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Stackelberg games are a canonical model for strategic principal-agent interactions. Consider, for instance, a
defense system that distributes its security resources across high-risk targets prior to attacks being executed;
or a tax policymaker who sets rules on when audits are triggered prior to seeing filed tax reports; or a seller
who chooses a price prior to knowing a customer’s proclivity to buy. In each of these scenarios, a principal first
selects an action 𝑥 ∈ X and then an agent reacts with an action 𝑦 ∈ Y, where X and Y are the principal’s and
agent’s action spaces, respectively. In the examples above, agent actions correspond to which target to attack,
how much tax to pay to evade an audit, and how much to purchase, respectively. Typically, the principal
wants an 𝑥 that maximizes their payoff when the agent plays a best response 𝑦 = br(𝑥); such a pair (𝑥,𝑦) is a
Stackelberg equilibrium. By committing to a strategy, the principal can guarantee they achieve a higher payoff
than in the fixed point equilibrium of the corresponding simultaneous-play game. However, finding such a
strategy requires knowledge of the agent’s payoff function.

When faced with unknown agent payoffs, the principal can attempt to learn a best response via repeated
interactions with the agent. If a (naïve) agent is unaware that such learning occurs and always plays a best
response, the principal can use classical online learning approaches to optimize their own payoff in the stage
game. Learning from myopic agents has been extensively studied in multiple Stackelberg games, including
security games [2, 6, 7], demand learning [1, 5], and strategic classification [3, 4].

However, long-lived agents will generally not volunteer information that can be used against them in the
future. This is especially the case in online environments where a learner seeks to exploit recently learned
patterns of behavior as soon as possible, and the agent can see a tangible advantage for deviating from its
instantaneous best response and leading the learner astray. This trade-off between the (statistical) efficiency
of learning algorithms and the perverse incentives they may create over the long-term brings us to the main
questions of this work:

What are principled approaches to learning against non-myopic agents in general Stackelberg games?
How can insights from learning against myopic agents be applied to learning in the non-myopic case?

Non-myopic long-lived agents are typically modeled as receiving 𝛾-discounted utility in the future; the
discount factor can be interpreted as capturing the agent’s uncertainty on whether she will participate in
future rounds or the present bias she may experience. This modeling choice works particularly well for
designing algorithms that are slow to implement lessons learned from each individual round of feedback.
These algorithms make it less appealing for the agent to sacrifice payoff in the present for the effect her actions
will have only far into the future and lead to agents that 𝜀-approximately best respond each round.

High-dimensional Stackelberg games pose a unique hurdle because the set of actions that can be rationalized
by an 𝜀-approximate best responding agent can be complex. A key challenge is to design robust learning
algorithms that can learn from erroneous best-responses. This is made worse by discontinuity in the principal’s
payoff function, the existence of large regions where the agent does not always best respond, and the difficulty
of identifying well-behaved optimization subproblems in large Stackelberg games. Furthermore, the statistical
efficiency of the principal’s learning algorithm must be traded off against its effectiveness to lead an agent to
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𝜀-best respond. Therefore, another challenge is to devise principled approaches to optimally slow down robust
learning algorithms in order to support and encourage 𝜀-best responding behavior.

We seek principal learning algorithms that achieve vanishing regret with respect to the Stackelberg equilib-
rium, in the presence of non-myopic agents. We provide a framework to address both of the aforementioned
challenges, namely designing robust online algorithms that learn effectively from erroneous best response
queries in high dimensions, and identifying mechanisms that incentivize agents to approximately best respond.
Our framework reduces learning in presence of non-myopic agents to robust bandit optimization. We envision
principal-agent interactions as taking place over an information channel that is regulated by a third party
who acts as an information screen. For example, the third party can delay the revelation of the agent’s actions
or release the principal’s actions in delayed batches. Combined with the agent’s discounted future utility,
these induce the agent to 𝜀-approximately best-respond. This information screen allows us to discuss the
trade-off between the learning algorithm’s statistical efficiency and agent’s incentives to deviate. In each of
the applications of interest, approximate best-responses lead to different error types that we must be robust to.
• For Stackelberg security games, we devise an algorithm, Clinch, for the myopic setting achieving near-
optimal query complexity 𝑂 (𝑛), which improves upon the state-of-the-art 𝑂 (𝑛3) complexity and is of
independent interest even beyond non-myopia. Our algorithm seamlessly extends to the non-myopic setting
via our aforementioned framework with a bounded-region adversarial error type.

• For demand learning, we observe that we need robustness to pointwise adversarial perturbations. We show
that ActiveArmElimination can be robustified in this manner and adapted to a batched bandits setting.

• For strategic classification, we prove that an existing non-myopic algorithm translates to our setting using
the robustness of “gradient descent without a gradient” to pointwise adversarial error.

• For general finite Stackelberg games, we extend amultiple LP approach to our setting using robust algorithms
for convex optimization with membership oracles, under bounded-region adversarial error.

The full version of this paper is available at https:// eecs.berkeley.edu/~nika/pubs/nonmyopic.
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