W) Check for updates

Proceedings of the 2022 HFES 66th International Annual Meeting

Copyright 2022 by Human Factors and Ergonomics Society. All rights reserved. 10.1177/1071181322661163

Measuring Cognitive Workload of Novice Law Enforcement
Officers in a Naturalistic Driving Study

David Wozniak, Junho Park, Jordan Nunn, Azima Maredia, Maryam Zahabi
Texas A&M University, College Station, TX

There is a large amount of variation between novices and experts in their cognitive workload when
performing tasks. A naturalistic pilot study was conducted with nine novice law enforcement officers
(nLEOs) to determine how their use of in-vehicle technology affected their cognitive workload during
their normal patrols. Physiological data were collected using a novel synchronization process for
naturalistic driving studies, allowing heart rate variability and eye tracking measurements to be
synchronized together and directly compared to subjective workload levels. It was found that nLEOs have
average or higher workload compared to experienced officers and the general population when they are
on duty. Future studies can utilize the approaches and findings of this pilot study for conducting
naturalistic driving studies and developing cognitive performance models for novice users.

INTRODUCTION

Cognitive workload (CW) can be defined as “the relation
between the function describing mental resources demanded by a
task and those resources available to be supplied by the human
operator” (Parasuraman et al., 2008, pp. 145-146). CW can vary
greatly on a similar task when performed by novices compared to
experts. Novices tend to look through many chunks of data to find
what they need while experts are able tofilter information and
search specific chunks more quickly (Carmichael et al., 2010;
Sharif et al., 2012). The frequency of saccades and fixations for
novices are higher than experts and it takes more time for novices
to detect anomalies than experts (Kundel & Nodine, 1975).
Concerning memory, experts have advantages in chunking ability
(Kavakli & Gero, 2003), the amount of information in long-term
memory (Sohn & Doane, 2003), and memory decaying speed
(Estes, 2015). In motor aspects, novices have longer reaction times
as compared to experts (Hick, 1952; Hyman, 1953).

CW of novice drivers is significantly correlated with their
reduced task performance in high-demand driving conditions
(Drummond, 1989). For example, novices scan more frequently
for hazards on the roads (Underwood, 2007) and must put
conscious effort into their steering and speed control to avoid road
hazards unlike experts that can adjust to and avoid hazards with
muscle memory. Novices also lack schema, experiences, and
relevant rules of behaviors to effectively complete their task
(Borowsky et al., 2008). In addition, they have inadequate situation
awareness (McKenna & Crick, 1994). For example, while driving,
novices exhibited shorter glances and responded less quickly on
the phone as compared to experts (Smiley et al., 2007). While
these examples are for drivers in general, the patterns in task
performance can be applied to novices and nLEOs as well.

Police operations are examples of high-demand driving
conditions. Based on the previous studies (e.g., Zahabi et al.,
2021), we can assume that novice law enforcement officers’
(nLEO) task performance can be reduced due to high CW. Prior
studies have found officers’ use of in-vehicle technologies while
driving (Yageret al., 2015), fatigue (Vila & Kenney, 2002), and
lack of sufficient training in handling high-demand situations (e.g.,
pursuit situations, multi-tasking) (Hembroff et al., 2018) are major
contributors of motor vehicle crashes for LEOs. In addition, LEOs

are continuously surrounded by the high noise level inside the
police vehicles which can lead to poor speech recognition,
and complexity of tasks which can interrupt their
concentration on tasks and ultimately increase their CW
(Miller & Kun, 2013; Shahini et al., 2020).

Current approaches to measure cognitive workload

CW measurement techniques are typically categorized
into four groups including: physiological measures,
subjective rating scales, task performance measures
(Eggemeier & Wilson, 1991), and cognitive performance
modeling (CPM). Physiological measures can directly and
continuously measure CW based on the changes in
pupillometry data (Zahabi et al., 2022), heart rate (HR)
(McDonald et al., 2019), respiratory rate (RR) (McDonald
et al., 2019), and skin conductance (SC) (Singh et al., 2013).
CW can also be measured subjectively by measures such as
the NASA Task Load Index (NASA-TLX) (Hart, 1986) or
objectively using task performance responses such as task
completion time (Shahini et al., 2021). Lastly, CPM can be a
predictive tool to assess CW by using measures such as the
number of cognitive operators or working memory chunks
required in a task (Zahabi & Kaber, 2018b).

Research gaps and objectives

Prior studies on measuring CW of law enforcement
officers (LEO) were conducted in laboratory settings and
focused on experts (Zahabi & Kaber, 2018a, 2018b; Zahabi
et al., 2019). However, due to the differences in cognitive
processes between novice and experts, those results might
not be generalizable to novice law enforcement officers
(nLEO). Therefore, this study is focused on measuring
nLEOs’ CW during their regular work shifts and using non-
obtrusive wearable devices to collect physiological
measures.

METHOD
This study was carried out by conducting a naturalistic

driving study with nine police officers. Each participant was
observed for a period of at least three hours and their
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physiological data were collected to determine how their CW was
affected by the use of in-vehicle technology. The study protocol
was approved by the institutional review board (IRB). All
participants were treated according to the American
Psychological Association’s (APA) ethical research guidelines. In
the following sections, we describe the participant demographic
information, apparatus, study procedure, data synchronization,
and analysis approaches.

Participants

Eight male and one female nLEOs were recruited for this
study (Age: M= 29.1 yrs., SD= 5.73 yrs.). All officers were
novices as they had fewer than five years of experience as a
primary patrol officer (Hillerbrand, 1989). The study was
conducted during officers’ regular work shifts during mornings
and afternoons, as the eye tracking equipment did not function
in the dark. Weather during these ride-alongs ranged from
sunny to overcast to rainy.

Apparatus

Three devices were used to record various physiological
measurements as well as the video data. To record HR
variability (HRV) and galvanic skin response (GSR),
participants wore the Empatica E4 (Empatica) watch on their
wrist. Eye tracking data including blink rate, pupil size, and
the proportion of time spent fixated on various areas of interest
(AOIs) were captured using Pupil Labs eye-tracking glasses.
The AOIs consisted of the front windshield of the car and any
in-vehicle technology/display the participant had in their
vehicle, such as the mobile computer terminals (MCTs),
dashboard, control panel, etc. A dash camera was attached to
the roof of the vehicle to observe the officer’s interactions
with their in-vehicle technology. These devices and the metrics
they recorded are outlined in Figure 1. Figure 2 illustrates the
view of the dash camera when installed in the officer’s vehicle.
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Figure 1: Outline of data collection devices for this pilot study.

Data synchronization

A specific procedure was followed every time data
collection was started and stopped to ensure that the raw data
collected from all three devices could be attributed to the same
time frame. This procedure revolved around use of a feature of
the Empatica E4 that allows the user to take timestamps during
recordings by pressing a button on the watch. To allow the data
to be synchronized in post processing, a timestamp was taken
shortly after all three devices had been calibrated and started
recording. This timestamp was taken in view of the dash camera

and everything that happened before this timestamp was
taken was ignored in post-processing.

For the eye tracking and heartrate data, the timestamps
were used in a code created in R (version 4.1.1) that removed
any data points that occurred before the timestamp was
taken. This process of taking a timestamp was repeated any
time the experiment had to be paused when the participant
exited their vehicle and every time the experiment resumed.
Through this process, the data could be reliably
synchronized despite different recording devices being used.

Figure 2: View of dash camera in police vehicle.

Procedure

The study began with participants filling out an
informed consent form and a demographic questionnaire.
Once these forms were filled out, they were given the E4 to
wear and instructed to wear it for at least 15 minutes to allow
it to calibrate while the eye tracking and dash camera
equipment was set up in their car. Once both of these
conditions were met, the eye tracking device was calibrated
and the observation period could begin. The synchronization
procedure was carried out as detailed in the previous section
to allow the observation to start. Once the observation period
had begun, the researcher was responsible for monitoring the
status of the equipment from the passengers-seat and
ensuring that data collection continued smoothly. They were
also in charge of carrying out the synchronization procedure
whenever the participant had to stop the vehicle for a traffic
stop or any similar situation requiring the participant to leave
their vehicle.

After the data collection, the participant filled out a
driver activity load index (DALI) to subjectively measure
their CW for that specific shift while the equipment was
removed from their vehicle. The participant was then
provided with a copy of the informed consent form for their
reference and thanked for their time.

Data analysis

Data analysis for this pilot study was broken down into
two groups. The physiological results were grouped and
analyzed individually while the video data from the dash
camera were reviewed for instances of interaction with in-
vehicle technology to determine potential sources of high
CW. Combining these two post-processing procedures
yielded a clearer idea of how affected participants were by
the use of their in-vehicle technology in terms of CW. The
participants’ responses to the DALI were also considered as
implications for how aware participants were of their own
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CW during their jobs. For the physiological measures of CW, root
mean squared standard deviation (RMSSD) as a measure of HRV,
GSR, PCPS, and blink rate were measured in synchronized 5-
minute intervals. This interval was chosen because 5 minutes is
the standard interval used for collecting accurate RMSSD
measurements (Electrophysiology, 1996). Calculating RMSSD
involved finding the square root of the mean of the difference
between subsequent inter-beat-interval values squared.

Blink rate was calculated first in one-minute intervals. The
number of blinks found in each minute was counted and used as
the blink rate for that minute. Each 5-minute interval blink rate was
then found by averaging the five one-minute interval blink rates
within it. Calculating PCPS first involved taking baseline readings
of participants’ eyes before and after data collection. In post
processing, the average pupil diameter from these baselines was
subtracted from the average pupil diameter of each recorded 5-
minute interval. This result was then divided by the baseline value
and multiplied by 100 to obtain the PCPS for that 5-minute
interval. The frequency that each officer looked at each AOI was
also measured as an indicator of which in-vehicle technologies
were used most often by participants.

RESULTS

Physiological data

Due to the fact that this investigation was a pilot study and
the data were collected from nine officers in the field, we provided
the descriptive statistics on the collected measures as shown in
Table 1. The GSR data was not captured from participant 2 due to
a data collection error with the E4 which might have been caused
by the officer jostling the E4 device when getting in or out of their
vehicle while patrolling.

Table 1: Descriptive statistics from the pilot study

Participant GSR (uS) RMSSD PCPS Blink DALI
(%) Rate (0-5)
(/min)
1 0.29 0.12 12 5.57 0.53
2 N/A 0.08 26 19.62 0
3 0.29 0.09 -2 8.84 1.27
4 2.46 0.07 7 8.68 2.40
5 1.03 0.09 33 11.06 4.00
6 1.60 0.12 63 4.55 0.40
7 1.40 0.06 32 4.94 233
8 0.48 0.06 -5 9.83 2.47
9 0.32 0.10 9.3 8.52 3.20

Traditional workload thresholds for these measurements
have been established in previous studies. Though GSR workload
thresholds generally depend on the context, lower values are
correlated to lower CW and vice versa (Arthur, 1990). Average
GSR values tend to range from 0.3 to 1.3 uS, with high CW events
raising the value as high as 8 uS in rare scenarios (Braithwaite et
al., 2013). The GSR for the participants in this study generally fell
within expected to higher than expected values for normal CW.
For RMSSD, lower values tend to indicate higher CW, with values
greater than .1 usually being indicators of lower CW (Tjolleng et
al., 2017). Knowing the average age of participants and how that
affects their average RMSSD, the CW indicated was average or
higher than average in value for each participant compared to mean
values for people of similar age (Abhishekh et al., 2013).
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Regarding pupillometry data, it has been reported that
the normal spontaneous blink rate is between 12 and 15
blinks/min. A mean blink rate of up to 22 blinks/min has been
reported under relaxed conditions (Abusharha, 2017). Eye
blinks and blink duration decrease as visual workload
increases (De Waard & Brookhuis, 1996). Considering the
visual demands of the driving and displays in the vehicle, it is
reasonable to assume that officers were under high visual
workload. Except for participant 2, the blink rate results
supported De Waard and Brookhuis’ study with low blink
rates. Higher positive values of PCPS are correlated to higher
workload (Pfleging et al., 2016). A previous study on police
officers with an average of 7.92 years of experience
demonstrated average PCPS wvalues of 10.99% in driving
simulator tasks (Zahabi et al., 2021). What this means for the
results is that the majority of nLEO participants had a similar
or higher average PCPS during the ride-along compared to the
average value for more experienced officers. Those that did
not have a significant change in PCPS may be explained by
environmental conditions encountered during the course of
naturalistic observation, such as frequent lighting changes.

AOI data

Though the surfaces measured varied slightly between
participants due to variation in the technologies used by each
participant in their vehicle, the following four surfaces were
consistently measured: the dashboard, radio, MCT, and
windshield for a baseline. The average proportion of time
that a participant fixated on these surfaces during the pilot
test was 0.7%, 1.8%, 1.1%, and 13.5% respectively. This
indicated that participants primarily fixated on the road while
driving and were unable to fixate on their in-vehicle
technology for extended periods of time when not stopped.
Other surfaces measured for specific participants such as
speedometers and navigation aids produced similar results.

Subjective data

In addition to the physiological measures taken, DALI
was administered to measure participants’ workload
subjectively after the experiment. Reported in Table 1 is the
rating provided by the DALI for participants’ subjective
mental workload, with higher ratings indicating higher
mental workload. Ratings could range from 0 to 5 based on
participants’ responses, but only 2 participants rated their
mental workload above 2.5. This indicated that most
participants were unable to accurately rank their own CW
when comparing their responses to the physiological data.

DISCUSSION

The approach taken to synchronize the data for this
pilot study was unique among other naturalistic observation
studies. In order to ensure that multiple physiological
measures could not only be collected but synchronized
between stop times it was necessary to develop a novel way
of tracking events between recording start and stop times.
For many driver observation studies and particularly ones
where the participant must frequently enter and exit the
vehicle it is difficult if not impossible to maintain a wireless
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link between all devices being used to collect data in order to
synchronize start and stop times. The procedure used in this study
has the potential to solve this problem for similar naturalistic
observation studies to this one. This procedure can be carried out
with any equipment that allows users to take timestamps of their
data as long as they have the same set timeas each other,
preferably UNIX time. In other naturalistic driving studies that
require participants to exit their vehicles, this can be an invaluable
tool. What all of these physiological measures indicate is that
nLEOs tend to have average or higher CW values while
completing their tasks as opposed to normal values and even more
experienced police officers in simulated situations. In particular,
blink rate was substantially lower and RMSSD were higher for
nLEOs, on average when compared to standard values indicating
normal CW. Given the lack of studies investigating CW of LEOs
with these measures, more studies are necessary to completely
validate these findings.

The subjective assessment suggests that nLEOs are not
effective at evaluating their own CW, as the ratings are not
consistent with the CW thresholds indicated by the physiological
results. It has been well studied that subjective measures are
limited due to recall bias and substantial individual differences
(Hart, 2006). This is important to keep in mind for the
development of new technology, which will have to contend with
the fact that nLEOs may not have a clear grasp of the challenges
they face when on patrol. In addition,it implies that there is a need
for using DALI carefully with nLEOs as it cannot always
appropriately reflect their CW.

Given the higher risk of motor vehicle crashes for LEOs,
technology that focuses on reducing CW for the subset of novice
officers with higher CW is critical. Observations during this pilot
study noticed that officers frequently encountered input errors
when typing on their MCT or had to pause what they were doing
to ask dispatch questions when messages were not delivered
clearly. These events drew attentional resources away from the
driving task in line with multiple resource theory and increased the
risk of crashes more than it would have for expert police officers
that would be presumed to make fewer mistakes (Wickens, 2008).
In-vehicle technologies such as the MCT and the dispatch radio
need to be redesigned to be more user-friendly and accommodate
the high CW experienced by novice officers in order to reduce
crash related fatalities.

To meet this challenge, future work in human factors should
strive to understand what specific challenges officers face in using
the technology. Some of these challenges are brought about by the
high CW demonstrated by the nLEOs in this study, and future
studies should investigate the differencesin CW in specific
situations between LEOs and nLEOs to better determine what
technologies used on the job have the largest impact on CW
overall. This knowledge should then be used to design more robust
and less cognitively demanding in-vehicle technologies for LEOs.

Limitations and future work

Several limitations caused by the nature of naturalistic
driving study made data collection and post-processing difficult.
Weather conditions such as direct sunlight sometimes prevented
the eye tracking glasses from detecting the markers placed on
different AOIs. This effect was most impactful on participant 6’s
PCPS data, as the 5-minute intervals towards the end of the

recording when the sun had nearly set and the shadows cast
by direct sunlight present throughout the evening increased
the average pupil diameter of the participant and increased the
overall resulting PCPS. Later participants were recorded at
earlier times to compensate for this issue. Because data could
not be collected while the participant was not in the vehicle,
effects of the job participants were doing outside the vehicle
on physiological variables could not be accurately measured
and had to be inferred from data collected when they returned
to the vehicle.Secondary tasks within the vehicle that were
unrelated to the job at hand (e.g. non-work phone calls,
eating) also created intrusiveness on getting accurate readings
of the participants as they worked. Participants 4 and 8 in
particular took more breaks than the other participants, which
may have contributed to their PCPS reading being much
closer to 0 than the other participants.

Prior studies using PCPS as a measure captured the
baseline data before and after the completion of the study
(Zahabi et al., 2021). However, in this study, we observed
that the baselines collected before the data collection tended
to be vastly larger than the baseline values collected at the
end of the data collection. This led to several baseline
recordings taken at the beginning of data collection being
removed. Potential reasons for this issue include the time of
day being morning and anticipation of the experiment
introducing stress that increases the pupil diameter beyond
baseline size. Because of these issues, the initial baseline
collection was not as informative as the baseline collected at
the end of data collection for the majority of participants.

Future studies can mitigate these limitations by being
more selective with the time of day and weather for data
sampling. Collecting data in the mornings or evenings as
well as on cloudy days will reduce the chances of data loss
for the eye tracking measurements. Though it might infringe
somewhat on naturalistic observation, imposing calibration
periods after officers stop and return to their car could help
mitigate the effects of their work outside the vehicle on CW.
Other studies that intend to collect physiological data on
drivers can also make use of the synchronization method
outlined in this pilot study for their own data collection
equipment as long as a device able to take timestamps such
as the E4 is used.

CONCLUSION

The findings of this study revealed that nLEOs
exhibited higher CW compared to normal ranges while self-
reported measurements could not show sensitivity to explain
nLEO’s CW. Therefore, it can be concluded that nLEOs
execute their missions under high CW. As a second
contribution, the synchronization approach in this study can
be applied to future naturalistic driving studies, as it
considered not only experimental devices but also the
activation and deactivation of other devices in a police
vehicle. Another contribution of this study was the finding
that using physiological measurements might be more
appropriate for assessing nLEO’s CW than subjective
assessment, although a detailed experimental protocol for
device calibration and post processing under dynamic
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weather condition is required. Future studies should validate the
findings of this pilot study with larger sample size and more
thorough evaluation of participants’ CW using both subjective
and physiological measures. Finally, the results of this study are
based on descriptive statistics and need to be validated using
inferential statistics using the data from a larger sample.
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