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Abstract 

This study investigates the effect of regulatory uncertainty on the translation of scientific discovery 

on emerging research topics to technical applications in science-driven industry. Our empirical 

analysis using the case of the US Federal Drug and Food Administration’s release of the report on 

the regulatory approach to nanomedicine in 2007 shows that; (1) the regulatory uncertainty 

decelerated the translation of nanomedicine research to technical applications, (2) this effect was 

particular for the nanomedicine research on emerging topics in the field. Our further analysis 

suggested that the effect of the regulatory uncertainty originated from the suppressed business 

activities in the field where the regulatory uncertainty presents. Contributions to the literature on 

the relationship between governmental regulation and innovation and the implication for science 

policymakers are discussed. 
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1. Introduction 

Although regulatory governance over science and technology (S&T) is one of the crucial 

factors shaping the innovation process (Blind, 2012; Kesidou & Demirel, 2012; Konishi & Managi, 

2020; Lee, Veloso, & Hounshell, 2011; Paraskevopoulou, 2012; Porter & Van der Linde, 1995; 

Taminiau, 2006), authorities do not always clearly establish the necessary regulatory frameworks 

nor practice them consistently, which results in the creation of so-called “regulatory uncertainty” 

(Birnbaum, 1984; Engau & Hoffmann, 2009). Anticipating the consequence of new scientific 

discovery and subsequent technology development in public safety or their environmental effects 

is challenging (Greer & Trump, 2019; Hamburg, 2012) as the developments of S&T are deeply 

integrated into a wide range of social systems that dynamically evolve (Dosi, 1982). The 

development of S&T could create new markets while reconfiguring existing ones where the 

introduction of a new regulation results in reconstruction of the pre-existing relationship among 

the market players (Breitzman & Thomas, 2015), exhibiting more difficulties in drawing on social 

consensus for defining and establishing the proper regulatory governance over S&T. 

The regulatory uncertainty may be more prominent when it comes to emerging S&T (OECD, 

2020). The ambiguity in its definition, the uncertainty of its impact on public welfare, and its fast-

changing nature (Kuhlmann, Stegmaier, & Konrad, 2019; Roca, Vaishnav, Morgan, Mendonça, & 

Fuchs, 2017; Rotolo, Hicks, & Martin, 2015) make the existing regulatory framework quickly 

obsolete (Guston, 2008). Due to the inherent uncertainty but potentially prominent socio-economic 

impact (Martin, 1995), how to establish a proper regulatory framework for emerging S&T while 

promoting its diffusion has been a salient issue to the S&T policymakers and scholars (Conley, 

2020; Guston, 2008, 2014; Hansson, 2020; Kuhlmann et al., 2019; Marchant, 2020). To this 

question, there has been broad discussion about the necessity of taking the “Responsive Regulatory 
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Framework” which emphasizes iterative, adaptive, and flexible regulative governance over 

emerging S&T (Greer & Trump, 2019; Guston, 2008, 2014; Hoffmann, Trautmann, & Hamprecht, 

2009; Holdren, Sunstein, & Siddiqui, 2011; Stilgoe, Owen, & Macnaghten, 2013) along with 

arguments for properly incorporating top-down and bottom-up approach (Bosso, 2016; Rafols, van 

Zwanenberg, Morgan, Nightingale, & Smith, 2011). Yet, it has been also concerned that the 

emphasis on the flexibility/adaptability of the regulatory regime cause governance uncertainty 

(Fisher, 2019; Teeter & Sandberg, 2017), which may undermine the industrial exploitation of 

emerging S&T (e.g., Savolainen, 2013). 

Then, how does regulatory uncertainty affect the innovation process for an emerging S&T? 

Although the answer can be informative for designing and implementing a governance framework 

over emerging S&T with a potential contribution to elaborating on the role of regulatory authority 

in shaping the innovation process, studies provide somewhat mixed viewpoints. 

On the one hand, the classical management studies and the real-option theory (e.g., Engau & 

Hoffmann, 2009; Marcus, 1981) expect that the regulatory uncertainty may slow down firms’ 

business activities including R&D investments. Under an external uncertainty, firms may prefer a 

“wait-and-see” strategy when irreversible investments are required (e.g., Bittlingmayer, 2000; 

Dixit, 1992; Dixit & Pindyck, 1994; Marcus, 1981). Because the R&D demands a series of 

irreversible investments (Czarnitzki & Toole, 2011), while regulatory uncertainty being the 

environmental uncertainty factor (Hoffmann et al., 2009), firms may postpone their R&D 

investment until the regulatory uncertainty is addressed. 

On the other hand, strategic management scholars repeatedly find evidence showing that firms 

may build strategies to mitigate the uncertainty (e.g., lobbying, participating in the law-making 

process) (Carrera, Mesquita, Perkins, & Vassolo, 2003; Pinkse, 2007), or even take advantage of 
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the uncertainty to create the new business opportunity. When it comes to the emerging S&T under 

regulatory uncertainty, firms may even increase R&D efforts as a part of coping strategies to the 

uncertainty (Aragón-Correa & Sharma, 2003; Ettlie, 1983; Ettlie & Bridges, 1982; Goel & Nelson, 

2021; Stern, 2017). This view expects that the regulatory uncertainty does not necessarily deter 

firms’ innovation with emerging S&T. 

The present research aspires to contribute to empirically solving this puzzling question by 

investigating how the regulatory uncertainty affects the innovation process for emerging S&T. Our 

focus is to examine the way the regulatory uncertainty shapes the translation of the new scientific 

discovery on emerging S&T into technical application development, which is a crucial part of the 

innovation process in the science-driven industry. 

Our empirical setting is based on the case of the U.S. Food and Drug Administration (FDA)’s 

release of a report on the regulatory status of nanomaterials. In June 2007, FDA’s task force 

released a report responding to the rising concern as to whether the FDA’s current regulatory 

framework is adequate to assess the drug products containing nanomaterials (i.e., nanomedicine) 

(Bawa, 2011; Miller, 2002; Nature, 2007; Paradise, 2019). This report concludes that FDA’s 

current regulatory approach is comprehensive enough to assess nanomedicine and, thus, a new 

regulatory approach is unnecessary. However, the report also implicated changes in the regulatory 

pathway for nanomedicine, as well as its regulatory status later in time. With the release of this 

report, the FDA also noticed that more specific guidance for manufacturers and sponsors of 

nanomedicine will be provided later. Yet, the first draft guidance became available after five years, 

leaving the period between 2007 and 2012 uncertain in terms of the regulatory framework for 

nanomedicine products (Bawa, 2011). Because regulatory authority’s public disclosure of its 

ambiguous position with the absence of the specific guidance could result in the creation of the 
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regulatory uncertainty (Hoffmann et al., 2009), our empirical setting utilizes this event as the quasi-

experimental case to identify the impact of regulatory uncertainty. 

By using patent citation to research paper as the paper trail of the translation of scientific 

discovery into technical applications, we attempt to estimate the impact of the resulting regulatory 

uncertainty on the change in the rate of patent citations to the nanomedicine-related research papers 

on emerging research topics within the field. For the empirical setting, we choose Nano-Enabled 

Drug Delivery (NEDD) papers as the research publications on nanomedicine because NEDD is 

one of the prominent subdomains of the nanomedicine research fields (De Jong & Borm, 2008). 

As a comparison group, we use synthetic biology (SynBio) papers because, like NEDD, SynBio 

is one of the new biotechnology fields having a broad range of industrial applications including 

pharmaceutical products (Medema, Breitling, Bovenberg, & Takano, 2011; Weber & Fussenegger, 

2009). We measure the degree to which the scientific discovery in a research paper relates to 

emerging technological topics within the field by using the emergence score algorithm (Carley, 

Newman, Porter, & Garner, 2018; Porter, Garner, Carley, & Newman, 2019). 

Our Difference-in-Differences (DiD) and triple DiD (DDD) analyses of the NEDD and SynBio 

papers published from 2003 to 2012 shows that there was a substantial drop in the number of patent 

citations accrued to a NEDD paper that was published after the release of the FDA’s report 

compared to a SynBio paper. We find that the observed drop was stronger as the NEDD papers 

are more related to emerging research topics. Our additional investigation of the daily rate of 

Premarket authorization submissions on nanomedicine to the FDA, beginning from one year 

before to one year after the release of the draft guidance in 2011, reveals that the observed drop 

might have originated from the suppressed business activities for nanomedicine development by 

the regulatory uncertainty. 
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The present study extends the scholarly efforts toward elucidating how firms’ business 

decisions and innovation activities are influenced by governmental regulation by shedding new 

empirical light on the way the regulatory uncertainty shapes the innovation process for emerging 

S&T. Our study also provides implications for science policymakers and scholars. The findings 

that the translation of the scientific discovery on emerging research topics to technical applications 

is decelerated by the regulatory uncertainty suggests that there may be a tradeoff between making 

the regulatory governance over S&T flexibly/adaptable and promoting its diffusion. 

The remainder of this paper is structured as follows. Section 2 reviews two contrasting views 

on how external environmental uncertainty influences firms’ business activities and the literature 

describing the characteristics of the emerging S&T. Section 3 describes the data and methods for 

empirical analysis. Section 4 presents the findings, and Section 5 reports additional analyses results. 

Finally, section 6 discusses the contributions and implications of the present research. 

2. Literature review 

2.1. Uncertainty, Firm Investment, and Innovation 

When uncertainty arises (e.g., political turmoil), firms seek ways to strategically respond to the 

uncertainty through various measures including adjustment of investment plan (Carter, 1990; 

Parnell, Lester, & Menefee, 2000; Teeter & Sandberg, 2017). In this section, we review two strains 

of literature that expect contrasting consequences of regulatory uncertainty (environmental 

uncertainty, more broadly) in firms’ investment decisions. 

On the one hand, the classical management literature anticipates that external uncertainty will 

deter firms from making long-term or irreversible investments. Because the external uncertainty 

creates difficulties in anticipating the consequence of a firm’s action at the moment (Hoffmann, 

Trautmann, & Schneider, 2008; Milliken, 1987), the firm may prefer postponing its action until 
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the uncertainty is addressed (Bittlingmayer, 2000; Yang, Burns, & Backhouse, 2004). This logic 

is formally described by the real-option theory that predicts firms will prefer a “wait-and-see” 

strategy when deciding for irreversible investment in the light of an external uncertainty (Dixit, 

1992; Dixit & Pindyck, 1994). A firm anticipates revenue and cost streams factoring the business 

risk into a discount factor. The discount factor increases by the emergence of environmental 

uncertainty, which consequently reduces the net present value of business projects in question and 

makes the firm defer their further actions but wait for the uncertainty to be addressed (Engau & 

Hoffmann, 2009; Marcus, 1981). 

A series of empirical studies in various contexts provides supportive evidence. For example, 

by analyzing the relationship between the time trend of the antitrust case filing and the real 

investment and GDP, Bittlingmayer (2000) argued that the uncertainty in the stringency of antitrust 

law enforcement in the US is associated with the decreased-level of business investment activities. 

The analysis of the impact of the policy shocks on firms’ investment decisions by Kang, Lee, and 

Ratti (2014) shows that the policy uncertainty suppressed firms’ investment because the 

uncertainty leads firms to be conservative in the investment decision. Czarnitzki and Toole (2011) 

analyzed the survey data on product-innovating firms in Germany. From the analysis of the firm-

level panel data, they showed that the volatility of the market revenue (market uncertainty) that a 

firm experienced was negatively associated with its R&D investment. Rivera and Oh (2013) 

demonstrated that the change in the level of regulatory uncertainty affect firms’ market entry 

decision by showing that multinational corporation market entry increases as the environmental 

regulatory uncertainty decreases. By analyzing 300 organizations of which operations were liable 

under Australia’s clean energy act, Teeter and Sandberg (2017) showed that regulatory uncertainty 
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created by the flexible (environmental) regulation by this act drove firms to focus on short-term 

investment rather than long-term investment.  

Considering that R&D is a risky endeavor requiring decisions for and irreversible R&D 

investments (Czarnitzki & Toole, 2011), the regulatory uncertainty may deter firms from investing 

in the innovation process (Fleming, 2015; Gerard & Lave, 2005; Henisz & Zelner, 2001; Jones, 

2015; Marcus, 1981). Several studies explain the various mechanisms. For example, Marcus 

(1981) explained that the regulatory uncertainty may deter firms’ adoption of innovation due to 

the difficulty in assessing the associated risk or opportunities. Jones (2015) illustrated how the 

ambiguity in the regulatory pathway for technology may affect firms’ investment into the 

development of the relevant technology by using the case of genome-edited crops. The authors 

argued that the absence of a clear conclusion on the regulatory status of the gene-edited crops may 

result in stifling firms’ investment in gene-editing innovation. Fleming (2015) and Hoerr (2011) 

argued another pathway the way that regulatory uncertainty affects technology development and 

the innovation process. These studies suggest that the regulatory instability (i.e., uncertainty) may 

result in undersupply of early-stage venture capital investment that is crucial for innovation. 

Through the analysis of the panel data of 23 OECD countries over 20 years, Kalamova, Johnstone, 

and Haščič (2012) showed that the volatility in public expenditure on environmental R&D was 

negatively associated with the patenting activities in the environmental technology domain, 

supporting the argument that the policy uncertainty negatively impacts on the innovation activities. 

On the other hand, a growing number of studies found that uncertainty does not necessarily 

negatively impact firms’ innovation. As shown in many studies, firms respond to the external 

uncertainty strategically by adjusting their organizational structures to minimize the influence of 

the uncertainty, reorganizing their business portfolio (Carrera et al., 2003), or participating in the 
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relevant policymaking process (Engau & Hoffmann, 2009). Similarly, under regulatory 

uncertainty, firms may try to deploy their strategic assets to mitigate or even capitalize on the 

uncertainty. Thus, the impact of the regulatory uncertainty on innovation may be more complicated 

than one may expect. Several studies provided supportive evidence. 

For instance, by analyzing the data on 54 equipment and packaging suppliers to food 

processing, Ettlie and Bridges (1982) and Ettlie (1983) found that firms under a greater level of 

environmental uncertainty deploy more aggressive technology policy that is believed to increase 

both product and process innovation. The authors interpreted this finding as firms’ strategic 

response to cope with the external uncertainty. By analyzing the case of the German power 

generation industry under regulatory uncertainty imposed by the European CO2 emission trading 

scheme, Hoffmann et al. (2009) showed that firms facing regulatory uncertainty do not necessarily 

postpone their investment decisions due to the firms’ strategic motivations. 

Aragón-Correa and Sharma (2003) further suggested that managers of firms facing 

environmental uncertainty are more willing to use innovative strategies than those in environments 

with less uncertainty to take preventive action with anticipation of the probable environmental 

uncertainty. Recently, some scholars attempted to empirically examine whether and to what degree 

firms capitalize on the regulatory uncertainty for their business. 

Stern (2017) investigated if a pioneering entrant of the medical device market enjoys the first-

mover advantage over the latecomers, under regulatory uncertainty. The analysis using the case of 

the FDA’s creation of the new category of a new drug product and the resulting regulatory 

uncertainty found that the pioneer entrant in this new market had disadvantages compared to the 

latecomers in market entry. The analysis found that for the pioneer entrant, the approval of the 

FDA was delayed much longer than the duration until FDA’s approval for the latecomer’s products. 
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Goel and Nelson (2021) found evidence showing that firms may invest more in innovation to 

mitigate economic or political uncertainty. Their analysis of the survey data on firms in 135 

countries showed that the greater the level of uncertainty (either economic or political uncertainty) 

in the country where a firm operates, the greater the likelihood the firm introduces process 

innovations. From these findings, the authors argued that firms may attempt to “hedge” the 

regulatory uncertainty through innovation. 

2.2. Emerging Science and Technology for Innovation 

Emerging S&T changes the ways of doing while competing with the existing technology (and 

science), which expectedly impose a prominent socio-economic impact (Martin, 1995). However, 

the definition of an emerging S&T is often ambiguous (Rotolo et al., 2015), and the consequence 

of its applications in public health and environmental effect is as uncertain (or even risky). Due to 

these characteristics, identifying emerging S&T and building the proper governance have been 

challenging quests for policymakers. 

To firms, the emerging S&T can be both an opportunity and a threat. On the one hand, a firm 

may capitalize on the emerging S&T as a new window of technological opportunities to compete 

over the market rivals through innovation (Hung & Chu, 2006). From the Schumpeterian 

perspective, this aspect implies that the emerging S&T could be a driver of the creative destruction 

that induces dynamic market competition and innovation by inducing active market entry and exit 

with the creation of the new market (Nelson, 2012). 

On the other hand, because of the inherent uncertainty of the emerging S&T, it often becomes 

the subject of the various regulation by authorities, which consequently makes firms perceive the 

investment into innovation for emerging S&T as a risky business. The perceived risk by firms 

under the regulatory uncertainty is added by the inherent uncertainty of emerging S&T, and as 
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described in section 2.1, this could deter further firms from investing in innovation using the 

emerging S&T. When it comes to emerging S&T where scientific discovery is a crucial knowledge 

source for technical application development, this deterrence effect can result in decelerating the 

pace of translation of the scientific discovery into technical applications. 

Utilization of the emerging S&T in downstream players and the consequential new application 

of emerging S&T add further difficulties to predicting the impact of the development of an 

emerging S&T on human health and the environment. The unpredictable evolution of emerging 

S&T applications leads scholars to discuss the importance of engaging stakeholders of the 

emerging S&T at various layers into defining proper governance. For instance, given the nature of 

nanotechnology that can be utilized in various ways by the downstream players (i.e. end-users), 

Rafols et al. (2011) argued for the necessity of expanding current discussion for governance over 

nanotechnology in the U.K. toward accounting for downstream uses of the nanotechnology. Based 

on an extensive review of the literature on nanotechnology and governance, Bosso (2016) reached 

a similar conclusion, showing that the scholarly discussion has advanced to the necessity of 

accommodating the use of nanotechnology by stakeholders in various layers of the value chain. 

The complexity and difficulties of effective governance of emerging S&T also lead scholars 

and policymakers to emphasize the “flexible” approach so that the governance can adaptably work 

according to the development of the various applications of emerging S&T (Holdren et al., 2011). 

Yet, because excessive flexibility could result in the creation of “uncertainty” in that governance, 

which could undermine the utilization of emerging S&T (Fisher, 2019; Savolainen, 2013; Teeter 

& Sandberg, 2017), it has been also argued that flexibility and adaptability of that governance 

could slow its diffusion. 
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In sum, because emerging S&T exhibits a high level of uncertainty in its definition and 

predicting the trajectory of development, there have been significant difficulties in establishing the 

proper (regulatory) governance. In the next section, we illustrate our research design to empirically 

identify the causal impact of regulatory uncertainty on the innovation process for emerging S&T. 

3. Empirical setting 

3.1. Release of the FDA’s report on nanomaterials in 2007 

Our empirical analysis is based on the release of the FDA taskforce’s report on the view of 

drugs containing nanomaterials in 2007 (July 23, 2007)1. Nanotechnology has been expected to 

bring transformative impact to drug product development. However, because the biological and 

environmental effects of the nanomaterials have not been fully assessed (De Jong & Borm, 2008), 

FDA has increasingly encountered concerns if its current regulatory framework is appropriate to 

assess drug products containing nanomaterials (hereafter, nanomedicine) (Miller, 2002; Nature, 

2007; Paradise, 2019). To this challenge, in October 2006, FDA’s (acting) commissioner 

assembled a task force to assess the adequacy of the FDA’s current regulatory framework for 

nanomedicine and recommend appropriate regulatory approaches if necessary. On July 23, 2007, 

the task force published the report addressing the following three parts: (1) review of the scientific 

information on the biological effect of nanomaterials, (2) analysis of the science issues on 

nanomaterials, and (3) analysis and recommendation for regulatory policy issues. 

The report stated, “FDA’s authority over products subject to premarket authorization is 

comprehensive and provides FDA with the ability to obtain detailed scientific information needed 

to assess the safety and, as applicable, the effectiveness of products, including relevant effects of 

 
1 Available at https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007 

(accessed on June 10, 2021) 

https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007
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nanoscale materials (p.32)”, indicating the current regulatory approach is capable of assessing 

nanomedicine without demanding a novel regulatory approach. 

Interestingly, in the same paragraph, the report also implicated a probable change of the 

regulatory status of nanomedicine later in time by stating, “the presence of nanoscale materials 

may change the regulatory status/regulatory pathway of products […]. It is important that 

manufacturers and sponsors be aware of the issues raised by nanoscale materials and the possible 

change in the regulatory status/pathway when products contain nanoscale materials (p.32)”. 

Along with the release of this report, FDA noticed that they would provide more detailed guidance 

for the sponsors and manufacturers of nanomedicine later. Yet, there have been no more updates 

on the FDA’s view on the regulatory status of nanomedicine, nor the guidance, until the release of 

the “Draft Guidance for Industry: Considering Whether an FDA-Regulated Product Involves the 

Application of Nanotechnology” in June 2011. Figure 1 summarizes the timings of these events. 

[Insert Figure 1 about here] 

The release of the FDA report on nanomedicine is useful to address our research question. First, 

this event created regulatory uncertainty to the range of stakeholders of nanomedicine 

development and manufacturing. Implicating the probable change in the regulatory approach and 

status of nanomedicine could create uncertainty in Measures and Rules (Hoffman et al., 2008) that 

the FDA may apply to nanomedicine in the future. Given that the nanomedicine field is the domain 

where academic research becomes the source for developing new products (Eaton, 2007), the 

release of this report with the absence of guidance until Mid-2011 created a regulatory uncertainty. 

Second, the first version of the draft guidance became available five years after the publication 

of the report. As a result, what regulatory pathways that the manufacturers and sponsors need to 

account for when developing the nanomedicine has remained uncertain for at least five years. More 
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importantly, due to the announcement of the FDA on the future release of the guidance, the 

manufacturers and sponsors were forced to expose to the uncertain regulatory status of 

nanomedicine until the guidance is provided. 

Third, utilizing this event allows us to conveniently conduct causal analysis because of the 

exogeneity of the timing of the event. Although there has been active discussion on whether the 

FDA’s current regulatory framework is suitable for nanomaterial-containing drug products, when 

and in what way FDA responds to this concern was far from predictable. Furthermore, due to the 

first version of the draft guidance, prepared after five years by the FDA in consultation with 

national research institutes or FDA’s research centers2 without the participation of the sponsors or 

manufacturers of nanomedicine, the timing of the release of the draft guidelines was also quite 

exogeneous to most of the stakeholders of the nanomedicine.3 

3.2. Overview of research design 

We consider a research paper (journal articles or conference proceedings) as a container of 

scientific discovery. Considering that a research paper receives citations from patents when the 

patented inventions were built upon the discovery presented in the research paper, while a patent 

is granted to the invention when it is novel, not obvious, and industrially useful, we analyze the 

individual research paper as the unit of analysis, measuring the extent of scientific discovery as 

translated into technical applications with the total number of patent citations accrued to the 

research paper of interest. 

Our econometric approach aims to estimate the relative change of the patent citation counts 

accrued to the research papers on nanomedicine (i.e., treatment group) compared to papers in a 

 
2 See, the footnote in the final version of guidance available at https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/considering-whether-fda-regulated-product-involves-application-nanotechnology 
3 After the first draft guidance was released, the FDA called for comments and suggestions from the public for the final version 

of the guidance. 
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similar research domain but not of nanomedicine (i.e., comparison group). The estimated 

difference presents the causal impact of the regulatory uncertainty. Next, we investigate if the 

estimated difference is associated with the degree to which the scientific discovery in a research 

paper is relevant to emerging research topics within the field. 

As the treatment group, we choose the research papers on Nano-Enabled Drug Delivery 

(NEDD). NEDD is one of the prominent subdomains of the nanomedicine research field. The 

bibliometric definition of NEDD has been established (Zhou, Porter, Robinson, Shim, & Guo, 

2014). We consider research papers of synthetic biology (SynBio) as the comparison group for the 

following four reasons. First, like NEDD, SynBio is one of the prominent new biotechnology 

domains that are expected to bring transformative impact to a broad range of research fields and 

industries including enhancing biodiesel production or drug development process (Medema et al., 

2011; Weber & Fussenegger, 2009). By integrating the engineering principle into bioscience, 

SynBio research aims to design biological blocks that have naturally non-existing novel functions 

or enhance the existing ones. Second, the bibliometric definition of SynBio has been built and 

refined by a series of prior studies (Oldham, Hall, & Burton, 2012; Shapira, Kwon, & Youtie, 

2017; Van Doren, Koenigstein, & Reiss, 2013) while the SynBio domain is bibliometrically 

demarcated from the research on NEDD as no overlaps in their bibliometric definitions show.4 

Third, as both NEDD and SynBio either belong to or are relevant to, the biotechnology research 

domain, choosing SynBio as the comparison group helps to minimize the probable field-level 

heterogeneity. Fourth, although there were discussions and concerns regarding the adequacy of the 

current regulatory framework for synthetic biology, there were no notable events that could change 

 
4 To ensure that the SynBio and NEDD papers have no overlap, we have dropped overlapping records among the searched papers 

in the empirical analysis. 
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the existing regulatory frameworks for synthetic biology in the U.S during the period between 

2003 and 2012. 

Our analysis begins with estimating the average impact of the FDA’s release of the report in 

2007 on the patent citation accrued to a NEDD paper compared to a SynBio paper by using the 

Difference-in-Differences (DiD) approach. To examine if the sign and size of the impact differ by 

the degree to which the discovery in a research paper associates with emerging technological topics, 

we measure the degree to which a research paper contains emerging technological terms within 

the field of the paper (i.e., NEDD or SynBio), by using the recently developed emerging score 

algorithm (Carley et al., 2018; Porter et al., 2019). By using the text data in the title and abstract 

of a corpus of research papers in each research domain, this algorithm allows one to extract 

emerging terms and quantify the extent to which each of the extracted terms represents 

technological emergence within the field (i.e., emergence score). We calculate the paper-level 

emergence score by aggregating the emergence scores of all the appeared emerging terms in the 

abstract and title of each research paper (Kwon, Liu, Porter, & Youtie, 2019; Kwon, Youtie, & 

Porter, 2020). We use the paper-level emergence score as the measurement of the extent to which 

the scientific discovery addressed in the research paper is associated with the emerging 

technological topics within the field where the paper belongs. We test if the impact of the 

regulatory uncertainty differs by the paper-level emergence score by fitting our data to the triple 

DiD regression model (DDD). Section 3.4 provides analytical details of this research design. 

3.3. Data 

We begin by retrieving metadata of NEDD and SynBio research papers that were published 

between 2003 and 2012 from Clarivate’s Web of Science Core Collection (WoS CC). We choose 

this period because it allows us to observe at least five-year-long publication records before and 
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after the event of interest, respectively. We use the five-year observations pre- and post-FDA report 

release for multi-term DiD analysis. The selection of this period is also based on the way the 

emergence score is calculated. According to the method that will be described in detail in the next 

section, emerging terms are extracted from, and their emergence scores are calculated by using the 

text in the abstract and title of papers published for at least 10-year periods. The period between 

2003 and 2012 is 10-years long. Finally, although the FDA released the first version of the draft 

guidance on the regulatory status of biological products containing nanomaterials in June 2011, 

we include the papers published in 2012 to account for the probable delay in the impact of the 

guidance release being presented. To retrieve the metadata of NEDD papers, we use the 

bibliometric definition of NEDD that was formulated by Zhou et al. (2014). For SynBio papers, 

we employed the search strategy compiled by Shapira et al. (2017). 

In our research design, we use the number of patent citations accrued to each research paper 

as the dependent variable. To obtain the information on patent citations accrued to research papers, 

we use recently disclosed data by Marx and Fuegi (2020) (hereafter, M&F data). These data 

contain the information of patent-cited research papers that are indexed in Microsoft Academic 

Graph (MAG). By applying the natural language processing and machine learning algorithm to 

the non-patent literature that was cited in patents, Marx and Fuegi (2020) identified papers that 

were cited by patents and link them to the research paper indexed in MAG.5 By combining those 

data with our dataset based on the Document Object Identifier (DOI)6, we count the patent citations 

that each paper received until the end of 2019. We drop the papers that have invalid bibliometric 

information (e.g., records without author information) and the records that are categorized as 

 
5 This data is avilable at http://relianceonscience.org/ 
6 Therefore, papers that have no DOI were excluded from the final dataset. 

http://relianceonscience.org/
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SynBio and NEDD paper together.7 Our final sample contains 41,321 NEDD (94%) and 2,705 

SynBio papers, respectively. Our data show that the likelihood of a paper to receive patent citations 

is seemingly indifferent between NEDD and SynBio. According to the sample, 32% of the NEDD 

papers had received at least one patent citation while 34% of the SynBio papers received one or 

more patent citations until the end of 2019.8 

3.4. Variables and econometric model specifications 

Dependent variables. We use the number of US patent citations accrued to each research 

paper until the end of 2019 (nUSPatCite) as the dependent variable. Despite the benefits of the use 

of the patent citation counts, it is worthwhile highlighting that the patent citation accrued to a paper 

is not a flawless measurement of the degree to which scientific discovery in the paper of interest 

serves knowledge input for developing technical applications. Not all patents contain 

commercially valuable inventions nor are all commercially valuable inventions patented. For 

instance, in the information and communication technology domain, firms may incline to patent 

their inventions for strategic purposes (Hall & Ziedonis, 2001; Noel & Schankerman, 2013). In 

the food industry, inventions are less patented but more protected through secrecy (Cohen, Nelson, 

& Walsh, 2000). Nevertheless, in the context of the present research, the patent citation count can 

be still useful because pharmaceutical and biotechnology domains are the sectors where patenting 

is a major instrument for protecting valuable inventions while, in this domain, a patent corresponds 

to a distinctive technology that has commercial value (Cohen et al., 2000). 

In counting the patent citations, we choose to use the US patent citation to take into account 

not only the fact that FDA’s jurisdiction is restricted to the US but also a feature of the patent 

citation practice of USPTO. In the U.S., inventors are obliged to cite all the known prior art when 

 
7 In the original data, we found that 96 articles were included both in NEDD and SynBio. 
8 About 23% and 25% of the NEDD and SynBio papers received one or more US patent citations, respectively. 
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filing patent applications (by the Inequitable Conduct Doctrine). If it is found that inventors did 

not cite any of the “known” prior art in the patent application, the patent can be invalidated, even 

after it is granted. In contrast, in EPO, the patent examiners are mostly responsible for searching 

prior art / adding citations and, hence, examining the patentability of the inventions. Studies have 

emphasized that such difference needs to be properly considered in patent citation analysis 

(Alcacer & Gittelman, 2006; Criscuolo & Verspagen, 2008). Our use of the citation counts 

originated from US patents is to mitigate the probable systematic difference arising from the 

different citation practices by patent authorities.9 

Use of the accumulated patent citation count until the end of 2019 becomes subject to a 

truncation problem. To account for this right-truncation problem, we additionally employ the 

fixed-window (seven-year-long since publication) patent citation count as an alternative dependent 

variable (7YrPatCite)10. 

Independent variables. Our econometric analysis employs the standard multi-term DiD 

design. We generate the following three sets of variables as the independent variables. First, we 

create ten binary variables that respectively take the value of 1s for each of the publication years 

between 2003 and 2012 (𝑃𝑌𝑘 , 𝑘 ∈ [2003, . . ,2012] ). For example, if a research paper was 

published in 2003, the binary variable 𝑃𝑌2003 takes the value 1. Second, we create a dummy 

variable that takes the value of 1 for NEDD papers (NEDD) and 0 for SynBio papers. Finally, we 

generate ten interaction terms between PYs and NEDD (PY X NEDD). The coefficients of these 

interaction terms are the DiD estimators. If the regulatory uncertainty decelerated (accelerated) the 

 
9 For the robustness check, we conducted additional analyses by using the total patent citation count without restriction to the US 

patent citation. Our analyses showed the consistent findings with our main regression results. The robustness check result is 

available upon request. 
10 This is because, in our data, the last year of patent citation to the papers published in 2012 is 2019. To account for the 2019 patent 

citation is unlikely to be complete due to the delay between patent filing and its publication, we count patent citation made until 

2018 (7-year window). 
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translation of scientific discovery in NEDD to technical application, negative (positive) and 

statistically significant coefficients of PY X NEDD after 2007 are expected. 

To test if the impact was prominent for scientific discovery on emerging research topics within 

each field, we employ a paper-level emergence score algorithm that quantifies the degree to which 

a research paper of interest contains emerging technological terms within each field where the 

focal paper belongs. The paper-level emergence score proxies for the degree to which the 

discovery addressed in a research paper relates to emerging research topics. The higher the paper-

level emergence score, the greater the extent to which the research paper contains new knowledge 

on emerging research topics within the research field (i.e., NEDD or SynBio in our analysis). For 

calculation of the paper-level emergence score, we follow the procedures described by Kwon et al. 

(2019) and Kwon et al. (2020). First, from each of the NEDD and SynBio datasets, we extract the 

emerging terms by using the algorithm as proposed by Carley et al. (2018). The emergence score 

algorithm generates a list of emerging terms with their “emergence score” that takes a non-negative 

value, by operationalizing the four characteristics– persistence, novelty, growth, community, and 

scope. The emergence score of each term is calculated by aggregating three types of trend of the 

term in question appear in the corpus of papers— active trend, recent trend, and slope (see section 

2.3 of the paper by  Kwon et al. (2019)). Second, for each paper, we aggregate the emergence 

scores of the emerging terms in the paper’s abstract and title. To account for the right-skewed 

distribution of the paper-level emergence scores that have 0 as the minimum value, we take a 

natural log on the paper-level emergence score with an increment of 1 (lES). If a paper takes the 

value of 0 for its lES, this indicates that any of the extracted emerging terms has not appeared in 

abstract nor title of the paper in question. Then, we generate triple interaction terms between lES, 

PYs, and NEDD (lES X PY X NEDD). If the impact of the regulatory uncertainty was more (less) 
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prominent for translating scientific discovery on emerging research topics to technical application, 

post-2007 triple interaction terms are expected to take negative (positive) and statistically 

significant coefficients. 

Control variables. To rule out probable spurious effects, we introduce several control 

variables that may simultaneously correlate with our dependent and independent variables. 

First, we control for the research team size (Team Size). Studies have found that research team 

size is associated with research impact (including technology impact) with the growth of the size 

of the research team over time (Cohen & Bailey, 1997; Larivière, Gingras, Sugimoto, & Tsou, 

2015; Vogel, Hall, Fiore, Klein, Bennett, Gadlin et al., 2013). Meanwhile, the average research 

team size differs by the field of research due to the different levels of required resources by 

research domain. Accordingly, the probable difference between NEDD and SynBio papers in 

terms of the post-2007 patent citation counts could be driven by the simultaneous correlations 

among the research team size growing at a different rate between NEDD and SynBio, research 

domain, and patent citation counts. Controlling for the number of authors of the paper of interest 

accounts for this confounding effect. 

Second, we account for the number of cited references as the proxy for the number of prior 

studies to the focal research paper. Because the number of relevant prior research papers positively 

associates with the academic research activity around the relevant field, it is also likely to correlate 

with technology development activities. Meanwhile, the number of citable references for a paper 

increases over time by the accumulation of the published research papers. Introducing the natural 

log-transformed number of cited references added by 1 (lnRef) as a control variable helps to 

account for this confounding effect. 
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Third, we control for whether the research paper of interest was originated from international 

collaboration. The greater the inclusion of international collaboration, the greater the visibility of 

the research works (Van Raan, 1998), which could positively associate with the patent citation 

counts (also U.S. citations for the same reason). Conversely, technologically impactful research 

may need the collaboration of researchers across countries. Either way, whether the research was 

conducted based on international collaboration may associate with the extent to which the research 

outcomes served as the knowledge inputs for technological application developments. Meanwhile, 

studies have found that the international collaboration for research has steadily grown with field-

level heterogeneity in its prevalence (Gazni, Sugimoto, & Didegah, 2012; Wagner, Park, & 

Leydesdorff, 2015). To account for this international collaboration-induced confounding effect, 

we introduce a binary variable that takes the value of 1 if the authors’ countries are two or more, 

and 0 otherwise (IntCollabo) as a control variable in the regression analysis. 

Finally, we control for whether the lead author of the research paper was located in the US by 

introducing a binary variable that takes the value of 1 if the first author of the paper in question 

was located in the US (1stAuthorInUS). This variable is to take into account the fact that the 

knowledge diffusion is localized (e.g., Jaffe, Trajtenberg, & Henderson, 1993), and the FDA’s 

jurisdiction is limited in the U.S. 

Econometric model specifications: Because the dependent variable is a count variable having 

right-skewed distribution (i.e., overdispersion problem), we fit our data to the generalized negative 

binomial (GNB) regression model that allows capturing the overdispersion parameter into the 

analysis.11 To investigate the total impact of the regulatory uncertainty on the translation of 

 
11 As an alternative regression model, a zero-inflated negative binomial regression model can be considered. However, because the 

zero-inflation factor is unknown, fitting our data to the zero-inflated negative binomial regression model is infeasible. As another 

alternative model, Veugelers and Wang (2019) used the probit regression model by employing a binary variable that takes the value 

of 1 if the research paper in question received at least one patent citation, as the dependent variable. Our alternative regression 

analysis using the same approach yielded consistent findings with the generalized negative binomial regression analyses. 
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scientific discovery into technological applications, we fit our data to the following regression 

model specification using robust standard errors. 

𝑛𝑃𝑎𝑡𝐶𝑖𝑡𝑒𝑖
∗ = 𝛽0 + ∑ 𝛽1𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑁𝐸𝐷𝐷𝑖

2006

𝑡=2003

+ ∑ 𝛽2𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑁𝐸𝐷𝐷𝑖

2012

𝑡=2008

+ ∑ 𝛽3𝑡 × 𝑃𝑌𝑖,𝑡

2012

𝑡=2003

+ 𝛽4 × 𝑁𝐸𝐷𝐷𝑖 + ∑ 𝛾𝑗

𝑗

× 𝐶𝑖,𝑗 + 𝜖𝑖 

where 𝑛𝑃𝑎𝑡𝐶𝑖𝑡𝑒𝑖
∗ is either nUsPatCite or 7YrPatCite, 𝐶𝑖,𝑗is jth control variable of paper i and 𝜖𝑖 

is the error term. To examine if the impact of the regulatory uncertainty was particular, we fit our 

data to the triple DiD model (DDD), as presented in the following formula. 

𝑛𝑃𝑎𝑡𝐶𝑖𝑡𝑒𝑖
∗ = 𝛽0 + ∑ 𝛽1𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑁𝐸𝐷𝐷𝑖 × 𝑙𝐸𝑆𝑖

2006

𝑡=2003

+ ∑ 𝛽2𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑁𝐸𝐷𝐷𝑖 × 𝑙𝐸𝑆𝑖

2012

𝑡=2008

+ ∑ 𝛽3𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑙𝐸𝑆𝑖

2012

𝑡=2003

+ ∑ 𝛽4𝑡 × 𝑃𝑌𝑖,𝑡 × 𝑁𝐸𝐷𝐷𝑖

2012

𝑡=2003

+ 𝛽5 × 𝑁𝐸𝐷𝐷𝑖 × 𝑙𝐸𝑆𝑖

+ ∑ 𝛾𝑗

𝑗

× 𝐶𝑖,𝑗 + 𝜖𝑖 

4. Results 

4.1. Descriptive analyses 

Table 1 presents the summary statistics of the key variables and their pairwise correlations for 

NEDD (upper table) and SynBio papers (lower table), respectively.12 

[Insert Table 1 about here] 

All the correlation coefficients are below 0.4, both for NEDD and SynBio papers, indicating 

no significant multi-collinearity issues found. The mean value of lES of NEDD papers (2.19) is 

 
12 Because PYs are mutually exclusive dummy variables, we present the publication year of the paper as is in the correlation analysis. 
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greater than that of SynBio (0.83). The average number of co-authors (i.e., Team Size) of a NEDD 

paper (5.91) is greater than that of a SynBio paper (4.87), suggesting that one more researcher 

collaborates for NEDD research than SynBio research. 29% of the NEDD papers in the sample 

had a US scientist as the lead author, whereas 40% of the SynBio papers had a US scientist as the 

first author. There are virtually no differences between NEDD and SynBio papers in the mean 

values of the rest of the variables. 

4.2. Main regression results 

[Insert Table 2 about here] 

Table 2 reports the main regression results. In the first two columns, we present the regression 

results without introducing the triple interaction terms to estimate the aggregated effect of the 

regulatory uncertainty. In the first column, we use nUSPatCite as the dependent variable. The DiD 

estimators for pre-2007 (from PY2003 X NEDD to PY2006 X NEDD) are all statistically 

insignificant at the 0.1 significance level, indicating no evidence for a pre-2007 difference between 

NEDD and SynBio papers in the time trend of the patent citation counts. However, from PY2011 

X NEDD, the coefficients turn negative and statistically significant at the 0.1 significance level 

with an increase in size. The second column presents regression results using the 7YrPatCite as 

the dependent variable. From PY2010 X NEDD, the coefficients are all negative and statistically 

significant at the 0.05 significance level. 

From the third to fourth columns, we report the regression results including the triple 

interaction terms. In the third column, we report the regression results using nUSPatCite as the 

dependent variable. The coefficients of PY2010 X NEDD X lES and PY2011 X NEDD X lES are 

negative and statistically significant at the 0.1 significance level. In the fourth column, only the 

coefficient of PY2011 X NEDD X lES is negative and statistically significant at the 0.01 
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significance level. In contrast, in both columns, the coefficients of PY2008 X NEDD through 

PY2012 X NEDD are all insignificant at the 0.1 significance level. These results indicate that the 

drop in the patent citation to a NEDD paper was particular to the papers containing emerging terms. 

For a clearer illustration of our findings, we conduct an additional analysis by dividing our 

sample into the papers that have positive emergence score (lES>0, papers on emerging research 

topics) and those have 0 as the lES. Then, we fit these subsamples to DiD regression models 

separately. The fifth and sixth columns of Table 2 report the regression results using the papers 

with positive lES. The coefficients of PY2010 X NEDD and PY2012 X NEDD are negative and 

statistically significant at 0.1 significance level minimum in both columns. In contrast, the 

regression results reported in the seventh and eighth columns with the papers having lES=0 show 

that any of the coefficients of the DiD estimators are statistically significant at the 0.1 significance 

level. Our additional analysis confirms that the drop in the patent citation counts accrued to a 

NEDD paper was specific to the NEDD papers on emerging research topics within the field. 

5. The origin of impact 

In this section, we present two additional empirical analyses to explore the origin of the 

observed impact. First, we examine if our findings can be explained by the declined research 

impact of NEDD research after 2007. Second, we examine if the suppressed business activities for 

nanomedicine by the “uncertainty” was the main driver of our finding, as expected by real-option 

theory, by examining the change in the business activities for nanomedicine after the regulatory 

uncertainty is addressed by the release of the first draft guidance by FDA in June 2011. 

5.1. Has NEDD paper’s research impact declined? 

An alternative explanation of our findings is that NEDD research became less impactful after 

2007 for unknown reasons. We investigate the empirical validity of this explanation by examining 



11182 

26 
 

if the research impact of NEDD declined compared to that of SynBio after 2007. For this analysis, 

we analyze the change in the number of paper citations accrued to a research paper as the 

dependent variable (Time Cited). By considering the number of paper citations that a focal paper 

received as the proxy for the focal paper’s research impact, we analyze if a NEDD paper received 

fewer paper citations than a comparable SynBio paper after 2007. 

[Insert Table 3 about here] 

Table 3 reports GNB regression results. In the first column, we present the DiD regression 

results without triple interaction terms. The coefficients of DiD estimators are all insignificant at 

the 0.1 significance level. In the second column, the regression results including the triple 

interaction terms are presented. The coefficient of PY2010 X NEDD X lES is positively significant 

at the 0.05 significance level. The third and fourth columns show the regression result with samples 

of lES>0 and lES=0, respectively. All the coefficients of the DiD estimators in both columns are 

statistically insignificant at the 0.1 significance level. Our analysis finds no evidence of declined 

research impact of NEDD papers compared to SynBio published after 2007. 

5.2. Evidence from the Premarket authorization submission activities 

If the regulatory uncertainty deters firms from investing in the R&D process and thus slowed 

the translation of scientific discovery into technical applications, wouldn’t the mitigation of the 

regulatory uncertainty result in the recovery of the business activities on nanomedicine? Because 

empirical evidence of this expectation can be complementary to our main analysis, we conduct an 

analysis examining the response of organizations to the mitigated regulatory uncertainty in their 

business activities on nanomedicine development by FDA’s release of the first draft guidance on 

nanomedicine development in June 2011. 
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Our additional analysis is based on analyzing the rate of submissions for Premarket approval 

(PMA) of nanomedicine before and after June 2011. There are two FDA-controlled regulatory 

pathways for Drug products in the U.S. The first is premarket notification (510(k)). Under this 

pathway, the applicant is required to demonstrate that the products (or medical devices) of interest 

are as safe and effective as substantially equivalent (already marketed) products (devices) in the 

market. The second pathway is the PMA. Under this pathway, new drug products (or medical 

devices) with high-risk profiles (i.e., class III13) are reviewed and assessed regarding safety and 

effectiveness. The PMA requires the applicant to provide various types of scientific information 

and data demonstrating the safety and effectiveness of the product under examination (e.g., 

requiring both data on Non-clinical Laboratory Studies and clinical Laboratory Studies), which 

incurs substantial and irreversible costs of the applicant. If a product under the PMA process comes 

to undergo a new regulatory process due to the change of rules, the applicant’s investments made 

until then turn to sunk costs. Meanwhile, according to the FDA’s report released in 2007, it 

concludes that although the premarket authorization is comprehensive enough to cover the 

nanomedicine, the rules may change in the future. Accordingly, we argue that the response of firms 

and sponsors of the nanomedicine to the change in the level of regulatory uncertainty will be 

reflected in their submission of nanomedicine PMAs. 

In this analysis, we consider the release of the first version of the draft guidance regarding the 

regulatory status of and approach for, nanomedicine on June 14, 2011,14 as the event that partially 

mitigated the regulatory uncertainty. By the release of this draft guidance, more detailed 

 
13 The FDA defines class III devices as “those that support or sustain human life, are of substantial importance in preventing 

impairment of human health, or which present a potential, unreasonable risk of illness or injury.” (see, 

https://www.fda.gov/medical-devices/premarket-submissions/premarket-approval-pma) 
14 “Draft Guidance for Industry; Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology 

“(available at https://www.federalregister.gov/documents/2011/06/14/2011-14643/draft-guidance-for-industry-considering-

whether-an-fda-regulated-product-involves-the-application-of, accessed on June 10, 2021) 

https://www.federalregister.gov/documents/2011/06/14/2011-14643/draft-guidance-for-industry-considering-whether-an-fda-regulated-product-involves-the-application-of
https://www.federalregister.gov/documents/2011/06/14/2011-14643/draft-guidance-for-industry-considering-whether-an-fda-regulated-product-involves-the-application-of


11182 

28 
 

information that the manufacturers and sponsors need to take into account regarding the FDA’s 

regulatory stance for the business of nanomedicine, has become available. For example, it clarified 

that the FDA will account for (1) whether products under consideration contain nanometer-scale 

materials, and (2) whether the size of the materials of the product attributes to its properties 

including biological effects. The draft guidance also recommended for manufacturers of 

nanomedicine to consult with the FDA early in the product development process. 

We retrieve the information of all the PMA applications from the FDA PMA database15 and 

profile the daily submission numbers of PMAs on nanomedicine (nano-PMAs) from June 14, 2010, 

to June 14, 2012 (1-year before to 1-year after the release of the guidance). We consider the PMAs 

submissions as nano-PMAs if the terms matched with “nano*” appeared in the description, 

tradename, or generic name of the products of the application in question. We expect a surge in 

the number of nano-PMA submissions after June 14, 2011, if the mitigated regulatory uncertainty 

by the release of the first guidance induced recovery of business activities regarding the 

nanomedicine. Figure 2 presents our analysis result. 

[Insert Figure 2 about here] 

The red and gray bars present the number of submitted nano-PMA submissions and the number 

of all the PMA submissions during the period, respectively. The daily number of all PMA 

submissions (gray) shows no notable difference between before and after June 14, 2011. 

Meanwhile, the number of nano-PMA submissions filed before June 14, 2011, was only three, 

while the number of nano-PMA submissions filed after that date was 15 (increase by 400%). The 

observed surge in the number of submissions of the nano-PMA applications suggests that the 

business activities related to nanomedicines recovered after the mitigation of the regulatory 

 
15 Bulk data is available at https://www.fda.gov/medical-devices/device-approvals-denials-and-clearances/pma-approvals (access 

July 20,2021) 

https://www.fda.gov/medical-devices/device-approvals-denials-and-clearances/pma-approvals
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uncertainty by the release of the draft guideline.16 Our additional analysis of the nano-PMA further 

suggests that the decelerated translation of scientific discovery in NEDD research to patented 

technological applications might have originated from the suppressed business activities on 

nanomedicine development by the regulatory uncertainty. 

6. Discussion and conclusions 

In the present study, we examined how regulatory uncertainty influences the translation of 

scientific discovery into technical applications in a science-driven industry. For the empirical 

analysis, we utilized the case of the regulatory uncertainty created by the FDA’s release of the 

report on nanomaterials in 2007. 

Our analyses using the patent citations accrued to NEDD and SynBio research papers with the 

recently developed emergence score algorithm found that the regulatory uncertainty of interest has 

decelerated the translation of new scientific discovery in nanomedicine research to technical 

applications. This impact was particular to the scientific discovery on emerging research topics of 

NEDD. Our further analysis using the data on the daily rate of nano-PMAs submissions showed 

that the observed effect of the regulatory uncertainty might have originated from the suppressed 

business activities on nanomedicine development by the regulatory uncertainty. From the findings, 

we conclude that in this science-driven industry, the regulatory uncertainty could decelerate the 

diffusion of scientific discovery on emerging topics to technological applications development. 

Does our finding imply that regulatory uncertainty “negatively” impacts innovation? Although 

our findings seemingly answer positively, because the diffusion of scientific discovery is a crucial 

part of the innovation process, it may be too early to conclude based on our findings alone. In 

addition to the translation of scientific discovery into technical applications, there are more 

 
16  Although comparing between nano-PMAs and SynBio-PMAs is ideal, identifying the SynBio-PMAs was bolometrically 

infeasible.  
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processes of innovation such as interfirm R&D collaboration, governmental R&D, venture capital 

investment in early-stage R&D, collaborations between universities and firms for innovation, etc. 

Evidence on how regulatory uncertainty affects other processes of innovations in various contexts 

is necessary for a comprehensive conclusion. 

Our finding that the slowed translation of scientific discovery into technical applications was 

particular to the research outcomes on emerging research topics implies that there may be a 

tradeoff between seeking flexibility/adaptability of the regulatory governance over emerging S&T 

and promoting the diffusion of emerging S&T for innovation. Defining and formulating the 

adequate rule (or law) to govern emerging S&T is crucial for transforming emerging S&T into 

innovation. Because the way emerging S&T influences society is far from predictable, there has 

been growing emphasis on the necessity of engaging various stakeholders of emerging S&T into 

the discussion of defining the adequate governance over emerging S&T (e.g., Bosso, 2016; Rafols 

et al., 2011), and flexibility/adaptability of the regulatory approach has been emphasized 

accordingly (Greer & Trump, 2019; Guston, 2008, 2014; Hoffmann et al., 2009; Holdren et al., 

2011; Stilgoe et al., 2013). Although this effort is necessary given the nature of the emerging S&T, 

the emphasis on the flexibility/adaptability and the importance of socio-technical integration may 

cause governance uncertainty as scholars discuss (Fisher, 2019; Teeter & Sandberg, 2017). To this 

discussion, our analysis indicates that the resulting regulatory uncertainty may decelerate the 

diffusion of the emerging S&T for innovation. Therefore, we argue that it is important to manage 

this tradeoff, and policymakers may need to carefully devise a way of finding the balance between 

bearing regulatory uncertainty and pursuing the diffusion of the emerging S&T. 

The present research extends two strains of literature. First, our study contributes to studies on 

the relationship between governmental regulation and innovation. It has been one of the prominent 
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research topics for environmental scientists, economists, management scholars, and public policy 

researchers as to whether governmental regulation positively or negatively impacts innovation 

(among others, "Poter's hypotheses" by Porter & Van der Linde, 1995). Since the seminal work by 

Porter and Van der Linde (1995), there have been myriad empirical studies showing the 

“stringency” of governmental regulation is associated with firms’ innovation activities (e.g., 

Cecere & Corrocher, 2016; Johnstone, Haščič, Poirier, Hemar, & Michel, 2012; Kesidou & 

Demirel, 2012). In addition to these studies, our research contributes to advancing the 

understanding of how other aspects of the regulatory action of governmental authority other than 

the “stringency” affects innovation, by shedding empirical light on the way the regulatory 

uncertainty shapes the innovation process. 

Second, our study contributes to the studies on the factors involved in the translation of 

scientific discovery into technical applications. Promoting the diffusion of scientific discovery into 

industrial sectors has been one of the missions of science policymakers because knowledge transfer 

is one of the crucial sources of technological innovation. To this end, scholars have attempted to 

explore various factors including scientific, technological, and organizational factors (e.g., 

Bercovitz, Feldman, Feller, & Burton, 2001; Caldera & Debande, 2010; González-Pernía, Kuechle, 

& Peña-Legazkue, 2013; Landry, Amara, & Ouimet, 2007; Shane, 2002; Veugelers & Wang, 

2019) that may facilitate or hinder the translation of scientific discovery to technology and what 

policy instruments are worthy of consideration to maneuver those factors. Our research extends 

these efforts by adding the “regulatory uncertainty” as an institutional factor that decelerates the 

translation of scientific discovery into technical applications. 

The present study has several limitations that we wish future studies to address. First, as 

discussed, our empirical setting was based on a single event of the regulatory uncertainty in the 
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nanomedicine sector in the U.S. Because the way the mechanism we explained may differently 

work in other conditions, it is necessary to conduct more empirical analyses in various contexts 

for more generalizable conclusions. 

Second, we measured the translation of scientific discovery into technical applications with the 

patent citation count accrued to research papers, which exhibits many flaws, as discussed in section 

3.4. To this limitation, using the number of new nanomedicine products developed during the 

period of observation may be an alternative and more direct measurement, and yet, due to the lack 

of data, our study was limited to the patent citation analysis. We wish future studies to examine 

the impact of the regulatory uncertainty using alternative measurements. 

 

FIGURES 

 
Figure 1. FDA nanomedicine-related documents release timing

 
Figure 2. Premarket authorization submission (by submission date) 
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TABLES 

Table 1. Pairwise correlations and summary statistics 
NEDD nUSPatCite 7YrPatCite PY lES Team Size ln(nRef+1) Int Collabo 1st author in USA 

nUSPatCite 1.00        

7YrPatCite 0.88 1.00       

PY -0.15 -0.10 1.00      

lES -0.04 -0.03 0.25 1.00     

Team Size 0.07 0.09 0.05 -0.10 1.00    

ln(nRef+1) 0.00 0.01 0.10 0.01 0.01 1.00   

Int Collabo 0.01 0.01 0.02 -0.03 0.22 0.06 1.00  

1st author in USA 0.11 0.12 -0.13 -0.17 -0.05 0.10 -0.05 1.00 

Obs 41,321 41,321 41,321 41,321 41,321 41,321 41,321 41,321 

Mean 1.36 0.89 2008.96 2.19 5.91 3.61 0.20 0.29 

Std.Dev 7.10 4.30 2.60 1.63 3.14 0.48 0.40 0.45 

Min 0 0 2003 0 1 0 0 0 

Max 521 155 2012 5.500495 57 6.326149 1 1 
         
         

SynBio nUSPatCite 7YrPatCite PY lES Team Size ln(nRef+1) Int Collabo 1st author in USA 

nUSPatCite 1.00        

7YrPatCite 0.90 1.00       

PY -0.13 -0.04 1.00      

lES 0.00 0.03 0.33 1.00     

Team Size 0.12 0.12 0.00 -0.07 1.00    

ln(nRef+1) 0.00 0.01 0.09 0.12 0.05 1.00   

Int Collabo -0.04 -0.04 0.03 0.00 0.24 0.07 1.00  

1st author in USA 0.15 0.15 0.00 0.04 -0.05 0.06 -0.14 1.00 

Obs 2,705 2,705 2,705 2,705 2,705 2,705 2,705 2,705 

Mean 2 1 2,009 1 5 3.58 0.22 0.40 

Std.Dev 6.83 4.69 2.76 1.06 3.23 0.56 0.41 0.49 

Min 0 0 2003 0 1 0 0 0 

Max 113 82 2012 3.84 53 5.82 1 1 

 

 



11182 

34 
 

Table 2. Main regression results 
 DiD estimation DDD estimation lES>0 lES=0 

VARIABLES nUSPatCite 7YrPatCite nUSPatCite 7YrPatCite nUSPatCite 7YrPatCite nUSPatCite 7YrPatCite 

PY2003XNEDDxlES   -0.281 -0.741*     

   (0.338) (0.382)     

PY2004XNEDDxlES   -0.240 -0.477     

   (0.280) (0.359)     

PY2005xNEDDxlES   0.0360 -0.00617     

   (0.266) (0.260)     

PY2006xNEDDxlES   0.138 0.177     

   (0.247) (0.266)     

PY2008xNEDDxlES   -0.0239 -0.00672     

   (0.344) (0.351)     

PY2009xNEDDxlES   -0.0724 -0.0582     

   (0.280) (0.286)     

PY2010xNEDDxlES   -0.303* -0.244     

   (0.155) (0.154)     

PY2011xNEDDxlES   -0.558*** -0.551***     

   (0.156) (0.157)     

PY2012xNEDDxlES   -0.160 -0.166     

   (0.132) (0.131)     

PY2003xNEDD 0.519 0.437 0.569 0.696* 0.254 -0.263 0.558 0.585 

 (0.371) (0.334) (0.414) (0.356) (0.530) (0.601) (0.554) (0.439) 

PY2004xNEDD 0.245 0.0846 0.297 0.264 0.0150 -0.399 0.267 0.150 

 (0.359) (0.303) (0.398) (0.338) (0.490) (0.606) (0.538) (0.420) 

PY2005xNEDD -0.133 -0.290 -0.105 -0.254 -0.189 -0.241 0.00286 -0.275 

 (0.383) (0.333) (0.447) (0.401) (0.411) (0.416) (0.578) (0.477) 

PY2006xNEDD -0.0370 -0.149 -0.0750 -0.267 0.168 0.140 0.00630 -0.280 

 (0.369) (0.318) (0.434) (0.395) (0.375) (0.411) (0.563) (0.464) 

PY2008xNEDD -0.214 -0.436 -0.144 -0.406 -0.0771 -0.167 -0.124 -0.522 

 (0.469) (0.422) (0.611) (0.570) (0.477) (0.488) (0.719) (0.630) 

PY2009xNEDD -0.281 -0.409 -0.0397 -0.197 -0.318 -0.317 -0.0382 -0.316 

 (0.404) (0.359) (0.540) (0.518) (0.365) (0.351) (0.650) (0.571) 

PY2010xNEDD -0.463 -0.568** 0.0244 -0.139 -0.623* -0.566* -0.0373 -0.307 

 (0.336) (0.270) (0.406) (0.346) (0.335) (0.333) (0.559) (0.445) 

PY2011xNEDD -0.684* -0.834*** 0.311 0.156 -1.139*** -1.171*** 0.894 0.637 

 (0.368) (0.308) (0.424) (0.366) (0.369) (0.367) (0.562) (0.449) 

PY2012xNEDD -0.737** -0.894*** -0.249 -0.389 -0.712** -0.758** -0.391 -0.642 

 (0.328) (0.258) (0.390) (0.325) (0.321) (0.317) (0.543) (0.422) 

PY2003xlES   0.312 0.752**     

   (0.336) (0.380)     

PY2004xlES   0.232 0.416     

   (0.280) (0.359)     

PY2005xlES   -0.0731 -0.0347     

   (0.265) (0.261)     

PY2006xlES   -0.170 -0.179     

   (0.249) (0.267)     

PY2008xlES   -0.0317 -0.0410     

   (0.346) (0.352)     

PY2009xlES   -0.0749 -0.0870     

   (0.282) (0.289)     

PY2010xlES   0.169 0.0918     

   (0.158) (0.157)     

PY2011xlES   0.341** 0.319**     

   (0.158) (0.159)     

PY2012xlES   -0.0750 -0.0869     

   (0.135) (0.134)     

PY2003 0.403 0.0732 0.393 -0.103 0.753 0.833 0.530 0.102 

 (0.353) (0.310) (0.390) (0.311) (0.510) (0.581) (0.526) (0.390) 

PY2004 0.435 0.200 0.460 0.192 0.719 0.681 0.532 0.324 

 (0.342) (0.281) (0.375) (0.297) (0.470) (0.591) (0.511) (0.373) 
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PY2005 0.424 0.243 0.506 0.333 0.453 0.186 0.506 0.408 

 (0.366) (0.315) (0.419) (0.369) (0.392) (0.399) (0.546) (0.438) 

PY2006 0.0946 0.0964 0.216 0.243 -0.159 -0.203 0.235 0.312 

 (0.355) (0.300) (0.410) (0.354) (0.358) (0.395) (0.533) (0.415) 

PY2008 -0.190 0.122 -0.149 0.185 -0.415 -0.206 -0.0620 0.342 

 (0.459) (0.411) (0.598) (0.552) (0.464) (0.476) (0.699) (0.603) 

PY2009 -0.313 0.0326 -0.245 0.126 -0.392 -0.158 -0.284 0.150 

 (0.392) (0.345) (0.524) (0.499) (0.346) (0.331) (0.626) (0.545) 

PY2010 -0.492 -0.0604 -0.697* -0.165 -0.471 -0.209 -0.566 0.0419 

 (0.322) (0.251) (0.381) (0.310) (0.317) (0.316) (0.527) (0.401) 

PY2011 -0.704** -0.183 -1.219*** -0.660** -0.510 -0.105 -1.575*** -0.962** 

 (0.356) (0.293) (0.401) (0.334) (0.354) (0.351) (0.529) (0.404) 

PY2012 -1.018*** -0.481** -0.970*** -0.410 -1.210*** -0.784*** -0.926* -0.301 

 (0.312) (0.238) (0.362) (0.284) (0.300) (0.297) (0.508) (0.372) 

NEDD -0.0460 0.0942 -0.184 -0.0533 -0.119 -0.0955 -0.210 0.0335 

 (0.286) (0.202) (0.305) (0.217) (0.245) (0.240) (0.475) (0.331) 

lES   0.115** 0.131***     

   (0.0486) (0.0501)     

Constant -0.986*** -1.497*** -1.047*** -1.583*** -1.213*** -1.640*** -0.430 -0.974* 

 (0.348) (0.288) (0.384) (0.324) (0.303) (0.299) (0.617) (0.521) 

Lnalpha 2.076*** 2.084*** 2.068*** 2.074*** 2.013*** 2.014*** 2.160*** 2.180*** 

 (0.0185) (0.0206) (0.0185) (0.0208) (0.0238) (0.0261) (0.0291) (0.0337) 

Observations 44,026 44,026 44,026 44,026 30,606 30,606 13,420 13,420 

Model GNBREG GNBREG GNBREG GNBREG GNBREG GNBREG GNBREG GNBREG 

Sample All All All All lES>0 ES>0 lES=0 ES=0 

Pseudo R2 0.0424 0.0316 0.0434 0.0329 0.0502 0.0390 0.0292 0.0211 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note. Control variables were removed for the space constraint. The full regression table is available upon request. 

 
 

Table 3. Testing Research Impact Change 
 (1) (2) (3) (4) 

VARIABLES TimesCited TimesCited TimesCited TimesCited 

PY2003XNEDDxlES  0.197   

  (0.187)   

PY2004XNEDDxlES  0.155   

  (0.212)   

PY2005xNEDDxlES  -0.157   

  (0.104)   

PY2006xNEDDxlES  0.00813   

  (0.119)   

PY2008xNEDDxlES  0.0469   

  (0.0948)   

PY2009xNEDDxlES  -0.131   

  (0.0978)   

PY2010xNEDDxlES  0.156**   

  (0.0655)   

PY2011xNEDDxlES  0.0107   

  (0.0534)   

PY2012xNEDDxlES  0.0256   

  (0.0558)   

PY2003xNEDD 0.147 0.115 0.494 0.0277 

 (0.162) (0.174) (0.331) (0.187) 

PY2004xNEDD 0.252 0.153 0.510 0.0934 

 (0.171) (0.179) (0.354) (0.193) 

PY2005xNEDD 0.121 0.178 -0.0656 0.0903 

 (0.141) (0.145) (0.248) (0.161) 

PY2006xNEDD 0.0668 0.00732 0.231 -0.114 

 (0.148) (0.154) (0.259) (0.169) 

PY2008xNEDD 0.0428 0.00780 0.179 -0.0991 
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 (0.136) (0.141) (0.231) (0.158) 

PY2009xNEDD -0.201 -0.0840 -0.294 -0.133 

 (0.143) (0.154) (0.221) (0.171) 

PY2010xNEDD -0.0346 -0.209 0.151 -0.246 

 (0.132) (0.150) (0.199) (0.169) 

PY2011xNEDD -0.0823 -0.0557 0.0399 -0.184 

 (0.120) (0.138) (0.178) (0.158) 

PY2012xNEDD -0.0243 0.0110 0.0814 -0.0680 

 (0.122) (0.156) (0.176) (0.181) 

PY2003xlES  -0.184   

  (0.185)   

PY2004xlES  -0.124   

  (0.211)   

PY2005xlES  0.166   

  (0.103)   

PY2006xlES  0.0128   

  (0.119)   

PY2008xlES  -0.0722   

  (0.0948)   

PY2009xlES  0.0944   

  (0.0983)   

PY2010xlES  -0.168**   

  (0.0658)   

PY2011xlES  -0.0528   

  (0.0543)   

PY2012xlES  -0.0863   

  (0.0567)   

PY2003 0.215 0.350** -0.0170 0.432** 

 (0.152) (0.158) (0.322) (0.171) 

PY2004 0.0735 0.205 -0.0986 0.290 

 (0.164) (0.170) (0.348) (0.182) 

PY2005 0.0945 0.0825 0.344 0.155 

 (0.134) (0.134) (0.243) (0.148) 

PY2006 0.0623 0.102 -0.0526 0.192 

 (0.142) (0.147) (0.254) (0.160) 

PY2008 -0.125 -0.0569 -0.289 0.0377 

 (0.131) (0.132) (0.227) (0.146) 

PY2009 -0.0107 -0.0839 0.0357 -0.0454 

 (0.140) (0.148) (0.218) (0.162) 

PY2010 -0.261** -0.129 -0.495** -0.0871 

 (0.128) (0.142) (0.195) (0.157) 

PY2011 -0.387*** -0.389*** -0.583*** -0.266* 

 (0.116) (0.130) (0.175) (0.149) 

PY2012 -0.668*** -0.638*** -0.865*** -0.552*** 

 (0.118) (0.149) (0.173) (0.170) 

NEDD 0.147 -0.0694 0.0231 0.0217 

 (0.102) (0.101) (0.158) (0.123) 

lES  0.168***   

  (0.0149)   

Constant 1.595*** 1.418*** 1.702*** 1.626*** 

 (0.119) (0.117) (0.173) (0.169) 

Lnalpha 0.0456*** 0.00399 0.000654 0.0445*** 

 (0.00897) (0.00915) (0.0109) (0.0157) 

Observations 44,026 44,026 30,606 13,420 

Model GNBREG GNBREG GNBREG GNBREG 

Sample All All lES>0 lES=0 

Pseudo R2 0.0177 0.0227 0.0200 0.0236 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Note. Control variables were removed for the space constraint. The full regression table is available upon request. 
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