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ABSTRACT
We consider the approximability of constraint satisfaction problems

in the streaming setting. For every constraint satisfaction problem

(CSP) on n variables taking values in {0, . . . ,q − 1}, we prove that
improving over the trivial approximability by a factor of q requires

Ω(n) space even on instances withO(n) constraints.We also identify

a broad subclass of problems for which any improvement over the

trivial approximability requires Ω(n) space. The key technical core

is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q
problem, which is the Max CSP problem where every constraint is

given by a system of k − 1 linear equations mod q over k variables.

Our work builds on and extends the breakthrough work of

Kapralov and Krachun (Proc. STOC 2019) who showed a linear

lower bound on any non-trivial approximation of the MaxCut prob-

lem in graphs. MaxCut corresponds roughly to the case of Max
k-LIN-mod q with k = q = 2. For general CSPs in the streaming

setting, prior results only yielded Ω(
√
n) space bounds. In particular

no linear space lower bound was known for an approximation fac-

tor less than 1/2 for any CSP. Extending the work of Kapralov and

Krachun to Max k-LIN-mod q to k > 2 and q > 2 (while getting

optimal hardness results) is the main technical contribution of this

work. Each one of these extensions provides non-trivial technical

challenges that we overcome in this work.
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1 INTRODUCTION
In this work we consider the approximability of constraint satisfac-
tion problems (CSPs) by streaming algorithms with sublinear space.

We give tight inapproximability results for a broad class of CSPs,

while giving somewhat weaker bounds on the approximability of

every CSP. We introduce these terms below.

1.1 Background
We consider the general class of constraint satisfaction problems

with finite constraints over finite-valued variables. A problem in

this class, denotedMax-CSP(F ), is given by positive integers q and

k and a family of functions F ⊆ { f : Zkq → {0, 1}}. An instance of
the problem consists ofm constraints placed onn variables that take
values in the set Zq = {0, . . . ,q−1}, where each constraint is given

by a function f ∈ F and k distinct indices of variables j1, . . . , jk ∈
[n]. Given an instance Ψ ofMax-CSP(F ), the goal is to compute the

value valΨ defined to be the maximum, over all assignments to n
variables, of the fraction of constraints satisfied by the assignment.

For α ∈ [0, 1], the goal of the α-approximate version of the problem

is to compute an estimate η such that α · valΨ ≤ η ≤ valΨ .
In this work we consider the space complexity of approximating

Max-CSP(F ) by a single pass (potentially randomized) stream-

ing algorithm that is presented the instance Ψ one constraint at

a time. We consider “non-trivial” approximation algorithms for

Max-CSP(F ), where we first dismiss two notions of “triviality”.

First note that since we only consider space restrictions but not
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time restrictions, one can sample O(n) constraints of Ψ and solve

the Max-CSP(F ) problem on the sampled constraint optimally to

get a (1 − ε)-approximation algorithm for every constant ε > 0

in Õ(n) space. Thus for this paper we view non-trivial algorithms

to be those that run in o(n) space.1 The other form of “triviality”

we dismiss is in the approximation factor. Given a family F , let

ρmin(F ) denote the infimum, over all instances Ψ of Max-CSP(F ),
of the value valΨ . Note that the algorithm that outputs the constant

ρmin(F ) is a (O(1)-space!) ρmin(F ) approximation algorithm for

Max-CSP(F ). Thus we consider ρmin(F ) to be the “trivial” approx-

imation factor for a family F . With these two notions of “trivial-

ity” in mind, we define Max-CSP(F ) to be α-approximable (in the

streaming setting) if α is the largest constant such that there exists

an α-approximation algorithm forMax-CSP(F ) using o(n) space.
We say thatMax-CSP(F ) is simply approximable (in the streaming

setting) if it is α-approximable for some α > ρmin. We define a

problem to be approximation-resistant (in the streaming setting)

otherwise.

1.2 Results
Our first main result in this paper gives a sufficient condition for

a problem to be approximation resistant in the streaming setting.

We say that f : Zkq → {0, 1} is a wide constraint if there exists

a ∈ Zkq such that for every i ∈ Zq we have f (a + ik ) = 1 where

ik = (i, i, . . . , i) and addition is performed in the group Zkq . We say

that a family F is wide if every function f ∈ F is wide.

Theorem 1.1. For everyq,k and every wide family F ,Max-CSP(F )
is approximation-resistant.

Many natural CSPs are wide, including Boolean problems such

as Max k-SAT and Max q-colorability. Others, such as Max k-LIN(q)
and the “Unique Games” problem, contain wide subfamilies with the

same “trivial” approximation factor, and thus Theorem 1.1 implies

these are also approximation resistant. We elaborate on some of

these examples in Section 4. However, clearly wideness does not

capture all CSPs. For general CSPs, while we do not pin down

the approximability exactly, we do manage to pin it down up to a

multiplicative factor of q.

Theorem 1.2. For every q,k and every family F , if F is α-
approximable then α ∈ [ρmin(F ),q · ρmin(F )].

Both Theorems 1.1 and 1.2 follow from our more detailed Theo-

rem 4.3. In Section 4 we give a few examples illustrating how our

theorems give tight lower bounds for some commonly studied CSPs

including Max q-coloring, Unique Games, and Max Linear Systems.

1.3 Prior Work
There have been a number of works in the broad area of approxi-

mations for streaming constraint satisfaction problems and lower

bound techniques for those [1–4, 7–13, 15, 16]. Among these our

work is the first work to aim to get tight inapproximability results for
a broad class of CSPs for almost linear space single-pass streaming
algorithms. Previous works either did not get tight approximation

1
We note that there is a gap between the o(n) space we allow and the O (n logn)
space that is trivial, but we are not able to get sharp enough lower bounds to address

this gap.

factors or were aimed at specific problems or only got Ω(
√
n)-space

lower bounds, though some do target multi-pass streaming algo-

rithms [2, 3] — which we do not do here. We describe the state of

the art prior to our work below. (More detailed descriptions of prior

works can be found in [4].)

On the front of general lower bounds, Chou, Golovnev, Sudan and

Velusamy [4] explored the same set of CSP problems as we do, i.e,

Max-CSP(F ) for arbitraryq,k and F . Their focus is on looser space

lower bounds: specifically, they focus on problems that requirenΩ(1)

space vs. those where no(1) space suffices. They give a complete

dichotomy for sketching algorithms, a special class of streaming

algorithms. They also give sufficient conditions for approximation

resistance with respect to sub-polynomial space general streaming

algorithms. Theorem 2.9 in their paper shows that families F where

the satisfying assignments of every function in the class support

a one-wise independent distribution are approximation resistant.

This theorem is incomparable with our Theorem 1.1 in that they

give approximation resistance for a broader collection of problems

(all wide families support one-wise independence) but the space

lower bound is weaker — they give an Ω(
√
n) lower bound and

we get Ω(n) lower bounds for wide families. [4] does not give an

analogue of our Theorem 1.2, though such a result (with the weaker

Ω(
√
n) space lower bound) can be derived from their theorems

equally easily. Indeed, our Section 4 is based on their work.

Turning to linear space lower bounds the breakthrough work

here is due to Kapralov and Krachun [13], who show that approxi-

matingMax Cut (which translates in our setting toMax-CSP(F ) for
F = {⊕2} where ⊕2 : {0, 1}

2 → {0, 1} is the binary XOR function)

to within a factor
1

2
+ ε requires Ω(n) space for every ε > 0. Indeed,

our work builds on their work and we compare our techniques later.

Prior to the work of Kapralov and Krachun, there was a weaker

result due to Kapralov, Khanna, Sudan and Velingker [12] showing

that there exists ε > 0 such that (1 − ε)-approximation for Max Cut

requires linear space. Finally, Chou, Golovnev and Velusamy [7]

get a tight inapproximability for Max Exact 2-SAT (corresponding

to Max-CSP(F ) for F = {∨2}, where ∨2 : {0, 1}2 → {0, 1} is the
binary OR function) for linear space algorithms, by a reduction

from Max Cut.

Thus, prior to our work it was conceivable (though of course

extremely unlikely) that every Max-CSP(F ) allowed a 1/2-

approximating streaming algorithm using o(n) space. Our work is

the first to prove inapproximability α ≤ 1/2 for any Max-CSP(F ).
Indeed, we get inapproximabilities going to 0 either as q →∞ (e.g.,

for the Unique Games problem) or as k → ∞ (e.g., for the Max

k-equality problem with q = 2 as defined later in Section 1.4).

The main contribution of our work is to extend the techniques

of [13] to problems beyond Max Cut. Indeed the bulk of our proof

takes the tour-de-force proof in [13] and finds the correct replace-

ments in our setting. In the process, we arguably even present

cleaner abstractions of their work. We elaborate on this further in

the next section but first comment on why we feel the extensions

are not straightforward given [13]. First we note that the exact

class of problems we are able to deal with in Theorem 1.1 is not

the fullest extension one may hope for. At the very least we have

expected to cover the same set of problems as [4, Theorem 2.9], i.e.,

families supporting one-wise independent distributions, but this
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remains open. Indeed to get our extensions we have to formulate

a new communication problem which generalizes the one in [13]

and is different from the many variations considered in [5] and [4].

In particular we are forced to work with a less expressive set of

communication problems that already forces a “linear-algebraic”

restriction on the core problems we work with. (We do believe a

slight extension of our results to “families containing one-wise in-

dependent cosets of Zkq ” should be more feasible.) Having identified

the right set of problems, carrying out the proof of Kapralov and

Krachun is still non-trivial. In particular one has to be careful to

ensure that the improvement in the exponent of the space bound

(from n1/2 to n) is by a full factor of 2 and not a factor of k/(k − 1),
which is what one natural extension would lead to! We comment

on these improvements in greater detail in the following.

Finally we point out that an extension of the lower bounds in

[4] to Ω(n) space lower bounds may actually be false. In particular,

there is a candidate algorithm for one of the problems (Max 2-

AND) that might improve on the approximation factors with ω(
√
n)

space. It certainly works better on the hard instances from previous

reductions, but we do not have an improved analysis on all graphs.

1.4 Techniques and New Contributions
There are two lines of previous work that seem relevant to this

work and we discuss our technical contributions relative to those

here. We start with quick comparison with the previous work [4]

that gives Ω(
√
n) lower bounds for a broader subset of problems

than those addressed in this paper. We then move on to the work

[13] which is much closer to our work and needs more detailed

comparison.

Comparison with [4]. While there is some obvious overlap in the

set of problems considered in [4] and this paper (and also in the

set of authors) we claim that, beyond this aspect, the overlap in

techniques is minimal. Both papers do use lower bounds on com-

munication problems to establish lower bounds on streaming CSPs

(which is standard in the context of streaming lower bounds). But

the exact set of communication problems is different, and the tools

used to establish the lower bounds are also different. In particu-

lar, [4] create roughly a new communication problem for every

γ , β and F and the main technical contributions there are lower

bounds for these problems achieved mainly through a rich set of

reductions among these communication problems. In our work we

essentially work with one communication problem (once we fix

k and q) and the core of our work is proving a lower bound for

this problem. (This lower bound is based on extending [13] and

we will elaborate on this later.) We use this one problem to get

hardness for many different γ , β and F — this part is arguably re-

lated to the work of [4] but we feel this is the obvious part of their

work as well as our work. Finally, turning to the communication

problems, the natural communication problems used to analyze

streaming complexity involves one way communication among a

large constant number of players. The exact problem of this type

that we focus on is different from the ones considered in [4] due

to a concept we call “folding”. Folding makes our problems too

restrictive to work for [4] (i.e., would prevent them for addressing

every (γ , β) −Max-CSP(F )), whereas we do not know how to get

our lower bounds without folding. We also note that [4] derive their

multiplayer lower bounds from lower bounds for a corresponding

2-player game and all their reductions work only for these 2-player

games, which are inherently limited to yielding Θ(
√
n) space lower

bounds.

We now turn to the more significant comparison, with [13]. We

start with a quick review of the main steps of [13] and then describe

our analysis and conclude with a summary of the differences/new

contributions relative to [13].

Summary of [13]. [13] work with a distributional T -player one-
way communication game for some constant T . The game also

has a parameter α > 0. In instances of length n of this game, T
players P1, . . . , PT get partial matchingsM1, . . . ,MT on the vertex

set [n] along with respective binary labels z1, . . . , zT on the edges of

the matchings, i.e., player t receives input (Mt , zt ). Each matching

contains αn edges, while each corresponding label zt is an element

of {0, 1}αn . In the communication game, the players sequentially

broadcast messages as follows. Player t ∈ [T − 1] computes a small

message ct which is a function ofMt , zt and all “previous messages”

c1, . . . , ct−1,
2
after which the T th player outputs a single 0/1 bit

that is said to be the output of the communication protocol. The

complexity of the protocol is the maximum over t ∈ [T ] of the
message length ct , and the goal of the players is to distinguish

input instances drawn according to a YES distribution from those

drawn according to a NO distribution, defined as follows.

In instances chosen from the NO distribution, the matchings

M1, . . . ,MT are chosen uniformly and independently from the set

of matchings containingαn edges on the vertex set [n]. Furthermore,

the vectors z1, . . . , zT are chosen uniformly and independently from

{0, 1}αn . In the YES distribution, the matchings are chosen as in

the NO distribution, but in order to generate z1, . . . , zT , we choose
a common hidden vector x∗ ∈ {0, 1}n uniformly at random and set

each zt as zt (e) = x∗a ⊕2 x
∗
b for every edge e = (a,b). Thus, the label

zt can be viewed as specifying which edges of the i-th matching

cross the cut determined by x∗. If T ≫ 1

α then it can be seen

that the YES and NO distributions are very far. The key theorem

shows that for every α > 0 andT , any protocol distinguishing YES
instances from NO instances with constant advantage requires

Ω(n) space. With this lower bound a space lower bound on Max

Cut is straightforward.

Turning to the communication lower bound, the focus of the

analysis are the sets B1, . . . ,BT ⊆ {0, 1}
n
corresponding to the

purported hidden vector x∗ that are consistent with the messages

c1, . . . , cT . Specifically for t ∈ [T ], Bt is the set of all vectors x∗

that are consistent with the first t matchings M1:t and the first t
messages c1:t . [13] argue that the sets Bt are not shrinking too

fast (in either the YES case or the NO case) using a property that

they term “C-boundedness,” defined by the Fourier spectrum of the

indicator function of Bt (the function in {0, 1}n to {0, 1} that is 1

on Bt ). We do not give the exact definition of boundedness here

but roughly describe it as follows: Given an arbitrary set B of size S
and a Fourier weightw , the total Fourier mass (strictly the ℓ1-mass)

of thewth level Fourier coefficients of B is well-known (by classical

Fourier analysis) to be bounded by some amount U (w) = US,n (w).

2
For technical reasons the lower bounds are proved in the stronger model where

player t get M1, . . . , Mt−1 as well, but this difference is not crucial for the current
discussion.
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For C-bounded sets, the corresponding Fourier mass is required

to be at most CwU (w/2). The factor of two gained here in the

argument ofU is the crux to improvement in the space lower bound

from

√
n to n. (If the right hand side had been of the formCwU (αw)

then the space lower bound would be Ω(n1/(2α )).) This factor of
two, in turn, is attributable to the fact that the zt only contain

information about pairs of bits of x∗. Their analysis shows that,
for every t , Bt is Ct -bounded for some constant Ct . (The proof

is inductive on t but the inductive hypothesis is complex and we

won’t reproduce it here.) They further show that if BT isC-bounded
for some constant C , then the distinguishing probability is at most

o(1).

Our Analysis. The core of our paper focuses on one problem

for every given q and k , which we call Max k-EQ(q). This is the
problem given by Max-CSP(F ) for F = { fb2, ...,bk : Zkq → {0, 1}},

where fb2, ...,bk (a1, . . . ,ak ) = 1 if and only if at = a1 + bt mod q
for every t ∈ {2, . . . ,k}. All our lower bounds effectively come

from a tight q−(k−1)-inapproximability of this problem for every q
and k .

To study this problem we introduce a T -player communication

problem that we call the “Implicit Randomized Mask Detection

Problem” (IRMD) described as follows: There are T players each

of whom receives an αn k-hypermatching Mt (i.e., a set of αn k-
uniform hyperedges on [n] that are pairwise disjoint). Additionally,

the players receive a label in Zkq for every hyperedge they see. Thus

the ith player’s input is (Mt , zt ) where zt ∈ (Zkq )αn . In the NO
distribution the zt ’s are drawn uniformly. In the YES distribution
a vector x∗ ∈ [q]n is drawn uniformly and the label associated

with an edge j = (j1, . . . , jk ) is (x∗j1 + aj, . . . ,x
∗
jk
+ aj) where aj ∈

[q] is chosen uniformly and independently for each edge in each

matching. The goal of the players is to distinguish between the YES
and NO distributions with minimal communication (with one-way

communication from the t − 1th player to the t th player, as before).

To lower bound the communication complexity of IRMD we

consider a folded version of the problem we call IFRMD where

the labels associated with an edge are from Zk−1q and obtained

by mapping an IRMD label z = (z(1), . . . , z(k )) ∈ Zkq to the label

z̃ = (z(2) − z(1), . . . , z(k ) − z(1)). With this folding we recover the

same communication problem as [13] for the case of k = q = 2 and

the main focus of our work is proving lower bounds for higher k
and q.

Our analysis of the communication complexity of IFRMD follows

the same sequence of steps (with imitation even within the steps)

as [13]. In particular we also use the same sets B1, . . . ,BT and use

the same notion of boundedness.

Turning to the induction and the analysis of boundedness of Bt
for general t , we are able to extract a clean lemma (Lemma 5.17)

that makes the induction completely routine. To explain this con-

tribution note that Bt is the intersection of Bt−1 with a set say At
where At is of the same type as Bt (both are obtained by looking

at the vector x∗ projected to a matching followed by some folding).

Thus both Bt−1 andAt are bounded sets. To complete the induction

it would suffice to prove that the intersection of bounded sets is

bounded, but alas this is not true! To get that Bt is bounded, we
need to use the fact that the matching Mt is random and chosen

independently of Bt−1 but it turns out that that is all that is needed.
This is exactly what we show in Lemma 5.17 — and of course this

only happens with high probability over the choice ofMt .

Incremental contribution over [13]. Given that our result closely

follows [13] we now focus on some key differences, and why these

contributions are conceptually significant.

(1) The analysis of [13] is intricate and it is not a priori clear what

problems it may extend to. Our choice ofMax k-EQ(q) is not
the obvious choice, andwas not our first choice. More natural

choices would be to go for more general linear systems, or

even functions supporting “one-wise independence”, but we

are unable to push the analysis to more general cases. Our

choice reflects an adequate one to get coarse bounds on the

approximability of every problem while getting tight ones

for many natural ones.

(2) The choice of the communication problems to work with

is also not obvious: Indeed working with both IRMD and

IFRMD seems necessary for our approach — the former is

more useful for our final inapproximability results whereas

the latter is the one we are able to analyze.

(3) The exact notion of boundedness that is necessary and suf-

ficient for our results is also not completely obvious. It is

only in hindsight, after carrying out the entire analysis, does

it become clear that the notion that works is exactly the

same as the one in [13]. Part of the challenge is that in the

inductive proof of boundedness even the base case (which is

quite simple in [13]) is not obvious in our case, and nor is

the inductive step.

• With respect to the base case we note that if we had

adopted a weaker notion of boundedness allowing wth

level Fourier mass to grow roughly asU ((k−1)w/k) bound-
edness would have been easier to prove but the result

would not be optimal. Getting a bound of U (w/2) is not
technically hard, but involves a non-trivial randomization

in the choice of folding purely for analysis purposes. (So

there is an implicit passing back and forth between the

IRMD and IFRMD problems in this technical step.)

• We also feel that it is important that we are able to extract

an induction lemma (Lemma 5.17) that clearly separates

the (Fourier and combinatorial) analytic ingredients from

the probabilistic setup. We believe the lemma is clarifying

even when applied to the proof of [13].

(4) Finally we note that the underlying combinatorics are made

significantly more intricate due to the need to work with

k > 2. A conceptual difference from [13] here is that whereas

they explore the distribution of the number of edges in a

random matching that intersect with a fixed set of vertices,

we have to explore the distribution of edges that have an odd

intersection (or non-zero mod q intersection) with a random

hypermatching. Indeed this part is clarifying the role of some

of the quantities explored in the previous work. Additionally,

we note that the number of parameters we have to track

is much larger (and indeed it is fortunate that the number

of parameters remains a constant independent of k), and
managing these in our inequalities is a non-trivial technical

challenge (even given the heavy lifting in [13]).
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Organization of the rest of the paper. We start with some back-

ground material in Section 2. We introduce our communication

problems (IRMD and IFRMD) in Section 3 and state our lower

bounds for these. We use these lower bounds to prove our stream-

ing lower bounds in Section 4. Section 5 introduces the notion of

bounded sets and proves our lower bound on the communication

problems.

2 PRELIMINARIES
We use the following notations throughout the paper. Let N =
{1, . . . } denote the set of natural numbers and let [n] = {1, 2, . . . ,n}.
For a discrete set X and a function f : X → R, we denote ∥ f ∥p =

(
∑
x ∈X | f (x)|

p )1/p for every p > 0 and ∥ f ∥0 =
∑
x ∈X 1f (x ),0.

2.1 Total Variation Distance
In our analysis we will use the total variation distance between

probability distributions, and several bounds on it presented in this

section.

Definition 2.1 (Total variation distance of discrete random vari-

ables). Let Ω be a finite probability space and X ,Y be random vari-
ables with support Ω. The total variation distance between X and Y
is defined as follows.

∥X − Y ∥tvd :=
1

2

∑
ω ∈Ω
|Pr[X = ω] − Pr[Y = ω]| .

We will use the triangle and data processing inequalities for the

total variation distance.

Proposition 2.2 (E.g.,[11, Claim 6.5]). For random variables X ,Y
andW :

• (Triangle inequality) ∥X−Y ∥tvd ≥ ∥X−W ∥tvd−∥Y−W ∥tvd .
• (Data processing inequality) IfW is independent of both X
and Y , and f is a function, then ∥ f (X ,W ) − f (Y ,W )∥tvd ≤
∥X − Y ∥tvd .

Lemma 2.3. Let X , Y , W be random variables and let f be a func-
tion. If there exists δ > 0 such that for every fixed x in the support of
X , we have

∥ f (x ,Y ) − f (x ,W )∥tvd ≤ δ ,

then the following holds:

∥(X , f (X ,Y )) − (X , f (X ,W ))∥tvd ≤ δ .

Proof. Proof is given in the full version [6]. □

We will also need the following lemma from [13].

Lemma 2.4 ([13] Lemma B.2). Let X 1,X 2 be random variables tak-
ing values on finite sample space Ω1. Let Z 1,Z 2 be random variables
taking values on sample space Ω2, and suppose thatZ 2 is independent
of X 1,X 2. Let f : Ω1 × Ω2 → Ω3 be a function. Then

∥(X 1, f (X 1,Z 1)) − (X 2, f (X 2,Z 2))∥tvd

≤ ∥(X 1, f (X 1,Z 1)) − (X 1, f (X 1,Z 2))∥tvd + ∥X
1 − X 2∥tvd .

2.2 Concentration Inequality
We will use the following concentration inequality from [13] which

is essentially an Azuma-Hoeffding style inequality for submartin-

gales.

Lemma 2.5 ([13, Lemma 2.5]). Let X =
∑
i ∈[N ] Xi where Xi are

Bernoulli random variables such that for every k ∈ [N ],

E[Xk |X1, . . . ,Xk−1] ≤ p ,

for some p ∈ (0, 1). Let µ = Np. For every ∆ > 0, we have:

Pr [X ≥ µ + ∆] ≤ exp

(
−

∆2

2µ + 2∆

)
.

2.3 Fourier Analysis
In this paper, we will use Fourier analysis over Zq (see, for in-

stance, [9, 14]). For a function f : Znq → C, its Fourier coefficients

are defined by f̂ (u) = 1

qn
∑
a∈Znq f (a) · ωu⊤a

, where u ∈ Znq and

ω = e2π i/q is the primitive q-th root of unity. In particular, for

every a, f (a) =
∑
u∈Znq f̂ (u) · ωu′⊤a

. Later we will use the three

following important tools. Note that here we define the p-norm

of f as ∥ f ∥
p
p =

∑
x∈Znq | f (x)|

p
rather than the standard definition

which uses expectation. This is for future notational convenience.

Lemma 2.6 (Parseval’s identity). For every function f : Znq → C,

∥ f ∥2
2
=

∑
a∈Znq

f (a)2 = qn
∑
u∈Zkq

f̂ (u)2 .

Note that for every distribution f on Znq , f̂ (0
n ) = q−n . For the

uniform distribution U on Znq , Û (u) = 0 for every u , 0
n
. Thus, by

Lemma 2.6, for any distribution f on Znq :

∥ f −U ∥2
2
= qn

∑
u∈Znq

(
f̂ (u) − Û (u)

)
2

= qn
∑

u∈Znq \{0n }

f̂ (u)2 . (2.7)

We now introduce some standard facts about how convolu-

tions interact with the Fourier transform operation. For functions

f ,д : Znq → C, their convolution f ⋆ д : Znq → C is defined as

(f ⋆д)(a) =
∑
v∈Znq f (v)д(a − v). The first lemma is the so-called

“convolution theorem,” which essentially states that, up to normal-

ization factors, the Fourier transform of the convolution of two

functions is equal to the product of the individual Fourier trans-

forms.

Lemma 2.8 (Convolution Theorem). For f ,д : Znq → C, we have�f ⋆д(u) = qn · f̂ (u) · д̂(u).
for all u ∈ Znq .

Proof. Proof is given in the full version [6]. □

We will also need the following lemma, which states that the

Fourier transform of the product of two functions is given by the

convolution of the individual Fourier transforms.

Lemma 2.9 (Fourier transform of product of functions). For every
f ,д : Znq → C, and u ∈ Znq , we have

f̂ · д(u) =
∑

u′∈Znq

f̂ (u′) · д̂(u − u′) .
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Furthermore, for every h ∈ [n],∑
u∈Znq
∥u∥0=h

f̂ · д(u) =
∑
u∈Znq

∑
u′∈Znq
∥u+u′ ∥0=h

f̂ (u) · д̂(u′) .

Proof. Proof is given in the full version [6]. □

The hypercontractivity theorem states that the 2-norm of a func-

tion after the application of a noise operator can be nicely upper

bounded.

Lemma 2.10 (Hypercontractivity Theorem [14, Page 278]). Let
f : Znq → C be a square-integrable function and let 1 < p < 2,
0 ≤ ρ ≤ 1√

p−1 (1/q)
1/2−1/p , we have

∥Tρ f ∥2 ≤ ∥ f ∥p ,

where Tρ is the noise operator defined by Tρ f (x) =∑
u∈Znq f̂ (u)ρ ∥u∥0ωu⊤x.

Next, we prove the following consequence of the hypercontrac-

tivity theorem.

Lemma 2.11. There exists ζ > 0 such that for every q, every f :

Znq → {a ∈ C | |a | ≤ 1} and B = {a ∈ Znq | f (a) , 0} the following
holds: If |B | ≥ qn−b for some b ∈ N, then for every v ∈ Znq and every
h ∈ {1, . . . , 4b}, we have

q2n

|B |2

∑
u∈Znq
∥u+v∥0=h

| f̂ (u)|2 ≤
(
ζ · b

h

)h
.

Proof. Proof is given in the full version [6]. □

3 COMMUNICATION PROBLEMS
Throughout this paper, we will be dealing with k-hypermatchings

on vertices from the set [n], i.e., a set of edges e1, . . . , em where

ei ⊆ [n], |ei | = k and ei ∩ ej = ∅ for every i , j ∈ [m].
We let ei = {(ei )1, . . . , (ei )k }. The direct encoding of a match-

ing M = {e1, . . . , em } will be given by a hypermatching matrix
A ∈ {0, 1}km×n where Ak (i−1)+ℓ, j = 1 if and only if j = (ei )ℓ .
(Thus, A is a matrix with row sums being 1 and column sums being

at most 1. Note thatA also depends on the ordering of e1, e2, . . . , em
as well as the ordering of the nodes within each ei .)

We will also find it convenient to refer to edges by their indicator

vectors in Znq . For an edge ei , we will use the boldface notation

ei ∈ Znq to refer to this vector, i.e., (ei )j = 1 if j = (ei )ℓ for some

ℓ ∈ [k], while (ei )j = 0 otherwise.

We are now ready to define the communication game, which we

term the Implicit Randomized Mask Detection (IRMD) problem:

Definition 3.1 (Implicit Randomized Mask Detection (IRMD) Prob-

lem). Let q,k,n,T ∈ N and α ∈ (0, 1/k) be parameters. Let DY
and DN be distributions over Zkq . In the (DY ,DN )-IRMDα,T game,
there are T players and a hidden q-coloring encoded by a random
x∗ ∈ Znq . The t-th player has two inputs: (a.) At ∈ {0, 1}αkn×n , the
hypermatching matrix (see above) corresponding to a random hy-
permatching Mt of size αn and (b.) a vector zt ∈ Zαknq that can be
generated from one of two different distributions:

• (Yes) zt = Atx∗ + bt where bt ∈ Zαknq is of the form bt =
(bt,1, . . . , bt,αn ) and each bt,i ∈ Zkq is sampled from DY .
• (No) zt = Atx∗ + bt where bt ∈ Zαknq is of the form bt =
(bt,1, . . . , bt,αn ) and each bt,i ∈ Zkq is sampled from DN .

This is a one-way game where the t-th player can send a private
message to the (t +1)-th player after receiving a message from the pre-
vious player. The goal is for theT -th player to be able to decide whether
the {zt } have been chosen from the “Yes” distribution or “No” distribu-
tion. The advantage of a protocol (in which theT -th player outputs ei-
ther “Yes” or “No”) is defined as | PrDY [the T -th player outputs Yes]−
PrDN [the T -th player outputs Yes]|.

Remark 3.2.We remark that the inputs to the T players in the

IRMD problem can be viewed as a stream σ = σ (1) ◦ · · · ◦ σ (T ),
where the t-th player’s input (At , zt ) is converted to a stream

σ (t ) = (σ (t )(i)|i ∈ [αn])where the elements of the stream are of the

form σ (t )(i) = (j(t )(i), z(t )(i)) with j(t )(i) ∈ [n]k is a sequence of k

distinct elements of [n] and z(t )(i) ∈ Zkq . This “streaming” represen-

tation will be used when we relate the complexity of IRMD to the

approximability of various Max-CSP(F ) problems in Theorem 4.3.

We suppress the subscripts α and T when they are clear

from context. Furthermore, we simply use IRMD to refer to

(DY ,DN )-IRMD with DY being the uniform distribution over

{0k , 1k , . . . , (q − 1)k } and DN being the uniform distribution over

Zkq . The following theorem shows that in this special case, the

IRMD problem requires linear communication. We remark that the

theorem could hold for other pairs of distributions and leave the

question of when such a lower bound holds as an interesting open

problem.

Theorem 3.3 (Linear lower bound for IRMD). For every q,k ∈ N
and δ ∈ (0, 1/2), α ∈ (0, 1/k), T ∈ N there exists n0 ∈ N and
τ ∈ (0, 1) such that the following holds. If DY ,DN are the uniform
distributions over {0k , 1k , . . . , (q − 1)k } and Zkq respectively and
n ≥ n0 then every protocol for (DY ,DN )-IRMDα,T with advantage
δ requires τn bits of communication.

We prove the hardness of IRMD by first proving the hardness of a

folded version of IRMD. In the folded version of the communication

problem, we augment each hyperedge with an associated center
c ∈ e . Given a k-hypermatchingM = (e1, . . . , em ) and a sequence

of centers c = (c1, . . . , cm ) with ei = ((ei )1, . . . , (ei )k = ci ), the

c-centered folded encoding of M is the matrix Ac ∈ Z
(k−1)m×n
q

given by

(Ac)(k−1)(i−1)+ℓ, j =


1 , if j ∈ {(ei )ℓ} and ℓ ∈ [k − 1]
−1 , if j = ci and ℓ ∈ [k − 1]
0 , otherwise

We define the folded version of the IRMD problem below (note that

all the arithmetic is over Zq ):

Definition 3.4 (Implicit Folded Randomized Mask Detection

(IFRMD) Problem). Let q,k,n,T ∈ N and α ∈ (0, 1/k) be param-
eters. In the IFRMD game, there areT players and a hidden q-coloring
encoded by a random x∗ ∈ Znq . The t-th player has a pair of in-

puts (At,ct ,wt ) given as follows. At,ct ∈ Z
α (k−1)n×n
q gives a ct -

centered folded encoding of a random hypermatchingMt of size αn,
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and wt ∈ Z
α (k−1)n
q is a vector that can be generated from two differ-

ent distributions:
• (YES) wt = At,ct x

∗.
• (NO) wt is uniform over Zα (k−1)nq .

This is a one-way game where the t-th player can send a private
message to the (t + 1)-th player after receiving message from the
previous player. The goal is to decide (by theT -th player) whether the
{wt } are coming from the YES distribution or the NO distribution.
The advantage of a protocol is defined as the absolute value of

Pr

(At,ct ,wt )t∈T ∼YES
[the T -th player outputs Yes]

− Pr

(At,ct ,wt )t∈T ∼NO
[the T -th player outputs Yes] .

The main technical theorem of this paper is the following Ω(n)
communication lower bound for IFRMD.

Theorem 3.5 (Linear lower bound for IFRMD). For every q,k ∈ N
and δ ∈ (0, 1/2), there exists α0 ∈ (0, 1/k) such that for every
α ∈ (0,α0] and every T ∈ N and every δ ∈ (0, 1), there exists
τ ∈ (0, 1) such that the following holds. When n ∈ N is large enough,
any protocol for IFRMD with advantage δ requires τn bits of commu-
nication.

The proof of Theorem 3.5 is given in the beginning of section 5.

We now prove a lemma establishing a reduction from IFRMD to

IRMD that preserves the communication complexity. Note that by

this lemma, Theorem 3.3 will be an immediate corollary of Theo-

rem 3.5.

Lemma 3.6. Let n,k,α be the parameters. Suppose there exists a
protocol for IRMD using at most s bits communication with advan-
tage δ , then there exists a protocol for IFRMD using at most s bits
communication with advantage δ .

Proof. Suppose we have an instance of IFRMD with input

(At,ct ,wt ) to the t-th player.We show how to transform this into an

instance of IRMD. For each t , the t-th player performs the following

computations on his/her input:

(1) Use At,ct to compute the underlying hypermatchingMt (by

identifying the set of nonzero columns for each block of k−1
rows of At,ct ) and compute the corresponding matrix Πt .

(2) For each i ∈ [αn], sample at,i ∈ Zq uniformly at random. Let

zt ∈ Z
αkn
q be defined by (zt )(i−1)k+j = (wt )(i−1)k+j + at,i

for each j = 1, 2, . . . ,k − 1 and zt,ik = at,i .

We claim that the inputs (At , zt ) correspond to an instance of IRMD.
It suffices to show that if ({(At,ct ,wt )}t ∈[T ], x∗) follows the YES
(resp.NO) distribution of IFRMD, then ({(At , zt )}t ∈[T ], x∗) follows
the YES (resp. NO) distribution of IRMD.

Letm = αn. For each t , let e
(t )
1
, e
(t )
2
, . . . , e

(t )
m be the hyperedges

corresponding to At,ct (in order), with (e
(t )
i )k = ct,i .

We first focus on the YES case. Then, note that for j =
1, 2, . . . ,k − 1, we have

(zt )(i−1)k+j = (wt )(i−1)k+j + at,i

= (x∗
(e (t )i )j

+ x∗ct,i ) + at,i

= x∗
(e (t )i )j

+ (x∗ct,i + at,i ) .

Moreover,

(zt )ik = at,i = x∗ct,i + (x
∗
ct,i + at,i ) = x∗

(e (t )i )k
+ (x∗ct,i + at,i ).

Thus, it follows that zt = Πtx∗ + bt , where bt = (bt,1, . . . , bt,αn )
is given by bt,i = (x∗ct,i + at,i ) · 1k where 1k is the all 1 vector of

length k .
Since at,i is uniform over Zq , this takes care of the YES case.

The NO case is easier to see: Πt encodes a random k-
hypermatching of size αn and zt is uniform over Zαknq . □

Proof of Theorem 3.3 using Theorem 3.5. For the sake of

contradiction, suppose there exists a protocol for IRMD with

advantage δ using fewer than τn bits of communication. Then

by Lemma 3.6 there exists a protocol for IFRMD with advantage

δ using fewer than τn bits of communication, which contradicts

Theorem 3.5. This completes the proof of Theorem 3.3. □

In the following section we show how Theorem 3.3 yields the

claimed hardness of streaming problems. In the rest of this paper,

we focus on the proof of Theorem 3.5, i.e., the linear communication

lower bound for IFRMD.

4 STREAMING PROBLEMS AND HARDNESS
In this section we state and prove our main technical theorem

establishing linear space lower bounds for the approximability of

many CSPs.

Below we define the two crucial constants associated with a

family F which lay out the “trivial” approximability, and the inap-

proximability that we prove. In particular we define the notion of

a width ω(F ) ∈ [1/q, 1] for every family F . The notion of a wide

family from Theorem 1.1 corresponds to a family with maximum

width, i.e., ω(F ) = 1.

Definition 4.1 (Minimum value, Width of F ). For a family F , we
define its minimum value ρmin(F ) to be the infimum over all in-
stances Ψ of Max-CSP(F ) of valΨ . For b ∈ Zkq and f : Zkq →

{0, 1} we define b-width of f , denoted ωb(f ) to be the quantity
| {a∈Zq | f (b+ak )=1} |

q . The width of f , denoted ω(f ), is given by
ω(f ) = maxb∈Zkq

{ωb(f )}. Finally for a family F , we define itswidth
to be ω(F ) = minf ∈F{ω(f )}. We say that a family F is wide if
ω(F ) = 1.

As described above ρmin(F ) may not even be computable given

F , but as pointed out in [4] it is a computable function. Key to this

assertion is the following equivalent definition of ρmin(F ) which

follows from Definition 2.4 and Proposition 2.5 of [4].

Proposition 4.2 ([4, Proposition 2.4]). For every k,q,F ⊆ { f :

Zkq → {0, 1}} we have

ρmin(F ) = ρ(F ) := min

DF ∈∆(F)

{
max

D∈∆([q])

{
E

f ∼DF,a∼Dk
[f (a)]

}}
.

We are now ready to prove the main theorem of the paper on

the approximability of CSPs by applying Theorem 3.3.

Theorem 4.3 (Linear Space Inapproximability of CSPs). For every
k,q,F ⊆ { f : Zkq → {0, 1}} and every ε ∈ (0, 1/10) we have the

281



STOC ’22, June 20–24, 2022, Rome, Italy Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy

following: Every randomized single-pass streaming (1 + ε) · ρ(F)ω(F) -
approximation algorithm for Max-CSP(F ) requires Ω(n) space.

Proof. Given F and ε ∈ (0, 1/10), we let α = ε/(100k2q) and T
be some large enough constant that only depends on q,k,F , ε,α .
LetALG be a space s algorithm distinguishing instances from the set

{Ψ | valΨ ≥ (1−ε/3)ω(F )} from instances from the set {Ψ | valΨ ≤
(1 + ε/3)ρ(F )} with success probability at least 2/3. We show how

to use ALG to device an s-bit communication protocol for IRMD =
IRMDα,T with advantage at least 1/6.

For f ∈ F , let bf ∈ Zkq be a sequence maximizing ωbf (f )

and let Sf = {bf + ak | a ∈ Zq }. Further let DF ∈ ∆(F ) be a

distribution achieving the minimum in the equivalent definition of

ρ(F ) from Proposition 4.2. Let σ = (σ1, . . . ,σm ) be an instance of

IRMD with T players, so thatm = Tαn and σi = (j(i), z(i)) where
j(i) ∈ [n]k is a sequence of k distinct elements of [n] and z(i) ∈ Zkq .
For each σi we either generate 0 or 1 constraint ofMax-CSP(F ) as
follows: We sample f (i) ∼ DF and output the constraint (f (i), j(i))
if z(i) ∈ Sf (i) and output no constraint otherwise. Applying this step
independently to each σi generates an instance Ψ of Max-CSP(F )
with m̃ ≤ m constraints on n variables. We make the following

claims about Ψ.

(1) PrYES[m̃ > (1 + ε/10) · q
−(k−1) ·m] = o(1) and PrNO[m̃ <

(1−ε/10)·q−(k−1) ·m] = o(1), i.e., the number of constraintsm̃
does not deviate (in the wrong direction) from its expectation

q−(k−1) ·m with too high a probability.

(2) If σ is generated from the YES distribution with hidden vec-

tor x∗ then with high probability the number of constraints

of Ψ satisfied by x∗ is at least (ω(F ) − ε/10) · q−(k−1) ·m.

In particular, PrYES[valΨ ≤ (1 − ε/3) · ω(F )] = o(1).
(3) Ifσ is generated from theNO distributionwith hidden vector

x∗ then with high probability for every ν the number of

constraints of Ψ satisfied by ν is at most (ρ(F ) + ε/10) ·

q−(k−1) ·m. In particular, PrNO[valΨ ≥ (1+ε/3)·ρ(F )] = o(1).

With the above claims in hand, it is straightforward to convert

ALG into an O(s)-bit communication protocol for IRMD with ad-

vantage at least 1/6 — the t-th player gets the state of ALG after

processing constraints corresponding to the first t − 1 blocks from
the (t − 1)-th player; generates the constraints corresponding to

the t-th block of the stream σ , and simulates ALG on this part of

the stream corresponding to Ψ, and passes the resulting state on to

the (t + 1)-th player. The T -th player outputs 1 if ALG outputs 1

and 0 otherwise. It is straightforward to see that if ALG is correct

on every input with probability 2/3 and Claims (1)-(3) above hold,

then the resulting communication protocol achieves advantage at

least 1/3 − o(1) ≥ 1/6 on IRMD. Finally, we invoke Theorem 3.3

and conclude that s = Ω(n).
We thus turn to proving claims (1)-(3). Given σ1, . . . ,σm and

ν ∈ Znq , we create a collection of related variables as follows: For

i ∈ [m], let Xi = 1 if σi results in a constraint and 0 otherwise.

Further, let Yi (ν ) = 1 if Xi = 1 and the resulting constraint is

satisfied by the assignment ν . (Note all these are random variables

depending on σ ). Below, we bound the expectations of the sums of

these random variables in the YES and NO cases, and also argue

that these variables are close to their expectations (or at least give

bounds on deviating from the expectation in one direction). This

will suffice to prove claims (1)-(3) and thus the theorem.

Proof of Claim (1). We start with m̃ =
∑m
i=1 Xi in the NO case: In

this case E[Xi ] = |Sf |/q
k = q−(k−1) (note that |Sf | = q for every f ).

Furthermore the Xi ’s are independent since z(i)’s are uniform and

independent of each other. Thus X is sharply concentrated around

q−(k−1) ·m and we get that PrNO[m̃ < (1±ε/10) ·q
−(k−1) ·m] = o(1).

Turning to the YES case, since z(i)’s are no longer independent,

theXi ’s are correlated. To enable the analysis, we define a vector x∗

to beγ -good forγ > 0 if for every τ ∈ Zq we have Pri ∈[n][x∗i = τ ] ∈
(1±γ )(1/q). Note that for every constant γ > 0, the probability that

x∗ is not γ -good is o(1). Fix x∗ that is γ -good. We claim that in this

case,E[Xi |X1:i−1] ≤ q−(k−1) ·(1+γ+αqk)k . To see this note that the
effect of conditioning on X1:i−1 only affects Xi due to the fact that

now j(i) is chosen from a smaller set of variables and not all of [n].
Let t ∈ [T ] denote the block containing i (i.e., i ∈ ((t − 1)αn, tαn]).
Let S denote the set of variables that do not participate in the edges

j((t − 1)αn + 1), . . . , j(i − 1). Note |S | ≥ (1 − kα)n and so for every

τ ∈ Zq we have Prℓ∈S [x∗ℓ = τ ] ≤ (1+γ +αkq)/q. We conclude that

the probability Pr[x∗ |j(i) ∈ Sf |X1:i−1] ≤ |Sf | · ((1+γ +αkq)/q)
k =

q−(k−1) · (1 + γ + αqk)k . Setting γ = ε/(100k) and using α ≤

ε/(100k2q), we conclude E[Xi |X1:i−1] ≤ q−(k−1) · (1+ ε/(50k))k ≤

q−(k−1) · (1 + ε/20). Applying Lemma 2.5 we conclude that here

again we get that PrYES[m̃ =
∑
i Xi > (1 + ε/10)q

−(k−1)m] = o(1).

Proof of Claim (2). Now we analyze the number of satisfiable

constraints of the resulting instance Ψ in the YES case, where we
argue that x∗ satisfies a large fraction of constraints with high

probability. Again with probability 1 − o(1) we have that x∗ is γ -
good. Now an argument similar to the one in the analysis of X in

the YES case shows that for every b ∈ Zkq , Pr[x∗ |j(i) = b |Y1:i−1] ≥
(1 − ε/50) · q−k . Fix f (i) and let T = Sf (i) ∩ f (i)−1(1). Note by

definition of ω(F ) that |T | ≥ ω(F ) · q. The event that the i-th
constraint is satisfied by x∗ is equivalent to the event that x∗j(i) ∈ T
and the probability of this event, conditioned on Y1:i−1 is at least

|T | · (1− ε/50) ·q−k ≥ (1− ε/50) ·ω(F ) ·q−(k−1). Using Lemma 2.5

we conclude again that Pr[Y (x∗) =
∑m
i=1 Yi (x

∗) ≤ (1−ε/10) ·ω(F ) ·

q−(k−1) ·m] = o(1). Combining this with the lower bound on m̃
from Claim (1) we conclude that Pr[valΨ ≤ (1− ε/3) ·ω(F )] = o(1).

Proof of Claim (3). Finally we analyze the number of satisfi-

able constraints in the NO case. Fix ν ∈ Zkq and let D ∈ ∆(Zq )
be the distribution obtained by sampling a uniformly random

ℓ ∈ [n] and outputting νℓ . By Proposition 4.2 we have that

Ef ∼DF,b∼Dk [f (b)] ≤ ρ(F ). We use this to prove that for every

i ∈ [m], E[Yi (ν )|Y1:i−1(ν )] ≤ (1 + ε/50) · ρ(F ) · q−(k−1).
First, as in the proof for Claim (2) we have that the total

variation distance between b ∼ Dk
and {νj(i) |Y1:i−1(ν )} is at

most k2α . (In particular, this is upper bounded by the probability

that k uniformly and independently chosen elements of [n]
either collide or fall in a set of size at most k(αn − 1).) We

conclude that the probability that the i-th “potential constraint”

(given by (f (i), j(i))) is satisfied is at most ρ(F ) + k2α . Next,
note that the event Xi = 1 (i.e., the i-th constraint is chosen

in Ψ) is independent of Yi (ν ) since in the NO case z(i) ∈ Zkq is
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uniform and independent of all other random variables. We con-

clude that E[Yi (ν )|Y1:i−1(ν )] ≤ (1 + ε/50) · ρ(F ) · q−(k−1).
Finally, we apply Lemma 2.5 again to conclude that

Pr[Y (ν ) =
∑m
i=1 Yi (ν ) > (1 + ε/10) · ρ(F ) · q−(k−1) · m] ≤ c−m

where c > 1 depends on q,k,F ,α , ε but not on T or n. Thus by
setting T large enough, we can bound c−m ≤ q−2n . This allows
us to use the union bound to conclude that the probability that

there exists ν ∈ Znq such that Y (ν ) > (1 + ε/10) · ρ(F ) · q−(k−1) ·m
is at most q−n = o(1). Combining with the lower bound on m̃
from Claim (1) we get that with probability 1 − o(1) we have

valΨ ≤ (1 + ε/3) · ρ(F ) in this case.

This concludes the proofs of the claims and thus the proof of The-

orem 4.3.

□

Theorems 1.1 and 1.2 follow immediately from Theorem 4.3 as

we show below.

Proof of Theorem 1.1. The theorem follows from the fact that

for a wide family ω(F ) = 1 and in this case Theorem 4.3 asserts

that a ρ(F ) + ε approximation requires linear space. □

Proof of Theorem 1.1. The theorem follows from the fact that

for every non-zero function f we have ω(f ) ≥ 1/q and so for every

family F also we have ω(F ) ≥ 1/q. Thus Theorem 4.3 asserts that

a ρ(F ) · q + ε approximation requires linear space, where ρ(F )
approximation is trivial. □

Some examples. We now give some examples illustrating the

power of Theorem 4.3. Our first example is the familiar q-coloring
problem.

Example 1 (Max-qCol).

Let k = 2 and q ≥ 2. Let F = { f : Z2q → {0, 1}} where

f (u,v) = 1 if and only if u , v . The “Max q-Coloring”
problem is defined to be Max-qCol = Max-CSP(F ). It is
easy to verify ρ(F ) = 1 − 1/q and ω(F ) = 1. We thus

conclude by Theorem 1.1 that Max-qCol is approximation

resistant.

Next we turn to the Unique Games Problem.

Example 2 (Max-qUG).

Let k = 2 and q ≥ 2. Let F = { f : Z2q →

{0, 1} | f −1(1) is a bijection}. The “q-ary Unique Games”

problem is defined to be Max-qUG = Max-CSP(F ). We

show below that ρ(F ) = 1/q. We also show that there

exists F ′ ⊆ F such that ρ(F ′) = 1/q and ω(F ′) = 1.

Applying Theorem 1.1 to F ′ we get that 1/q + ε approxi-
matingMax-CSP(F ′) requires linear space and the same

holds for Max-qUG = Max-CSP(F ) by monotonicity.

We define the family F ′ to be F ′ = { fa |a ∈ Zq } where
fa (u,v) = 1 if and only if u = v +a. LetD = Unif(Zq ). For

every f ∈ F we have that E(u,v)∼D2 [f (u,v)] = 1/q. So for
every DF ∈ ∆(F ) we have Ef ∼DF E(u,v)∼D2 [f (u,v)] =

1/q. This proves ρ(F ), ρ(F ′) ≥ 1/q. To get the upper

boundwe letDF be uniform overF ′. For every (u,v) ∈ Z2q
we have Ef ∼DF [f (u,v)] = 1/q and so for every dis-

tribution D ∈ ∆(Zkq ) (which is more than we need)

we have Ef ∼DF E(u,v)∼D [f (u,v)] ≤ 1/q. This proves

ρ(F ′), ρ(F ) = 1/q (since DF is supported on F ′).

Now turning toω(F ′), note that for every fa ∈ F
′
we have

{(b +a,b)|b ∈ Zq } ⊆ f −1a (1). Thus ω(fa ) ≥ ω(a,0)(fa ) = 1.

It follows that ω(F ′) = 1.

Our third example talks about constraints that are general linear

systems.

Example 3 (Max-Link,r,q ).

For k ≥ 2 and prime q and 0 ≤ r < k , we define

Max-Link,r,q = Max-CSP(F ) for F = Fk,r,q = { fA,b :

Zkq → {0, 1}|A ∈ Z
r×k
q , b ∈ Zkq } where fA,b(x) = 1 if and

only ifAx = Ab. (Thus constraints are systems of satisfiable

linear equations with solutions of dimension at least k −r .)
Let F ′k,r,q = { fA.b ∈ Fk,r,q |A · 1 = 0}. It is easy to ver-

ify that for every k, r ,q, ρ(F ′k,r,q ) ≥ ρ(Fk,r,q ) ≥ q−r . By

choosingD ′
F
to be uniform over fA,b with full rank matri-

cesA satisfyingA·1 = 0, we get ρ(Fk,r,q ), ρ(F
′
k,r,q ) = q

−r
.

For r < k , we also get ω(F ′) = 1 and thus, applying Theo-

rem 1.1 to F ′ we get thatMax-CSP(F ′) is approximation-

resistant. The same holds for Max-qUG = Max-CSP(F )
by monotonicity.

a

a
We believe this system is not approximation resistant for r = k . This is

proved for q = 2 in [5, Lemma 2.14]. The case of general q may not have

been explicitly resolved in previous work.

Finally we mention one more problem. This problem arises in

the work of Singer, Sudan and Velusamy [15] who use it to show

the approximation resistance of the “maximum acyclic subgraph”

problem.

Example 4 (Max-Less-Thanq ).

For k = 2 and q ≥ 2we define F = {<q } where <q : Z
2

q →

{0, 1} is given by <q (u,v) = 1 if and only if u < v . It

is possible to show ρ(F ) = 1

2
(1 − 1/q). Also ω(0,1)(<q ) =

1 − 1/q and this can be used to show that ω(F ) = 1 −

1/q. By Theorem 4.3 it follows that 1/2 + ε-approximating

Max-CSP(F ) requires linear space.

5 LOWER BOUND ON THE
COMMUNICATION COMPLEXITY

In this section we prove a linear lower bound on the communication

complexity of IFRMD (Theorem 3.5). Our proof is via a hybrid
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argument which starts with all players receiving inputs from the

NO distribution, and switching the players’ input distribution one

at a time starting with Player 1 to the YES distribution. We state a

key “hybrid lemma” (Lemma 5.1) which asserts that any one step

of switching does not alter the distribution of the message output

by the switched player.

To state our lemma we recall some notations and set up a few

new ones. Let α ,n,k,q,T ,m = αn ∈ N denote the usual param-

eters of IFRMD. Recall that the player t gets as input a matrix

At,ct ∈ Z
(k−1)m×n
q corresponding to a k-uniform hypermatching

Mt consisting of m hyperedges folded over the center vector ct
and a vector wt ∈ Z

(k−1)m
q . For notational convenience, we will

separate the input At,ct into a matrix At ∈ Z
(k−1)m×n
q and the

center ct . For a sequence of objects O1,O2, . . . ,OT , we denote

O1:t = {O1,O2, . . . ,Ot } for every t ∈ [T ]. With this notation we

have that the message St sent by the t-th player is a function of

A1:t , c1:t ,wt and S1:t−1.
3
Next, note that by Yao’s principle, we

may assume that the messages sent by the players in IFRMD are

all deterministic.

Namely, a protocol for IFRMD can be specified by de-

terministic message functions r1, r2, . . . , rT so that St =

rt (A1:t , c1:t , S1:t−1,wt ) denotes the message sent by the t-th player.

The communication complexity of a protocol is defined as the

largest output length of rt .
When (A1:T , c1:T ,w1:T ) is drawn from theYES distribution (resp.

the NO distribution), we denote SY
1:T (resp. SN

1:T ) to be the result-

ing messages. Without loss of generality ST is just a bit “‘Yes/No”

indicating the output of the protocol. Thus, to prove Theorem 3.5

we need to show that SYT and SNT are close in total variation dis-

tance. For the induction we prove the much stronger statement that

(A1:T , c1:T , SY
1:T ) and (A1:T , c1:T , SN

1:T ) are close in total variation

distance, i.e.,

∥(A1:T , c1:T , SY1:T ) − (A1:T , c1:T , SN1:T )∥tvd ≤ δ .

The following lemma provides the key step in this analysis.

Roughly it says that if the first t − 1 players’s inputs are according
to the YES distribution then the t-th player’s output on the YES
input is typically distributed very similarly to the output on the

NO distribution (even conditioned on all previously announced

hypermatchings, centers and messages). Formally, the lemma iden-

tifies a sequence of events E1 ⊃ E2 ⊃ · · · ⊃ ET such that (i) Et
enforces a “typicality” restriction on the messages and inputs that

the t-th player receives and (ii) if the messages and input received

by the t-th player are typical then the player cannot distinguish

whether its input is sampled from the YES distribution or the NO
distribution (assuming all previous players’ inputs were from the

YES distribution).

Lemma 5.1 (Hybrid lemma). For every q,k ∈ N, there exists α0 ∈
(0, 1/k) such that for every α ∈ (0,α0], T ∈ N, and δ ∈ (0, 1), there
exist n0 ∈ N, and τ ∈ (0, 1) such that for every n ≥ n0 the following
holds:

Let Π = (r1, . . . , rT ) be a deterministic protocol for IFRMD where
each message function rt outputs a message of at most τn bits. Let x ∼
Unif(Znq ) and letM1, . . . ,MT be independent random hypermatching

3
Note that even though the t -th player does not have access to A1:t−1, c1:t−1 , and
S1:t−2 , allowing them to see these only makes our lower bound stronger.

of size αn over [n]. Let (At , ct ) be an independent random folded
encoding of Mt for all t ∈ [T ]. Let SYt and SNt be the Yes and No
message of the t-th player defined previously for message function
rt for all t ∈ [T ]. Then there exists a sequence of events E1 ⊃ E2 ⊃
· · · ⊃ ET such that (i) Et only depends on (A1:t , c1:t ) and SY

1:t−1, (ii)
Pr[E1] ≥ 1 − δ/T , (iii) Pr[Et | Et−1] ≤ δ/T for all t = 2, 3, . . . ,T ,
and (iv) for every fixed (A1:t , c1:t ) and SY

1:t−1 satisfying Et , one has

∥SYt − rt (A1:t , c1:t , SY1:t−1,Ut )∥tvd ≤ δ/T , (5.2)

whereUt ∼ Unif(Z(k−1)αnq ).

The proof of Lemma 5.1 will be provided in Section 5.4. Theo-

rem 3.5 follows almost immediately from Lemma 5.1 as shown in

Section 5.1. In the rest of this section and the following sections

we prove Lemma 5.1. Here we give an overview of this part of the

proof.

The general idea behind the proof of Lemma 5.1 is to argue that

information about x∗ “leaked” by the messages of the first t − 1

players (i.e., S1:t−1) is not sufficient for the t-th player to distinguish
between the case where wt = At,ct x

∗
(the YES case) and the case

where wt is uniform. The earlier proofs of this type (in particular

as in [11]) simply counted the total information gleaned about

x∗ which is bounded by the total communication. Such proofs

are inherently limited to achieving only a

√
n lower bound. To

go further, as in [13], one needs to argue about the structure of

the information learned about x∗, and in particular note that no

player sees x∗ directly, and the t ′-th player only sees At ′,ct ′ · x
∗
.

(In particular no coordinate of x∗ is revealed directly, though the

sum of many pairs of coordinates are directly revealed.) Thus the

information about x∗ comes from a “reduced space” and we would

like to capture and exploit the structural restriction imposed by

this restriction. Information-theoretic tools seem to fail to capture

this restriction and the key to the work of [13] is to give a Fourier

analytic condition, that they call “boundedness”, that captures this

restriction.

The boundedness condition applies to what we call the “poste-

rior distribution” of x∗, i.e., the distribution of x∗ conditioned on

the first t messages. This distribution turns out to be the uniform

distribution over a set Bt ⊆ Z
n
q (see Lemma 5.6). The boundedness

condition places restrictions on the Fourier spectrum of the indica-

tor function of this set. (See Definition 5.11.) To use this condition

we need three ingredients elaborated below, which we abstract as

lemma statements in this section and prove in later section. Given

these three lemmas the proof of Lemma 5.1 follows and is given in

Section 5.4.

The first ingredient we need is that boundedness of Bt−1 does
imply that the t-th player is unable to distinguish between its input

being from the YES distribution or the NO distribution. This is

stated as Lemma 5.16. Next we need to show that given information

about At,ct x
∗
, the posterior distribution of x∗ is indeed bounded,

and we assert this in Lemma 5.15. Note that this also serves as the

base case of our induction. Finally we argue that if Bt−1 is bounded,
then for most matchingsAt (and every center ct ofAt ) the resulting
set Bt is bounded. This is asserted in Lemma 5.17. In the rest of

this section, after showing that Lemma 5.1 implies Theorem 3.5 in

Section 5.1, we introduce the posterior sets and discuss their basic

properties in Section 5.2, we introduce boundedness and state the
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three lemmas above in Section 5.3, and finally conclude with the

proof of Lemma 5.1 in Section 5.4.

5.1 Proof of Theorem 3.5
We now show how the lemma suffices to prove Theorem 3.5. The

proof is analogous to the proof of Lemma 6.3 in [13]. We remark

that the lemma is not immediate and effectively depends on the

fact that players can jointly sample from the NO distribution on

their own. (Note the players can’t jointly sample from the YES
distribution since these samples are correlated by the hidden vector

x∗. So the proof is inherently asymmetric visavis the treatment of

the YES and NO distributions.)

Proof of Theorem 3.5. For the sake of contradiction, assume

that there exists a protocol Π = (r1, . . . , rT ) that solves IFRMDwith

advantage more than δ and less than τn bits of communication for

somen ≥ n0. In what follows, we will show that ∥(A1:T , c1:T , SY
1:T )−

(A1:T , c1:T , SN
1:T )∥tvd ≤ δ , which implies that the advantage of the

protocol cannot be greater than δ , hence producing a contradiction.
For every q,k ∈ N, we set α0 ∈ (0, 1/k) and τ0 ∈ (0, 1) as

in Lemma 5.1. For every α ∈ (0,α0], T ∈ N, and δ
′ = δ/2, we set

n0 ∈ N and τ ∈ (0, 1) as in Lemma 5.1.

Let E1 ⊃ E2 ⊃ · · · ⊃ ET be the sequence of events guaranteed

by Lemma 5.1 such that Pr

[
Et | Et−1

]
≤ δ ′/T for t = 2, 3 . . . ,T .

Note that by the properties of these events, with probability at least

1 − δ ′, we have ∥SYt − rt (A1:t , c1:t , SY
1:t−1,Ut )∥tvd ≤ δ ′/T for all

t ∈ [T ]. We use ∥ · ∥tvd,Et to denote the total variation distance

of distributions conditioned on Et . We inductively show that for

every t ∈ [T ],

∥(A1:t , c1:t , SY1:t ) − (A1:t , c1:t , SN1:t )∥tvd,Et ≤
tδ ′

T
.

(Induction hypothesis)

First, we prove the base case t = 1. Recalling that SY
0
= SN

0
, we

have

∥(A1, c1, SY1 ) − (A1, c1, SN1 )∥tvd,E1
= ∥(A1, c1, SY1 ) − (A1, c1, r1(M1, c1, SN0 ,U1))∥tvd,E1

= ∥(A1, c1, SY1 ) − (A1, c1, r1(M1, c1, SY0 ,U1))∥tvd,E1 .

Observe that for every fixed A1, c1 and SY
0
satisfying E1, we have

∥SY
1
− r1(M1, c1, SY

0
,U1)∥tvd ≤

δ ′
T , where the randomness is over

SY
1
andU1. It follows from Lemma 2.3 that

∥(A1, c1, SY1 ) − (A1, c1, r1(M1, c1, SY0 ,U1))∥tvd,E1 ≤
δ ′

T
,

which completes the base case.

Next, we tackle the induction step. For every t = 2, . . . ,T , we
have

∥(A1:t , c1:t , SY1:t ) − (A1:t , c1:t , SN1:t )∥tvd,Et
= ∥(A1:t , c1:t , SY1:t−1, rt (A1:t , c1:t , SYt−1,At,ct x

∗))

− (A1:t , c1:t , SN1:t−1, rt (A1:t , c1:t , SNt−1,Ut ))∥tvd,Et .

Let us define QY
t−1 = (A1:t−1, c1:t−1, SY

1:t−1) and QN
t−1 =

(A1:t−1, c1:t−1, SN
1:t−1). Then, we can rewrite the above expression

for total variation distance in terms of the new notation as follows:

∥(A1:t , c1:t , SY1:t−1, rt (A1:t , c1:t , SYt−1,At,ct x
∗))

− (A1:t , c1:t , SN1:t−1, rt (A1:t , c1:t , SNt−1,Ut ))∥tvd,Et
= ∥(QY

t−1,At , ct , rt ((Q
Y
t−1,At , ct ,At,ct x

∗))

− (QN
t−1,At , ct , rt (Q

N
t−1,At , ct ,Ut ))∥tvd,Et .

We now apply Lemma 2.4. Applying this lemma with X 1 = QY
t−1,

X 2 = QN
t−1, Z

1 = (At , ct ,At,ct x
∗), Z 2 = ((At , ct ,Ut )), and f as the

function that maps the tuple (X , (B,C)) to (B, rt (X ,B,C)), we get

∥(QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,At,ct x

∗))

− (QN
t−1,At , ct , rt (Q

N
t−1,At , ct ,Ut ))∥tvd,Et

≤ ∥QY
t−1 −Q

N
t−1∥tvd,Et+

∥(QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,At,ct x

∗))

− (QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,Ut ))∥tvd,Et

= ∥QY
t−1 −Q

N
t−1∥tvd,Et−1+

∥(QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,At,ct x

∗))

− (QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,Ut ))∥tvd,Et ,

where the last equality follows from the fact that Et ⊂ Et−1 and

condition (i) of Lemma 5.1 which states that Et−1 only depends on

(A1:t−1, c1:t−1) and SY
1:t−2.

Now, by applying the induction hypothesis, we have that

∥QY
t−1 −Q

N
t−1∥tvd,Et−1 ≤

(t − 1)δ ′

T
. (5.3)

Next, we bound the second term on the right hand side, i.e.,

∥(QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,At,ct x

∗))

− (QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,Ut ))∥tvd,Et ,

by applying condition (iv) from Lemma 5.1. According to this con-

dition, for every fixed (A1:t , c1:t ) and SY
1:t−1 satisfying Et , we have

∥rt (A1:t , c1:t , SY1:t−1,At,ct x
∗) − rt (A1:t , c1:t , SY1:t−1,Ut )∥tvd ≤

δ ′

T
,

whereUt ∼ Unif(Z(k−1)αnq ). Thus, by Lemma 2.3, it follows that

∥(QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,At,ct x

∗))

− (QY
t−1,At , ct , rt (Q

Y
t−1,At , ct ,Ut ))∥tvd,Et

≤
δ ′

T
. (5.4)

Combining all the above equations, we have

∥(A1:t , c1:t , SY1:t ) − (A1:t , c1:t , SN1:t )∥tvd,Et ≤
δ ′t

T
,

which completes the induction.

Substituting t = T , we conclude that

∥(A1:T , c1:T , SY1:T ) − (A1:T , c1:T , SN1:T )∥tvd,ET ≤ δ ′.

Finally, by removing the conditioning on ET , we have

|(A1:T , c1:T , SY1:T ) − (A1:T , c1:T , SN1:T )∥tvd

≤ |(A1:T , c1:T , SY1:T ) − (A1:T , c1:T , SN1:T )∥tvd,ET + Pr[ET ]

≤ δ ′ + δ ′ ≤ δ .
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This implies that Π cannot have advantage more than δ , which
contradicts the assumptions of the theorem statement. Therefore,

we conclude that any protocol for IFRMDwith advantage δ requires

τn bits of communication, as desired. □

5.2 Posterior Sets and Functions
The main challenge in proving Lemma 5.1 lies in the condition

(iv), i.e., requiring the closeness of the Yes message (i.e., SYt =

rt (A1:t , c1:t , SY
1:t−1,At,ct x

∗)) and the hybrid No message (i.e., SNt =

rt (A1:t , c1:t , SY
1:t−1,Ut )). Intuitively, if x

∗ ∼ Unif(Znq ) and is inde-

pendent of the other arguments, then At,ct x
∗
is uniformly dis-

tributed over Z
(k−1)αn
q and hence SYt follows the same distribu-

tion as rt (A1:t , c1:t , SY
1:t−1,Ut ). However, x

∗
is correlated

4
with the

previous messages SY
1:t−1 so the above ideal situation would not

happen in general. Nevertheless, we are able to analyze the condi-

tional distribution ofAt,ct x
∗
on the previous messages by explicitly

characterizing the posterior distribution of x∗ after receiving the

messages from the first t − 1 players. That is, the conditional dis-
tribution of At,ct x

∗
can be described by first sampling x∗ from the

posterior distribution and then applying At,ct .
For every fixed A1:t , c1:t and S1:t , we would like to identify a

distributionDt over Z
n
q such thatDt is the conditional distribution

of x∗ given messages S1:t . Note that by the choice of the No case,

the conditional distribution of x∗ given messages S1:t is simply the

uniform distribution over Znq . Thus, we only need to worry about

the Yes case.

Definition 5.5 (Posterior sets and functions). Under the setting
described above, for each t and fixed A1:t , c1:t , and S1:t , define

• (Reduced posterior set) Br,t ⊆ Z
(k−1)m
q be the set of possible

values of zt = At,ct x that leads to message St ; Note that Br,t
should be thought of as a function on At , ct , and St in the
sense that Br,t = д−1t (St ) where дt (·) = rt (A1:t , c1:t , S1:t−1, ·).
Let q be the indicator function of Br,t .
• (Posterior set and function) Let

Bt := {x ∈ Znq |At,ct x ∈ Br,t } .

Also, let 1Bt : Z
n
q → {0, 1} be the indicator function of Bt .

• (Aggregated posterior set and function) Let

B1:t := {x ∈ Znq |At ′,ct ′x ∈ Br,t ′ , ∀t ′ = 1, . . . , t} =
t⋂

t ′=1
Bt ′ .

Also, let 1B1:t : Z
n
q → {0, 1} be the indicator function of B1:t .

Namely, 1B1:t =
∏t

t ′=1 1Bt ′ .

Now, we show that 1B1:t captures the posterior distribution (i.e.,

the conditional distribution) of x given messages S1, S2, . . . , St :

Lemma 5.6 (Posterior function 1B1:t captures the posterior dis-

tribution.). For every t ∈ [T ], the conditional distribution of x
given messages S1, S2, . . . , St is exactly given by 1B1:t (x)/∥1B1:t ∥1.
In particular, for fixed A1:t , c1:t , and SY

1:t−1, we have SYt =

rt (A1:t , c1:t , SY
1:t−1,At,ct x

∗), where x∗ ∼ Unif(B1:t ).

Proof. Proof is given in the full version [6]. □

4
In particular, x∗ has to be consistent with the previous messages SY

1:t−1 .

Note that we have a characterization of the posterior distribution

of x∗, the following corollary shows that Equation 5.2 (i.e., the

condition (iv) of Lemma 5.1) can be simplified to bounding the

total variation distance between the posterior distribution and the

uniform distribution.

Corollary 5.7 (Reducing Equation 5.2). Let
rt , S

Y
1:t−1,A1:t , c1:t ,B1:t ,Ut be defined as before, we have

∥rt (A1:t , c1:t , SY1:t−1,At,ct x
∗) − rt (A1:t , c1:t , SY1:t−1,Ut )∥tvd

≤ ∥(At,ct x
∗) −Ut ∥tvd

where x∗ ∼ Unif(B1:t ).

Proof. By Lemma 5.6, we have

SYt = rt (A1:t , c1:t , SY1:t−1,At,ct x
∗)

where x∗ ∼ Unif(B1:t ). Note that when we fix A1:t , c1:t , and SY
1:t−1

(hence B1:t is also fixed), by data processing inequality (see item 2

of Proposition 2.2) we have

∥rt (A1:t , c1:t , SY1:t−1,At,ct x
∗) − rt (A1:t , c1:t , SY1:t−1,Ut )∥tvd

≤ ∥(At,ct x
∗) −Ut ∥tvd .

□

Namely, Equation 5.2 (i.e., the condition (iv) of Lemma 5.1) can

be replaced with ∥(At,ct x
∗) −Ut ∥tvd ≤ γ/T , i.e., after applying a

random folded hypermatching matrix At,ct to the posterior distri-

bution Unif(B1:t ), the distribution of the resulting string is close to

the uniform distribution Unif(Z(k−1)αnq ).

Finally, the following lemma shows that when the amount of

communication is small, the posterior set is large with high proba-

bility.

Lemma 5.8 (Posterior set is large). Let Π = (r1, . . . , rT ) be a deter-
ministic protocol for IFRMD where each message function rt outputs
a message of length at most s bits for some 1 ≤ s ≤ n. Let Bt be
the posterior set defined in Definition 5.5 for every t ∈ [T ]. For every
δ ∈ (0, 1) and t ∈ [T ], we have |Bt | ≥ δ · qn−s with probability at
least 1 − δ over the randomness of x ∈ Znq .

Proof. Fix a hypermatching M and centers c, the t-th message

function induces a partition P1 ∪ P2 ∪ · · · ∪ P2s of Znq . For each

x ∈ Znq , we define P(x) to be the part that contains x, i.e, if x ∈ Pi ,
then P(x) = Pi . Note that

E
x∈Znq

[
1

|P(x)|

]
=

2
s∑

i=1

Prx∈Znq [x ∈ Pi ]

|Pi |
=

2
s∑

i=1

|Pi | · q
−n

|Pi |
=

2
s

qn
≤ qs−n .

By Markov’s inequality, we have |P(x)| < δ · qn−s with probability

at most δ as desired. □

5.3 Fourier Analytic Conditions
In this subsection, we define and analyze Fourier-analytic properties

of the posterior set B and show that these properties are sufficient

for the condition (iv) (i.e., Corollary 5.7) of Lemma 5.1.

Recall that given a matching M = (e1, . . . , em ) and centers c =
(c1, . . . , cm ), Ac is the c-centered folded encoding of M . We are

going to define three properties for sets B in Znq . First, we say a set
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B ⊆ Znq is (M, c)-restricted if B is restricted to a union of shifted

null spaces of Ac.

Definition 5.9 (Restricted set). LetM be a k-hypermatching of size
m and c be centers. We say a set B ⊆ Znq is (M, c)-restricted if there

exists a (“reduced”) set Br ⊆ Z
(k−1)m
q such that B = {x ∈ Znq |Acx ∈

Br }.

Next, we say a set B is bounded if the Fourier spectrum of the

indicator function 1B can be properly bounded in an appropriate

range of the spectrum. This is analogous to Definition 4.3 in [13].

First, we introduce some notation:

UC,s (h) :=


1, h = 0(
C
√
sn
h

)h/2
, 1 ≤ h ≤ s(

2q2e2n
h

)h/2
, h > s .

. (5.10)

Definition 5.11 (Bounded set). Let n,q ∈ N, 0 ≤ s ≤ n, C > 0,
and B ⊂ Znq . We say B (as well as its indicator function 1B ) is (C, s)-
bounded if, for every h ∈ [s],∑

u∈Znq
∥u∥0=h

qn

|B |

��1̂B (u)�� ≤ UC,s (h). (5.12)

Remark 5.13. As we keep track of posterior sets that are induc-

tively refined, we will need the entire Fourier spectrum of the cor-

responding indicator functions to be bounded from above by the

functionUC,s (for appropriateC, s > 0), which is defined piecewise

on the low, medium, and high regimes. This allows us to show

that Acx is close to the uniform distribution on Z
(k−1)αn
q when x is

drawn from such a posterior set B ⊂ Znq (see Lemma 5.16). How-

ever, the upper bound given by UC,s (h) in the high regime h > s
is guaranteed automatically as long as B is large enough. Thus,

we only need to keep track of the Fourier spectrum for weights in

the middle regime; hence, the (C, s)-boundedness property that we

maintain inductively only concerns Fourier weights in this regime.

More specifically, if a set B ⊂ Znq is (C, s)-bounded and satisfies

|B | ≥ qn−s , then we have that∑
u∈Znq
∥u∥0=h

qn

|B |

��1̂B (u)�� ≤ UC,s (h)

for all 0 ≤ h ≤ n.

Finally, in what follows we will show that the intersection of a

bounded set with a “restricted set” is also bounded and this will

be the core of our induction. To do this we need to understand the

Fourier behavior of restricted sets. It turns out that restricted sets

satisfy a property stronger than being bounded, which we term

“reduced”-ness below.

Definition 5.14 (Reduced set). Let n,q ∈ N, 0 ≤ s ≤ n, C > 0,
and B ⊂ Znq . Let M be a k-hypermatching. We say B (as well as its
indicator function 1B ) is (M,C, s)-reduced if the following hold.

• For every u ∈ Znq , if there exists i ∈ [n] such that ui = 1 but i
is not contained inM , then 1̂B (u) = 0.

• For every u ∈ Znq , if there exists a hyperedge ei ofM such that
⟨u, ei ⟩ . 0 mod q, then 1̂B (u) = 0.
• For every h ∈ {1, . . . , s} and v ∈ Znq ,∑

u∈Znq
∥u+v∥0=h

qn

|B |

��1̂B (u)�� ≤ UC,s (h) .

There are two key lemmas about these Fourier analytic condi-

tions. The first lemma establishes the base case of the induction

toward showing the aggregated posterior set being (C, s)-bounded
(for some C = O(1) and s = Ω(n)). In fact, we show a stronger

guarantee in which every posterior set Bt is (Mt ,C, s)-reduced.

Lemma 5.15 (Base case). For every q,k ≥ 2, α ∈ (0, 1/k), there
exists a constant C such that for every k-hypermatchingM on [n] of
sizem ≤ αn, suppose n ∈ N is large enough and 0 < b ≤ s ≤ n/32,
then the following holds. Let B ⊆ Znq . If (i) there exists a sequence of
centers c such that B is (M, c)-restricted and (ii) |B | ≥ qn−b , then B
is (M,C, s)-reduced.

The proof of Lemma 5.15 is given in the full version [6]. (We note

that the proof yields that C ≥ 2ζ 2ek2q3k where ζ is the constant

from Lemma 2.11.)

Recall from Corollary 5.7 that the condition (iv) in Lemma 5.1

are implied by showing Acx is close to the uniform distribution

over Z
(k−1)m
q with high probability over to choice of Ac where

x is sampled uniformly from the posterior set B1:t . The second

key lemma shows that Acx∗ is indeed close to uniform when the

posterior set is bounded.

Lemma 5.16 (Boundedness implies closeness to uniformity). For
every q,k ≥ 2 and δ ∈ (0, 1/2), there exists α0 = α0(k,q) such that
for every α ∈ (0,α0), C > 0, there exists τ0 = τ0(q,k,α ,δ ,C) such
that the following holds for any τ ∈ (0,τ0) and sufficiently large n:

Let B ⊂ Znq be a (C, s)-bounded set with |B | ≥ qn−b , for
4 log(3/δ ) ≤ b ≤ s ≤ τn. Let M be a random k-hypermatching
of size αn and c be a sequence of centers forM and letAc denote the c
centered folded encoding andM . Then, with probability at least 1 − δ
over the choice ofM , we have that for every z0 ∈ Z

(k−1)αn
q , we have

1 − δ < q(k−1)αn Pr

x∼Unif(B)
[Acx = z0] < 1 + δ .

As a consequence, we also have
(1) ∥(Acx) − U ∥tvd ≤ δ where x ∼ Unif(B) and U ∼

Unif(Z(k−1)αnq ).

(2) For every non-negative function f over Z(k−1)αnq ,

(1 − δ ) ≤
Ex∼Unif(B) [f (Acx)]

Ez∼Unif(Z(k−1)αnq )
[f (z)]

≤ (1 + δ ) .

The proof of Lemma 5.16 is given in the full version [6].

Our final lemma of this section asserts that if 1B1:t is (C, s)-
bounded, then f1:t+1 is (O(C), s)-bounded with high probability.

Lemma 5.17 (Induction step). For every q,k ∈ N there exist α0 ∈
(0, 1/k) and C0 > 0 such that for every α ∈ (0,α0], C > C0, and
δ ∈ (0, 1/2), there exist C ′ > 0, n0 ∈ N, and τ0 ∈ (0, 1) such that
the following holds. For every n ≥ n0, every 0 < b,b ′, s < τ0n,
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and every B ⊂ Znq that satisfies |B | ≥ qn−b and is (C, s)-bounded,
let M be a uniformly random k-hypermatching of size at most αn,
with probability at least 1 − 4δ over the randomness ofM , for every
(M,C0, s)-reduced set B′ ⊂ Znq with |B′ | ≥ qn−b

′

and |B ∩ B′ | ≥

(1 − δ ) · |B | · |B′ |/qn ≥ qn−s , we have B ∩ B′ is (C ′, s)-bounded.

Lemma 5.17 is proved in the full version [6]. In our inductive

application of the lemma above, we set B ← B1:t−1 and B′ ← Bt
for every t ∈ {2, 3, . . . ,T } to get that all the Bt ’s are bounded and

this is the core of the proof of Lemma 5.1.

5.4 Proof of Lemma 5.1
Proof of Lemma 5.1. For every q,k ∈ N, we choose α ′

0
to be the

minimum of the α0’s from the induction step (i.e., Lemma 5.17) and

the “boundedness implies uniformity” lemma (i.e., Lemma 5.16). We

set C0 according to Lemma 5.17 and for every α ∈ (0,α ′
0
], T ∈ N,

and δ ∈ (0, 1), we invoke Lemma 5.16 with δ ′ = δ/10T and C = C0

to get τ0 = τ0(q,k,α ,δ
′,C0) > 0 and set s = τ0n. Let τ > 0 be

a small constant. (We will explicitly fix this quantity later.) Let

b = τn + logq (10/δ
′). We choose τ such that 2Tb < s = τ0n. Let

C1 = C0. We define E1 to be the event that |B1 | ≥ qn−2b and B1
is (C1, s)-bounded, where B1 refers to the posterior set defined in

Definition 5.5. By the “posterior set is large” lemma (i.e., Lemma 5.8)

and the “base case” lemma (i.e., Lemma 5.15) we have Pr[E1] ≤

δ ′/10 ≤ δ/T as desired. This satisfies condition (ii) of Lemma 5.1.

Next, for each t ∈ {2, 3, . . . ,T }, let Et = E1 ∩ · · · ∩ Et−1 ∩ E
′
t

where E ′t denotes the event that the aggregate posterior set B1:t
is large, i.e., |B1:t | ≥ qn−2tb and B1:t is (Ct , s)-bounded, where
Ct > 0 is a constant that will be inductively chosen later. Note

that by construction Et only depends on (A1:t , c1:t ) and SY
1:t−1

and hence satisfies condition (i) of the lemma. To show that Et
happens with high probability conditioned on Et−1, note that by

the “posterior set is large” lemma (i.e., Lemma 5.8) and the “base

case” lemma (i.e., Lemma 5.15), we have |Bt | ≥ qn−b and Bt is

(Mt ,C0, s)-reduced with probability at least 1 − δ ′. Moreover, the

event Et−1 implies that B1:t−1 is (Ct−1, s)-bounded and hence if we
setτ < τ0(q,k,α ,δ

′,Ct−1), by the “boundedness implies uniformity”

lemma (i.e., Lemma 5.16), Z
(k−1)αn
q , we have the following claim.

Claim 5.18. When 2Tb < s , conditioned on Et−1, with probability
at least (1 − δ ′) over the choice ofMt , the set B1:t satisfies

|B1:t | ≥ (1 − δ
′) · |B1:t−1 | · |Bt |/q

n .

Proof. Proof is given in the full version [6]. □

Thus, by invoking the “induction step” lemma (i.e., Lemma 5.17)

on B1:t−1 and Bt with C = Ct−1, there exists a constant Ct such
that that B1:t = B1:t−1 ∩ Bt is (Ct , s)-bounded with probability at

least 1 − 4δ ′. Namely, we have Pr[Et | Et−1] ≤ 5δ ′ ≤ δ/T . This
satisfies condition (iii).

Finally, for every t ∈ [T ], if we set τ < τ0(q,k,α ,δ
′,Ct−1), by

the “boundedness implies uniformity” lemma (i.e., Lemma 5.16),

we know that ∥(Acx∗) − Ut ∥tvd ≤ δ ′ where x∗ ∼ Unif(B1:t )
Ut ∼ Unif(Z(k−1)αnq ). As SY

1:t = rt (A1:t , c1:t , SY
1:t−1,At,cx

∗) where

x∗ ∼ Unif(B1:t ), by the data processing inequality we have

∥SYt − rt (A1:t , c1:t , SY
1:t−1,Ut )∥tvd ≤ δ/T as desired. This satisfied

condition (iv).

To conclude, we set τ > 0 to be a small constant that satisfies

2Tb < τ0n and τ < τ0(q,k,α ,δ
′,Ct−1) for all t ∈ [T ] where Ct is

inductively chosen as described above. This completes the proof

of Lemma 5.1.

□
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