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ABSTRACT

Cotton boll count is an important phenotypic trait that aids in a better understanding of the genetic and phys-
iological mechanisms of cotton growth. Several computer vision technologies are available for cotton boll seg-
mentation. However, estimating the number of cotton bolls in a segmented cluster of cotton bolls is a challenging
task due to the complex shapes of cotton bolls. This study proposed a combination of spectral-spatial and su-
pervised machine learning based methods for cotton boll candidate recognition and counting from high reso-
lution RGB images obtained from unmanned aerial vehicles (UAVs). An algorithm consisting of machine vision,
band-mean filter, Otsu thresholding, red/blue band ratio filter, and geometrical characteristics-based error
removal techniques, was employed to detect open cotton boll pixels under several environmental settings. In
addition, a support vector machine (SVM) based encoding method was developed using geometric features of
cotton boll candidates to predict the number of cotton bolls from the segmented cotton boll candidates. This
algorithm was implemented over three experiment sites with three cotton varieties, two tillage practices, seven
cover crop treatments, two irrigation regimes (irrigated and rainfed), 26 irrigation levels, and two sensors (DJI
FC6310 RGB and MicaSense Rededge) capturing images at two spatial resolutions (0.75 cm and 1.07 cm) over
two growing seasons (2019 and 2021). These different experimental settings allowed the proposed approaches to
be validated against a variety of complex backgrounds. A visual inspection of 1000 randomly selected pixels

revealed that the proposed cotton boll candidate recognition approach was highly effective in segmenting cotton
bolls and background pixels, with high classification accuracy (> 95%) and a low number of falsely classified
pixels (precision > 0.96; recall > 0.93). A high correlation between ground truth observations and predicted

cotton boll count indicated that the use of geometric features of segmented candidates as predictors in associ-
ation with the SVM model demonstrated a good performance in estimating boll count from recognized cotton
boll candidates. Furthermore, linear regression analyses revealed that both boll count and candidate area are
potential predictors of lint yield, with boll count being a better predictor than candidate area. Overall, the study
demonstrated that machine vision/learning techniques can be potentially used on UAV images to count the
number of cotton bolls and predict lint yield over large acreages with reasonable accuracy.

* Corresponding author.
E-mail address: sriniale(@ag.tamu.edu (S. Ale).

https://doi.org/10.1016/j.atech.2022.100140

Available online 24 November 2022
2772-3755/© 2022 The Author(s). Published by Else
nc-nd/4.0/).

vier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-


https://doi.org/10.1016/j.atech.2022.100140
mailto:sriniale@ag.tamu.edu
https://doi.org/10.1016/j.atech.2022.100140
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2022.100140&domain=pdf
http://www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology

A. Bawa et al.

1. Introduction

Cotton boll count is a valuable phenotypic trait, which most cotton
breeders and producers use to develop a thorough understanding of the
physiological and genetic crop growth [23]. Boll count also provides a
means to assess crop growth conditions and facilitate timely crop
management decisions to prevent yield losses. Cotton boll count is also
an indicator of lint yield. Wells and Meredith [25] reported a positive
correlation between bolls per unit area and lint yield. Yeom et al. [27]
related area under boll pixels with cotton yield and reported a high
correlation (R? = 0.65). Rouze et al. [18] reported a moderate correla-
tion (R? = 0.49) between open boll count and cotton yield. Therefore,
boll count can also serve as an important parameter for yield estimation
and in gene-selection in plant breeding studies [8,25]. In addition, yield
mapping using precision agriculture tools, can assist growers in over-
coming in-field spatial variability [12].

Traditional boll counting methods are based on manual sampling
and visual inspection, which are error-prone and also impractical for
high acreage plant breeding programs [23]. With the technological
advent of the Global Positioning System (GPS) integrated sensors in
agriculture, it is now possible to monitor crop growth in real-time and
automate farming operations [22,29]. A few studies were conducted
over the last decade to automate cotton boll pixel extraction using
remote electromagnetic radiation sensors mounted on Unmanned Aerial
Vehicles (UAVs) or agri-robots. For example, using multispectral aerial
imagery, Yeom et al. [27] proposed a region growing and Otsu threshold
[16] based cotton boll pixel recognition method with high classification
accuracy. Rouze et al. [18] generated open boll maps using a threshold
for red/blue band ratio. Jung et al. [11] detected cotton bolls using a
threshold of 190 for the red band in an 8-bit image. Although these
studies have provided potential solutions for the segmentation of cotton
boll pixels from the background, the segmented cotton boll pixels results
in clusters of cotton bolls and none of the above mentioned study
investigated the estimation of a number of cotton bolls from the detected
cotton boll clusters. Sun et al. [23] proposed three geometric-based al-
gorithms for cotton boll counting from high spatial resolution mea-
surements from an agri-robot, but a similar study for UAV imagery was
not found in the literature. Additionally, Sun et al. [23] boll counting
method cannot be applied with UAV imagery due to the coarser spatial
resolution of UAV measurements (a few cm) as compared to agri-robot
measurements (< 1 mm). The UAV detected cotton boll clusters can
have varied and complex shapes, mainly because of the cotton boll face
orientation relative to the UAV sensor. Hence, simple area or size filters
can not be applied to separate cotton bolls from the detected boll clus-
ters. In this study, a novel approach was introduced to estimate the
number of open cotton bolls from a red-green-blue (RGB) aerial imagery
while segregating cotton boll pixels from the image background.

Agricultural scientists are interested in rapidly collecting and
analyzing a greater volume of high quality phenotypic trait data for crop
improvement through breeding or other site-specific precision-agricul-
ture approaches [20,22]. Because of their high spatio-temporal resolu-
tion, relatively lower operational cost, and less complexity in the data
collection [20,29], UAVs have emerged as an intriguing remote sensing
option for precision farming and agronomic research [19,29]. In addi-
tion, data science tools such as machine learning (ML) methods (e.g.,
support vector and random forests) are frequently used to extract in-
formation from the UAYV imageries [17,28]. Such tools can be used in
agricultural applications when classifying objects with complex and
varied structures. For example, Yamamoto et al. [26] used X-means
clustering algorithm to detect tomatoes and Li et al. [14] adopted
random forest to achieve semantic labeling prediction for in-field cotton
detection from images. These tools have the potential to automate the
whole process, and hence they can be used in the development of de-
cision support tools.

In machine learning, support vector machines (SVMs) are high-
dimensional hyperplane-based pattern recognition learning models
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that are used for the classification and regression analysis [4,7]. Due to
SVMs’ capability to model complicated non-linear relationships, they
are preferred over conventional classification and regression techniques
such as logistic regression and linear or multiple regression models [13].
Varying sizes, complex shapes, orientation, and overlapping of cotton
bolls along with a lack of linear relation between detected cotton boll
candidate size and boll count, make cotton boll counting from UAV
images a substantially challenging task. Therefore, the overall goal of
this study was to evaluate an SVM regression (SVR)-based approach to
establish non-linear relations among detected cotton boll clusters and
cotton boll count across diverse environmental settings. Specific objec-
tives of the study were to: (1) develop a simplified method for cotton boll
candidate recognition from an image captured by an RGB sensor, (2)
develop and validate an SVR-based method for counting cotton bolls
within recognized cotton boll candidates, and (3) estimate cotton yield
as a function of boll count and area under recognized boll candidates.

2. Materials and methods
2.1. Experiment setup

In this study, UAV measurements were made over 161 plots from
three cotton experimental sites. Of these, two sites (I and II) are located
at the Texas A&M AgriLife Research Station (34°15" N, 99°30° W),
Chillicothe, Texas. The UAV measurements from these sites were
collected during the 2021 cotton growing season. Experiment site I
consisted of 12 irrigated plots (4 cover crop treatments X 3 replications)
and experiment site Il consisted of 21 dryland plots (7 cover crop
treatments X 3 replications). The PHY 480 cultivar was used at both
sites. More details about these field experiments can be found in
DeLaune et al. [6] and DeLaune and Mubvumba [5]. These two cover
crop experiments provided an opportunity to validate the approaches
developed for cotton boll candidate recognition and boll count estima-
tion across a variety of complex backgrounds.

At the Texas A&M AgriLife Research Station (34°10° N, 101°56" W),
Halfway, Texas experiment site (Site I11I), UAV images were collected
from a cotton irrigation water use efficiency experiment. More details
about the Halfway field experiment can be found in Bordovsky et al. [2],
Himanshu et al. [10], and Himanshu et al. [9]. The UAV measurements
from this experiment allowed the validation of developed approaches
against UAV images collected using a different sensor (described in
Section 2.2) with different backgrounds from two distinct cotton vari-
eties (FM2011 and FM2484) over a different time period (2019 growing
season), and at a different location as compared to sites I and II. Overall,
this study used UAV measurements from three cotton varieties, two
tillage practices, seven cover crop treatments, six different irrigation
conditions, two different irrigation regimes (irrigated and rainfed), and
two different years.

2.2. Data collection

2.2.1. UAV measurements and preprocessing

At experiment site 111, a Phantom 4 Pro (P4P; DJI, China) quadcopter
equipped with a DJI FC6310 RGB (red, green, blue) (DJI, China) optical
sensor (Fig. 1a) was used during the 2019 growing season. To collect
UAV measurements from experiment sites I and II during the 2021
season, a Matrice 200 (M200; DJI, China) quadcopter equipped with a
MicaSense Rededge multispectral (AgEagle Aerial Systems Inc, USA)
optical sensor (Fig. 1b and Ic) was used. All of the flights were per-
formed within one hour of solar noon, with little to no cloud cover and
winds less than 15 km/h. The Pix4Dcapture mobile app, developed by
Pix4D S.A., Switzerland, was used to create the flight plans with the
flight characteristics shown in Table 1. The flight altitude was set in
order to obtain images with a spatial resolution close to 1 cm. Eighty-five
percent front and side overlaps were employed to target oversampling
and compensate for errors introduced by the uncalibrated/blurred/
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Fig. 1. Unmanned Aerial Vehicle (UAV) imaging platforms and other instruments: (a) DJI Phantom 4 pro quadcopter equipped with DJI FC6310 RGB sensor, (b)
Matrice 200 quadcopter equipped with MicaSense Rededge multispectral sensor, (¢) MicaSense Rededge multispectral camera, (d) ground control point unit, () V-
map dual-frequency global navigation satellite system, (f) MicaSense calibrated reflectance panel.

Table 1
Characteristics of UAV flights and measurements.

UAYV measurements

Year 2019 2021

Date October 21, 2019 October 31, 2021
Drone Phantom 4 Pro Matrice 200
Sensor DJI FC6310 MicaSense Rededge
Bands RGB RGB, RE, NIR
Bands used in boll count RGB RGB

Front overlap 85% 85%

Side overlap 85% 85%

Height 30 m 15 m

GCPs 8 8
Georeferencing RMSE 1.1 cm 1.4 cm

Spatial resolution 0.75 cm 1.07 cm
Experiment site i Tand I

Note: R- Red; G- Green; B- Blue; RE- Red Edge; NIR- Near-Infrared; GCP- Ground
Control Point; RMSE: Root Mean Square Error.

geometrically distorted images [1].

All captured images were geotagged in real-time using the onboard
GPS systems installed in the quadcopter platforms. In addition, eight
ground control points (GCPs; Fig. 1d) were employed in the field to
generate georeferenced data products with high precision. The co-
ordinates of the GCPs were measured using the V-map dual frequency-
post processed static (PPS) global navigation satellite system (GNSS;
Fig. l1e; Micro Aerial Projects, USA) and they were used to georeference
the orthomosaic images. As recommended by Rouze et al. [ 18], ortho-
mosaic images with less than 1.5 times the pixel resolution georefer-
encing root mean square error (RMSE) were extracted in GeoTiff format
for further image processing. Additionally, a MicaSense calibrated
reflectance panel (Fig. 1f) supplied by MicaSense was used to radio-
metrically calibrate the captured images in order to perform an illumi-
nation adjustment and obtain more accurate reflectance values. During
this calibration process, one image per band of the calibration panel was
captured at the time of flight and the spectral reflectance of the pro-
cessed images was adjusted based on the fixed reflectance values of the
panel. More details about the calibration panel and spectral reflectance
correction can be found at MicaSense knowledge base (https://support.
micasense.com/).

2.2.2. Manual data collection for cotton boll count and cotton yield
Ground truth data for cotton boll count and yield were collected from
the experimental sites to validate the algorithm developed for counting

cotton bolls. Cotton bolls were counted using a 1 m X 1 m area in two
middle rows (rows 4 and 5) per plot at sites I and II and from a set of five
plants in one row per cotton cultivar per plot at the third experiment
site. The coordinates of the ground truth data location area were
recorded using V-map PPS GNSS. These locations were also marked with
flags so that the same plants were monitored throughout the growing
season and also to easily detect ground truth data locations in the UAV
images and minimize errors associated with GPS instruments. Ground
truth data for cotton boll count was collected one week before har-
vesting from 12 to 21 plots at experiment sites I and II, respectively, in
2021 and from 48 plots at experiment site III in 2019. Whereas ground
truth data for cotton yield was collected from 12 to 21 plots at experi-
ment sites I and 11, respectively, in 2021 and from 128 plots at experi-
ment site III in 2019. This ground truth information on cotton yield was
used for developing a relation between cotton boll count and cotton
yield in this study.

2.3. Image processing

The methodology proposed for cotton boll counting (Fig. 2) consists
of two parts. First, the collected images were subjected to an image
processing pipeline for the cotton boll candidate recognition. The goal of
the cotton boll candidate recognition was to segment cotton boll pixels
from the surrounding background, which included soil, weed, foliage/
residuals, leaves, and branches. To remove non-cotton boll pixels, a
python programming-based pipeline was developed, as described in
Section 2.3.1. The output from this step was a binary image in which
cotton boll candidate pixels were classified with pixel intensities of one
and the non-cotton-boll pixels with pixel intensities of zero. This binary
image was further converted into a polygon vector of cotton boll
candidates.

In the second stage, an ML-based SVR model was adopted to count
the total number of bolls in each segmented cotton boll candidate
identified in the previous step. The response variable in this SVR model
was the number of cotton bolls in a cotton boll candidate with four
predictors comprising geometric aspects of the cotton boll candidate,
including area, perimeter, maximum length, and roundness. The final
outcome of this process was a polygon vector of cotton boll candidates
with information on the number of cotton bolls in each candidate.

2.3.1. Cotton boll candidate recognition
The cotton boll candidate recognition was performed in four stages
using a band-mean filter, the Otsu thresholding [16], a red/blue band
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Fig. 2. Flowchart of the processes involved in the proposed approach for counting cotton bolls. (Note: UAV- Unmanned Aerial Vehicle, SVR- Support Vec-

tor Regression).

ratio filter, and an area filter. The primary goal of this candidate selec-
tion approach was to eliminate the background pixels of the image,
including plant shadows, foliage/residue, dark ground, and weeds. The
spectral behaviors of these classes across the RGB bands were analyzed
at all three sites (Fig. 3) by averaging the pixel values of 20 randomly
selected samples within each class, with a minimum of 10 pixels per
sample. Cotton boll pixels were found to be associated with the highest
reflectance. Therefore, in the first stage, a band-mean filter was applied
to remove dark pixels. In this process, the pixels having a lower reflec-
tance value than the mean value of each band in all three RGB bands
were filtered out (Fig. 4b and 4d). A majority of the remaining pixels
after the band-mean filtering process belonged to cotton boll and soil
classes.

One of the most challenging tasks in image processing is to separate
pixels with identical reflectance values using a threshold. Selecting a
fixed threshold to separate these remaining two major classes from
different UAV images could lead to error due to varying spectral prop-
erties of the images depending upon UAYV sensors, field conditions, and
several other environmental and instrumental factors. The Otsu method
was employed in this study to set an independent threshold for each
scene using the spectral properties of the filtered pixels. The Otsu
method is an automatic thresholding approach that determines the

threshold by minimizing intra-class variation and maximizing inter-class
variation [ 16]. A bimodal distribution was discovered in the reflectance
histogram of filtered pixels in the R, G, and B channels suggesting the
presence of two major classes i.e., soil/bright weed and cotton boll. The
Otsu thresholding approach divided the filtered pixels into two classes:
(i) low reflectance class, which represented bright weed and bare soil
pixels, and (ii) high reflectance cotton boll candidate pixels (Fig. 4¢). All
low reflectance pixels were then masked out, thereby eliminating a
majority of the background pixels (Fig. 4c). To ensure the complete
removal of all background pixels, a third filter, red/blue band ratio, was
used. This filter was used to further eliminate the non-target pixels. It
was observed from the spectral signature analysis (Fig. 3) that cotton
boll pixels showed similar digital number values on all three bands
indicating a red/blue band ratio close to one. Therefore, pixels with a
red/blue band ratio greater than 1.2 were thus filtered out. Additionally,
an area filter was applied to remove noise from the data assuming that a
single cotton boll would have a minimum of 3 cm? area.

2.3.2. Errors associated with recognition of cotton boll candidates and their
removal

Following the cotton boll candidate recognition process, a pre-
liminary inspection of output binary images revealed few challenges or
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Fig. 3. Spectral signatures of different classes across red, green, and blue bands.
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Fig. 4. Cotton boll candidate recognition process outputs: (a) subset of orthomosaic image from experiment site 111, (b) image after applying band-mean filter, (c)
image after applying Otsu threshold, (d) histogram of pixel values for blue band in the orthomosaic image; black columns representing pixel values less than the band

mean, (e) histogram of pixel values for blue band after the band-mean filtration process; black columns representing pixel values less than the Otsu threshold.

potential error sources that could introduce substantial errors in boll
count and yield predictions. In this study, three error sources were
recognized, including bright weed (Fig. 5a), center pivot system parts
(Fig. 5b), and cotton bolls on the ground (Fig. 5¢) pixels, which were
misclassified as cotton boll candidates. These error pixels had similar
spectral properties as those of cotton boll pixels, and thus they could not
be removed using previously applied spectral filters. Consequently, two
additional steps (Fig. 2) were adopted to exclude these misclassified
pixels. First, an elevation filter was implemented to remove error pixels
associated with cotton bolls on the ground and parts of the center pivot
system since they were at different elevations as compared to the cotton
bolls on the plants. A canopy height model (CHM), resampled to the
spatial resolution of the orthomosaic image, was developed using digital
surface and terrain models. Details about the CHM generation process
using UAV imagery can be found in Chang et al. [3]. The recognized
candidates that are either less than 5 cm or greater than 2 m elevation in
CHM were removed. Some parts of the center pivot system were, how-
ever, present in between the selected threshold elevation criteria and
they were therefore still misclassified as cotton boll candidates. A filter
with a combination of roundness index (< 0.1) and maximum length (>
1 m) was implemented to filter these misclassified candidates. Here, the
maximum length of the candidates was defined as the maximum length
among all the combinations of vertex-to-vertex lengths of the candidate
and the roundness was calculated using Eq. (1) [27]:
4n % Area

M

Roundness = Perimeter?

2.3.3. Boll counting

Varying sizes and complex shapes of cotton bolls pose challenges in
counting the number of bolls in a cluster of cotton bolls. In addition, the
orientation and overlapping of cotton bolls make cotton boll counting
from UAYV images even more challenging. Clusters composed of several
overlapping cotton bolls generally have a larger area and elongation
ratio than a single cotton boll. However, these clusters may have a
similar elongation ratio as that of a single cotton boll. In addition, a
single cotton boll can have a round or non-round/elongated structure,
depending upon the boll facing angle when detected by the UAV sensors.

As a result, counting the number of cotton bolls from a cotton boll
candidate using a simple threshold for area or elongation ratio or using a
combination of these thresholds can lead to errors. Therefore, we
implemented an SVR-based ML approach to overcome these limitations
and account for all complex and varied sizes of cotton bolls in the im-
ages. The SVR is a regression version of the SVM that is used to develop
the relation between a dependent variable and one or more independent
variables. A detailed description of the SVR can be found in Smola and
Scho “lkopf [21] and Tian et al. [24].

In this study, the approach proposed for cotton boll counting from
segmented candidates includes a supervised SVR model with four geo-
metric aspects of the cotton boll candidates as feature vectors: area,
parameter, roundness, and maximum length. These feature vectors and
their corresponding labels were used to train a non-linear kernel func-
tion based SVR model. Before training SVR model in R, a trainControl
(Package: caret) function was used to generate parameters that control
computational nuances of the train (Package: caret) method. The repea-
tedCV (repeated cross-validation) resampling method with three sepa-
rate 10-fold cross-validation was used as resampling scheme for the
trainControl function. The SVR model was trained using #rain function
with the svmRadial method. The train function fits predictive models
over different tuning parameters, evaluates the effect of tuning param-
eters on model performance, and selects an optimal model across the
tuning parameters considered. A preprocessing of the training data using
the “center” & “scale” parameters in the #rain function was also incor-
porated to standardize training data. The #rain function selected the
optimal SVR model for the training data at C = 2 (penalty parameter of
the error term) using the smallest RMSE values at different C values.

The SVR model was trained using 80 training samples and evaluated
over 20 test samples. The training and test samples for the SVR model
were collected through visual inspection from the orthomosaic images of
experiment site II. The samples were chosen in such a way that a wide
in candidate area was captured. Further,
teDataPartition (Package: caret) function was used to create stratified
random samples based on cotton boll count (i.e., response variable) and
split the samples into training and test data. Three independent users
counted the number of cotton bolls in the selected sample candidates

variation the crea-
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After error removal

Fig. 5. Snapshots of orthomosaiced UAV image from experiment site III with recognized cotton boll candidate polygons before (red) and after (blue) the error
removal process. (Note: Green arrow is pointing to the falsely classified pixel of cotton on ground before and after the error removal process).

using visual inspection of the ortho-mosaiced images, and the mean
values from the three inspections were recorded as a response variable in
the SVR model. The evaluated SVR model was then used to count the
number of cotton bolls in the segmented candidates across all three
experiment sites.

2.4. Statistical analysis

The accuracy of the candidate recognition process, before and after
the removal of error sources, was assessed using visual inspection of
1000 randomly selected pixels (500 cotton boll candidates and 500
background pixels) for each experiment site. The confusion matrix and
precision-recall methods were implemented to evaluate the quality of
the output of the candidate recognition process by classifying the data
into four categories, namely, true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). The TP and TN categories rep-
resented the correctly recognized pixels whereas FN and FP represented
the omission and commission errors, respectively. The accuracy of the
candidate recognition process was further assessed using three statistical
metrics presented in Eqs. (2)—(4):

TP + TN

Classification accuracy = total number of pixels @
TP

o 3)

Precision TP+ FP
TP

Recall = — )

TP + FN

While classification accuracy represents the fraction of correctly
classified pixels among all pixels, precision represents the fraction of
retrieved pixels that were relevant to the query, and recall represents the
fraction of relevant pixels that were successfully retrieved.

The proposed SVR-based cotton boll counting approach was quan-
titatively validated using a two-step approach. First, the performance of
the established SVR model was evaluated for training and test data.
Later, the estimated number of cotton bolls was compared with the
measured/ground truth cotton boll count data for validation. Three
statistical metrics, viz., coefficient of determination (R?), mean absolute
percentage error (MAPE), and root mean square error (RMSE) were used
to evaluate the performance of the SVR-based cotton boll counting
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approach Eqs. (5)—((7)).
(&P, - PO, - OF

R? =z—_27_ (5)
(P, — P)* x =(0; — oy

=) @

i=1

where, n is the number of plots, and O; and P; are the observed (or
ground truth) and predicted number of cotton bolls. Additionally,
observed and predicted boll count data were plotted and compared for
the agreement with the 1:1 line.

2.5. Lint yield prediction and validation

The number of cotton bolls estimated from the UAV images is typi-
cally lower than the actual number of bolls due to the covering of lower
canopy cotton bolls by upper canopy cotton bolls while collecting UAV
images with the sensor pointed to the nadir direction. However, we
found a high correlation between the UAV detected boll count and

a.) Before error sources removal
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actual boll count in this study with a low MAPE (discussed in Section
3.1.2). Therefore, we used a linear regression analysis to develop re-
lations between lint yield and UAV estimated boll count and candidate
area. Lint yield prediction relations were developed for each variety.

assuming that the weight of each variety’s cotton boll is different. A
multiple linear regression approach was also used while considering
both boll count and candidate area as predictors. These yield prediction
relations were developed using 75% of observed lint yield data as
training data and the remaining 25% of the data as the testing data for
each cotton variety. The createDataPartition (Package: caret) function
was used to split the data into training and test data, and to create a
stratified random sample considering observed yield data as response
variable. The developed linear relations were compared and evaluated
using four statistical metrics: R, RMSE, MAPE, and Nash—Sutcliffe Ef-
ficiency (NSE; Eq. (8)).
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A. Bawa et al.

3. Results
3.1. Validation of cotton boll counting approach

3.1.1. Accuracy assessment of cotton boll candidate recognition process

Fig. 6 and Table 2 show the confusion matrix and values of statistical
metrics related to evaluation of the candidate recognition process.
Although the evaluation statistics suggested high classification accuracy
in extracting cotton boll candidates even before removing the errors,
output images still contained falsely classified pixels. The greatest error
was noted for the experiment site III, which was primarily due to the
presence of a large number of bright weed and pivot part pixels (Fig. 5).
The bright soil pixels introduced additional commission errors
(mistakenly accepting a false observation) in the candidate recognition
process for the experiment site I1I. The commission errors at experiment
sites I and 11 (Fig. 6) were only due to bright soil pixels.

The digital numbers for these error pixels were found to be compa-
rable to those of cotton boll pixels in all three bands, implying that these
pixels could not be segmented from the cotton boll pixels solely based on
spectral properties. Therefore, mean elevation, max length, and round-
ness parameters of recognized candidates were used in the error removal
process. This approach improved the accuracy of candidate extraction
process (Table 2) by removing commission error pixels while it did not
affect omission error (mistakenly rejecting a true observation; Fig. 7)
pixels. High values for precision and recall after the error removal
process indicated a low number of falsely identified pixels among the
recognized pixels and identification of a high proportion of true cotton
boll pixels, respectively. Overall, the observed statistical metrics indi-
cated that the cotton boll candidate recognition technique was highly
effective in segmenting cotton bolls and background pixels (Fig. 8).

3.1.2. SVR-based cotton boll counting approach

The SVR model performance in estimating the total number of cotton
bolls was good as indicated by only 0.55% error during training and
3.6% error during validation (Table 3). The evaluated model was then
used to estimate boll count from the image of the entire experimental
area at each site. Fig. 8 depicts the outcomes of the candidate recogni-
tion and cotton boll counting steps for a single cotton plant. The esti-
mated boll count was then validated against the observed/ground truth
boll count. Fig. 9 and Table 4 show the correlation analysis between the
estimated and observed boll counts. The high correlation and associated
low MAPE values found for all three sites (Fig. 9) suggested a good
agreement between the observed and estimated boll counts. Overall, the
evaluation and validation statistics suggested that the use of geometric
features of segmented candidates as predictors in association with the
SVR model demonstrated a good performance in estimating boll count
from recognized cotton boll candidates.

3.2. Lint yield prediction

Cotton boll count and candidate area were found to be highly
correlated with lint yield in the linear regression analysis (Fig. 10).
Multiple linear regression was used to test if both parameters, i.e., cotton
boll count and candidate area predicted lint yield well. Fig. 10 shows the
fitted regression models, and Table 5 presents the information on sta-
tistical metrics and fitted model equations for all three cotton cultivars

Table 2
Experiment-wise statistical metrics for accuracy assessment of cotton boll
candidate recognition process (before and after error removal).

Site II
Before After

Site IIT
Before After

Statistical metrics Site I
Before After

Classification accuracy 0.95 0.97 0.96 0.98 0.89 0.94
Precision 0.94 0.97 0.94 0.98 0.86 0.96
Recall 0.96 0.96 0.98 0.98 0.93 0.93
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Fig. 7. Omission error resulting from pivot shadowed pixels at experiment
site III.

Table 3

Evaluation statistics of developed SVR model for the training and test datasets.
Parameters Training Test
Total predicted cotton bolls 362 81
Total original cotton bolls 364 84
Difference 2 3
Percent Error 0.5 3.6
Misclassification error from the model (%) 5 25

used in the field experiments. It was found that the candidate area did
not contribute significantly (p > 0.05) to lint yield prediction under
multiple linear regression models. However, in the fitted linear regres-
sion models, candidate area showed high correlation with lint yield
(R*= 0.55-0.85; Table 5) for all cotton cultivars and significantly pre-
dicted lint yield (p < 0.05). Overall, the statistical metrics indicated the
boll count as a better predictor of lint yield than the candidate area, with
higher R? and NSE values and lower RMSE and MAPE values (Table 5).
Although multiple linear regression models predicted lint yield better,
the yield prediction did not improve much in comparison to the linear
regression model using boll count alone as a predictor (Table 5).

4. Discussion

In this study, a simplified cotton boll candidate recognition algo-
rithm was developed using simple spectral filters and an SVR-based
machine learning tool. The evaluation and validation statistics sug-
gested that this method can reliably recognize and estimate cotton boll
count from RGB-based UAV measurements collected after defoliation at
the late boll opening cotton growth stage. The UAV imagery collected
after defoliation resulted in a relatively simple background with few to
no green leaves covering or casting shadows on the cotton bolls in the
lower canopy. Additionally, UAV flights during solar noon produced
images free from shadows and minimized the omission errors. An 85%
front and side overlap was set while taking UAV measurements to target
oversampling, which helped in avoiding image gaps introduced during
the orthomosaicking process when removing uncalibrated/blurred/
geometrically distorted images [1]. In addition, taking UAV measure-
ments at solar noon with a wind speed of less than 15 kmph resulted in
low commission errors. Therefore, this study recommends collecting and
processing UAV measurements in the above-mentioned manner as the
first step to minimize error sources and obtain high accuracy with the
proposed candidate recognition process.

Although the errors in candidate recognition were small, these error
pixels could introduce significant errors in cotton yield estimates if yield
estimates are solely based on the area under the recognized candidates
[27] or boll count [ 18]. Therefore, we included an error removal step to
remove major commission error pixels and improve the performance of
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Fig. 8. Cotton boll count pipeline: (a) UAV captured orthomosaic image, (b) cotton boll candidate recognition using spectral properties, and (c) cotton boll count

using geometrical features of recognized candidates.

Experiment site I

Experiment site 11

Experiment site ITI

60 -

504

404

304

Estimated boll count

204

60

50

40

30

20

Observed boll count

Fig. 9. Experiment-wise correlation analysis of estimated and ground-truth observations for cotton boll count [Note: Dotted black line - 1:1 line; Blue line - Line of

best fit].

Table 4
Experiment-wise statistical metrics for correlation analysis of estimated and
ground-truth observations for cotton boll count.

Experiment site Statistical Metrics

R? RMSE MAPE
Site 1 0.91 4.14% 5.80%
Site I 0.83 5.80% 0.69%
Site IIT 0.76 7.07% 11.46%

Note: R?: Coefficient of determination; RMSE: Root mean square error; MAPE:
Mean absolute percentage error.

the candidate recognition process. Different types of error sources in the
UAYV images from different sites, particularly error sources with similar
spectral properties to cotton bolls in RGB bands, suggested a need for the
consideration of non-spectral filters to minimize with these errors. After
a preliminary evaluation of the outputs of the candidate recognition
process and identification of the error sources, this study considered
mean CHM, roundness, and the maximum length of recognized candi-
dates as non-spectral filters because error sources were found to be
elongated and at a different height as compared to the target cotton boll
pixels.

In this study, band-mean digital number values ranged from 121 to
147 and the Otsu threshold ranged between 163 and 186 for the blue
band. The observed long range of band-mean and Otsu thresholding
indicated the importance of selecting thresholds based on the spectral
properties of the image or a subset of the image. Selecting a fixed
threshold could lead to a high omission or commission error due to
removal of lower reflectance cotton boll pixels or inclusion of higher
reflectance background pixels, respectively. For example, Jung et al.
[11] used a threshold value of 190 for the red band to segment cotton
boll pixels from the background, which worked well for that study area,

but using this threshold for UAV images in this study led to high omis-
sion error. We also used a fixed red/blue band ratio of 1.2 in the
candidate recognition process to avoid high omission error, but we
recommend evaluating classification accuracy by changing this
threshold value. However, given the high classification accuracy ob-
tained for complex backgrounds across seven different cover crop
treatments in this study, a fixed threshold of 1.2 for the red/blue band
ratio can provide satisfactory results. In this study, cotton boll pixels in
the lower canopy were primarily responsible for the omission errors.
These pixels were shadowed by the upper canopy, resulting in lower
digital numbers, and they were eliminated during the background
filtration processes. This study did not include steps for removal of
omission error sources due to high complexity of removal process and
presence of low omission error values

The SVR algorithm is generally considered as a relatively simple
method in ML, however robust in its performance, because the final
decision function is determined by only a few support vectors [15].
Here, support vectors are nonlinear combinations derived from geo-
metric aspects of the cotton boll candidate, namely area, perimeter, max
length, and roundness. In this study, the SVR-based cotton boll count
approach showed potential to extract information from complex shapes
of clusters. However, this approach might not estimate the exact number
of cotton bolls in a large cluster due to large overlapping and different
orientations of cotton bolls. These large clusters were the key source of
classification error for the test data. However, our approach performed
very well for the small clusters of less than six cotton bolls. A larger
training dataset with a greater number of large clusters could be useful
to further improve this approach to reduce classification errors. None-
theless, the small error found in the overall boll count during both
training and testing demonstrated the applicability of this boll count
algorithm. The identification of true boundaries of the individual cotton
bolls within a cluster was not considered in this study since it could
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Fig. 10. Variety-wise cotton yield prediction using cotton boll count (left column: parts a, d, and g), recognized candidate area (middle column: parts b, e, and h);
and cotton boll count and candidate area (right column: parts c, f, and i) as predictors.

result in loss of cotton boll pixels and reducing the area under recog-
nized candidates, which is a potential predictor of cotton yield. The
linear regression analysis for predicting lint yield using boll count and
candidate area suggested that lint yield was sensitive to both predictors,
but boll count had a greater impact on lint yield than the candidate area.
While the proposed boll count approach addressed some of the issues
related to overlapping and clustering, it did not change the area under
the recognized cotton boll candidates.

In this study, the UAV imageries taken at the nadir (pitch = 90°)
direction were used to validate the proposed approaches. However,
some cotton bolls were present in the lower canopy and some other bolls
had a downfaced orientation. Although these conditions were limited,
they resulted in a slight underprediction of boll count since these bolls
were not visible in the captured images. Future studies can explore the
suitability of different pitch angles for UAV sensors for estimating cotton
boll count. Although the methods proposed in this study showed high

accuracy, there is still scope to improve the cotton boll recognition and
counting processes. For, example, this study utilized a common red/blue
band ratio threshold of 1.2 which can be changed as per the UAV
measurements and background characteristics. Another improvement
can be through the increase of training sample size or increasing the
number of predictors in the model development to increase the accuracy
of the SVR model. Utilizing more complex approaches such as artificial
or convolutional neural network-based deep learning approaches could
also improve the boll counting process. Generating 3-D data such as
using LiDAR could also be effectively implemented for the error removal
steps in the proposed cotton boll count approach as well as to quantify
the spatial distribution of bolls [23]; however, that would increase the
cost and complexity of the process. Another limitation of this study is
that it considered only three cotton cultivars. Cotton varieties affect
spatial distribution and the number of cotton bolls in the lower canopy,
and hence affect the omission error in the UAV measurements.
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Table 5§
Variety-wise regression models for cotton yield prediction.
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Cotton Cultivar Training Test
R NSE RMSE MAPE R’ NSE RMSE MAPE  Model p-value
Linear Regression- Boll Count
PHY480 0.81 0.81 112.83 0 0.90 0.79 94.65 —-23 Y = 0.0018*X + 349.63 < 0.001
FM2484 0.77 0.77 195.23 0 0.85 0.83 181.07 —2.6 Y = 0.0026*X - 183.42 < 0.001
FM2011 0.87 0.87 157.56 0 0.87 0.85 188.53 —54 Y = 0.0035*X - 241.07 < 0.001
Linear Regression - Candidate Area
PHY480 0.58 0.58 168.05 0 0.79 0.55 140.31 7.5 Y = 1.37*X + 290.87 < 0.001
FM2484 0.76 0.76 199.05 0 0.82 0.81 191.64 0.8 Y =1.26%X + 250.42 < 0.001
FM2011 0.77 0.77 211.83 0 0.85 0.84 190.98 —4.1 Y = 1.67*X + 240.74 < 0.001
Multiple Linear Regression- Boll count and Candidate Area Boll Count Candidate Area
PHY480 0.81 0.81 112.83 0 0.9 0.79 94.31 —24 Y=0.0019*X, —0.01*X, +351.36 < 0.001 NS
FM2484 0.79 0.79 186.65 0 0.86 0.85 170.32 —-1.1 Y= 0.0015*X; +0.59*X, —22.69 NS NS
FM2011 0.88 0.88 156.40 0 0.88 0.86 180.84 —54 Y= 0.0031*X; +0.21*X, —204.01 < 0.001 NS

Note: R?: Coefficient of determination; NSE: Nash—Sutcliffe model efficiency coefficient; RMSE: Root mean square error; MAPE: Mean absolute percentage error; Xi:

Boll count; X»: Candidate area.

Therefore, there is a need for an omission error removal process under
certain cotton varieties.

5. Conclusion

This study proposed a simplified cotton boll candidate recognition
process, followed by a cotton boll count method within the recognized
candidates. The evaluation statistics of the candidate recognition pro-
cess indicated that the spectral properties of the cotton and background
pixels could be effectively used to segment cotton boll pixels from the
UAYV images. The classification accuracy assessment of the candidate
recognition process revealed that there could be background/nontarget
pixels that introduce commission errors (false positives) due to similar
spectral properties to cotton boll pixels in UAV images, such as bright
soil or weed pixels, that cannot be segmented using spectral filters. The
commission error removal processes implemented in this study high-
lighted the utilization of the CHM and geometrical features of recog-
nized candidates to improve classification accuracy. The shadowed
cotton boll pixels were found to be the source of omission error (false
negative). This study did not include the omission error removal steps
due to presence of low omission errors and to avoid computational
complexity.

The boll count method also performed promisingly, with a slight
underestimation of the number of cotton bolls. A potential source for the
underestimation was the overlapping of cotton bolls in the captured 2-D
UAYV images, which could be addressed by collection of 3-D images in
the future. Linear regression analysis results indicated that both boll
count and candidate area are the potential predictors of the lint yield.
However, boll count was found to be a better predictor of lint yield than
the candidate area. Overall, statistical evaluation and validation metrics
obtained in this study suggest that the proposed cotton boll candidate
recognition and boll count methods for UAV images could potentially
lead to more effective and efficient evaluation and management of
experimental plots or fields by researchers and producers.
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