism space is at most one, it suffices
to note that dimV (A)wpa = 1 forall wB W.



36 MATHEUS BRITO, VYJAYANTHI CHARI, DENIZ KUS, AND R. VENKATESH

5.3.5. Morphisms between global Weyl modules. The study of the homomor-
phism space between global Weyl modules has also been studied in [8] and confirms
further the phenomenon that the global Weyl module plays a role similar to that of the
Verma modules in category O. The following result can be found in [8, Theorem 3].

Theorem. Let A, u B P* and assume that pu(h;) = 0 for all i @ | with wi(hg) = 1.
Then

Home(W (A), W (1)) = 0, ifA=p, Homg(W (k) W(n)Z A,
Moreover any non-zero map @ : W (i) = W (l) is injective.

The restriction on W is necessary (see [8, Remark 6.1]). For instance, in types B, and
D, (n 2= 6) we have Homg(W (w2), W (w4)) = 0. However the second statement, namely
the injectivity of any non-zero map, is still expected to hold in general.

Remark. This theorem is quite unlike the analogous theorem for local Weyl modules
which was discussed in the preceding section.

5.4. Generalized Weyl modules, Global Demazure modules and other direc-
tions. We now discuss generalizations of some of the ideas presented earlier in this
section. This is a brief and far from complete discussion of the papers of [52], [46],
[47] and we refer the interested readers to those papers for greater detail. We begin
by elucidating the connection between local Weyl modules and specializations of Mac-
donald polynomials which was briefly mentioned in Section 5.3. These polynomials are
those associated with (anti) dominant weights. We then discuss the work of [52] who
introduced the notion of generalized Weyl modules for b* and showed that their charac-
ters are again related to specializations of Macdonald polynomials associated with any
integral weight.

We then move on to discuss the notion of global Demazure modules introduced by
Dumanski and Feigin and state a few open problems regarding the homomorphism
spaces between these objects. The aim is to generalize the global-local picture of Weyl
modules for wider families of modules and develop some modifications of results in this
broader setting.

5.4.1. Local Weyl modules, Generalized Weyl modules and Macdonald poly-
nomials. Let

Rq,t = Qq,t)[ex:ABP] and Ry = Q(q)[er :AEP]
respectively be the group algebra of the weight lattice with coefficients in Q(q, t) and
Q(q) respectively. Consider RW, the subring of W -invariants where the action is induced
from the action of W on P and define Rw similarly. For f B Ry, we denote by [f] its
constant term (i.e. the coefficient in front of eg) and set

Y 1-e _ 2(q, t)
q,t = 1ﬁ es=q", Ag,t)= @, 0]
B ) aBR+ Z.5) « A,
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This ring R and RW both admit a scalar product

q,t
hf,gio,e = [fgA(q,t)] f,gBR,Y, hf,giq = [fug)a(q, e)] f,gBR

where = is the involution on RW given by t > t1, g > q7!, ex = e_x and t is the
involution of R, fixing q and mapplng e)x to ey a. Moreover, we have a natural basis
{matrep - 8'V€n by
ma(q, t) = ey
HEAW -A
The symmetric Macdonald polynomials {Px(q, t)} zp+ are uniquely defined by the fol-
lowing two properties
X
(1) Pala, t) = ma(q, t) + Aumula, t), o,uBQag,t),

U<A
uap*

(2) hP)\(Q; t)l Pu(ql t)iq,t = 01 )\ = P-

These polynomials have the property that the limit t = oo exists which we denote by
Prx(q, =) = limise Pa(g, t). The following result can be found in [27, Theorem 4.2].

Theorem. The family {Px(q, =)} gp+ forms an orthogonal basis of R, W with respect
to the form h-, -i;. Moreover

P}\(ql °°) = Chgr Wloc()\), A p

In the case when g is simply-laced it was already proved in [71] that the graded char-
acter of the stable Demazure module was given by the specialization of the Macdonald
polynomial as in the above theorem; recall the connection between local Weyl modules
and stable Demazure modules first made in [30] in the case of sl,+; and then in [58] for
g simply-laced.

At that time it was also known that this formula could not hold when g was not simply-
laced. In the non-simply laced case the result of [88] showed that the local Weyl module
had a flag where the successive quotients were stable Demazure modules. The corre-
sponding results for the twisted current algebras were studied in [57]. However in the
case of the twisted A(zzn) one has to work with a different current algebra [28], called the
hyperspecial current algebra.

5.4.2. Nonsymmetric Macdonald polynomials. There is another family of poly-
nomials {Ex(q, t)}xmp indexed by the weight lattice called the nonsymmetric Macdonald
polynomials. They were introduced by Opdam [93] and Cherednik [43]. First we define

a new order on the set of weights P. Consider the level one action of W on h? defined
as follows (the action differs only for sq)

So° M= se(p)+ 6, pEN”
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Given A @ P, we denote by w) the unique minimal length element of WE such that wy ¢ A is
either miniscule or zero. For A, u B P, we say p <, A if and only if w, < wj with respect
to the Bruhat order.

Again we can define a scalar product (-, )q,t on Rq,¢ and the family {Ex(q, t)}rap is
uniquely determined by the following two properties

P
(1) E7\(q; t) = et Cynu€u, Cru Q(q, t),
TR

b
(2) (E}\(qr t)r eu)q,t =0 if M <p A

For a dominant weight A we have Px(q, ©2) = limis« Ew_a(q, t) = Ew_a(q, =) and hence
by the above theorem the characters of local Weyl modules appear also as specializations of
nonsymmetric Macdonald polynomials for anti-dominant weights

Ewa?\(q: °°) = Chgr W|0C(A)l ABPY

The natural question is whether other specializations are also meaningful in the sense
that they have a representation theoretic interpretation. This leads to the definition of
generalized local Weyl modules which can be found in [52].

The reader should be warned that there are several notions of generalized Weyl modules,
e.g. in [25, 56, 78] when the polynomial algebra is replaced by an arbitrary commutative
algebra. But these are not the modules under consideration in this discussion.

Definition. Given pEP let W, be the m'-module generated by v, with relations,
(ht”l)vu =0,r20, (x+:l_)max{-u(hel),O}+1vu =0, (X-t)max~{u(hm),0}+1vH =0, aBR*.

These are called the generalized local Weyl modules.

Note that for anti-dominant weights we obviously have W, B Wioc(w.p) as lp*-modules
and hence the character is again a specialized nonsymmetric Macdonald polynomial.
The characters of W) for A @ P * are related to the Orr-Shimozono specialization of E,,
;\(qbt). The first part of the next proposition is proved in [94] and the second partin [52].

Proposition. Let ABP*.

(1) The limit Eyw a(q7%, 0) := limesoEw a(q72, t) exists and admits an explicit com-
binatorial formula in terms of quantum alcove paths.
(2) The character of W, is given by w.E,.a(q%, 0).

5.4.3. Recovering the global Weyl module from the local Weyl module. We
recall a general construction which was first introduced in [8]. Namely, if V is any
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g[t]-module, one can define an action of g[t] on V [t] := V B C[t], by

X
(xBE)VEE)= ' ((x Bt™)v) Bt
j=0
In fact it was introduced in a more general context in Section 4 of [8] by replacing C[t]
by any commutative associative Hopf algebra A. Notice that if V is generated by an
element v then V [t] is generated by v @ 1. It was shown also that the fundamental
global Weyl modules could be realized in this way by taking V to be W,,.(w;) for somei
I. Moreover, it was shown in Proposition 6.2 of that paper that if u = nSiW
and p(h;) = 0 if wi(hg) = 1 then there exists an injective map =

W (u) > W(w1)51 ... W(wn)Sn’

extending the assignment w, - w; B---Bw* . This result was then established
without the restriction on p in [74] by dlf'ferent methods

5.4.4. A generalization. Suppose now that Wy, ..., W, are graded g[t]-modules with
generators wy, ..., w,. Then the associated global module is defined to be the submodule
of Wy[t] @ --- B W,[t] generated by the tensor product of (w; @ 1)@ --- & (w, B 1). This
notion was introduced in [53, Section 1.3] and the resulting module is denoted as
R(W4, ..., W;). In the case when the additional relations

(h@tC[t])w; = 0, hw;= Aj(h)w;, (5.1)

hold we can define (as in the case of global Weyl modules) a right action of U(h[t]) on
R(W4,...,W,). The algebra A(Ay,...,A;) is as usual the quotient of U(h[t].) by the
annihilating ideal of the cyclic vector (w; B 1)&---B(w, @ 1). This algebra is harder to
understand although one does have an embedding

0
AAs, ..., A)" > A(N), ANE Clzi]
i=1
given by

(hEt™) > (1@ Bht"B---B1) > Ay(h)z™ + -+« + A (h)z™
X 1

-

Given u BB C, set

Wi(u) = Wi[t]Ban,) C, where
we regard C as an A(A;)-module by letting z; act as u.
The following was proved in [46], [47].

Theorem. Let W4, ..., W, be as above.
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(i) The algebra A(A4, ..., A;) isisomorphic to the subalgebra in C[z,, ..., z;] generated
by the polynomials A;(h)z"+ ---+ A (h)zm, hBh, m2 0.

(ii) There exists a nonempty Zariski open subset U of C" (in particular 0 I U) such
that forall u= (uy,...,u, )2 U

o

R(Wg, -+, Wi) Baprg,.on) Cu Bgry Wi(u;i)
i=1

where C,, denotes the quotient of A(Aq, ..., A;) by the maximal ideal corresponding

to u.

(iii) The module R(W4, ..., W,) is a finitely-generated A(A4, ..., A;)-module.

5.4.5. The following conjecture of [46] generalizes the known results for local Weyl
modules.
Conjecture. The g[t]-module

R(Wll vy Wr) A(}\l

is isomorphic to the fusion product of the modules W;(c;) for (cy, ..., c/) in some Zariski
open subset of C".

r) Co

.....

In [46] the authors prove this conjecture for a certain families of Demazure modules
when g is of type ADE, and in [47] they drop the assumption on the type of g. Given
a collection of dominant integral weights A = (A1, ..., A;) we set

DB,EA = R(D(el e’)\l)r ceey D(e’r e)\I’))

and let v be the generating vector of De,e. The following theorem has been proved for
the tuple A = (w1,...,W1,...,Wn, ..., w,) by Dumanski-Feigin and extended later by
Dumanski—Feigin—Finkelberg to arbitrary tuples.

P
Theorem. Let ABP* and A = (Ag,---,A;) be such that A = ri=1 Ai. Then, we have
an isomorphism

D(2, €X) = Dger Blacen,, ..., ea,) Co-

An interesting question would be to determine the generators and relations for global
Demazure modules.

Remark. Dumanski—Feigin—Finkelberg also prove that De,er is free over A(8Aq, ..., 8A;)
and that there exists a tensor product decomposition

DB;E(A&) Cic,q) (De,e}\_ Cc) @ (Deep _Cd)

provided that c and d have no common entries. This is analogous to the well-known
factorization of local Weyl modules which was proved in [38].
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An interesting direction of research would be to study the homomorphisms between
global Demazure modules and observe the analogues to homomorphisms between global
Weyl modules discussed earlier in this section.

5.5. As we mentioned earlier the current algebra is the derived algebra of the standard
maximal parabolic subalgebra of the affine Lie algebra. A natural problem is to develop an
analogous theory for other parabolic subalgebras. This has been attacked for the first
time in [29] and the two important families of local and global Weyl modules have been
intensively studied, but many problems are still open. The global Weyl modules cotinue
to be parametrized by dominant integral weights of a semi-simple subalgebra of g
depending on the choice of the maximal parabolic algebra. However, the following
interesting differences appear.

e The algebra A, (modulo its Jacobson radical) is a Stanley—Reisner ring; in par-
ticular it has relations and is not a polynomial algebra (see [29, Theorem 1]).

e The algebra A, and the global Weyl module can be finite-dimensional and this
happens if and only if Ay is a local ring.

e The global Weyl module is not a free Ay module in general. However we ex-pect
the global Weyl module to be free over a suitable quotient algebra of A,
corresponding to the coordinate ring of one of the irreducible subvarieties of A,.

The dimension of the local Weyl module depends on the choice of the maximal ideal
of Ay. This was in the current algebra case one of the key observations together with
the Quillen—=Suslin theorem to obtain the freeness of global Weyl modules. It is still an
open and interesting question to find the maximal ideals of Ay producing the local Weyl
modules of maximal dimension. An example has been discussed in [29, Section 7.1].

6. Fusion product Decompositions, Demazure flags and connections to
combinatorics and Hypergeometric series

In this section we collect together several results on Demazure modules which are of
independent interest.

6.1. Demazure modules revisited.

6.1.1. A simplified presentation of Demazure modules. Recall that following
[72, 85], we gave in Section 2.3.3 a presentation of Demazure modules involving infin-
itely many relations. On the other hand we also discussed in Section 5.1.2 that when g
is simply-laced the local Weyl module W,.(u, r) is isomorphic to a Demazure module
occuring in a level one highest weight representation. The local Weyl module by defini-
tion has only finitely many relations. It turns out that this remains true for arbitrary
Demazure modules. The following result was first proved in [42] for g-stable Demazure
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modules (see Proposition 5.1.1) and was recently proved for arbitrary Demazure modules
in [80].

Theorem. Suppose that (A, w) B PP* x W and assume that A(c) = ¢, A(d) = r and
WA|h = W. The module V(M) is isomorphic to a cyclic U(b)-module generated by a
non-zero vector v with the following relations:

(hBt°)v = b0 - u(h)v, forall h@h, dv=rv, cv= 2By,
and for a BR?(n) = {a BR™* :p(hy) BEZ,} we have

_1mi+l .
x*Ete T TTv =0, if mt< de®; x*T BEtSevi= 0,

x* BCitlv = 0, x- @m0 rhaFdetirly o 0% i a @R (1)
* x BtCltlv= 0, “x, @17 " v =0, ifaBR(p)
where si, mi B Z, are the unique integers such that
BAu(he) = (sq - 1)de®+ Mg, 0< mg < dob.

6.1.2. A tensor product theorem for g-stable Demazure modules. Recall that
we discussed in Section 4.1.6 the realization of local Weyl modules as a fusion product
of fundamental local Weyl modules. We also discussed in Section 4.1.7 the results of
[91] which gave the generators of the fusion products of Kirillov—Reshetikhin modules.
These modules in the simply-laced case are known to be just g-stable Demazure modules
associated to weights of the form €A with £ @ N and A @ P *. We remark here that in the
simply-laced case, the results of [91] are a vast generalization of the results of [58] where a
presentation was given of the fusion product of Demazure modules of a fixed level. This
was achieved by showing that the fusion product was isomorphic to a Demazure module.
The following theorem which may be viewed as a Steinberg type decomposition theorem
for g-stable Demazure modules was proved in [41] (see also [102]) and completes the
picture studied in [58].

Theorem. Let g be a ﬁnite—dimtipsional simple Lie algebra. Given kBN, letARP*, £
N and suppose that A = £ ( :(=1 Ai) + Ao with Ao @ P* and A; in the Z,-span of
the w for 1 < j £ k. Then there is an isomorphism of g[t]-modules

D(€,A) £D(2,Ao)** @D(L, eA1)** B ---RID(L, BAk)*"

where zg, ..., z¢ are distinct complex parameters. |In particular the fusion product is
independent of the choice of parameters.

The proof of the theorem relies on the simplified presentation of D(£, A) given in Theorem
6.1.1 and a character computation, using the Demazure character formula. This allows
one to show that both modules in the theorem have the same h-characters which is
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the crucial step to establish the theorem. The analogous theorem for twisted current
algebras was proved in [79].

6.1.3. We discuss an interesting consequence of Theorem 6.1.2. Say that a g[t]-module
is prime if it is not isomorphic to a fusion product of non-trivial g[t]-modules. The
interested reader should compare this definition with that given in Section 3.2.2 where an
analogous definition was made in the context of quantum affine algebras. The following
factorization result is a consequence of Theorem 6.1.2:

Corollary. Given £2> 1 and AP * write
I
Xn ' Xn
A=2 dimiw; + A, A= riw;, 0<ri<de, mBZ,.
i=1 i=1

Then D(€, A) has the following fusion product factorization:
D(2,A) Bgpey D(8, 8d1w1)®™ B D(E, 8dyw,)®™2 @ - - - B D(L, 8dpw,)®™ B D(8, Ao).  (6.1)

In addition, if we assume that g is simply-laced then 6.1 gives prime factorization of
D(€,A) (i.e., each module on the ritht hand side is prime).

6.2. Demazure flags. In this section we explain a connection between modules ad-
mitting Demazure flags and combinatorics and hypergeometric series.

Say that a finite-dimensional g[t]-module M has a level m-Demazure flag if it admits a
decreasing family of submodules, M = Mg My B ---B M, B0, such that

M;/Mj.1 T, D(m, ), r;BZ, BP*.

It is not hard to see by working with graded characters, thatif M= M'EM B ;--BM’
0 iss another level m-Demazure flag then r = s and the multiplicity of t,D(m, ) in both
flags is the same. Hence we define [M : t,D(m, u)] to be the number of times t,D(m, W)
occurs in a level m-Demazure flag of M.

The study of Demazure flags goes back to the work of Naoi [88] on local Weyl modules
in the non-simply laced case. It was proved in that paper that these modules admit
a level one Demazure flag. This was done by first showing that in the simply-laced
case every g[t]-stable Demazure module of level £ admits a Demazure flag of level m if
m > £ > 1. In the case when £ = 1 and m = 2 the multiplicities occurring in this flag
can be explicitly related to the multiplicity of the level one flag of the local Weyl module
for non-simply laced Lie algebras. However, the methods do not lead to precise formulae
for the multiplicity. In this section we discuss how one might approach this problem
using different kinds of generating series.
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6.2.1. The case of sl and level two flags. A first step to calculate the multiplicity
was taken in [40] for the Lie algebra sl, when m = 2 and € = 1. Then the graded
multiplicities can be expressed by g-binomial coefficients [40, Theorem 3.3]:

X

[D(1, pw) : D(2, vw)]q [D(1, pw) :TpD(2,vw)] ¢°

p=0
&}i—v)/Zu/Z Bp/2E

= (k- v)/2 )
~ 0 otherwise.

mu-vae2z,,

6.2.2. The case of sl, and arbitrary level. A more general approach in the sl,
case was taken in the articles [12, 15] and in the A(ZZ) case in [11]. In those papers,
the authors found a connection to algebraic combinatorics and number theory. We first
need to introduce more notation. Define a family of generating series by

X
A*>M(x,q) = [D(2, (n + 2k)w) : D(mM, nw)]y - x*, n> 0.

k20
. . P oo kZ k
Introduce the partial theta function 6(q,z) = -, 9 z* and let
251 n- k
1-1)¢k XK k=0

k

and note that the polynomials P,(x) are related to the Chebyshev polynomials U,(x) of
the second kind as follows P,(x2) = x" U,((2x)). The following theorem can be found
in [12, Theorem 1.6] and [12, Corollary 1.3] respectively.

Pa(x) =

x M

Theorem. (i) Let nnm B Z, and write n = ms+ r withs@Z, and0< r < m.
Then
Pm—r—l(X)

Al7m(x, 1) = )
n ( ) Pm(x)s+1

(ii) The specializations
AY3(1,0), q-AT3a,q), ALT3(1,9%)+qAL73(1,0%), q*A373(a% 0%) +9A73(a%, %)

coincide with fifth order mock theta functions of Ramanujan.

(iii) The series A122(x,q) and A2?3(x,q) can be expressed as a linear combination
of specializations of the partial theta function 6 whose coefficients are given by
products of g-binomial coefficients.
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6.2.3. Combinatorics of Dyck paths and the functions A!>™. We further discuss
the sl, case and its connection to the combinatorics of Dyck paths. In [15] a combina-
torial formula has been obtained whose ingredients we will now explain. A Dyck path
is a diagonal lattice path from the origin (0, 0) to (s, n) for some non-negative integrs
s,n B Z,, such that the path never goes below the x-axis. We encode such a path by a
01-word, where 1 encodes the up-steps and 0 the down-steps. We denote by DN tnhe set
of Dyck paths that end at height n and which do not cross the line y = N. The
following picture is an example of an element in D4

NN

Forn,mBZ, letng,ni1 @Z, besuchthatng< mandn= mn;+ ng. If n < m we set
A(m, n) = B and otherwise define

A(m, n) = {(ill m)l (iZI m + 1)/ L) (in—m+1/ n)} Z+2
where i; < -+ < in-m+1 is the natural ordering of the set
{0,...,n\{pn1+ ng+ min{0,(p- 1) - no}, 1< p< m}.

Given a pair of non-negative integers (a, b) B Z2 , we say that P pmexim-L.n} ic (a, b)-
admissible if and only if P satisfies the following property. If P has a peak at height b,
the subsequent path is strictly above the line y = a. For example, the path above is not
(0, 3)-admissible.
Let Dm,n be the set Dyck paths in DT®{™™" \which are (a, b)-admissible for all
(a, b) @ A(m, n).

The major statistics of a Dyck path was studied first by MacMahon [84] in his in-
terpretation of the g-Catalan numbers. Let P = a;---as, a; @{0, 1} be a Dyck path of
length s. The major and comajor index are defined by

X X

maj(P) = i, comaj(P)= (s-1i).
1<i<s, 1<i<s,
ai>gi+l ai>ai+l

The following was proved in [15, Theorem 4].

Theorem. Let mBN, n@Z ,. We have,

X
A][.\%m(x’q) - qcomaj(P) Xd(P)

PEDm,n

where d(P ) denotes the number of down-steps of P.
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In the twisted case graded and weighted generating functions encode again the mul-
tiplicity of a given Demazure module. For small ranks these generating functions are
completely determined in [11] and they define hypergeometric series and are related to
the g—Fibonacci polynomials defined by Carlitz. For more details we refer the reader to
[11, Section 2].

6.2.4. The general case. It is still an open problem to come up with closed or even
recursive formulas for the generating series for other finite-dimensional simply-laced Lie
algebras; the multiplicities and generating functions are defined in the obvious way.
However, some progress has been made in [14] for the Lie algebra sl,.; and the con-

nection to Macdonald polynomials was established. The following result can be derived
from [14].

Theorem. Let g= sl and A, uB P * such that A - pu= kiai, ki@Z,. Then,

Pi=nl

Y'
[D(1,A) :D(2, w)le = D(1, (u(hi) + 2ki)w) : D(2, pu(hi)w),
i=1
where w is the corresponding fundamental weight for sl,.

So combining the above theorem with the combinatorial formula in Theorem 6.2.3 gives a
combinatorial formula for graded multiplicities of level 2 Demazure modules in level one
flags.
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