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Abstract Despite its importance and widespread
applications, the use of the Poincare map has remained
in its rudimentary stages since its proposition in the
nineteenth century and there exists no systematic
method to effectively obtain Poincare sections. Addi-
tionally, and due to its graphical structure, it has pre-
viously been very arduous to utilize Poincare maps
for high dimensional systems, and two- and three-
dimensional systems remain as its sole area of applica-
bility. In this study, a novel systematic geometrical-
statistical approach is proposed that is capable of
obtaining the effective Poincare sections regardless of
the attractor’s complexity and provides insight into the
entirety of the attractor’s structure. The presented algo-
rithm requires no prior knowledge of the attractor’s
dynamics or geometry and can be employed without
any involvement with the governing dynamical equa-
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tions. Several classical systems such as the Van der
Pol, Lorenz, and Rossler’s attractor are examined via
the proposed algorithm and the results are presented
and analyzed.
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Chaos

1 Introduction

Poincare maps are capable of providing insightful
graphical presentations of the qualitative behavior of
dynamical systems and ergo, are widely utilized in the
analysis of nonlinear dynamics. The simplicity of the
fundamental idea behind Poincare maps, intertwined
with its wide spectrum of applications, makes it one
of the critical tools in analyzing nonlinear dynamical
systems. Stability analysis of dynamical systems [12],
identification of quasiperiodic orbits [5,17], enhance-
ment of the quality of control algorithms [19], identi-
fication of limit cycles [16] and, the determination of
the regime of motion [2] are considered to be the main
utility of this tool.

Despite their importance and significant applica-
tions, there lacks a universally apposite and system-
atic method for the attainment of these maps. In fact,
the Poincare maps of the literature are always obtained
using rather arbitrary Poincare sections that are drawn
based on the visual perception of authors from the tra-
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jectories of interest. This lack of systematic method-
ology can cause issues and ambiguities in the analy-
sis of the behavior of complicated and unconventional
nonlinear systems since different Poincare sections can
highlight different behaviors. In fact, it is even pos-
sible to fabricate systems that demonstrate periodic
behavior for certain Poincare sections while illustrat-
ing chaotic behavior for alternative Poincare sections.
Additionally, due to their graphical nature, Poincare
maps have not previously been able to be used to
examine the behavior and dynamical characteristics of
high-dimensional systems. To resolve these fundamen-
tal deficiencies and limitations, a new approach toward
the efficient obtainment of effective Poincare sections
for general n-dimensional systems is required.

To propose a standard universal method that can pro-
vide effective Poincare sections, the fundamental idea
behind Poincare maps should be revisited. By defining
a section and obtaining the crossings of the trajectory
with the section, a Poincare map attempts to identify the
dynamical properties of the trajectory, or more accu-
rately, the attractor that is governing the motion. The
structure of the attractor can consist of one rotary flow
(such as the periodic motion of a linear harmonically
excited mass spring damper system), two flows (such
as the Lorenz strange attractor), or more flows (such
as the Rabinovich—Fabrikant attractor). Nearly all sta-
ble deterministic dynamical systems, from periodic to
chaotic, usually revolve around one or more specific
regions in their trajectory spaces due to the bounded-
ness of their motion. The part of the trajectory, in tra-
jectory space, that revolves around a specific region
is called a rotary flow in this paper. To examine the
dynamical properties of the attractor with some confi-
dence, it is essential to examine each rotary flow of the
attractor in detail. Additionally, examining regions of
each rotary flow with the highest concentration of tra-
jectory data will be particularly beneficial since it can
provide more information on the behavior of the system
when compared to alternative regions. Consequently,
a multi-section approach is critical as the number of
rotary flows and dimension of the system increases.

The algorithm of this paper relies upon a geometrical-
statistical approach for the identification of the princi-
pal portions of the trajectory to find adequate Poincare
sections. The first step of the algorithm is to calculate
the centers of curvature (COC) corresponding to each
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point of the trajectory to identify the rotary flows of the
attractor. This is motivated by the fact that an aggre-
gation of the COCs manifests the central region of the
rotary flow. Next, a clustering process is applied to the
COC data to identify the number of clusters (which is
the same as the number of rotary flows) and their cor-
responding centroids, the primary centroids. After the
identification of the rotary flows and their centroids,
which are in fact the centroids of the center of curva-
ture data, the trajectory is partitioned into subsets of the
original space using hyperplanes that are drawn based
on statistical orientation criteria. A clustering process
is performed on the trajectory data in each of those
subsets of the original space to identify the major com-
ponents of the flow and their corresponding centroids,
the secondary centroids. The optimal Poincare sections
of this algorithm are those that connect the primary
centroids to secondary centroids while maximizing the
orthogonality of the Poincare section with the flow in
an optimization problem.

In addition to its systematic approach, the advan-
tages of the proposed algorithm are twofold. First,
owing to the description of the trajectories in Euclidean
metric space, a geometrical logic can be extended to
high dimensional systems and is generalizable. Further-
more, the geometrical essence of the algorithm prevents
the necessity of rigorous feasibility conditions that will
inevitably arise when using analytical approaches. Sec-
ond, this geometrical foundation enables the attainment
of adequate Poincare sections regardless of the level
of sophistication of the governing dynamics since the
algorithm solely concentrates on the geometry of the
problem.

To demonstrate the effectiveness and capabilities of
the proposed algorithm, several complicated classical
systems are examined. This study begins with a con-
cise explanation of the algorithm and then applies it
to the Duffing oscillator [10], the Van der Pol oscilla-
tor [8], a PWL oscillator [15], a Lorenz attractor [18],
a Rabinovich—Fabrikant attractor [3], and Rossler’s
three- and four-dimensional attractors [1, 13] to system-
atically obtain effective Poincare maps. It is observed
that the proposed algorithm functions effectively with-
out any modifications for all the aforementioned sys-
tems without the necessity of any prior knowledge of
their dynamics or the geometry of their trajectories.
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2 Methodology

To gain an understanding of the structure of dynamical
attractors, Poincare maps are often utilized. The verac-
ity of this understanding is based upon the appropriate
selection of sections for the Poincare map that must
cross through the pivotal areas of the attractor. Before
delving into the definition and the procedure of iden-
tifying these areas, it is important to discuss the logic
behind their pivotal importance. By correctly detecting
these few areas, it is possible to moderately approxi-
mate the general qualitative geometry of the attractor
to the point of rough reconstruction. Consequently, by
meticulously analyzing the attractor using these areas,
the properties of the structure can be recognized. Fig-
ure 1 demonstrates the general procedure of the pro-
posed algorithm graphically. The algorithm consists of
aprimary cluster analysis on the centers of curvatures of
trajectory data, followed by the partitioning of its space
into apposite subsets of the original space. After obtain-
ing the subsets of the original space, a secondary cluster
analysis is performed on the trajectory data to identify
zones with highest data concentration. The algorithm
provides its sections by obtaining the plane (or hyper-
plane in case of high-dimensional systems) that crosses
through these zones while maximizing orthogonality
with the trajectory data.

2.1 Importance of centers of curvature

The first and most important pivotal area is related to
the COCs. A cluster of COCs suggests the rotation of
the attractor about that specific area and ergo, indicates
the distinct existence of a rotary flow. The quantity of
the COC clusters can determine the number of exist-
ing rotary flows. The corresponding cluster centroids,
named primary centroids, are used for the partitioning
of the n-dimensional space into n-dimensional subsets
of the original space for further manipulation. Addi-
tionally, the inclusion and recognition of primary cen-
troids in constructing the Poincare sections guarantees
the examination of every rotary flow.

The partitioning of the n-dimensional space into n-
dimensional subsets of the original space is performed
using the proposed uninvolved statistical method of
this study to simplify the determination of zones with
a high concentration of trajectory data. Note that the
n-dimensional space is partitioned via apposite hyper-

planes that each cross through one primary centroid
and in fact, cut the central area of their corresponding
rotary flow. Figure le demonstrates this partitioning.

The last pivotal area is the zones with a high concen-
tration of trajectory data in each partition. It is impor-
tant to note that identifying the centroids of trajectory
data clusters in each partition facilitates the analysis of
the structure of the attractor because a section that goes
through such a point provides maximal crossings and
consequently, can provide maximal information about
the attractor’s behavior. Figure 1g illustrates the sec-
ondary centroids in every partition.

2.1.1 Calculation of centers of curvature

The foundations of this algorithm rely on the compu-
tation and utilization of the COCs. Although there are
a variety of methods capable of computing the COC
of a known curve, this section will briefly discuss two
numerical approaches. The first approach, which was
used in this work, uses n points in the n-dimensional
space, to obtain the hyperplane they can define, and then
searches for a point on the hyperplane that is equidistant
to the n points. To facilitate the understanding of this
methodology, consider a trajectory in 3D space. Using
this approach, at every instance, 3 consecutive trajec-
tory data points are considered and the corresponding
plane that includes all three points is computed. More-
over, in that particular plane, the location of the center
of a circle that includes all three points is calculated.
The center of that circle, which lies inside the afore-
mentioned plane, is the COC of the 3 data points of
interest.

An alternative approach, which is similar to the one
used herein, uses n + 1 points instead and does not
define a plane. It tries to locate a point that is equidistant
to the n + 1 points in the n-dimensional space. In 3D,
this corresponds to finding the center of a sphere that
includes the 4 data points on its surface. This approach
is less suitable for trajectories that have a planar rota-
tion structure (e.g., the Lorenz attractor) but works well
when the attractor’s rotary flows are not flat. All the
corresponding computations can be done using a least-
square optimization. Due to using an optimization algo-
rithm, the process of finding the correct COC is tightly
related to the quantity and the distance of consecutive
trajectory points. A trajectory with rather distant con-
secutive data will usually result in poor approximations
of COCs.
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Fig. 1 The schematic procedure of the proposed algorithm for
a generated trajectory. Each subfigure demonstrates one of the
major steps in obtaining the optimal Poincare sections: a the
generated trajectory; b the COCs are computed and plotted as
grey dots with those within the limiting bounds of the trajectory
stored for further computation; ¢ a clustering algorithm is per-
formed and the COC data are categorized into two clusters where
each cluster is related to one rotary flow; d the centroid of each of
the clusters is identified, and each centroid roughly corresponds
to the center of its corresponding rotary flow; e based on this
study’s statistical method, the trajectory space has been parti-
tioned into subsets of the original space to facilitate the rest of
the process; f the trajectory data, in each partition, is segregated

It is important to reiterate that this study attempts to
use the most basic possible methodologies in its struc-
ture. This demonstrates the algorithm’s effectiveness
even when employing basic methodologies. However,
more advanced and problem-oriented methodologies
can readily be applied in the algorithm to improve its
output.

2.1.2 Cluster analysis of centers of curvature
Clustering is referred to the process in which data points

are segregated into groups that within each, they are
more similar to each other when compared to other
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into clusters using an additional cluster analysis to identify the
critical zones of trajectory data; g the centroids of the trajectory
data, referred to herein as the secondary centroids, are computed
for further analysis; h the trajectory data in the proximity of the
secondary centroids are selected and their average directionality
is computed; i the Poincare section is chosen so that it attempts
to go through the secondary centroid while being as close to its
corresponding primary centroid as possible and having a normal
vector that matches the average directionality vector of the prox-
imity data. Note that one Poincare section is indicated in (i) and
there would be 5 additional sections, one for each of the critical
zones indicated in (f)

groups. Its final goal is to form groups with similar
traits, properties, or characteristics from unsorted data.
In this study, clustering is used to segregate the COC
data points into different groups to identify the quan-
tity and center of rotary flows. Additionally, and after
partitioning the n-dimensional space into apposite n-
dimensional subsets of the original space, clustering
is performed on the trajectory data to find the pivotal
areas of the flow with a high concentration of data.
The clustering method that is employed in this study
is k-means [11], which is one of the most basic clus-
tering algorithms found in the literature. It attempts to
partition data into k clusters by assigning each data to
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the cluster with the closest mean. Due to its simplicity,
the clustering results are not always optimal.

An additional issue in cluster analysis lies in the
determination of the optimum number of clusters. Sev-
eral methods exist to find the optimum number of clus-
ters using the k-means clustering algorithm. In this
study, the silhouette score interpretation is used to find
the optimum number of clusters.

The optimal number of clusters can be calculated
before the execution of the cluster analysis using dif-
ferent methodologies such as the silhouette method,
the elbow method, the gap statistic, etc. Although these
methodologies have different approaches in obtaining
the adequate number of clusters, their results are usu-
ally in close match with each other when it comes to
continuous data. In case of high-dimensional systems,
the methodologies would work without any theoret-
ical issues since the underlying principles are inde-
pendent of dimensionality. Nevertheless, the computa-
tional cost of the cluster analysis of high-dimensional
systems is rather considerable and therefore, more effi-
cient options should be examined for these cases.

It should be noted that when using optimal cluster
number selection algorithms, as described in the paper,
the user will not miss any of the key features of the tra-
jectory’s dynamics. In contrast, if one were manually
choosing the centroids, it is likely one would miss cer-
tain regions of the dynamics. However, if only the num-
ber of the selected primary centroids are slightly fewer
than necessary, one may capture the dynamics if addi-
tional secondary centroids are chosen to compensate.
Alternatively, upon the selection of more primary cen-
troids, two separate issues might arise. The first issue
is that the computational cost of the algorithm will be
increased significantly. Additionally, having more pri-
mary centroids can be translated into having more par-
titions and consequently, tighter partitions. The intense
tightening of partitions is undesirable since it reduces
the amount of data per partition. This can negatively
affect the second clustering run (to find the secondary
centroids) and therefore, generate inadequate sections.
In the case of having only few more primary centroids
than the optimal number, no critical issues would arise,
but the number of Poincare maps would increase with-
out any additional insight into the dynamics.

Since the ultimate goal of this algorithm is to find
where the COCs are concentrated inside the trajectory,
a limiting bound is introduced to remove COC data
that are relatively far from the trajectory. Nevertheless,

for some geometrically specific cases, it is possible to
have no COC data in the limiting bounds. In that case, it
is recommended to use a coefficient of contraction that
scales the COCs to be in the same order as the trajectory
data. In the simulations of this study, the coefficient of
contraction is solely used for the PWL system and the
rest of the systems function well without using it.

2.2 Partitioning of the center of curvature data

As previously noted, the centroids of the COC clus-
ters are important and signify the centers of the trajec-
tory’s rotary flows. Nevertheless, to fully identify the
rotary flows and to obtain effective Poincare sections,
further information is required. To offer an in-depth
analysis of the flows, it is essential to identify the zones
with the highest data concentration in each rotary flow.
These zones will facilitate the obtaining of the effec-
tive Poincare sections since the effective Poincare sec-
tions are meant to identify and analyze each and every
rotary flow. In fact, an effective Poincare section crosses
through both the primary centroid and its correspond-
ing secondary centroid. However, before the secondary
centroids can be identified, it is essential to differenti-
ate the rotary flows from each other. This can be done
using numerous approaches but, in this paper, a parti-
tioning algorithm is used. This algorithm divides the
n-dimensional space into n-dimensional subsets of the
original space by introducing hyperplanes that cross
through the primary centroids. This partitioning facili-
tates the identification of the secondary centroids since
the cluster analysis that is meant to identify high data
concentration zones of each rotary flow is now con-
strained to be carried out in its corresponding subset
of the original space. To elucidate the necessity of this
step, the example of Fig. 1 can be revisited. In Fig. 1d
the primary centroids are identified, and the centers
of the rotary flows are determined. Nevertheless, it is
impractical to carry out cluster analysis on the trajec-
tory data as a whole since they would not provide the
zones of high data concentration that is desired. In fact,
by running the cluster analysis on the trajectory data
without partitioning, the secondary centroids will be
observed to be very close to the primary centroids,
which would not be useful. However, by partitioning
the space into adequate subsets of the original space,
as illustrated in Fig. le, it is possible to segregate the
trajectory data and then perform the secondary cluster
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analysis. As can be observed from Fig. 1f and g, the
results are in agreement with the required objective.

Many algorithms can be used to conduct the space
partitioning. This work uses a very rudimentary appr-
oach for obtaining the partitioned subsets of the original
space to demonstrate the robustness of the proposed
methodology.

After the identification of the m primary centroids
using the clustering algorithm, the n-dimensional space
is partitioned into m + 1 subsets of the original space
using apposite hyperplanes. As previously discussed,
each hyperplane goes through a primary centroid but
the orientation of the hyperplanes is determined using
a simple statistical approach. The idea behind this
approach is to avoid having overly compacted parti-
tions with relatively small sizes. This approach ensures
that there is enough trajectory data in each partition so
that the clustering algorithm can provide meaningful
secondary centroids. The approach can be stated as fol-
lows. Assume an n-dimensional space. The position of
the ith primary centroid can be represented as

Pl={di ¢5 ... a). (1)
where a subscript of one indicates the centroid being
primary and q} specifies the jth coordinate of the ith
centroid. To obtain the optimal orientation of the hyper-

plane in the form of ¢; = ¢ where ¢ is a constant, it is
possible to introduce the following parameters

o .
Agy =4t =4,

max{Aq;:}

q;" = W 2)

Bear in mind that to calculate Ag ; the primary cen-
troids need to be sorted for each j. That is to calculate
Aqi, the primary centroids must be sorted based on
the numerical value of their first coordinate and so on.
This is to ensure that for each coordinate, the primary
centroids are evaluated relative to their closest primary
centroids. By comparing the q?“’ values, it is possible
to obtain the least compacted orientation as

Optimum orientation is associated with

= min{q{*}. 3)
For example, if the optimum orientation index
is q;l“ = ¢ then the equation of the partition-

ing hyperplanes can be defined as q?,ly” erplane
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hyperpl .
al-qp’ """ = qf, etc.. The aforementioned app-

roach is useful when there are more than two primary
centroids in the analysis of the trajectory. Nevertheless,
in most classical examples (such as the Lorenz attrac-
tor) there are only two primary centroids. In that case,
the definition of q?“ changes to

gl = L “)

and the orientation will be determined as discussed.

To provide a graphical understanding to this orien-
tation criteria, it is beneficial to return to Fig. 1. As
it can be observed, the corresponding value of Ag 11 is
less compacted relative to qul, which means that upon
partitioning the space using x = c lines, the partitions
are less compacted than when compared to y = ¢ lines
that go through the primary centroids. This conclusion
is illustrated in the computation of q;.i“ and the corre-
sponding criteria.

It should be noted that if there are a large number
of primary centroids, the proposed methodology might
not provide the optimum results and more sophisticated
statistical methodologies might be required. Neverthe-
less, and as observed in the results section, this simple
method works very well, even for high dimensional
systems.

2.3 Orientation identification of trajectory data in the
adjacency of secondary centroids

After obtaining the primary and secondary centroids,
it is necessary to connect each primary centroid to the
corresponding secondary centroids in its partition to
obtain the effective Poincare sections. In general, infi-
nite hyperplanes can be proposed and further informa-
tion is needed to define the most effective Poincare sec-
tion. To address this issue, it is desired for the Poincare
section to cross through the secondary centroid while
maximizing the orthogonality of the section hyper-
plane with the average flow of trajectories in that area.
Therefore, the direction of the average flow in the area
adjacent to each secondary centroid is calculated and
then used as the normal vector for the Poincare section
(which is a plane in 3D systems and a hyperplane in
higher-dimensional systems).

Computing the direction of the average flow in the
region adjacent to each secondary centroid is not a
straightforward task. First, the adjacent region of the



Poincare maps: a modern systematic approach

secondary centroid must be defined. In this study, this
region is defined to be the space that its Euclidean dis-
tance from the secondary centroid is smaller than a pre-
determined value «. By this definition, for a 3D exam-
ple, all the trajectory data within a sphere of radius o
with its center on the corresponding secondary cen-
troid are included. The radius of this hyperspace (&)
is set to be equal to 30% of the length of the parti-
tion measured by the beginning of the partition to its
end toward the axes determined by the optimum orien-
tation. Bear in mind that this number can be altered
as desired by the user, but a much smaller number
might fail to capture the entirety of the regional flow
and alternatively, a much larger number will include
unrelated data. Nevertheless, for agile dynamics, it is
recommended to decrease this number to 10-15% as to
avoid abrupt directionality alterations of the flow near
the secondary centroids. Now, to compute the direction
of the average flow vector, the following expression
must be maximized.

N
S={> vV, )
i=1
where in the above expression, v; is defined as the vec-
tors that would be created upon connecting consecutive
trajectory data in the adjacent region. The vector V is
the average directionality vector that is found by max-
imizing S, and [-] represents the inner product.

To explain this simple methodology, it is beneficial
to revisit the objective. It is desirable to obtain the vec-
tor that indicates the average direction of the flow near
each secondary centroid. By using consecutive trajec-
tory data to create a number of small vectors, the flow
near each secondary centroid is now represented by
vectors. The inner product of two unit vectors is a mea-
sure of their relative orientation. Higher magnitudes of
the inner product suggest a similar orientation while
lower magnitudes suggest very different orientations.
The maximization of S means that the average direc-
tionality vector’s orientation V is most aligned with the
combination of all the vectors forming the flow in the
region near the secondary centroid.

2.4 The optimization process of Poincare sections

The simplest way to define a hyperplane is with a nor-
mal vector and one point that is on the plane. The

average directionality vector can be considered as the
normal vector for the Poincare section, however, since
the Poincare section should contain two points (both
the primary and secondary centroids), in general the
Poincare section is overconstrained. Therefore, in this
work, an optimization process was used to find the
Poincare section. The optimization process searched
for the Poincare section that has a normal vector clos-
est to the average directionality vector while having
the least Euclidean distance from the corresponding
primary and secondary centroids. In different geome-
tries, the degree of importance of each of the objectives
is different and consequently, it is rather beneficial to
weight the objectives.

This study uses a nonlinear least square algorithm
to solve this minimization problem. All the objective
functions in this paper are to be minimized and rep-
resent a minimization optimization problem. The first
objective function is defined as

OF;eCtign — (Vlreal _ V1)2 + o + (Vnreal _ VH)Z’
(6)

where Vi’e“l denotes the actual normal vector of the
Poincare section while V; shows the average direction-
ality vector obtained from the maximization of expres-
sion S. If the secondary centroids are presented as

Pi={wl w) ... wi} (7

Then the second and third objective functions can be
defined as

OF.Sgection = <(V1rm[ X wll) +...+ (Vnraﬂ X wlll) - D)zv (8)
OFgection = ((Vlrfa[ X C]i) tot (Vnreal X (1,'1) - D)z’ (9)

where D is the constant of the hyperplane if defined as

Equation of hyperplane :ajxy + axxs + ...apx, = D
(10)

By conducting the optimization to solve for V"¢
and D, the effective Poincare sections in this work
were obtained. The Poincare sections of this method are
obtained via the minimization of the objective functions
of Egs. (6, 7 8 and9) using a nonlinear solver. However,
these minimizations have underlying geometric inter-
pretations. Equation 6 ensures that the normal vector
of the hyperplane is as parallel to the local flow of the
trajectory as possible to maximize the orthogonality of
the resulting Poincare section with the flow. It is known
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from elementary geometry that a hyperplane can be
uniquely identified if the normal vector and a single
point on the plane are known. Nevertheless, in the case
of this problem, the methodology attempts to propose
a Poincare section that passes through both a primary
centroid and a secondary centroid. This is clearly an
over-constrained geometrical problem and therefore,
the resulting Poincare section is not unique from a rig-
orous mathematical point of view. However, since a
hyperplane that adequately satisfies all these condi-
tions usually exists, it can be argued that the result-
ing Poincare sections are qualitatively unique but due
to the over-constrained nature of the problem and the
employment of numerical nonlinear solvers, they might
demonstrate slight variations. However, to cope with
this issue, itis possible to assign different weights to the
objective function (usually assigning a higher weight
to Eq. (8) to strengthen the requirement of the inclu-
sion of the secondary centroid) to omit any concerns
regarding the computational issues and uniqueness of
the obtained Poincare sections.

2.5 Obtaining the Poincare map

After computing the appropriate Poincare sections, it
is necessary to obtain the Poincare maps. To do so, the
trajectory data are examined to spot intersections with
the Poincare sections and upon finding them, a linear
interpolation algorithm is used to find out the exact
position on the section. To find the intersections, the
positions are inserted into the equation of the hyper-
plane of the Poincare section and its sign is calculated.
This is demonstrated as

Trajectory Data = {y; ... yu} (11)
and
HS=aiy1+ay,+...+a,y, — D. (12)

A change in the hyperplane sign (HS) indicates the
crossing of the trajectory through the section and con-
sequently, the two points, one on each side of the hyper-
plane are stored. The linear interpolation algorithm
finds a point between these two points that lies on the
hyperplane. This is solved by converting this problem
into an optimization task. The first objective function
for this optimization task can be defined after the propo-
sition of the following parameters

B=D0Y — ¢, ..., ¥ — ¢, (13)
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A=—-D{ = Ci ..., ¥y — Gl (14)

where y” denotes the coordinates of the point before
the crossing and y“ represents the point after the cross-
ing. The point C is the desired point that lies within
the hyperplane and is the rough linear interpolation
between y® and y”.
| A-B

— 22 15
Map ||A||B| I ( )

This objective function ensures that the crossing
point is within the line that passes through points y“
and y”. The next objective function can be defined as

O F iy =V x C)+ ...+ (V! x Cy) = DI.
(16)

This objective function guarantees that the cross-
ing point lies in the previously obtained hyperplane
that defines the Poincare section. After obtaining the
corresponding crossings, it is required to express C
in the coordinates of the hyperplane. This facilitates
the graphical representation. For example, assume that
the system is 3 dimensional. The Poincare section is
a 2D plane in this space but if we look at the coordi-
nates of C alone, three variables can be observed. To
resolve this issue, a rotation of the plane is necessary to
make the plane parallel to one of the axes and omit the
corresponding coordinate. By doing so, in any dimen-
sion, the Poincare map is obtained and the problem is
solved. Figure 2 provides a schematic overview of the
proposed methodology and when combined with the
graphical aid of Fig. 1, paints a complete picture of the
algorithm’s structure.

3 Results

To illustrate the effectiveness and merits of the pro-
posed methodology, numerous classical nonlinear sys-
tems with varying behavior are examined. The dis-
cussed systems are two, three, and four-dimensional
but the methodology also functions for higher dimen-
sions.

3.1 2D attractors and the importance of an adequate
section

To demonstrate the capabilities and effectiveness of this
methodology, several systems will be studied and the
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Computing CoCs

Centers of curvatures are
calculated using the
methodologies of section
2.1.1

Y

Clustering CoCs

Cluster analysis is
performed to segregate the
CoC data into an optimal
number of clusters as
discussed in section 2.1.2

1

Obtaining Primary
Centroids

The centroids of the CoC
data clusters are
considered as primary
centroids

Partitioning the Space

The trajectory space is
partitioned into subsets to
facilitate the second
round of cluster analysis
as described in section 2.2

Clustering Partitioned
Trajectory Data

The trajectory data in each

partition is segregated into

clusters to obtain the highly
compacted zones

Obtaining Poincare Maps

The Poincare maps corresponding
to the computed Poincare sections
are calculated using the method
discussed in section 2.5

y

Obtaining Optimal Poincare
Sections

By using the optimization |«
scheme described in section
2.4 the Poincare sections are

computed.

Directionality Identification of
the Local Flow

The average directionality of the [

flow in the adjacency of the
secondary centroids is computed
as described in section 2.3

Obtaining Secondary
Centroids

The centroids of the
clustered trajectory data in
each partition are used as
secondary centroids

Fig. 2 Schematic view of the structure of the proposed method-
ology. Each block represents a necessary step in the process of
obtaining the adequate Poincare maps. The structure does notrely

examination will begin with 2-dimensional systems.
The graphical simplicity of 2D systems facilitates the
understanding of the procedure of this study while pro-
viding a basic insight into its necessity for systems
with complex behavior. Figure 3 illustrates the trajec-
tories of 3 important 2D systems and the corresponding
Poincare sections, which were systematically selected.
It can be visually confirmed that the Poincare sections
associated with the proposed algorithm examine the
attractors in detail and check all of their significant
components. By utilizing such an approach and obtain-
ing the corresponding Poincare maps, one can deci-
sively talk about the qualitative (and in some cases, even
quantitative) qualities of the attractor and its motion.
Figure 3a is a pedagogical trajectory, generated
specifically to illustrate the importance of sections
in examining the behavior of systems. As it can be
observed, the top half of the trajectory illustrates ape-
riodic motion while its lower half indicates periodic
motion. Consequently, an arbitrarily drawn Poincare
section (red section in this case) might not provide
valid interpretations of the dynamics of the system. In
contrast, the Poincare sections of this algorithm (black
sections in this case) will analyze all the pivotal com-
ponents of the trajectory and provide insightful and
correct interpretations. They even go as far as identify-
ing the number of rotary flows and their centroids. The
Duffing oscillator [10] and the Van der Pol oscillator
[8] are also examined in Fig. 3 to further illustrate the
capabilities of the proposed algorithm. The Van der Pol
oscillator has the general formulation of study [8] with

on any specific computational tools or methods and the details
of this approach can be easily modified or altered to better fit the
problem at hand

parameters ¢ = 0.5, B = 1 and w = 1. The Duff-
ing oscillator follows the format provided in study [10]
with parameters § = 0.02, 1 = 1,2 =5,y = 8 and
2 =0.5.

3.2 3D attractors and the significance of the
geometrical approach

To elucidate the capabilities of this algorithm in treating
all classes of systems, a number of 3D systems are dis-
cussed and examined. The Lorenz attractor is amongst
the most investigated systems in chaos theory, and it is
known that for certain parameters, the system falls into
chaos [9] . The equation governing the motion of the
Lorenz attractor is

x=o0(y—x)
y=x(p—2)—Yy (17)
z=xy— Bz

where 0 = 10, p =28 and 8 = % for the simulations
of this paper. Figure 5 illustrates the corresponding tra-
jectory of the steady-state motion of this system and the
systematically constructed Poincare sections. It should
be noted that, the algorithm has identified the two rotary
flows and drawn sections that cross all the important
segments of the flow. The corresponding Poincare maps
are also provided, which clearly illustrate the aperiodic
motion. The point on the origin can be observed in every
Poincare map of this paper but it should be noted that
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X Primary centroid ¢ Secondary centroid

——— Trajectory data

—— Poincare section

(a) Pedagogical system

Fig. 3 The Poincare sections are obtained for 3 important 2D
attractors using the proposed algorithm: (a) the pedagogical sys-
tem that illustrates different regimes of motion in different areas
and the sensitivity of the interpretation of the qualitative behav-
ior of the system to the geometry of the section ; (b) the trajec-

this point is included in the Poincare map data due to
an intended numerical procedure and does not actually
belong to the Poincare map.

The next system of interest is Rossler’s 3D attrac-
tor [14] which is known to be the simplest continuous
system that can demonstrate chaotic motion. Neverthe-
less, the geometry of this attractor is different from that
of the Lorenz and consequently, can be a good candi-
date for further examination of the effectiveness of this
algorithm. The equation governing the motion of the
Rossler’s attractor is

r==(+2)
5):x—|—ay (18)
z=b+x(z—0)

where a = 0.1, b = 0.5 and ¢ = 14 for the simula-
tions of this paper. Figure 5 shows Rossler’s 3D attrac-
tor combined with the Poincare sections of this study.
As it can be observed again, the sections are appropri-
ately drawn and explore all the main segments of the
flow. Aperiodicity can be observed in this motion as
expected.

An alternative regime of motion that bears dis-
tinct qualitative behavior is quasi-periodicity. Quasi-
periodic motion can be observed in a variety of dynam-
ical systems, for example the orbits of certain celes-
tial objects. More specifically, the restricted three body
problem, discussed in study [7] can be considered as
a good example to check the accuracy of the proposed
methodology.
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(b) Duffing oscillator

(¢) Van der Pol oscillator

tory of the Duffing oscillator corresponding to its steady-state
motion and the Poincare sections of the proposed algorithm; (c)
the trajectory of the Van der Pol oscillator corresponding to its
steady-state motion and the Poincare sections of the proposed
algorithm

This class of systems usually has a trajectory in the
form of a torus as depicted in Fig. 6. Additionally, it is
known that the Poincare maps corresponding to quasi-
periodic motion have continuously varying profiles.
This can be readily observed in Fig. 6 as the method-
ology of this paper obtains optimal Poincare sections
and computes the corresponding Poincare maps. As it
can be seen, the Poincare maps all have a continuously
varying profile with a defined shape signifies the qual-
itative quasi-periodicity of the motion.

The last 3D system of interest is the Rabinovich—
Fabrikant attractor [3] which is known to illustrate a
wide spectrum of motions including chaotic, periodic,
strange nonchaotic, and transient chaotic. The equa-
tion governing the motion of the Rabinovich—Fabrikant
attractor is

¥ =y@z—14+x?+ax
y=xBz+1—-x%+ay (19)
z=-=2z(b+xy)

where a = 0.1 and b = 0.2875 for the simulations of
this paper. In this study, the parameters of this system
are tuned to exhibit strange nonchaotic behavior that
is seldom observed. Figure 7 illustrates the trajectory
of this system and the provided Poincare sections. It
should be noted that, the geometry of this attractor is
fundamentally different from previously presented sys-
tems but nevertheless, the algorithm works flawlessly.
The computed Poincare sections cross the attractor in
all of its main segments and the aperiodicity of the
behavior is apparent in the Poincare maps. Moreover,
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Fig. 4 The Poincare maps are obtained for the Lorenz attractor
using the proposed algorithm: (a) the trajectory is depicted with
the COC data that is within the limiting bounds and it can be
observed that the COC data are concentrated in the centers of
the rotary flows; (b) cluster analysis is performed and the COC
data are segregated into two different clusters where each of their
centroids is roughly located in the center of the rotary flows; (c)
the corresponding Poincare sections are drawn and can exam-

the degree of aperiodicity is observed to be different in
each section.

3.3 4D attractors and the extendibility of the
algorithm to high dimensional systems

The proposed algorithm of this study can systemati-
cally provide effective Poincare sections irrespective
of the dimensionality due to its use of fundamental
geometry. To assess this capability, Rossler’s 4D attrac-
tor [13] is examined and, the first 3D Poincare map is
illustrated in Fig. 8. The equation governing the motion

50
0
0 0
) \w@
0 0
-15 -10 -5 0 -10 -5 0
50 40
% o IO
(@)
0 20 @
(]
-50 0
-40 =20 0 20 0 5 10
40 40 O
gy,
20 20 %
0 0 =
-40 20 -10 -5 0

(d) Poincare maps

ine all the pivotal sections of the trajectory; their corresponding
Poincare maps can provide insightful information on the struc-
ture and behavior of the attractor and its periodicity; (d) the cor-
responding Poincare maps of the Lorenz attractor, where the red
dots represent the last three intersections of the trajectory data
with the Poincare section from which a state of aperiodicity can
be concluded

of Rossler’s 4D (hyperchaotic) attractor is

x=—(y+2)
yoerartw (20)
z=b+xz

w=—cz+dw

where a = 0.25,b = 2.2, ¢ = 0.5, and d = 0.05
for the simulations of this paper. It is known that the
attractor of interest demonstrates chaotic motion and
the correspondingly obtained Poincare maps confirm
this dynamic behavior.

An alternative 4D system that is particularly inter-
esting is the 2DOF mass-spring-damper system sub-
ject to harmonic excitation and Coulomb friction and
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(a) COCs

—Trajectory Data

e Cluster 1 of COCs| )
Cluster 2 of COCs| Ry

* Cluster Centroids

(¢) Poincare sections

Fig. 5 The Poincare maps are obtained for the Rossler attrac-
tor using the proposed algorithm: (a) the trajectory is depicted
with the COC data that is within the limiting bounds and it can
be observed that the COC data are relatively concentrated in the
centers of the rotary flows; (b) cluster analysis is performed and
the COC data are segregated into two different clusters where
each of their centroids is roughly located in the center of the
rotary flows; (c) the corresponding Poincare sections are drawn

undergoing intermittent contact. The dynamics of this
system is extensively discussed in the study [15] and
the corresponding data are used here for convenience.
The system can be reduced to four differential equa-
tions of order one and consequently, the corresponding
full trajectory cannot be visualized. It is noteworthy to
mention that this system can also be considered as five-
dimensional if one takes into account time as a variable
but since time, as a system variable, is monotonically
increasing in trajectory space, its inclusion would not
add any insight into the analysis and solely hinders the
effective utilization of the Poincare map. Since the x —y
coordinates represent the motion of the first mass and
the z — w coordinates represent the motion of the sec-
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(d) Poincare maps

and can examine all the pivotal sections of the trajectory; their
corresponding Poincare maps can provide insightful information
on the structure and behavior of the attractor and its periodicity;
(d) the corresponding Poincare maps of the Rossler attractor,
where the red dots represent the last three intersections of the
trajectory data with the Poincare section from which a state of
aperiodicity can be concluded

ond, the trajectories in x — y represent the motion of
the first mass and the trajectories in 7 — w represents
the motion of the second. It is important to note that,
such physical interpretation is not always accessible for
high-dimensional systems. Consequently, it would be
interesting to see the Poincare map of this 4D system
and compare it with the 2D trajectories of interest. Fig-
ure 9 illustrates this matter and it can be observed that
the aperiodic motion is apparent in the Poincare maps.
However, the detection of the aperiodicity of the motion
is rather difficult to discern from its time response since
the motion seems to be pseudo-periodic.
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Fig. 6 The Poincare maps are obtained for a torus trajectory
using the proposed algorithm: a the trajectory is depicted with
the COC data that is within the limiting bounds and it can be
observed that the COC data are relatively concentrated in the
centers of the rotary flows; b cluster analysis is performed and
the COC data are segregated into two different clusters where
each of their centroids is roughly located in the center of the
rotary flows; ¢ the corresponding Poincare sections are drawn

3.4 5D systems and statistical approaches

It is beneficial to conclude the examples of this paper
with a 5D system to demonstrate the capabilities of the
proposed methodology for higher dimensions. A 5D
system has a 4D Poincare map that cannot be illustrated
graphically. Nevertheless, it is possible to extract the
Poincare map data and verify the regime of motion
using statistical methods. The 5D example of this paper
is borrowed from study [4] and is an extension of the
famous Lorenz attractor. The governing equation of the
system of interest is

58 8%

4
-6 -4

10 5 0 15 -10 5 0
2 10

(d) Poincare maps

and can examine all the pivotal sections of the trajectory; their
corresponding Poincare maps can provide insightful information
on the structure and behavior of the attractor and its periodic-
ity; d the corresponding Poincare maps of the torus trajectory,
where the red dots represent the last three intersections of the
trajectory data with the Poincare section from which a state of
quasi-periodicity can be concluded

XxX=0c(y—x)+u

=x(p—2z)—y-—v

xy — Bz (21)
u=—xz+ku

ISTIRESN

v=kyy

whereo = 10, p =28, 8 = 3, ky =2 and k = 4.
After applying the methodology to the trajectory of this
system, the Poincare map data corresponding to one of
the Poincare sections is presented in Table 1.
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Fig. 7 The Poincare maps are obtained for the Rabinovich—
Fabrikant attractor using the proposed algorithm: (a) the trajec-
tory is depicted with the COC data that is within the limiting
bounds and it can be observed that the COC data are relatively
concentrated in the centers of the rotary flows; (b) cluster analysis
is performed and the COC data are segregated into two differ-
ent clusters where each of their centroids is roughly located in
the center of the rotary flows; (c) the corresponding Poincare

As it can be seen, the crossings do not show any
repetitions and the Poincare map indicates aperiodic
motion. It is also known from study [4] that this sys-
tem is chaotic (or to be more accurate, hyperchaotic)
and therefore, the results of the proposed methodol-
ogy are in full agreement with the literature. The last
three rows are highlighted as they are the most recent
crossings and therefore, they should be compared with
previous entries for any matchings. The x"y’z'u’ is the

local coordinate system of the Poincare section.
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(d) Poincare maps

sections are drawn and can examine all the pivotal sections of
the trajectory; their corresponding Poincare maps can provide
insightful information on the structure and behavior of the attrac-
tor and its periodicity; (d) the corresponding Poincare maps of
the Rabinovich—Fabrikant attractor, where the red dots represent
the last three intersections of the trajectory data with the Poincare
section from which a state of aperiodicity can be concluded

4 Discussion
4.1 Variations and interpretations

The structure of the proposed algorithm of this study
is very flexible and each of the utilized methods can be
altered, substituted, and even reconstructed. The cur-
rent methods are chosen to be as simple as possible to
illustrate that even upon using such basic approaches,
the method is quite effective. Nevertheless, it is possi-
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Table 1 Location of Poincare section crossings for the 5D system indicate the aperiodicity of the motion

!

!

!

!

Data No. X y Z u
1 —2.1454 9.8910 142.0184 —15.8692
2 —4.5678 28.7168 24.7632 —28.8906
3 7.3056 18.0953 —11.4636 —23.5760
4 —0.1015 44.2351 —174.9975 8.3729
5 2.4730 18.3785 88.4703 —26.7428
6 —1.9820 25.0820 —7.0682 —16.5508
7 5.4818 14.4770 —31.6606 —12.0346
8 —3.1961 30.2077 41.9489 —2.1878
9 —2.2562 13.2707 82.5215 —9.5441
10 —6.9411 19.8234 2.5983 0.0031
11 —0.3254 15.0098 141.4885 —25.2838
12 —5.4839 20.6275 58.6156 —18.8065
13 —1.3698 17.5126 56.0378 —18.5235
14 —4.1330 19.2838 —72.9641 1.6655
15 2.1076 17.8900 26.5670 —13.2827
300
200
N
100
0
100
] 50
-100 -150 -100
(a) x-y-z trajectory
60
40
E
20
0 |
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Fig. 8 The Poincare maps obtained for the 4D Rossler attrac-
tor using the proposed algorithm: (a) the x — y — z components
of the trajectory are depicted and the aperiodic motion of the
system can be observed; (b) the x — y — w components of the
trajectory are illustrated to further signify the aperiodic motion of

50 50

(b) x-y-w trajectory

(c) 3D Poincare maps

the attractor; (c) the corresponding 3D Poincare maps of the 4D
Rossler attractor are obtained and the aperiodicity is apparent;
the red dots represent the last three intersections of the trajectory
with their corresponding Poincare sections and are highlighted
to emphasize the aperiodicity of the motion
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Fig. 9 The Poincare maps are obtained for the 4D PWL attrac-
tor using the proposed algorithm; (a) the x — y components of
the trajectory are depicted but the aperiodic motion of the sys-
tem cannot be conclusively observed; (b) the z — w components
of the trajectory are illustrated to demonstrate the motion of the
second mass; (c) the time response of the system is shown for

ble to employ more sophisticated methods to elevate the
level of accuracy or to orient the algorithm to a specific
objective. For example, the clustering algorithm that is
used in this work is the k-means clustering method [11]
but upon using a more advanced clustering algorithm,
such as the DBSCAN [6], it is possible to perform this
process with more accuracy and even omit the outlier
data to enhance the quality of the analysis. The statis-
tical partitioning method of this algorithm can also be
readily modified. For instance, the rudimentary statis-
tical criteria of this study can be replaced by a more
complex statistical method to obtain a more efficient
partitioning algorithm. The focus of this study is on
dynamical attractors using apposite Poincare sections
but does not restrict researchers to specific methodolo-
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x and z and the aperiodicity is not apparent; (d) the correspond-
ing 3D Poincare maps of the 4D PWL attractor are obtained and
the aperiodicity is apparent; the red dots represent the last three
intersections of the trajectory with their corresponding Poincare
sections and are highlighted to emphasize the aperiodicity of the
motion

gies that they need to employ to obtain these Poincare
sections.

An additional topic, worthy of discussion, revolves
around the relatively large number of sections. It might
be thought that upon using a relatively large number
of arbitrary sections, the structure of the attractor will
be identified. Although this may be true for attractors
with simple geometries, this randomized methodology
faces critical issues in examining complex geometries.
Bear in mind that the proposed algorithm evaluates all
the rotary flows of the trajectory and investigates all its
components in detail. This detailed systematic analysis
was the primary intention of this algorithm that an arbi-
trary process of sectioning cannot match. Additionally,
in the case of high dimensional systems, the problem
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with arbitrary sections will be compounded since there
would be no graphical basis for the selection.

An alternative discussion that might appear very
beneficial is the difference between chaos and ape-
riodicity and the capability of conventional Poincare
maps in determining each. Chaos is strictly defined as
the exponential divergence of infinitesimally close tra-
jectories in a bounded space while aperiodicity solely
indicates a lack of periodic motion. In the 3D exam-
ples of this paper, Lorenz and Rossler’s attractor were
in fact, chaotic but the Rabinovich—Fabrikant attractor
is nonchaotic while being strange and aperiodic. It is
noteworthy to state that, despite the wide utilization
of Poincare maps for chaos detection, this tool is only
meant to examine periodicity and the existence of chaos
should be separately evaluated using Lyapunov expo-
nents. In this paper, the Poincare maps indicate that all
the 3D examples are aperiodic but among them, only
Lorenz and Rossler are chaotic and the Rabinovich—
Fabrikant attractor is nonchaotic.

Additionally, it is impractical to identify chaos using
a single Poincare section since the exponential diver-
gence is not evident in a single section. To elucidate this
matter, assume that a single Poincare section crosses
a flow of trajectory data that corresponds to the fold-
ing stage of the chaotic motion of the corresponding
attractor. In this particular section, it could be observed
that all the crossings are rather compacted and differ
very slightly. Nevertheless, it could be possible, and
even intriguing, to assess the existence of chaos by the
examination of Poincare map data of two consecutive
sections in one stage.

It is noteworthy to state that the identification of
aperiodic motion is much more apparent using a tra-
jectory representation. The reason behind this conve-
nience lies in the fact that in the graphical represen-
tation of one variable versus time, a long period is
hardly distinguishable from pseudo-periodicity (when
the motion is always very close to a periodic motion but
has slight divergences, e.g., the Rabinovich—Fabrikant
attractor). Nevertheless, in a trajectory representation,
all the divergences of all the state variables are com-
bined and the aperiodicity is more apparent. Conse-
quently, a Poincare map can easily detect this aperiod-
icity.

An interesting manipulation of the structure of the
current algorithm is to replace the idea of using simple
hyperplanes as Poincare sections with more sophisti-
cated hypersurfaces. The utilization of a hypersurface

can ensure the satisfaction of all the Poincare section
objectives and instead of finding a close answer, the
algorithm can satisfy all the objectives simultaneously.
That is, the hypersurface can go through both the pri-
mary and secondary centroids while being orthogo-
nal to the average directionality vector. However, this
approach substantially increases the level of computa-
tional effort and is only needed when the trajectory is
exceptionally sophisticated.

4.2 Limitations

Due to the data-driven structure of the proposed
methodology, the quality of the provided data criti-
cally affects the resulting Poincare maps. This sec-
tion is devoted to discussing the possible issues and
limitations that may influence this methodology and
approaches that are available to bypass them.

The sampling rate of the flow is amongst the most
influential properties and directly affects the quality of
the resulting Poincare maps. The effects of sampling
rate can be classified into two categories and discussed
separately. The first category is concerned with obtain-
ing the mapping after computing the trajectory and the
Poincare section. In this case, it should be stated that
a low sampling rate can exacerbate the accuracy of the
Poincare maps to the point that the results are false.
Nevertheless, this is not an issue specific to the pro-
posed methodology and is the case for any numerical
method that computes the Poincare map from trajectory
data and a known section.

Alternatively, the second category is related to the
computation of the Poincare section from the trajec-
tory’s raw data. The low sampling rate in this case
will not significantly affect the clustering algorithms
but might damage the quality of obtained centers of
curvatures (CoCs) and ergo, mitigate the methodol-
ogy’s effectiveness. In contrast, the amount of data (as
opposed to the sampling rate) is a significant factor in
the cluster analysis of this methodology and a few thou-
sand points is usually the minimum required dataset
size. Moreover, the amount of data must be increased
with an increase in dimensionality of the system to
maintain the accuracy of the cluster analysis.

To demonstrate the effectiveness of the sampling
rate in the calculation of the Poincare maps, the exam-
ple of Fig. (6) is reconstructed using two different sam-
pling rates for the case of a torus with periodic behavior.
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Fig. 10 The Poincare maps are obtained for the periodic torus
trajectory using the proposed algorithm; a the resulting Poincare
map for the system with a time increment of 0.01 seconds result-
ing in a very poor Poincare map; b the resulting Poincare map
for the system with a time increment of 0.0005 seconds resulting

In the first scenario, the sampling rate is low and as it
can be seen in Fig. (10a), the Poincare map (of one of
the sections) falsely indicates a quasi-periodic motion.
Nevertheless, by increasing the sampling rate to a rea-
sonable value for this system, it can be observed that
the system is clearly periodic in Fig. (10b). Notice that
due to a change in the distribution of data, the Poincare
sections also change and therefore, the Poincare maps
are different. An additional insight that can be gained
from this example is when one really zooms in on Fig.
(10b) at a data point. This can be seen in Fig. (10c) the
Poincare map data do not exactly coincide and there are
slight variations in them even in the case of a decent
sampling rate. These slight variations are the result of
the implementation of the final linear interpolation to
obtain the Poincare map data. Note that the two points
that are right before and after the Poincare section are
not identical at every iteration of the crossing. This,
combined with the fact that the trajectory is not neces-
sarily precisely a straight line near the section, causes
these slight variations.

The next property of the raw data is the sampling
uniformity. Contrary to the sampling rate, the sam-
pling uniformity would not critically affect the out-
come of this method unless its non-uniformity is rather
extreme to the point that certain parts of the dynam-
ics are neglected. Nevertheless, the non-uniformity of
the raw data can be effective if the raw data are those
that are in the immediate adjacency of the Poincare
section. This means that if the data points that are just
before and after the Poincare sections are non-uniform
in a way that they are very close (and therefore with a

@ Springer

in a very accurate Poincare map indicating the periodic nature
of the motion; ¢ the magnified view of the Poincare map with
0.0005 seconds time increment indicating slight variations as a
result of numerical error

higher accuracy), the resulting Poincare maps are more
reliable and accurate. In contrast, if that non-uniformity
causes the data in the adjacency of the Poincare section
to be far apart, the quality of the Poincare sections is
effectively reduced.

Finally, the proposed methodology might face cer-
tain issues if implemented on dynamical systems with
discontinuous trajectories. Although this class of sys-
tems are rarely met in the world of engineering and
usually belong to specific areas of mathematics, it is
beneficial to address the possible issues for the sake of
completeness. Initially, the discontinuity of the trajec-
tory might undermine the quality of the CoCs signifi-
cantly because the CoC profile will no longer be contin-
uous. Furthermore, the Poincare sections are designed
to pass through the primary and secondary centroids.
The primary centroids usually have no part of the tra-
jectory included and the main crossing of the trajec-
tory and the section occurs at the secondary centroid.
In the case of discontinuous trajectories, the secondary
centroids might not also be where the trajectory data
are aggregated but somewhere between them and the
level of crossings, and consequently, the quality of the
Poincare map, might drop.

5 Conclusion

This paper proposes a robust and effective methodol-
ogy for selecting Poincare sections for dynamical sys-
tems that can examine the entirety of the trajectory and
are effective irrespective of the level of the complexity
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of the trajectory’s geometry or its governing equations
of motion. The methodology of this paper utilizes a
geometrical-statistical approach to identify the struc-
ture of the trajectory to the point of rough reconstruc-
tion by determining the centers of rotary flows and the
zones with the highest data concentration in each rotary
flow. It then obtains a few Poincare sections that ana-
lyze the dynamical system in full without missing any
major aspect of it.

to demonstrate the strength of this methodology in
treating complicated nonlinear systems, various classi-
cal systems are examined, and the results are in agree-
ment with existing knowledge. The systems studied
include Lorenz, Rossler, Rabinovich—Fabrikant, Van
der Pol, and the Duffing oscillator. It is also crucial
to state that the structure of this methodology can be
easily reconstructed or modified to further align it with
the requirements of specific problems. In fact, the algo-
rithms used in this paper are selected to be the simplest
and the most rudimentary of their kind to offer a basic
understanding of the methodology and to signify its
effectiveness despite using basic tools.

Funding This paper is based on work partially supported by the
National Science Foundation (United States) under Grant No.
1902408, program manager Dr. Harry Dankowicz, and the Min-
istry of Science and Technology (Taiwan, R.O.C) under Grant
No. MOST 109-2222-E-007-006-MY3. Any opinions, findings,
and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of
the National Science Foundation and the Ministry of Science and
Technology.

Data Availability All the systems discussed in this work and the
numerical values corresponding to their parameters are offered
in the supplementary file. Additionally, the code for reproducing
all the analysis is also attached, and can be used to investigate
other systems as well.

Code availability The code for the proposed algorithm used
to generate results in this work is also offered. The code is capa-
ble of treating all the systems that are compatible with the stan-
dard formulation used in this paper and can be downloaded from
here. Please have in mind that improper choice of built-in param-
eters can result in erroneous results or syntax errors. The code
can be downloaded from the resources section of the Nonlinear
Dynamics and Vibration Laboratory’s website at The Ohio State
University.

Declarations

Conflicts of interest The authors have no conflicts of interest to
declare that are relevant to the content of this article.

Consent to participate All the authors express their consent.
Ethics approval Not applicable

Consent for publication All the authors express their consent
for the publication of this manuscript.

References

1. Barrio, R., Martinez, M.A., Serrano, S., Wilczak, D.: When
chaos meets hyperchaos: 4d rossler model. Phys. Lett. A
379(38), 2300-2305 (2015)

2. Brindley, J., Kapitaniak, T., El Naschie, M.: Analytical con-
ditions for strange chaotic and nonchaotic attractors of the
quasiperiodically forced Van der Pol equation. Phys. D Non-
linear Phenom. 51(1-3), 28-38 (1991)

3. Danca, M.F.,, Kuznetsov, N.: Hidden strange nonchaotic
attractors. Mathematics 9(6), 652 (2021)

4. Hu, G.: Generating hyperchaotic attractors with three pos-
itive lyapunov exponents via state feedback control. Int. J.
Bifurc. Chaos 19(02), 651-660 (2009)

5. Kaas-Petersen, C.: Computation of quasi-periodic solutions
of forced dissipative systems. J. Comput. Phys. 58(3), 395—
408 (1985)

6. Khan, K., Rehman, S.U., Aziz, K., Fong, S., Sarasvady, S.:
DBSCAN: past, present and future. In: The fifth interna-
tional conference on the applications of digital informa-
tion and web technologies (ICADIWT 2014), pp. 232-238.
(2014)

7. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple poincare
sections method for finding the quasiperiodic orbits of the
restricted three body problem. Celest. Mech. Dyn. Astron.
112(1), 47-74 (2012)

8. Ku, Y., Sun, X.: Chaos in van der pol’s equation. J. Frankl.
Inst. 327(2), 197-207 (1990)

9. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci.
20(2), 130-141 (1963)

10. Luo, A.C., Han, R.P.: A quantitative stability and bifurcation
analyses of the generalized duffing oscillator with strong
nonlinearity. J. Frankl. Inst. 334(3), 447-459 (1997)

11. MacQueen, J., et al.: Some methods for classification and
analysis of multivariate observations. In: Proceedings of the
fifth berkeley symposium on mathematical statistics and
probability, Oakland, CA, USA. 281-297. (1967)

@ Springer



A. Shahhosseini et al.

12.

13.

14.

15.

16.

17.

18.

Month, L., Rand, R.H.: An application of the Poincare map
to the stability of nonlinear normal modes (1980)

Rossler, O.: An equation for hyperchaos. Phys. Lett. A 71(2—
3), 155-157 (1979)

Rossler, O.E.: An equation for continuous chaos. Phys. Lett.
A 57(5), 397-398 (1976)

Shahhosseini, A., Tien, M.H., D’Souza, K.: Efficient hybrid
symbolic-numeric computational method for piecewise lin-
ear systems with Coulomb friction. Available at SSRN
3940122 (2021)

Strogatz, S.H.: Nonlinear dynamics and chaos: with applica-
tions to physics, biology, chemistry, and engineering. CRC
Press, Boca Raton, Florida (2018)

Tricoche, X., Schlei, W., Howell, K.C.: Extraction and visu-
alization of Poincare map topology for spacecraft trajectory
design. IEEE Trans. Vis. Comput. Gr. 27(2), 765-774 (2020)
Tucker, W.: The lorenz attractor exists. C. R. de I’Acad des
Sci. Ser. I-Math. 328(12), 1197-1202 (1999)

@ Springer

19. Znegui, W., Gritli, H., Belghith, S.: Stabilization of the
passive walking dynamics of the compass-gait biped robot
by developing the analytical expression of the controlled
Poincaré map. Nonlinear Dyn. 101(2), 1061-1091 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor holds exclusive rights to this arti-
cle under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such
publishing agreement and applicable law.



	Poincare maps: a modern systematic approach toward obtaining effective sections
	Abstract
	1 Introduction
	2 Methodology
	2.1 Importance of centers of curvature
	2.1.1 Calculation of centers of curvature
	2.1.2 Cluster analysis of centers of curvature

	2.2 Partitioning of the center of curvature data
	2.3 Orientation identification of trajectory data in the adjacency of secondary centroids
	2.4 The optimization process of Poincare sections
	2.5 Obtaining the Poincare map

	3 Results
	3.1 2D attractors and the importance of an adequate section
	3.2 3D attractors and the significance of the geometrical approach
	3.3 4D attractors and the extendibility of the algorithm to high dimensional systems
	3.4 5D systems and statistical approaches

	4 Discussion
	4.1 Variations and interpretations
	4.2 Limitations

	5 Conclusion
	References




