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There is a large amount of variation between novices and experts in their cognitive workload when 
performing tasks. A naturalistic pilot study was conducted with nine novice law enforcement officers 
(nLEOs) to determine how their use of in-vehicle technology affected their cognitive workload during 
their normal patrols. Physiological data were collected using a novel synchronization process for 
naturalistic driving studies, allowing heart rate variability and eye tracking measurements to be 
synchronized together and directly compared to subjective workload levels. It was found that nLEOs have 
average or higher workload compared to experienced officers and the general population when they are 
on duty. Future studies can utilize the approaches and findings of this pilot study for conducting 
naturalistic driving studies and developing cognitive performance models for novice users. 

 
INTRODUCTION 

 
Cognitive workload (CW) can be defined as “the relation 

between the function describing mental resources demanded by a 
task and those resources available to be supplied by the human 
operator” (Parasuraman et al., 2008, pp. 145-146). CW can vary 
greatly on a similar task when performed by novices compared to 
experts. Novices tend to look through many chunks of data to find 
what they need while experts are able to filter information and 
search specific chunks more quickly (Carmichael et al., 2010; 
Sharif et al., 2012). The frequency of saccades and fixations for 
novices are higher than experts and  it takes more time for novices 
to detect anomalies than experts (Kundel & Nodine, 1975). 
Concerning memory, experts have advantages in chunking ability 
(Kavakli & Gero, 2003), the amount of information in long-term 
memory (Sohn & Doane, 2003), and memory decaying speed 
(Estes, 2015). In motor aspects, novices have longer reaction times 
as compared to experts (Hick, 1952; Hyman, 1953). 

CW of novice drivers is significantly correlated with their 
reduced task performance in high-demand driving conditions 
(Drummond, 1989). For example, novices scan more frequently 
for hazards on the roads (Underwood, 2007) and must put 
conscious effort into their steering and speed control to avoid road 
hazards unlike experts that can adjust to and avoid hazards with 
muscle memory. Novices also lack schema, experiences, and 
relevant rules of behaviors to effectively complete their task 
(Borowsky et al., 2008). In addition, they have inadequate situation 
awareness (McKenna & Crick, 1994). For example, while driving, 
novices exhibited  shorter glances and responded less quickly on 
the phone as compared to experts (Smiley et al., 2007). While 
these examples are for drivers in general, the patterns in task 
performance can be applied to novices and nLEOs as well. 

Police operations are examples of high-demand driving 
conditions. Based on the previous studies (e.g., Zahabi et al., 
2021), we can assume that novice law enforcement officers’ 
(nLEO) task performance  can be reduced due to high CW. Prior 
studies have found officers’ use of in-vehicle technologies while 
driving (Yager et al., 2015), fatigue (Vila & Kenney, 2002), and 
lack of  sufficient training in handling high-demand situations (e.g., 
pursuit situations, multi-tasking) (Hembroff et al., 2018) are major 
contributors of motor vehicle crashes for LEOs. In addition, LEOs 

are continuously surrounded by the high noise level inside the 
police vehicles which can lead to poor speech recognition, 
and complexity of tasks which can interrupt their 
concentration on tasks and ultimately increase their CW 
(Miller & Kun, 2013; Shahini et al., 2020). 

 
Current approaches to measure cognitive workload 

CW measurement techniques are typically categorized 
into four groups including: physiological measures, 
subjective rating scales, task performance measures 
(Eggemeier & Wilson, 1991), and cognitive performance 
modeling (CPM). Physiological measures can directly and 
continuously measure CW based on the changes in 
pupillometry data (Zahabi et al., 2022), heart rate (HR) 
(McDonald et al., 2019), respiratory  rate (RR) (McDonald 
et al., 2019), and skin conductance (SC) (Singh et al., 2013). 
CW can also be measured subjectively by measures such as 
the NASA Task Load Index (NASA-TLX) (Hart, 1986) or 
objectively using task performance responses such as task 
completion time (Shahini et al., 2021). Lastly, CPM can be a 
predictive tool to assess CW by using measures such as the 
number of cognitive operators or working memory chunks 
required in a task (Zahabi & Kaber, 2018b). 

 
Research gaps and objectives 

Prior studies on measuring CW of law enforcement 
officers (LEO) were conducted in laboratory settings and 
focused on experts (Zahabi & Kaber, 2018a, 2018b; Zahabi 
et al., 2019). However, due to the differences in cognitive 
processes between novice and experts, those results might 
not be generalizable to novice law enforcement officers 
(nLEO). Therefore, this study is focused on measuring 
nLEOs’ CW during their regular work shifts and using non-
obtrusive wearable devices to collect physiological 
measures. 

 
METHOD 

 
This study was carried out by conducting a naturalistic 

driving study with nine police officers. Each participant was 
observed for a period of at least three hours and their 

C
op

yr
ig

ht
 2

02
2 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

16
3

Proceedings of the 2022 HFES 66th International Annual Meeting 1482

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181322661163&domain=pdf&date_stamp=2022-10-27


physiological data were collected to determine how their CW was 
affected by the use of in-vehicle technology. The study protocol 
was approved by the institutional review board (IRB). All 
participants were treated according to the American 
Psychological Association’s (APA) ethical research guidelines. In 
the following sections, we  describe the participant demographic 
information, apparatus, study procedure, data synchronization, 
and analysis approaches. 

 
Participants 

Eight male and one female nLEOs were recruited for this 
study (Age: M= 29.1 yrs., SD= 5.73 yrs.). All officers were 
novices as they had fewer than five years of experience as a 
primary patrol officer (Hillerbrand, 1989). The study was 
conducted during officers’ regular work shifts during mornings 
and afternoons, as the eye tracking equipment did  not function 
in the dark. Weather during these ride-alongs ranged from 
sunny to overcast to rainy. 

 
Apparatus 

Three devices were used to record various physiological 
measurements as well as the video data. To record HR 
variability (HRV) and galvanic skin response (GSR), 
participants wore the Empatica E4 (Empatica) watch on their 
wrist. Eye tracking data including blink rate, pupil size, and 
the proportion of time spent fixated on various areas of interest 
(AOIs) were captured using Pupil Labs eye-tracking glasses. 
The AOIs consisted of the front windshield of the car and any 
in-vehicle technology/display the participant had in their 
vehicle, such as the mobile computer terminals (MCTs), 
dashboard, control panel, etc. A dash camera was attached to 
the roof of the vehicle to observe the officer’s interactions 
with their in-vehicle technology. These devices and the metrics 
they recorded are outlined in Figure 1. Figure 2 illustrates the 
view of the dash camera when installed in the officer’s vehicle. 

 
Figure 1: Outline of data collection devices for this pilot study. 

Data synchronization 
A specific procedure was followed every time data 

collection was started and stopped to ensure that the raw data 
collected from all three devices could be attributed to the same 
time frame. This procedure revolved around use of a feature of 
the Empatica E4 that allows the user to take timestamps during 
recordings by pressing a button on the watch. To allow the data 
to be synchronized in post processing, a timestamp was taken 
shortly after all three devices had been calibrated and started 
recording. This timestamp was taken in view of the dash camera 

and everything that happened before this timestamp was 
taken was ignored in post-processing. 

For the eye tracking and heartrate data, the timestamps 
were used in a code created in R (version 4.1.1) that removed 
any data points that occurred before the timestamp was 
taken. This process of taking a timestamp was repeated any 
time the experiment had to be paused when the participant 
exited their vehicle and every time the experiment resumed. 
Through this process, the data could be reliably 
synchronized despite different recording devices being used. 

 

Figure 2: View of dash camera in police vehicle. 
 
Procedure 

The study began with participants filling out an 
informed consent form and a demographic questionnaire. 
Once these forms were filled out, they were given the E4 to 
wear and instructed to wear it for at least 15 minutes to allow 
it to calibrate while the eye tracking and dash camera 
equipment was set up in their car. Once both of these 
conditions were met, the eye tracking device was calibrated 
and the observation period could begin. The synchronization 
procedure was carried out as detailed in the previous section 
to allow the observation to start. Once the observation period 
had begun, the researcher was responsible for monitoring the 
status of the equipment from the passengers-seat and 
ensuring that data collection continued smoothly. They were 
also in charge of carrying out the synchronization procedure 
whenever the participant had to stop the vehicle for a traffic 
stop or any similar situation requiring the participant to leave 
their vehicle. 

After the data collection, the participant filled out a 
driver activity load index (DALI) to subjectively measure 
their CW for that specific shift while the equipment was 
removed from their vehicle. The participant was then 
provided with a copy of the informed consent form for their 
reference and thanked for their time.  

 
Data analysis 

Data analysis for this pilot study was broken down into 
two groups. The physiological results were grouped and 
analyzed individually while the video data from the dash 
camera were reviewed for instances of interaction with in- 
vehicle technology to determine potential sources of high 
CW. Combining these two post-processing procedures 
yielded a  clearer idea of how affected participants were by 
the use of their in-vehicle technology in terms of CW. The 
participants’ responses to the DALI were also considered as 
implications for how aware participants were of their own 
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CW during their jobs. For the physiological measures of CW, root 
mean squared standard deviation (RMSSD) as a measure of HRV, 
GSR, PCPS, and blink rate were measured in synchronized 5- 
minute intervals. This interval was chosen because 5 minutes  is 
the standard interval used for collecting accurate RMSSD 
measurements (Electrophysiology, 1996). Calculating RMSSD 
involved finding the square root of the mean of the difference 
between subsequent inter-beat-interval values squared. 

Blink rate was calculated first in one-minute intervals. The 
number of blinks found in each minute was counted and used as 
the blink rate for that minute. Each 5-minute interval blink rate was 
then found by averaging the five one-minute interval blink rates 
within it. Calculating PCPS first involved taking baseline readings 
of participants’ eyes before and after data collection. In post 
processing, the average pupil diameter from these baselines was 
subtracted from the average pupil diameter of each recorded 5-
minute interval. This result was then divided by the baseline value 
and multiplied by 100 to obtain the PCPS for that 5-minute 
interval. The frequency that each officer looked at each AOI was 
also measured as an indicator of which in-vehicle technologies 
were used most often by participants. 

 
RESULTS 

 
Physiological data 

Due to the fact that this investigation was a pilot study and 
the data were collected from nine officers in the field, we provided 
the descriptive statistics on the collected measures as shown in 
Table 1. The GSR data was not captured from participant 2 due to 
a data collection error with the E4 which might have been caused 
by the officer jostling the E4 device when getting in or out of their 
vehicle while patrolling. 

 
Table 1: Descriptive statistics from the pilot study 

Participant GSR (uS) RMSSD PCPS 
(%) 

Blink 
Rate 

                                                                                             (/min)  

DALI 
(0-5) 

1 0.29 0.12 12 5.57 0.53 
2 N/A 0.08 26 19.62 0 
3 0.29 0.09 -2 8.84 1.27 
4 2.46 0.07 7 8.68 2.40 
5 1.03 0.09 3.3 11.06 4.00 
6 1.60 0.12 63 4.55 0.40 
7 1.40 0.06 32 4.94 2.33 
8 0.48 0.06 -5 9.83 2.47 

   9  0.32  0.10  9.3  8.52  3.20  
 

Traditional workload thresholds for these measurements 
have been established in previous studies. Though GSR workload 
thresholds generally depend on the context, lower values are 
correlated to lower CW and vice versa (Arthur, 1990). Average 
GSR values tend to range from 0.3 to 1.3 uS, with high CW events 
raising the value as high as 8 uS in rare scenarios (Braithwaite et 
al., 2013). The GSR for the  participants in this study generally fell 
within expected to  higher than expected values for normal CW. 
For RMSSD, lower values tend to indicate higher CW, with values 
greater than .1 usually being indicators of lower CW (Tjolleng et 
al., 2017). Knowing the average age of participants and how that 
affects their average RMSSD, the CW indicated was average or 
higher than average in value for each participant compared to mean 
values for people of similar age (Abhishekh et al., 2013). 

Regarding pupillometry data, it has been reported that 
the normal spontaneous blink rate is between 12 and 15 
blinks/min. A mean blink rate of up to 22 blinks/min has been 
reported under relaxed conditions (Abusharha, 2017). Eye 
blinks and blink duration decrease as visual workload 
increases (De Waard & Brookhuis, 1996). Considering the 
visual demands of the driving and displays in the vehicle, it is 
reasonable to assume that officers were under high visual 
workload. Except for participant 2, the blink rate results 
supported De Waard and Brookhuis’ study with low blink 
rates. Higher positive values of PCPS are correlated to higher 
workload (Pfleging et al., 2016). A previous study on police 
officers with an average of 7.92 years of experience 
demonstrated average PCPS values of 10.99% in driving 
simulator tasks (Zahabi et al., 2021). What this means for the 
results is that the majority of nLEO participants had a similar 
or higher average PCPS during the ride-along compared to the 
average value for more experienced officers. Those that did 
not have a significant change in PCPS may be explained by 
environmental conditions encountered during the course of 
naturalistic observation, such as frequent lighting changes. 

 
AOI data 

Though the surfaces measured varied slightly between 
participants due to variation in the technologies used by each 
participant in their vehicle, the following four surfaces were 
consistently measured: the dashboard, radio, MCT, and 
windshield for a baseline. The average proportion of time 
that  a participant fixated on these surfaces during the pilot 
test was 0.7%, 1.8%, 1.1%, and 13.5% respectively. This 
indicated that  participants primarily fixated on the road while 
driving and were unable to fixate on their in-vehicle 
technology for extended periods of time when not stopped. 
Other surfaces measured for specific participants such as 
speedometers and navigation aids produced similar results. 

 
Subjective data 

In addition to the physiological measures taken, DALI 
was administered to measure participants’ workload 
subjectively after the experiment. Reported in Table 1 is the 
rating provided by the DALI for participants’ subjective 
mental workload, with higher ratings indicating higher 
mental workload. Ratings could range from 0 to 5 based on 
participants’ responses, but only 2 participants rated their 
mental workload above 2.5. This indicated that most 
participants were unable to accurately rank their own CW 
when comparing their responses to the physiological data. 

 
DISCUSSION 

 
The approach taken to synchronize the data for this 

pilot study was unique among other naturalistic observation 
studies. In order to ensure that multiple physiological 
measures could not only be collected but synchronized 
between stop times it was necessary to develop a novel way 
of tracking events between recording start and stop times. 
For many driver observation studies and particularly ones 
where the participant must frequently enter and exit the 
vehicle it is difficult if not impossible to maintain a wireless 
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link between all devices being used to collect data in order to 
synchronize start and stop times. The procedure used in this study 
has the potential to solve this problem for similar naturalistic 
observation studies to this one. This procedure can be carried out 
with any equipment that allows users to take timestamps of their 
data as long as they have the same set time as each other, 
preferably UNIX time. In other naturalistic driving studies that 
require participants to exit their vehicles, this can be an invaluable 
tool. What all of these physiological measures indicate is that 
nLEOs tend to have average or higher CW values while 
completing their tasks as opposed to normal values and even more 
experienced police officers in simulated situations. In particular, 
blink rate was substantially lower and RMSSD were higher for 
nLEOs, on average when compared to standard values indicating 
normal CW. Given the lack of studies investigating CW of LEOs 
with these measures, more studies are necessary to completely 
validate these findings. 

The subjective assessment suggests that nLEOs are not 
effective at evaluating their own CW, as the ratings are not 
consistent with the CW thresholds indicated by the physiological 
results. It has been well studied that subjective measures are 
limited due to recall bias and substantial individual differences 
(Hart, 2006). This is important to keep in mind for the 
development of new technology, which will have to contend with 
the fact that nLEOs may not have a clear grasp of the challenges 
they face when on patrol. In addition, it implies that there is a need 
for using DALI carefully with nLEOs as it cannot always 
appropriately reflect their CW. 

Given the higher risk of motor vehicle crashes for LEOs, 
technology that focuses on reducing CW for the subset of novice 
officers with higher CW is critical. Observations during this pilot 
study noticed that officers frequently encountered input errors 
when typing on their MCT or had to pause what they were doing 
to ask dispatch questions when messages were not delivered 
clearly. These events drew attentional resources away from the 
driving task in line with multiple resource theory and increased the 
risk of crashes  more than it would have for expert police officers 
that would be presumed to make fewer mistakes (Wickens, 2008). 
In-vehicle technologies such as the MCT and the dispatch radio 
need to be redesigned to be more user-friendly and accommodate 
the high CW experienced by novice officers in order to reduce 
crash related fatalities. 

To meet this challenge, future work in human factors should 
strive to understand what specific challenges officers face in using 
the technology. Some of these challenges are brought about by the 
high CW demonstrated by the nLEOs in this study, and future 
studies should investigate the differences in CW in specific 
situations between LEOs and nLEOs to better determine what 
technologies used on the job have the largest impact on CW 
overall. This knowledge should then be used to design more robust 
and less cognitively demanding in- vehicle technologies for LEOs. 

 
Limitations and future work 

Several limitations caused by the nature of naturalistic 
driving study made data collection and post-processing difficult. 
Weather conditions such as direct sunlight sometimes prevented 
the eye tracking glasses from detecting the markers placed on 
different AOIs. This effect was most impactful on participant 6’s 
PCPS data, as the 5-minute intervals towards the end of the 

recording when the sun had nearly set and the shadows cast 
by direct sunlight present throughout the evening increased 
the average pupil diameter of the participant and increased the 
overall resulting PCPS. Later participants were recorded at 
earlier times to compensate for this issue. Because data could 
not be collected while the participant was not in the vehicle, 
effects of the job  participants were doing outside the vehicle 
on physiological variables could not be accurately measured 
and had to be inferred from data collected when they returned 
to the vehicle. Secondary tasks within the vehicle that were 
unrelated to the job at hand (e.g. non-work phone calls, 
eating) also created intrusiveness on getting accurate readings 
of the participants as they worked. Participants 4 and 8 in 
particular took more breaks than the other participants, which 
may have contributed to their PCPS reading being much 
closer to 0 than the other participants. 

Prior studies using PCPS as a measure captured the 
baseline data before and after the completion of the study 
(Zahabi et al., 2021). However, in this study, we observed 
that the baselines collected before the data collection tended 
to be vastly larger than the baseline values collected at the 
end of the data collection. This led to several baseline 
recordings taken at the beginning of data collection being 
removed. Potential reasons for this issue include the time of 
day being morning and anticipation of the experiment 
introducing stress that increases the pupil diameter beyond 
baseline size. Because of these issues, the initial baseline 
collection was not as informative as the baseline collected at 
the end of data collection for the majority of participants. 

Future studies can mitigate these limitations by being 
more selective with the time of day and weather for data 
sampling. Collecting data in the mornings or evenings as 
well as on cloudy days will reduce the chances of data loss 
for the eye tracking measurements. Though it might infringe 
somewhat on naturalistic observation, imposing calibration 
periods after officers stop and return to their car could help 
mitigate the effects of their work outside the vehicle on CW. 
Other studies that intend to collect physiological data on 
drivers can also make use of the synchronization method 
outlined in this pilot study for their own data collection 
equipment as long as a device able to take timestamps such 
as the E4 is used.  

 
CONCLUSION 

 
The findings of this study revealed that nLEOs 

exhibited higher CW compared to normal ranges while self-
reported  measurements could not show sensitivity to explain 
nLEO’s CW. Therefore, it can be concluded that nLEOs 
execute their missions under high CW. As a second 
contribution, the synchronization approach in this study can 
be applied to future naturalistic driving studies, as it 
considered not only experimental devices but also the 
activation and deactivation of other devices in a police 
vehicle. Another contribution of this study was the finding 
that using physiological measurements might be more 
appropriate for assessing nLEO’s CW than subjective 
assessment, although a detailed experimental protocol for 
device calibration and post processing under dynamic 

C
op

yr
ig

ht
 2

02
2 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

16
3

Proceedings of the 2022 HFES 66th International Annual Meeting 1485



weather condition is required. Future studies should validate the 
findings of this pilot study with larger sample size and more 
thorough evaluation of participants’ CW using both subjective 
and physiological measures. Finally, the results of this study are 
based on descriptive statistics and need to be validated using 
inferential statistics using the data from a larger sample. 
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