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A  B  S  T  R  A  C  T  
 

Cotton boll count is an important phenotypic trait that aids in a better understanding of the genetic and phys- 

iological mechanisms of cotton growth. Several computer vision technologies are available for cotton boll seg- 

mentation. However, estimating the number of cotton bolls in a segmented cluster of cotton bolls is a challenging 

task due to the complex shapes of cotton bolls. This study proposed a combination of spectral-spatial and su- 

pervised machine learning based methods for cotton boll candidate recognition and counting from high reso- 

lution RGB images obtained from unmanned aerial vehicles (UAVs). An algorithm consisting of machine vision, 

band-mean filter, Otsu thresholding, red/blue band ratio filter, and geometrical characteristics-based error 

removal techniques, was employed to detect open cotton boll pixels under several environmental settings. In 

addition, a support vector machine (SVM) based encoding method was developed using geometric features of 

cotton boll candidates to predict the number of cotton bolls from the segmented cotton boll candidates. This 

algorithm was implemented over three experiment sites with three cotton varieties, two tillage practices, seven 

cover crop treatments, two irrigation regimes (irrigated and rainfed), 26 irrigation levels, and two sensors (DJI 

FC6310 RGB and MicaSense Rededge) capturing images at two spatial resolutions (0.75 cm and 1.07 cm) over 

two growing seasons (2019 and 2021). These different experimental settings allowed the proposed approaches to 

be validated against a variety of complex backgrounds. A visual inspection of 1000 randomly selected pixels 

revealed that the proposed cotton boll candidate recognition approach was highly effective in segmenting cotton 

bolls and background pixels, with high classification accuracy (> 95%) and a low number of falsely classified 

pixels (precision > 0.96; recall > 0.93). A high correlation between ground truth observations and predicted 

cotton boll count indicated that the use of geometric features of segmented candidates as predictors in associ - 

ation with the SVM model demonstrated a good performance in estimating boll count from recognized cotton 

boll candidates. Furthermore, linear regression analyses revealed that both boll count and candidate area are 

potential predictors of lint yield, with boll count being a better predictor than candidate area. Overall, the study 

demonstrated that machine vision/learning techniques can be potentially used on UAV images to count the 

number of cotton bolls and predict lint yield over large acreages with reasonable accuracy.  
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1. Introduction 

 
Cotton boll count is a valuable phenotypic trait, which most cotton 

breeders and producers use to develop a thorough understanding of the 

physiological and genetic crop growth [23]. Boll count also provides a 

means to assess crop growth conditions and facilitate timely crop 

management decisions to prevent yield losses. Cotton boll count is also 

an indicator of lint yield. Wells and Meredith [25] reported a positive 

correlation between bolls per unit area and lint yield. Yeom et al. [27] 

related area under boll pixels with cotton yield and reported a high 

correlation (R2 = 0.65). Rouze et al. [18] reported a moderate correla- 

tion (R2 = 0.49) between open boll count and cotton yield. Therefore, 
boll count can also serve as an important parameter for yield estimation 

and in gene-selection in plant breeding studies [8,25]. In addition, yield 

mapping using precision agriculture tools, can assist growers in over- 

coming in-field spatial variability [12]. 

Traditional boll counting methods are based on manual sampling 

and visual inspection, which are error-prone and also impractical for 

high acreage plant breeding programs [23]. With the technological 

advent of the Global Positioning System (GPS) integrated sensors in 

agriculture, it is now possible to monitor crop growth in real-time and 

automate farming operations [22,29]. A few studies were conducted 

over the last decade to automate cotton boll pixel extraction using 

remote electromagnetic radiation sensors mounted on Unmanned Aerial 

Vehicles (UAVs) or agri-robots. For example, using multispectral aerial 

imagery, Yeom et al. [27] proposed a region growing and Otsu threshold 

[16] based cotton boll pixel recognition method with high classification 

accuracy. Rouze et al. [18] generated open boll maps using a threshold 

for red/blue band ratio. Jung et al. [11] detected cotton bolls using a 

threshold of 190 for the red band in an 8-bit image. Although these 

studies have provided potential solutions for the segmentation of cotton 

boll pixels from the background, the segmented cotton boll pixels results 

in clusters of cotton bolls and none of the above mentioned study 

investigated the estimation of a number of cotton bolls from the detected 

cotton boll clusters. Sun et al. [23] proposed three geometric-based al- 

gorithms for cotton boll counting from high spatial resolution mea- 

surements from an agri-robot, but a similar study for UAV imagery was 

not found in the literature. Additionally, Sun et al. [23] boll counting 

method cannot be applied with UAV imagery due to the coarser spatial 

resolution of UAV measurements (a few cm) as compared to agri-robot 

measurements (< 1 mm). The UAV detected cotton boll clusters can 

have varied and complex shapes, mainly because of the cotton boll face 

orientation relative to the UAV sensor. Hence, simple area or size filters 

can not be applied to separate cotton bolls from the detected boll clus- 

ters. In this study, a novel approach was introduced to estimate the 

number of open cotton bolls from a red-green-blue (RGB) aerial imagery 

while segregating cotton boll pixels from the image background. 

Agricultural scientists are interested in rapidly collecting and 

analyzing a greater volume of high quality phenotypic trait data for crop 

improvement through breeding or other site-specific precision-agricul- 

ture approaches [20,22]. Because of their high spatio-temporal resolu- 

tion, relatively lower operational cost, and less complexity in the data 

collection [20,29], UAVs have emerged as an intriguing remote sensing 

option for precision farming and agronomic research [19,29]. In addi- 

tion, data science tools such as machine learning (ML) methods (e.g., 

support vector and random forests) are frequently used to extract in- 

formation from the UAV imageries [17,28]. Such tools can be used in 

agricultural applications when classifying objects with complex and 

varied structures. For example, Yamamoto et al. [26] used X-means 

clustering algorithm to detect tomatoes and Li et al. [14] adopted 

random forest to achieve semantic labeling prediction for in-field cotton 

detection from images. These tools have the potential to automate the 

whole process, and hence they can be used in the development of de- 

cision support tools. 

In machine learning, support vector machines (SVMs) are high- 

dimensional hyperplane-based pattern recognition learning models 

that are used for the classification and regression analysis [4,7]. Due to 

SVMs’ capability to model complicated non-linear relationships, they 

are preferred over conventional classification and regression techniques 

such as logistic regression and linear or multiple regression models [13]. 

Varying sizes, complex shapes, orientation, and overlapping of cotton 

bolls along with a lack of linear relation between detected cotton boll 

candidate size and boll count, make cotton boll counting from UAV 

images a substantially challenging task. Therefore, the overall goal of 

this study was to evaluate an SVM regression (SVR)-based approach to 

establish non-linear relations among detected cotton boll clusters and 

cotton boll count across diverse environmental settings. Specific objec- 

tives of the study were to: (1) develop a simplified method for cotton boll 

candidate recognition from an image captured by an RGB sensor, (2) 

develop and validate an SVR-based method for counting cotton bolls 

within recognized cotton boll candidates, and (3) estimate cotton yield 

as a function of boll count and area under recognized boll candidates. 

 
2. Materials and methods 

 
2.1. Experiment setup 

 
In this study, UAV measurements were made over 161 plots from 

three cotton experimental sites. Of these, two sites (I and II) are located 

at the Texas A&M AgriLife Research Station (34◦15′ N, 99◦30′ W), 
Chillicothe, Texas. The UAV measurements from these sites were 

collected during the 2021 cotton growing season. Experiment site I 

consisted of 12 irrigated plots (4 cover crop treatments X 3 replications) 

and experiment site II consisted of 21 dryland plots (7 cover crop 

treatments X 3 replications). The PHY 480 cultivar was used at both 

sites. More details about these field experiments can be found in 

DeLaune et al. [6] and DeLaune and Mubvumba [5]. These two cover 

crop experiments provided an opportunity to validate the approaches 

developed for cotton boll candidate recognition and boll count estima- 

tion across a variety of complex backgrounds. 

At the Texas A&M AgriLife Research Station (34◦10′ N, 101◦56′ W), 

Halfway, Texas experiment site (Site III), UAV images were collected 

from a cotton irrigation water use efficiency experiment. More details 

about the Halfway field experiment can be found in Bordovsky et al. [2], 

Himanshu et al. [10], and Himanshu et al. [9]. The UAV measurements 

from this experiment allowed the validation of developed approaches 

against UAV images collected using a different sensor (described in 

Section 2.2) with different backgrounds from two distinct cotton vari- 

eties (FM2011 and FM2484) over a different time period (2019 growing 

season), and at a different location as compared to sites I and II. Overall, 

this study used UAV measurements from three cotton varieties, two 

tillage practices, seven cover crop treatments, six different irrigation 

conditions, two different irrigation regimes (irrigated and rainfed), and 

two different years. 

 
2.2. Data collection 

 
2.2.1. UAV measurements and preprocessing 

At experiment site III, a Phantom 4 Pro (P4P; DJI, China) quadcopter 

equipped with a DJI FC6310 RGB (red, green, blue) (DJI, China) optical 

sensor (Fig. 1a) was used during the 2019 growing season. To collect 

UAV measurements from experiment sites I and II during the 2021 

season, a Matrice 200 (M200; DJI, China) quadcopter equipped with a 

MicaSense Rededge multispectral (AgEagle Aerial Systems Inc, USA) 

optical sensor (Fig. 1b and 1c) was used. All of the flights were per- 

formed within one hour of solar noon, with little to no cloud cover and 

winds less than 15 km/h. The Pix4Dcapture mobile app, developed by 

Pix4D S.A., Switzerland, was used to create the flight plans with the 

flight characteristics shown in Table 1. The flight altitude was set in 

order to obtain images with a spatial resolution close to 1 cm. Eighty-five 

percent front and side overlaps were employed to target oversampling 

and compensate for errors introduced by the uncalibrated/blurred/ 
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Fig. 1. Unmanned Aerial Vehicle (UAV) imaging platforms and other instruments: (a) DJI Phantom 4 pro quadcopter equipped with DJI FC6310 RGB sensor, (b) 

Matrice 200 quadcopter equipped with MicaSense Rededge multispectral sensor, (c) MicaSense Rededge multispectral camera, (d) ground control point unit, (e) V- 

map dual-frequency global navigation satellite system, (f) MicaSense calibrated reflectance panel.  

 

 
Table 1 

Characteristics of UAV flights and measurements. 
 

 

UAV measurements 

Year 2019 2021 

Date October 21, 2019 October 31, 2021 

Drone Phantom 4 Pro Matrice 200 

Sensor DJI FC6310 MicaSense Rededge 

Bands RGB RGB, RE, NIR 

Bands used in boll count RGB RGB 

Front overlap 85% 85% 

Side overlap 85% 85% 

Height 30 m 15 m 

GCPs 8 8 

Georeferencing RMSE 1.1 cm 1.4 cm 

Spatial resolution 0.75 cm 1.07 cm 

Experiment site III I and II 
 

 

Note: R- Red; G- Green; B- Blue; RE- Red Edge; NIR- Near-Infrared; GCP- Ground 

Control Point; RMSE: Root Mean Square Error. 

 
geometrically distorted images [1]. 

All captured images were geotagged in real-time using the onboard 

GPS systems installed in the quadcopter platforms. In addition, eight 

ground control points (GCPs; Fig. 1d) were employed in the field to 

generate georeferenced data products with high precision. The co- 

ordinates of the GCPs were measured using the V-map dual frequency- 

post processed static (PPS) global navigation satellite system (GNSS; 

Fig. 1e; Micro Aerial Projects, USA) and they were used to georeference 

the orthomosaic images. As recommended by Rouze et al. [18], ortho- 

mosaic images with less than 1.5 times the pixel resolution georefer- 

encing root mean square error (RMSE) were extracted in GeoTiff format 

for further image processing. Additionally, a MicaSense calibrated 

reflectance panel (Fig. 1f) supplied by MicaSense was used to radio- 

metrically calibrate the captured images in order to perform an illumi- 

nation adjustment and obtain more accurate reflectance values. During 

this calibration process, one image per band of the calibration panel was 

captured at the time of flight and the spectral reflectance of the pro- 

cessed images was adjusted based on the fixed reflectance values of the 

panel. More details about the calibration panel and spectral reflectance 

correction can be found at MicaSense knowledge base (https://support. 

micasense.com/). 

 
2.2.2. Manual data collection for cotton boll count and cotton yield 

Ground truth data for cotton boll count and yield were collected from 

the experimental sites to validate the algorithm developed for counting 

cotton bolls. Cotton bolls were counted using a 1 m X 1 m area in two 

middle rows (rows 4 and 5) per plot at sites I and II and from a set of five 

plants in one row per cotton cultivar per plot at the third experiment 

site. The coordinates of the ground truth data location area were 

recorded using V-map PPS GNSS. These locations were also marked with 

flags so that the same plants were monitored throughout the growing 

season and also to easily detect ground truth data locations in the UAV 

images and minimize errors associated with GPS instruments. Ground 

truth data for cotton boll count was collected one week before har- 

vesting from 12 to 21 plots at experiment sites I and II, respectively, in 

2021 and from 48 plots at experiment site III in 2019. Whereas ground 

truth data for cotton yield was collected from 12 to 21 plots at experi- 

ment sites I and II, respectively, in 2021 and from 128 plots at experi- 

ment site III in 2019. This ground truth information on cotton yield was 

used for developing a relation between cotton boll count and cotton 

yield in this study. 

 
2.3. Image processing 

 
The methodology proposed for cotton boll counting (Fig. 2) consists 

of two parts. First, the collected images were subjected to an image 

processing pipeline for the cotton boll candidate recognition. The goal of 

the cotton boll candidate recognition was to segment cotton boll pixels 

from the surrounding background, which included soil, weed, foliage/ 

residuals, leaves, and branches. To remove non-cotton boll pixels, a 

python programming-based pipeline was developed, as described in 

Section 2.3.1. The output from this step was a binary image in which 

cotton boll candidate pixels were classified with pixel intensities of one 

and the non-cotton-boll pixels with pixel intensities of zero. This binary 

image was further converted into a polygon vector of cotton boll 

candidates. 

In the second stage, an ML-based SVR model was adopted to count 

the total number of bolls in each segmented cotton boll candidate 

identified in the previous step. The response variable in this SVR model 

was the number of cotton bolls in a cotton boll candidate with four 

predictors comprising geometric aspects of the cotton boll candidate, 

including area, perimeter, maximum length, and roundness. The final 

outcome of this process was a polygon vector of cotton boll candidates 

with information on the number of cotton bolls in each candidate. 

 
2.3.1. Cotton boll candidate recognition 

The cotton boll candidate recognition was performed in four stages 

using a band-mean filter, the Otsu thresholding [16], a red/blue band 

https://support.micasense.com/
https://support.micasense.com/
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Data collection and preprocessing 

UAV data collection Stitching and Orthomosaicking Subsetting (2000 X 2000 pixels) 

Cotton boll candidate recognition 

Band mean filter 
Pixel values > band mean 

Thresholding 
Pixel values > Otsu threshold 

Red/Blue band ratio ≤ 1.2 
Area Filter 

Candidates with area ≥ 3 cm 2 

 

 

 

 

 

 

 

 

 

 

 

 
Error removal process 

Error removal I 
Recognized candidates with mean CHM elevation ≤ 5 cm or ≥ 2 m 

 

 

Error removal II 
Recognized candidates with roundness ≤ 0.1 and max length ≥ 1 m 

 

Cotton boll counting 

SVR model development 
Training sample size: 80 

Predictors: area, perimeter, roundness, max length 

 

 
SVR model evaluation 

Evaluation: using testing data 

Test sample size: 20 

 

 
SVR model-based cotton boll 

counting and validation 
Validation: using ground truth data 

 

Fig. 2. Flowchart of the processes involved in the proposed approach for counting cotton bolls. (Note: UAV- Unmanned Aerial Vehicle, SVR- Support Vec- 

tor Regression). 

 

ratio filter, and an area filter. The primary goal of this candidate selec- 

tion approach was to eliminate the background pixels of the image, 

including plant shadows, foliage/residue, dark ground, and weeds. The 

spectral behaviors of these classes across the RGB bands were analyzed 

at all three sites (Fig. 3) by averaging the pixel values of 20 randomly 

selected samples within each class, with a minimum of 10 pixels per 

sample. Cotton boll pixels were found to be associated with the highest 

reflectance. Therefore, in the first stage, a band-mean filter was applied 

to remove dark pixels. In this process, the pixels having a lower reflec- 

tance value than the mean value of each band in all three RGB bands 

were filtered out (Fig. 4b and 4d). A majority of the remaining pixels 

after the band-mean filtering process belonged to cotton boll and soil 

classes. 

One of the most challenging tasks in image processing is to separate 

pixels with identical reflectance values using a threshold. Selecting a 

fixed threshold to separate these remaining two major classes from 

different UAV images could lead to error due to varying spectral prop- 

erties of the images depending upon UAV sensors, field conditions, and 

several other environmental and instrumental factors. The Otsu method 

was employed in this study to set an independent threshold for each 

scene using the spectral properties of the filtered pixels. The Otsu 

method is an automatic thresholding approach that determines the 

threshold by minimizing intra-class variation and maximizing inter-class 

variation [16]. A bimodal distribution was discovered in the reflectance 

histogram of filtered pixels in the R, G, and B channels suggesting the 

presence of two major classes i.e., soil/bright weed and cotton boll. The 

Otsu thresholding approach divided the filtered pixels into two classes: 

(i) low reflectance class, which represented bright weed and bare soil 

pixels, and (ii) high reflectance cotton boll candidate pixels (Fig. 4e). All 

low reflectance pixels were then masked out, thereby eliminating a 

majority of the background pixels (Fig. 4c). To ensure the complete 

removal of all background pixels, a third filter, red/blue band ratio, was 

used. This filter was used to further eliminate the non-target pixels. It 

was observed from the spectral signature analysis (Fig. 3) that cotton 

boll pixels showed similar digital number values on all three bands 

indicating a red/blue band ratio close to one. Therefore, pixels with a 

red/blue band ratio greater than 1.2 were thus filtered out. Additionally, 

an area filter was applied to remove noise from the data assuming that a 

single cotton boll would have a minimum of 3 cm2 area. 

 
2.3.2. Errors associated with recognition of cotton boll candidates and their 

removal 

Following the cotton boll candidate recognition process, a pre- 

liminary inspection of output binary images revealed few challenges or 
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Fig. 4. Cotton boll candidate recognition process outputs: (a) subset of orthomosaic image from experiment site III, (b) image after applying band-mean filter, (c) 

image after applying Otsu threshold, (d) histogram of pixel values for blue band in the orthomosaic image; black columns representing pixel values less than the band 

mean, (e) histogram of pixel values for blue band after the band-mean filtration process; black columns representing pixel values less than the Otsu threshold.  

 

potential error sources that could introduce substantial errors in boll 

count and yield predictions. In this study, three error sources were 

recognized, including bright weed (Fig. 5a), center pivot system parts 

(Fig. 5b), and cotton bolls on the ground (Fig. 5c) pixels, which were 

misclassified as cotton boll candidates. These error pixels had similar 

spectral properties as those of cotton boll pixels, and thus they could not 

be removed using previously applied spectral filters. Consequently, two 

additional steps (Fig. 2) were adopted to exclude these misclassified 

pixels. First, an elevation filter was implemented to remove error pixels 

associated with cotton bolls on the ground and parts of the center pivot 

system since they were at different elevations as compared to the cotton 

bolls on the plants. A canopy height model (CHM), resampled to the 

spatial resolution of the orthomosaic image, was developed using digital 

surface and terrain models. Details about the CHM generation process 

using UAV imagery can be found in Chang et al. [3]. The recognized 

candidates that are either less than 5 cm or greater than 2 m elevation in 

CHM were removed. Some parts of the center pivot system were, how- 

ever, present in between the selected threshold elevation criteria and 

they were therefore still misclassified as cotton boll candidates. A filter 

with a combination of roundness index (< 0.1) and maximum length (> 
1 m) was implemented to filter these misclassified candidates. Here, the 

maximum length of the candidates was defined as the maximum length 

among all the combinations of vertex-to-vertex lengths of the candidate 

and the roundness was calculated using Eq. (1) [27]: 

 4π ∗ Area  

As a result, counting the number of cotton bolls from a cotton boll 

candidate using a simple threshold for area or elongation ratio or using a 

combination of these thresholds can lead to errors. Therefore, we 

implemented an SVR-based ML approach to overcome these limitations 

and account for all complex and varied sizes of cotton bolls in the im- 

ages. The SVR is a regression version of the SVM that is used to develop 

the relation between a dependent variable and one or more independent 

variables. A detailed description of the SVR can be found in Smola and 

Scho¨lkopf [21] and Tian et al. [24]. 

In this study, the approach proposed for cotton boll counting from 

segmented candidates includes a supervised SVR model with four geo- 

metric aspects of the cotton boll candidates as feature vectors: area, 

parameter, roundness, and maximum length. These feature vectors and 

their corresponding labels were used to train a non-linear kernel func- 

tion based SVR model. Before training SVR model in R, a trainControl 

(Package: caret) function was used to generate parameters that control 

computational nuances of the train (Package: caret) method. The repea- 

tedCV (repeated cross-validation) resampling method with three sepa- 

rate 10-fold cross-validation was used as resampling scheme for the 

trainControl function. The SVR model was trained using train function 

with the svmRadial method. The train function fits predictive models 

over different tuning parameters, evaluates the effect of tuning param- 

eters on model performance, and selects an optimal model across the 

tuning parameters considered. A preprocessing of the training data using 

the “center” & “scale” parameters in the train function was also incor- 

Roundness = 
Perimeter2

 
(1) porated to standardize training data. The train function selected the 

optimal SVR model for the training data at C = 2 (penalty parameter of 

2.3.3. Boll counting 

Varying sizes and complex shapes of cotton bolls pose challenges in 

counting the number of bolls in a cluster of cotton bolls. In addition, the 

orientation and overlapping of cotton bolls make cotton boll counting 

from UAV images even more challenging. Clusters composed of several 

overlapping cotton bolls generally have a larger area and elongation 

ratio than a single cotton boll. However, these clusters may have a 

similar elongation ratio as that of a single cotton boll. In addition, a 

single cotton boll can have a round or non-round/elongated structure, 

depending upon the boll facing angle when detected by the UAV sensors. 

the error term) using the smallest RMSE values at different C values. 

The SVR model was trained using 80 training samples and evaluated 

over 20 test samples. The training and test samples for the SVR model 

were collected through visual inspection from the orthomosaic images of 

experiment site II. The samples were chosen in such a way that a wide 

variation in candidate area was captured. Further, the crea- 

teDataPartition (Package: caret) function was used to create stratified 

random samples based on cotton boll count (i.e., response variable) and 

split the samples into training and test data. Three independent users 

counted the number of cotton bolls in the selected sample candidates 
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Fig. 5. Snapshots of orthomosaiced UAV image from experiment site III with recognized cotton boll candidate polygons before (red) and  after (blue) the error 

removal process. (Note: Green arrow is pointing to the falsely classified pixel of cotton on ground before and after the error removal process). 

 

using visual inspection of the ortho-mosaiced images, and the mean 

values from the three inspections were recorded as a response variable in 

the SVR model. The evaluated SVR model was then used to count the 

 
Classification accuracy = 

 TP + TN  
(2)

 

total number of pixels 

number of cotton bolls in the segmented candidates across all three 

experiment sites. Precision = 
  TP   

(3)
 

TP + FP 

 
2.4. Statistical analysis 

Recall = 
  TP 

 

TP + FN 

 
(4) 

The accuracy of the candidate recognition process, before and after 

the removal of error sources, was assessed using visual inspection of 

1000 randomly selected pixels (500 cotton boll candidates and 500 

background pixels) for each experiment site. The confusion matrix and 

precision-recall methods were implemented to evaluate the quality of 

the output of the candidate recognition process by classifying the data 

into four categories, namely, true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN). The TP and TN categories rep- 

resented the correctly recognized pixels whereas FN and FP represented 

the omission and commission errors, respectively. The accuracy of the 

candidate recognition process was further assessed using three statistical 

metrics presented in Eqs. (2)–(4): 

While classification accuracy represents the fraction of correctly 

classified pixels among all pixels, precision represents the fraction of 

retrieved pixels that were relevant to the query, and recall represents the 

fraction of relevant pixels that were successfully retrieved. 

The proposed SVR-based cotton boll counting approach was quan- 

titatively validated using a two-step approach. First, the performance of 

the established SVR model was evaluated for training and test data. 

Later, the estimated number of cotton bolls was compared with the 

measured/ground truth cotton boll count data for validation. Three 

statistical metrics, viz., coefficient of determination (R2), mean absolute 

percentage error (MAPE), and root mean square error (RMSE) were used 

to evaluate the performance of the SVR-based cotton boll counting 
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∑ 

n 
( i − i) 

  i=1  
n 

i=1 (Oi − O)2 

∑( ) 

(7) 

 

approach Eqs. (5)–((7)). 
 

[  (Pi − P)(Oi − O)]2 

∑ 
(Pi − P)2 ∗ 

∑ 
(Oi − O)2 

 

 

(5) 

actual boll count in this study with a low MAPE (discussed in Section 

3.1.2). Therefore, we used a linear regression analysis to develop re- 

lations between lint yield and UAV estimated boll count and candidate 

area. Lint yield prediction relations were developed for each variety, 
assuming that the weight of each variety’s cotton boll is different. A 
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multiple linear regression approach was also used while considering 

both boll count and candidate area as predictors. These yield prediction 

relations were developed using 75% of observed lint yield data as 

training data and the remaining 25% of the data as the testing data for 

 
where, n is the number of plots, and Oi and Pi are the observed (or 

ground truth) and predicted number of cotton bolls. Additionally, 

observed and predicted boll count data were plotted and compared for 

the agreement with the 1:1 line. 

stratified random sample considering observed yield data as response 

variable. The developed linear relations were compared and evaluated 

using four statistical metrics: R2, RMSE, MAPE, and Nash–Sutcliffe Ef- 

ficiency (NSE; Eq. (8)). 

∑n (Pi − Oi)2 

  

 

The number of cotton bolls estimated from the UAV images is typi- 

cally lower than the actual number of bolls due to the covering of lower 

canopy cotton bolls by upper canopy cotton bolls while collecting UAV 

images with the sensor pointed to the nadir direction. However, we 

found a high correlation between the UAV detected boll count and 

 

 

Fig. 6. Experiment-wise confusion matrix for accuracy assessment of cotton boll candidate recognition process. 

2.5. Lint yield prediction and validation 

each cotton variety. The createDataPartition (Package: caret) function 

was used to split the data into training and test data, and to create a 
i=1 

R2 = 

= 

NSE = 1 − (8) 

= 
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3. Results 

 
3.1. Validation of cotton boll counting approach 

 
3.1.1. Accuracy assessment of cotton boll candidate recognition process 

Fig. 6 and Table 2 show the confusion matrix and values of statistical 

metrics related to evaluation of the candidate recognition process. 

Although the evaluation statistics suggested high classification accuracy 

in extracting cotton boll candidates even before removing the errors, 

output images still contained falsely classified pixels. The greatest error 

was noted for the experiment site III, which was primarily due to the 

presence of a large number of bright weed and pivot part pixels (Fig. 5). 

The bright soil pixels introduced additional commission errors 

(mistakenly accepting a false observation) in the candidate recognition 

process for the experiment site III. The commission errors at experiment 

sites I and II (Fig. 6) were only due to bright soil pixels. 

The digital numbers for these error pixels were found to be compa- 

rable to those of cotton boll pixels in all three bands, implying that these 

pixels could not be segmented from the cotton boll pixels solely based on 

spectral properties. Therefore, mean elevation, max length, and round- 

ness parameters of recognized candidates were used in the error removal 

process. This approach improved the accuracy of candidate extraction 

process (Table 2) by removing commission error pixels while it did not 

affect omission error (mistakenly rejecting a true observation; Fig. 7) 

pixels. High values for precision and recall after the error removal 

process indicated a low number of falsely identified pixels among the 

recognized pixels and identification of a high proportion of true cotton 

boll pixels, respectively. Overall, the observed statistical metrics indi- 

cated that the cotton boll candidate recognition technique was highly 

effective in segmenting cotton bolls and background pixels (Fig. 8). 

 
3.1.2. SVR-based cotton boll counting approach 

The SVR model performance in estimating the total number of cotton 

bolls was good as indicated by only 0.55% error during training and 

3.6% error during validation (Table 3). The evaluated model was then 

used to estimate boll count from the image of the entire experimental 

area at each site. Fig. 8 depicts the outcomes of the candidate recogni- 

tion and cotton boll counting steps for a single cotton plant. The esti- 

mated boll count was then validated against the observed/ground truth 

boll count. Fig. 9 and Table 4 show the correlation analysis between the 

estimated and observed boll counts. The high correlation and associated 

low MAPE values found for all three sites (Fig. 9) suggested a good 

agreement between the observed and estimated boll counts. Overall, the 

evaluation and validation statistics suggested that the use of geometric 

features of segmented candidates as predictors in association with the 

SVR model demonstrated a good performance in estimating boll count 

from recognized cotton boll candidates. 

 

3.2. Lint yield prediction 

 
Cotton boll count and candidate area were found to be highly 

correlated with lint yield in the linear regression analysis (Fig. 10). 

Multiple linear regression was used to test if both parameters, i.e., cotton 

boll count and candidate area predicted lint yield well. Fig. 10 shows the 

fitted regression models, and Table 5 presents the information on sta- 

tistical metrics and fitted model equations for all three cotton cultivars 

 
Table 2 

Experiment-wise statistical metrics for accuracy assessment of cotton boll 

candidate recognition process (before and after error removal). 
 

Statistical metrics Site I 

Before 

 
After 

Site II 

Before 

 
After 

Site III 

Before 

 
After 

Classification accuracy 0.95 0.97 0.96 0.98 0.89 0.94 

Precision 0.94 0.97 0.94 0.98 0.86 0.96 

Recall 0.96 0.96 0.98 0.98 0.93 0.93 

 

 
 

Fig. 7. Omission error resulting from pivot shadowed pixels at experiment 

site III. 

 

 
Table 3 

Evaluation statistics of developed SVR model for the training and test datasets. 
 

Parameters Training Test 

Total predicted cotton bolls 362 81 

Total original cotton bolls 364 84 

Difference 2 3 

Percent Error 0.5 3.6 

Misclassification error from the model (%) 5 25 

 

used in the field experiments. It was found that the candidate area did 

not contribute significantly (p > 0.05) to lint yield prediction under 
multiple linear regression models. However, in the fitted linear regres- 

sion models, candidate area showed high correlation with lint yield 

(R2= 0.55–0.85; Table 5) for all cotton cultivars and significantly pre- 

dicted lint yield (p < 0.05). Overall, the statistical metrics indicated the 
boll count as a better predictor of lint yield than the candidate area, with 

higher R2 and NSE values and lower RMSE and MAPE values (Table 5). 

Although multiple linear regression models predicted lint yield better, 

the yield prediction did not improve much in comparison to the linear 

regression model using boll count alone as a predictor (Table 5). 

 
4. Discussion 

 
In this study, a simplified cotton boll candidate recognition algo- 

rithm was developed using simple spectral filters and an SVR-based 

machine learning tool. The evaluation and validation statistics sug- 

gested that this method can reliably recognize and estimate cotton boll 

count from RGB-based UAV measurements collected after defoliation at 

the late boll opening cotton growth stage. The UAV imagery collected 

after defoliation resulted in a relatively simple background with few to 

no green leaves covering or casting shadows on the cotton bolls in the 

lower canopy. Additionally, UAV flights during solar noon produced 

images free from shadows and minimized the omission errors. An 85% 

front and side overlap was set while taking UAV measurements to target 

oversampling, which helped in avoiding image gaps introduced during 

the orthomosaicking process when removing uncalibrated/blurred/ 

geometrically distorted images [1]. In addition, taking UAV measure- 

ments at solar noon with a wind speed of less than 15 kmph resulted in 

low commission errors. Therefore, this study recommends collecting and 

processing UAV measurements in the above-mentioned manner as the 

first step to minimize error sources and obtain high accuracy with the 

proposed candidate recognition process. 

Although the errors in candidate recognition were small, these error 

pixels could introduce significant errors in cotton yield estimates if yield 

estimates are solely based on the area under the recognized candidates 

[27] or boll count [18]. Therefore, we included an error removal step to 

remove major commission error pixels and improve the performance of 
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Fig. 8. Cotton boll count pipeline: (a) UAV captured orthomosaic image, (b) cotton boll candidate recognition using spectral properties, and (c) cotton boll count 

using geometrical features of recognized candidates. 

 
 

 

Fig. 9. Experiment-wise correlation analysis of estimated and ground-truth observations for cotton boll count [Note: Dotted black line - 1:1 line; Blue line - Line of 

best fit]. 

 

 
Table 4 

Experiment-wise statistical metrics for correlation analysis of estimated and 

ground-truth observations for cotton boll count. 

Experiment site Statistical Metrics 

R2 RMSE MAPE 

Site I 0.91 4.14% 5.80% 

Site II 0.83 5.80% 0.69% 

Site III 0.76 7.07% 11.46% 

Note: R2: Coefficient of determination; RMSE: Root mean square error; MAPE: 

Mean absolute percentage error. 

 
the candidate recognition process. Different types of error sources in the 

UAV images from different sites, particularly error sources with similar 

spectral properties to cotton bolls in RGB bands, suggested a need for the 

consideration of non-spectral filters to minimize with these errors. After 

a preliminary evaluation of the outputs of the candidate recognition 

process and identification of the error sources, this study considered 

mean CHM, roundness, and the maximum length of recognized candi- 

dates as non-spectral filters because error sources were found to be 

elongated and at a different height as compared to the target cotton boll 

pixels. 

In this study, band-mean digital number values ranged from 121 to 

147 and the Otsu threshold ranged between 163 and 186 for the blue 

band. The observed long range of band-mean and Otsu thresholding 

indicated the importance of selecting thresholds based on the spectral 

properties of the image or a subset of the image. Selecting a fixed 

threshold could lead to a high omission or commission error due to 

removal of lower reflectance cotton boll pixels or inclusion of higher 

reflectance background pixels, respectively. For example, Jung et al. 

[11] used a threshold value of 190 for the red band to segment cotton 

boll pixels from the background, which worked well for that study area, 

but using this threshold for UAV images in this study led to high omis- 

sion error. We also used a fixed red/blue band ratio of 1.2 in the 

candidate recognition process to avoid high omission error, but we 

recommend evaluating classification accuracy by changing this 

threshold value. However, given the high classification accuracy ob- 

tained for complex backgrounds across seven different cover crop 

treatments in this study, a fixed threshold of 1.2 for the red/blue band 

ratio can provide satisfactory results. In this study, cotton boll pixels in 

the lower canopy were primarily responsible for the omission errors. 

These pixels were shadowed by the upper canopy, resulting in lower 

digital numbers, and they were eliminated during the background 

filtration processes. This study did not include steps for removal of 

omission error sources due to high complexity of removal process and 

presence of low omission error values 

The SVR algorithm is generally considered as a relatively simple 

method in ML, however robust in its performance, because the final 

decision function is determined by only a few support vectors [15]. 

Here, support vectors are nonlinear combinations derived from geo- 

metric aspects of the cotton boll candidate, namely area, perimeter, max 

length, and roundness. In this study, the SVR-based cotton boll count 

approach showed potential to extract information from complex shapes 

of clusters. However, this approach might not estimate the exact number 

of cotton bolls in a large cluster due to large overlapping and different 

orientations of cotton bolls. These large clusters were the key source of 

classification error for the test data. However, our approach performed 

very well for the small clusters of less than six cotton bolls. A larger 

training dataset with a greater number of large clusters could be useful 

to further improve this approach to reduce classification errors. None- 

theless, the small error found in the overall boll count during both 

training and testing demonstrated the applicability of this boll count 

algorithm. The identification of true boundaries of the individual cotton 

bolls within a cluster was not considered in this study since it could 
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Fig. 10. Variety-wise cotton yield prediction using cotton boll count (left column: parts a, d, and g), recognized candidate area (middle column: parts b, e, and h); 

and cotton boll count and candidate area (right column: parts c, f, and i) as predictors.  

 

result in loss of cotton boll pixels and reducing the area under recog- 

nized candidates, which is a potential predictor of cotton yield. The 

linear regression analysis for predicting lint yield using boll count and 

candidate area suggested that lint yield was sensitive to both predictors, 

but boll count had a greater impact on lint yield than the candidate area. 

While the proposed boll count approach addressed some of the issues 

related to overlapping and clustering, it did not change the area under 

the recognized cotton boll candidates. 

In this study, the UAV imageries taken at the nadir (pitch = 90º) 

direction were used to validate the proposed approaches. However, 

some cotton bolls were present in the lower canopy and some other bolls 

had a downfaced orientation. Although these conditions were limited, 

they resulted in a slight underprediction of boll count since these bolls 

were not visible in the captured images. Future studies can explore the 

suitability of different pitch angles for UAV sensors for estimating cotton 

boll count. Although the methods proposed in this study showed high 

accuracy, there is still scope to improve the cotton boll recognition and 

counting processes. For, example, this study utilized a common red/blue 

band ratio threshold of 1.2 which can be changed as per the UAV 

measurements and background characteristics. Another improvement 

can be through the increase of training sample size or increasing the 

number of predictors in the model development to increase the accuracy 

of the SVR model. Utilizing more complex approaches such as artificial 

or convolutional neural network-based deep learning approaches could 

also improve the boll counting process. Generating 3-D data such as 

using LiDAR could also be effectively implemented for the error removal 

steps in the proposed cotton boll count approach as well as to quantify 

the spatial distribution of bolls [23]; however, that would increase the 

cost and complexity of the process. Another limitation of this study is 

that it considered only three cotton cultivars. Cotton varieties affect 

spatial distribution and the number of cotton bolls in the lower canopy, 

and hence affect the omission error in the UAV measurements. 
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Table 5 

Variety-wise regression models for cotton yield prediction. 

Cotton Cultivar Training Test 

R2 NSE RMSE MAPE R2 NSE RMSE MAPE Model p-value 

Linear Regression- Boll Count 

PHY480 0.81 0.81 112.83 0 0.90 0.79 94.65 −2.3 Y = 0.0018*X + 349.63 < 0.001 

FM2484 0.77 0.77 195.23 0 0.85 0.83 181.07 −2.6 Y = 0.0026*X - 183.42 < 0.001 

FM2011 0.87 0.87 157.56 0 0.87 0.85 188.53 −5.4 Y = 0.0035*X - 241.07 < 0.001 

Linear Regression - Candidate Area 

PHY480 0.58 0.58 168.05 0 0.79 0.55 140.31 7.5 Y = 1.37*X + 290.87 < 0.001 

FM2484 0.76 0.76 199.05 0 0.82 0.81 191.64 0.8 Y = 1.26*X + 250.42 < 0.001 

FM2011 0.77 0.77 211.83 0 0.85 0.84 190.98 −4.1 Y = 1.67*X + 240.74 < 0.001 

Multiple Linear Regression- Boll count and Candidate Area Boll Count Candidate Area 

PHY480 0.81 0.81 112.83 0 0.9 0.79 94.31 −2.4 Y = 0.0019*X1 −0.01*X2 +351.36 < 0.001 NS 

FM2484 0.79 0.79 186.65 0 0.86 0.85 170.32 −1.1 Y = 0.0015*X1 +0.59*X2 −22.69 NS NS 

FM2011 0.88 0.88 156.40 0 0.88 0.86 180.84 −5.4 Y = 0.0031*X1 +0.21*X2 −204.01 < 0.001 NS 

Note: R2: Coefficient of determination; NSE: Nash–Sutcliffe model efficiency coefficient; RMSE: Root mean square error; MAPE: Mean absolute percentage error; X1: 

Boll count; X2: Candidate area. 

 

Therefore, there is a need for an omission error removal process under 

certain cotton varieties. 

 
5. Conclusion 

 
This study proposed a simplified cotton boll candidate recognition 

process, followed by a cotton boll count method within the recognized 

candidates. The evaluation statistics of the candidate recognition pro- 

cess indicated that the spectral properties of the cotton and background 

pixels could be effectively used to segment cotton boll pixels from the 

UAV images. The classification accuracy assessment of the candidate 

recognition process revealed that there could be background/nontarget 

pixels that introduce commission errors (false positives) due to similar 

spectral properties to cotton boll pixels in UAV images, such as bright 

soil or weed pixels, that cannot be segmented using spectral filters. The 

commission error removal processes implemented in this study high- 

lighted the utilization of the CHM and geometrical features of recog- 

nized candidates to improve classification accuracy. The shadowed 

cotton boll pixels were found to be the source of omission error (false 

negative). This study did not include the omission error removal steps 

due to presence of low omission errors and to avoid computational 

complexity. 

The boll count method also performed promisingly, with a slight 

underestimation of the number of cotton bolls. A potential source for the 

underestimation was the overlapping of cotton bolls in the captured 2-D 

UAV images, which could be addressed by collection of 3-D images in 

the future. Linear regression analysis results indicated that both boll 

count and candidate area are the potential predictors of the lint yield. 

However, boll count was found to be a better predictor of lint yield than 

the candidate area. Overall, statistical evaluation and validation metrics 

obtained in this study suggest that the proposed cotton boll candidate 

recognition and boll count methods for UAV images could potentially 

lead to more effective and efficient evaluation and management of 

experimental plots or fields by researchers and producers. 
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