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ABSTRACT

We consider the approximability of constraint satisfaction problems
in the streaming setting. For every constraint satisfaction problem
(CSP) on n variables taking values in {0, . ..,q — 1}, we prove that
improving over the trivial approximability by a factor of g requires
Q(n) space even on instances with O(n) constraints. We also identify
a broad subclass of problems for which any improvement over the
trivial approximability requires Q(n) space. The key technical core
is an optimal, g~ k_l)-inapproximability for the Max k-LIN-mod ¢
problem, which is the Max CSP problem where every constraint is
given by a system of k — 1 linear equations mod q over k variables.

Our work builds on and extends the breakthrough work of
Kapralov and Krachun (Proc. STOC 2019) who showed a linear
lower bound on any non-trivial approximation of the MaxCut prob-
lem in graphs. MaxCut corresponds roughly to the case of Max
k-LIN-mod g with k = q = 2. For general CSPs in the streaming
setting, prior results only yielded Q(+/n) space bounds. In particular
no linear space lower bound was known for an approximation fac-
tor less than 1/2 for any CSP. Extending the work of Kapralov and
Krachun to Max k-LIN-mod q to k > 2 and q > 2 (while getting
optimal hardness results) is the main technical contribution of this
work. Each one of these extensions provides non-trivial technical
challenges that we overcome in this work.
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1 INTRODUCTION

In this work we consider the approximability of constraint satisfac-
tion problems (CSPs) by streaming algorithms with sublinear space.
We give tight inapproximability results for a broad class of CSPs,
while giving somewhat weaker bounds on the approximability of
every CSP. We introduce these terms below.

1.1 Background

We consider the general class of constraint satisfaction problems
with finite constraints over finite-valued variables. A problem in
this class, denoted Max-CSP(¥), is given by positive integers g and
k and a family of functions F C {f : ZZ — {0, 1}}. An instance of
the problem consists of m constraints placed on n variables that take
values in the set Zg = {0, ...,q—1}, where each constraint is given
by a function f € F and k distinct indices of variables ji, ..., j; €
[n]. Given an instance ¥ of Max-CSP(¥), the goal is to compute the
value valy defined to be the maximum, over all assignments to n
variables, of the fraction of constraints satisfied by the assignment.
For a € [0, 1], the goal of the a-approximate version of the problem
is to compute an estimate 5 such that « - valy < n < valy.

In this work we consider the space complexity of approximating
Max-CSP(¥) by a single pass (potentially randomized) stream-
ing algorithm that is presented the instance ¥ one constraint at
a time. We consider “non-trivial” approximation algorithms for
Max-CSP(¥), where we first dismiss two notions of “triviality”.
First note that since we only consider space restrictions but not
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time restrictions, one can sample O(n) constraints of ¥ and solve
the Max-CSP(¥) problem on the sampled constraint optimally to
get a (1 — ¢)-approximation algorithm for every constant ¢ > 0
in O(n) space. Thus for this paper we view non-trivial algorithms
to be those that run in o(n) space.! The other form of “triviality”
we dismiss is in the approximation factor. Given a family 7, let
Pmin(F) denote the infimum, over all instances ¥ of Max-CSP(F),
of the value valy. Note that the algorithm that outputs the constant
Pmin(F) is a (O(1)-space!) pmin(F) approximation algorithm for
Max-CSP(¥). Thus we consider ppyin(F) to be the “trivial” approx-
imation factor for a family . With these two notions of “trivial-
ity” in mind, we define Max-CSP(¥) to be a-approximable (in the
streaming setting) if « is the largest constant such that there exists
an q-approximation algorithm for Max-CSP(¥) using o(n) space.
We say that Max-CSP(¥) is simply approximable (in the streaming
setting) if it is a-approximable for some @ > ppin. We define a
problem to be approximation-resistant (in the streaming setting)
otherwise.

1.2 Results

Our first main result in this paper gives a sufficient condition for
a problem to be approximation resistant in the streaming setting.
We say that f : Z’; — {0, 1} is a wide constraint if there exists
ae Z]{; such that for every i € Zq we have f(a + ik) = 1 where
ik =G,i,..
that a family ¥ is wide if every function f € ¥ is wide.

., i) and addition is performed in the group ZS. We say

Theorem 1.1. Foreveryq, k and every wide family ¥, Max-CSP(¥)
is approximation-resistant.

Many natural CSPs are wide, including Boolean problems such
as Max k-SAT and Max g-colorability. Others, such as Max k-LIN(q)
and the “Unique Games” problem, contain wide subfamilies with the
same “trivial” approximation factor, and thus Theorem 1.1 implies
these are also approximation resistant. We elaborate on some of
these examples in Section 4. However, clearly wideness does not
capture all CSPs. For general CSPs, while we do not pin down
the approximability exactly, we do manage to pin it down up to a
multiplicative factor of gq.

Theorem 1.2. For every q,k and every family ¥, if F is a-
approximable then o € [pmin(F),q - pmin(F)]-

Both Theorems 1.1 and 1.2 follow from our more detailed Theo-
rem 4.3. In Section 4 we give a few examples illustrating how our
theorems give tight lower bounds for some commonly studied CSPs
including Max g-coloring, Unique Games, and Max Linear Systems.

1.3 Prior Work

There have been a number of works in the broad area of approxi-
mations for streaming constraint satisfaction problems and lower
bound techniques for those [1-4, 7-13, 15, 16]. Among these our
work is the first work to aim to get tight inapproximability results for
a broad class of CSPs for almost linear space single-pass streaming
algorithms. Previous works either did not get tight approximation

IWe note that there is a gap between the o(n) space we allow and the O(n log n)
space that is trivial, but we are not able to get sharp enough lower bounds to address
this gap.
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factors or were aimed at specific problems or only got Q(+/n)-space
lower bounds, though some do target multi-pass streaming algo-
rithms [2, 3] — which we do not do here. We describe the state of
the art prior to our work below. (More detailed descriptions of prior
works can be found in [4].)

On the front of general lower bounds, Chou, Golovnev, Sudan and
Velusamy [4] explored the same set of CSP problems as we do, i.e,
Max-CSP(F) for arbitrary g, k and ¥ . Their focus is on looser space
lower bounds: specifically, they focus on problems that require nf2V)
space vs. those where no® space suffices. They give a complete
dichotomy for sketching algorithms, a special class of streaming
algorithms. They also give sufficient conditions for approximation
resistance with respect to sub-polynomial space general streaming
algorithms. Theorem 2.9 in their paper shows that families 7 where
the satisfying assignments of every function in the class support
a one-wise independent distribution are approximation resistant.
This theorem is incomparable with our Theorem 1.1 in that they
give approximation resistance for a broader collection of problems
(all wide families support one-wise independence) but the space
lower bound is weaker — they give an Q(+/n) lower bound and
we get Q(n) lower bounds for wide families. [4] does not give an
analogue of our Theorem 1.2, though such a result (with the weaker
Q(+/n) space lower bound) can be derived from their theorems
equally easily. Indeed, our Section 4 is based on their work.

Turning to linear space lower bounds the breakthrough work
here is due to Kapralov and Krachun [13], who show that approxi-
mating Max Cut (which translates in our setting to Max-CSP(F) for
F = {@,} where ®; : {0,1}2 — {0, 1} is the binary XOR function)
to within a factor % + ¢ requires Q(n) space for every ¢ > 0. Indeed,
our work builds on their work and we compare our techniques later.
Prior to the work of Kapralov and Krachun, there was a weaker
result due to Kapralov, Khanna, Sudan and Velingker [12] showing
that there exists ¢ > 0 such that (1 — ¢)-approximation for Max Cut
requires linear space. Finally, Chou, Golovnev and Velusamy [7]
get a tight inapproximability for Max Exact 2-SAT (corresponding
to Max-CSP(F) for F = {V3}, where V3 : {0,1}% — {0, 1} is the
binary OR function) for linear space algorithms, by a reduction
from Max Cut.

Thus, prior to our work it was conceivable (though of course
extremely unlikely) that every Max-CSP(¥) allowed a 1/2-
approximating streaming algorithm using o(n) space. Our work is
the first to prove inapproximability & < 1/2 for any Max-CSP(¥).
Indeed, we get inapproximabilities going to 0 either as ¢ — oo (e.g.,
for the Unique Games problem) or as k — oo (e.g., for the Max
k-equality problem with q = 2 as defined later in Section 1.4).

The main contribution of our work is to extend the techniques
of [13] to problems beyond Max Cut. Indeed the bulk of our proof
takes the tour-de-force proof in [13] and finds the correct replace-
ments in our setting. In the process, we arguably even present
cleaner abstractions of their work. We elaborate on this further in
the next section but first comment on why we feel the extensions
are not straightforward given [13]. First we note that the exact
class of problems we are able to deal with in Theorem 1.1 is not
the fullest extension one may hope for. At the very least we have
expected to cover the same set of problems as [4, Theorem 2.9], i.e.,
families supporting one-wise independent distributions, but this
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remains open. Indeed to get our extensions we have to formulate
a new communication problem which generalizes the one in [13]
and is different from the many variations considered in [5] and [4].
In particular we are forced to work with a less expressive set of
communication problems that already forces a “linear-algebraic”
restriction on the core problems we work with. (We do believe a
slight extension of our results to “families containing one-wise in-
dependent cosets of Z](; ” should be more feasible.) Having identified
the right set of problems, carrying out the proof of Kapralov and
Krachun is still non-trivial. In particular one has to be careful to
ensure that the improvement in the exponent of the space bound
(from n'/2 to n) is by a full factor of 2 and not a factor of k/(k — 1),
which is what one natural extension would lead to! We comment
on these improvements in greater detail in the following.

Finally we point out that an extension of the lower bounds in
[4] to Q(n) space lower bounds may actually be false. In particular,
there is a candidate algorithm for one of the problems (Max 2-
AND) that might improve on the approximation factors with w(+/n)
space. It certainly works better on the hard instances from previous
reductions, but we do not have an improved analysis on all graphs.

1.4 Techniques and New Contributions

There are two lines of previous work that seem relevant to this
work and we discuss our technical contributions relative to those
here. We start with quick comparison with the previous work [4]
that gives Q(+/n) lower bounds for a broader subset of problems
than those addressed in this paper. We then move on to the work
[13] which is much closer to our work and needs more detailed
comparison.

Comparison with [4]. While there is some obvious overlap in the
set of problems considered in [4] and this paper (and also in the
set of authors) we claim that, beyond this aspect, the overlap in
techniques is minimal. Both papers do use lower bounds on com-
munication problems to establish lower bounds on streaming CSPs
(which is standard in the context of streaming lower bounds). But
the exact set of communication problems is different, and the tools
used to establish the lower bounds are also different. In particu-
lar, [4] create roughly a new communication problem for every
Y, p and F and the main technical contributions there are lower
bounds for these problems achieved mainly through a rich set of
reductions among these communication problems. In our work we
essentially work with one communication problem (once we fix
k and q) and the core of our work is proving a lower bound for
this problem. (This lower bound is based on extending [13] and
we will elaborate on this later.) We use this one problem to get
hardness for many different y, f and ¥ — this part is arguably re-
lated to the work of [4] but we feel this is the obvious part of their
work as well as our work. Finally, turning to the communication
problems, the natural communication problems used to analyze
streaming complexity involves one way communication among a
large constant number of players. The exact problem of this type
that we focus on is different from the ones considered in [4] due
to a concept we call “folding”. Folding makes our problems too
restrictive to work for [4] (i.e., would prevent them for addressing
every (y, f) — Max-CSP(¥)), whereas we do not know how to get
our lower bounds without folding. We also note that [4] derive their
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multiplayer lower bounds from lower bounds for a corresponding
2-player game and all their reductions work only for these 2-player
games, which are inherently limited to yielding ®(~+/n) space lower
bounds.

We now turn to the more significant comparison, with [13]. We
start with a quick review of the main steps of [13] and then describe
our analysis and conclude with a summary of the differences/new
contributions relative to [13].

Summary of [13]. [13] work with a distributional T-player one-
way communication game for some constant T. The game also
has a parameter a > 0. In instances of length n of this game, T
players Pi, ..., P get partial matchings Mj, ..., Mt on the vertex
set [n] along with respective binary labels z1, . . ., z7 on the edges of
the matchings, i.e., player ¢ receives input (M;, z;). Each matching
contains an edges, while each corresponding label z; is an element
of {0,1}%™. In the communication game, the players sequentially
broadcast messages as follows. Player t € [T — 1] computes a small
message ¢; which is a function of My, z; and all “previous messages”
€1,...,cr—1,” after which the Tth player outputs a single 0/1 bit
that is said to be the output of the communication protocol. The
complexity of the protocol is the maximum over ¢t € [T] of the
message length c;, and the goal of the players is to distinguish
input instances drawn according to a YES distribution from those
drawn according to a NO distribution, defined as follows.

In instances chosen from the NO distribution, the matchings
Mj, ..., Mt are chosen uniformly and independently from the set
of matchings containing an edges on the vertex set [n]. Furthermore,
the vectors zy, . . ., zT are chosen uniformly and independently from
{0,1}%" . In the YES distribution, the matchings are chosen as in
the NO distribution, but in order to generate z1, . .., zT, we choose
a common hidden vector x* € {0, 1}" uniformly at random and set
each z; as z;(e) = x}, @ xz for every edge e = (a, b). Thus, the label
z; can be viewed as specifying which edges of the i-th matching
cross the cut determined by x*. If T > % then it can be seen
that the YES and NO distributions are very far. The key theorem
shows that for every a > 0 and T, any protocol distinguishing YES
instances from NO instances with constant advantage requires
Q(n) space. With this lower bound a space lower bound on Max
Cut is straightforward.

Turning to the communication lower bound, the focus of the
analysis are the sets By,...,Br C {0,1}" corresponding to the
purported hidden vector x* that are consistent with the messages
¢1,...,cr. Specifically for t € [T], B is the set of all vectors x*
that are consistent with the first t matchings M., and the first ¢
messages c1:;. [13] argue that the sets B; are not shrinking too
fast (in either the YES case or the NO case) using a property that
they term “C-boundedness,” defined by the Fourier spectrum of the
indicator function of B; (the function in {0, 1}" to {0, 1} that is 1
on B;). We do not give the exact definition of boundedness here
but roughly describe it as follows: Given an arbitrary set B of size S
and a Fourier weight w, the total Fourier mass (strictly the £;-mass)
of the wth level Fourier coefficients of B is well-known (by classical
Fourier analysis) to be bounded by some amount U(w) = Us, »(w).

For technical reasons the lower bounds are proved in the stronger model where
player t get My, . .., M;_; as well, but this difference is not crucial for the current
discussion.
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For C-bounded sets, the corresponding Fourier mass is required
to be at most CYU(w/2). The factor of two gained here in the
argument of U is the crux to improvement in the space lower bound
from /n to n. (If the right hand side had been of the form C¥ U(aw)
then the space lower bound would be Q(n!/(2@))) This factor of
two, in turn, is attributable to the fact that the z; only contain
information about pairs of bits of x*. Their analysis shows that,
for every t, B; is Cs-bounded for some constant C;. (The proof
is inductive on ¢ but the inductive hypothesis is complex and we
won’t reproduce it here.) They further show that if Bt is C-bounded
for some constant C, then the distinguishing probability is at most

o(1).

Our Analysis. The core of our paper focuses on one problem
for every given q and k, which we call Max k-EQ(q). This is the
problem given by Max-CSP(¥) for ¥ = {fp, .. p, : Z’,; — {0,1}},
where fp, . p,(a1,...,a;) = 1ifand only if a; = a1 + by mod q
for every t € {2,...,k}. All our lower bounds effectively come
from a tight q’(k’l)-inapproximability of this problem for every ¢
and k.

To study this problem we introduce a T-player communication
problem that we call the “Implicit Randomized Mask Detection
Problem” (IRMD) described as follows: There are T players each
of whom receives an an k-hypermatching M; (i.e., a set of an k-
uniform hyperedges on [n] that are pairwise disjoint). Additionally,
the players receive a label in Z’; for every hyperedge they see. Thus
the ith player’s input is (M;, z;) where z; € (Z’;)“n, In the NO
distribution the z;’s are drawn uniformly. In the YES distribution
a vector x* € [¢]" is drawn uniformly and the label associated
with an edge j = (j1,...,Jjk) is (x;f1 + aj, ... ,x]*fk + aj) where a; €
[q] is chosen uniformly and independently for each edge in each
matching. The goal of the players is to distinguish between the YES
and NO distributions with minimal communication (with one-way
communication from the ¢ — 1th player to the tth player, as before).

To lower bound the communication complexity of IRMD we
consider a folded version of the problem we call IFRMD where
the labels associated with an edge are from Zk=1 and obtained
by mapping an IRMD label z = z0,...,z0) e ZI(; to the label
7= -z . 20— D) With this folding we recover the
same communication problem as [13] for the case of k = ¢ = 2 and
the main focus of our work is proving lower bounds for higher k
and q.

Our analysis of the communication complexity of IFRMD follows
the same sequence of steps (with imitation even within the steps)
as [13]. In particular we also use the same sets By, ..., Bt and use
the same notion of boundedness.

Turning to the induction and the analysis of boundedness of B;
for general ¢, we are able to extract a clean lemma (Lemma 5.17)
that makes the induction completely routine. To explain this con-
tribution note that B; is the intersection of B;_1 with a set say A;
where A; is of the same type as B; (both are obtained by looking
at the vector x* projected to a matching followed by some folding).
Thus both B;_1 and A; are bounded sets. To complete the induction
it would suffice to prove that the intersection of bounded sets is
bounded, but alas this is not true! To get that B; is bounded, we
need to use the fact that the matching M; is random and chosen
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independently of B;_; but it turns out that that is all that is needed.
This is exactly what we show in Lemma 5.17 — and of course this
only happens with high probability over the choice of M;.

Incremental contribution over [13]. Given that our result closely
follows [13] we now focus on some key differences, and why these
contributions are conceptually significant.

(1) The analysis of [13] is intricate and it is not a priori clear what
problems it may extend to. Our choice of Max k-EQ(q) is not
the obvious choice, and was not our first choice. More natural
choices would be to go for more general linear systems, or
even functions supporting “one-wise independence”, but we
are unable to push the analysis to more general cases. Our
choice reflects an adequate one to get coarse bounds on the
approximability of every problem while getting tight ones
for many natural ones.
The choice of the communication problems to work with
is also not obvious: Indeed working with both IRMD and
IFRMD seems necessary for our approach — the former is
more useful for our final inapproximability results whereas
the latter is the one we are able to analyze.
The exact notion of boundedness that is necessary and suf-
ficient for our results is also not completely obvious. It is
only in hindsight, after carrying out the entire analysis, does
it become clear that the notion that works is exactly the
same as the one in [13]. Part of the challenge is that in the
inductive proof of boundedness even the base case (which is
quite simple in [13]) is not obvious in our case, and nor is
the inductive step.

e With respect to the base case we note that if we had
adopted a weaker notion of boundedness allowing wth
level Fourier mass to grow roughly as U((k—1)w/k) bound-
edness would have been easier to prove but the result
would not be optimal. Getting a bound of U(w/2) is not
technically hard, but involves a non-trivial randomization
in the choice of folding purely for analysis purposes. (So
there is an implicit passing back and forth between the
IRMD and IFRMD problems in this technical step.)

e We also feel that it is important that we are able to extract
an induction lemma (Lemma 5.17) that clearly separates
the (Fourier and combinatorial) analytic ingredients from
the probabilistic setup. We believe the lemma is clarifying
even when applied to the proof of [13].

Finally we note that the underlying combinatorics are made

significantly more intricate due to the need to work with

k > 2. A conceptual difference from [13] here is that whereas

they explore the distribution of the number of edges in a

random matching that intersect with a fixed set of vertices,

we have to explore the distribution of edges that have an odd
intersection (or non-zero mod q intersection) with a random
hypermatching. Indeed this part is clarifying the role of some
of the quantities explored in the previous work. Additionally,
we note that the number of parameters we have to track
is much larger (and indeed it is fortunate that the number
of parameters remains a constant independent of k), and
managing these in our inequalities is a non-trivial technical
challenge (even given the heavy lifting in [13]).
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Organization of the rest of the paper. We start with some back-
ground material in Section 2. We introduce our communication
problems (IRMD and IFRMD) in Section 3 and state our lower
bounds for these. We use these lower bounds to prove our stream-
ing lower bounds in Section 4. Section 5 introduces the notion of
bounded sets and proves our lower bound on the communication
problems.

2 PRELIMINARIES

We use the following notations throughout the paper. Let N =
{1,...} denote the set of natural numbers and let [n] = {1,2,...,n}.
For a discrete set X and a function f : X — R, we denote || f]|, =

Cxex |f(x)|P)1/P for every p > 0 and || fllo = Xxex 1f(x)z0-

2.1 Total Variation Distance

In our analysis we will use the total variation distance between
probability distributions, and several bounds on it presented in this
section.

Definition 2.1 (Total variation distance of discrete random vari-
ables). Let Q be a finite probability space and X, Y be random vari-
ables with support Q. The total variation distance between X and Y
is defined as follows.

1
X = Yllroa = 5 ), IPrlX = 0] = PrlY = 0]| .

weQ

We will use the triangle and data processing inequalities for the
total variation distance.

Proposition 2.2 (E.g.,[11, Claim 6.5]). For random variables X,Y
and W:

o (Triangle inequality) | X=Yll;va 2 IX=Wll;oa =Y =Wlltva-

o (Data processing inequality) If W is independent of both X
andY, and f is a function, then || f(X, W) — f(Y,W)ll;pq <
IX = Yll;oa-

Lemma 2.3. LetX, Y, W be random variables and let f be a func-
tion. If there exists § > 0 such that for every fixed x in the support of
X, we have

If G Y) = fe, Wllewa <6,
then the following holds:

X, FOGY)) = (X, fFOGCW)lppa <6
Proor. Proof is given in the full version [6].

We will also need the following lemma from [13].

Lemma 2.4 ([13] Lemma B.2). Let X', X? be random variables tak-
ing values on finite sample space Q1. Let Z', Z% be random variables
taking values on sample space Q3, and suppose that Z? is independent
of X1, X2, Let f : Q1 X Q2 — Q3 be a function. Then

X" FxLZ21) = (X2, FX2 2 roa
< I FxXNZN) = X FXL Z2Dpa + 1IX = XPlrod -
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2.2 Concentration Inequality

We will use the following concentration inequality from [13] which
is essentially an Azuma-Hoeffding style inequality for submartin-
gales.

Lemma 2.5 ([13, Lemma 2.5]). Let X = };¢n]X; where X; are
Bernoulli random variables such that for every k € [N],

E[Xg | X1, .. Xp—1] < p,
for some p € (0,1). Let p = Np. For every A > 0, we have:

A2 )

2pu+2A
In this paper, we will use Fourier analysis over Zg (see, for in-
stance, [9, 14]). For a function f : Z; — C, its Fourier coefficients

are defined by f(u) = an 2aezn f(a) - "', where u € 2y and

w = €271/4 is the primitive g-th root of unity. In particular, for

Pr[X2p+A]Sexp(—

2.3 Fourier Analysis

every a, f(a) = Zuezg ]?(u) - "2 Later we will use the three
following important tools. Note that here we define the p-norm
of fas|f ||£ = ZXGZZ | f(x)|? rather than the standard definition
which uses expectation. This is for future notational convenience.

Lemma 2.6 (Parseval’s identity). For every function f : ZZ - C,

IFI3 = > f@?=q" >, fa?.

acZy uezk

Note that for every distribution f on ZZ, f(O”) = q ™. For the

uniform distribution U on Zf]‘, lAI(u) = 0 for every u # 0". Thus, by
Lemma 2.6, for any distribution f on Zg:

—~ ~ 2 —~
IF-UlE=g" Y (fw-0w) =¢" Y Ffw?. @9
= uezm{on}

We now introduce some standard facts about how convolu-
tions interact with the Fourier transform operation. For functions
f.9: Zg — C, their convolution f % g: Z§ — C is defined as
(f xg)a) = Zvezg f(v)g(a — v). The first lemma is the so-called
“convolution theorem,” which essentially states that, up to normal-
ization factors, the Fourier transform of the convolution of two
functions is equal to the product of the individual Fourier trans-
forms.

Lemma 2.8 (Convolution Theorem). For f,g : Zg — C, we have
frgu)=q" - flu) - glu).
forallu e Zg.

PRroOF. Proofis given in the full version [6]. ]

We will also need the following lemma, which states that the
Fourier transform of the product of two functions is given by the
convolution of the individual Fourier transforms.

Lemma 2.9 (Fourier transform of product of functions). For every
WE ZZ — C,andu € ZZ, we have

Frow= > fa) gu-u).

’ n
weZg
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Furthermore, for every h € [n],

>, Fraw= 3

uEZ,’]‘ u€Zg
llullo=h

>, Fw-ga).
u’eZ;

lu+u’{lo=h

ProOF. Proof is given in the full version [6]. O

The hypercontractivity theorem states that the 2-norm of a func-
tion after the application of a noise operator can be nicely upper

bounded.

Lemma 2.10 (Hypercontractivity Theorem [14, Page 278]). Let
f: ZZ — C be a square-integrable function and let 1 < p < 2,
0<p< ﬁ(l/q)l/zfl/p, we have

ITp fll2 < 1 fllp s
where T, is the noise operator defined by T,f(x)
Soezy Flaplvloo™

Next, we prove the following consequence of the hypercontrac-
tivity theorem.

Lemma 2.11. There exists { > 0 such that for every q, every f :
Zg —{a€Cl|lal <1} andB = {a € Zy | f(a) # 0} the following
holds: If |B| = ¢~ for some b € N, then for every v € Zg and every
he{1,...,4b}, we have

2n . .b\P
oy wis (57
ueZg
lu+vilo=h

ProoF. Proof is given in the full version [6].

3 COMMUNICATION PROBLEMS

Throughout this paper, we will be dealing with k-hypermatchings
on vertices from the set [n], i.e., a set of edges e, ..., e, where
ei C [n], leil = kande; Ne; = 0 for every i # j € [m].
We let e; = {(ei)1,-..,(ei)r}. The direct encoding of a match-
ing M = {ey,...,em} will be given by a hypermatching matrix
A € {o, 1}km><n where Ak(i—1)+£’,j = 11if and only if j = (e;)e-
(Thus, A is a matrix with row sums being 1 and column sums being
at most 1. Note that A also depends on the ordering of eq, e, . .
as well as the ordering of the nodes within each e;.)

We will also find it convenient to refer to edges by their indicator
vectors in ZZ. For an edge e;, we will use the boldface notation
e € Zg to refer to this vector, i.e, (e;); = 1if j = (e;), for some
¢ € [k], while (e;); = 0 otherwise.

We are now ready to define the communication game, which we
term the Implicit Randomized Mask Detection (IRMD) problem:

Definition 3.1 (Implicit Randomized Mask Detection (IRMD) Prob-
lem). Let q,k,n,T € N and a € (0,1/k) be parameters. Let Dy
and Dy be distributions over Zl(;. In the (Dy, DN)-IRMDy, T game,
there are T players and a hidden q-coloring encoded by a random
X" € Zy. The t-th player has two inputs: (a.) A; € {0, 1yaknxn e
hypermatching matrix (see above) corresponding to a random hy-
permatching M; of size an and (b.) a vectorz; € ng" that can be
generated from one of two different distributions:

S em
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o (Yes)z; = Asx* + by whereb; € ZQI"k” is of the formb; =
(bt,1,...,bs an) and each by ; € Zg is sampled from Dy .

e (No)z; = Asx* + by whereb; € Zfl‘k" is of the form by =
(bt,1,--.,bsan) and each by, ; € Zg is sampled from Dy .

This is a one-way game where the t-th player can send a private
message to the (t + 1)-th player after receiving a message from the pre-
vious player. The goal is for the T -th player to be able to decide whether
the {z;} have been chosen from the “Yes” distribution or “No” distribu-
tion. The advantage of a protocol (in which the T-th player outputs ei-
ther “Yes” or “No”) is defined as | Pr py,, [the T-th player outputs Yes]—
Prp,, [the T-th player outputs Yes]|.

Remark 3.2. We remark that the inputs to the T players in the
IRMD problem can be viewed as a stream ¢ = 60 o --- 0 (),
where the t-th player’s input (A;,z;) is converted to a stream
o™ = (6)(i)|i € [an]) where the elements of the stream are of the
form o(*)(i) = (j(t)(i), z(t)(i)) with j(t)(i) enfisa sequence of k
distinct elements of [n] and 2 )(i) € Zg. This “streaming” represen-
tation will be used when we relate the complexity of IRMD to the
approximability of various Max-CSP(¥) problems in Theorem 4.3.

We suppress the subscripts ¢ and T when they are clear
from context. Furthermore, we simply use IRMD to refer to
(Dy, DN)-IRMD with Dy being the uniform distribution over
{ok 1k ., (g— 1%} and Dy being the uniform distribution over
ZS. The following theorem shows that in this special case, the
IRMD problem requires linear communication. We remark that the
theorem could hold for other pairs of distributions and leave the
question of when such a lower bound holds as an interesting open
problem.

Theorem 3.3 (Linear lower bound for IRMD). For every q,k € N
and 5 € (0,1/2), « € (0,1/k), T € N there exists ng € N and
7 € (0, 1) such that the following holds. If Dy, DN are the uniform
distributions over {Ok, lk, ..o(g - l)k} and Zé respectively and
n > ng then every protocol for (Dy, DN )-IRMD,, T with advantage
& requires Tn bits of communication.

We prove the hardness of IRMD by first proving the hardness of a
folded version of IRMD. In the folded version of the communication
problem, we augment each hyperedge with an associated center
c € e. Given a k-hypermatching M = (ey, ..., en) and a sequence
of centers ¢ = (cy,...,cm) with e; = ((e;)1,...,(e;)r = ci), the
c-centered folded encoding of M is the matrix A. € ZEZ"‘”’”X”
given by
1 ,ifje{(ei)e}and € € [k — 1]
-1 ,ifj=c;jandl € [k—-1]

0 , otherwise

(Ac)(k-1)(i=1)+£,j =

We define the folded version of the IRMD problem below (note that
all the arithmetic is over Zg):

Definition 3.4 (Implicit Folded Randomized Mask Detection
(IFRMD) Problem). Let q,k,n, T € N and a € (0,1/k) be param-
eters. In the IFRMD game, there are T players and a hidden g-coloring
encoded by a random x* € Zg. The t-th player has a pair of in-

puts (As,c,, Wy) given as follows. A ¢, € Zg(kﬂ)nxn gives a c;-

centered folded encoding of a random hypermatching M; of size an,



Linear Space Streaming Lower Bounds for Approximating CSPs

andw; € Zg(k_l)" is a vector that can be generated from two differ-

ent distributions:
o (YES)w; = Apc,x".
e (NO)w; is uniform overzg(k_l)n.
This is a one-way game where the t-th player can send a private
message to the (t + 1)-th player after receiving message from the
previous player. The goal is to decide (by the T-th player) whether the
{w;} are coming from the YES distribution or the NO distribution.
The advantage of a protocol is defined as the absolute value of
Pr [the T-th player outputs Yes|
(At,c,,Wz)teT“‘YEs P 4 p
- Pr [the T-th player outputs Yes] .
(At,c,,Wt)teT“‘NO P Y P
The main technical theorem of this paper is the following Q(n)
communication lower bound for IFRMD.

Theorem 3.5 (Linear lower bound for IFRMD). For every ¢,k € N
and § € (0,1/2), there exists ag € (0,1/k) such that for every
a € (0,a0] and every T € N and every § € (0,1), there exists
7 € (0,1) such that the following holds. When n € N is large enough,
any protocol for IFRMD with advantage & requires tn bits of commu-
nication.

The proof of Theorem 3.5 is given in the beginning of section 5.

We now prove a lemma establishing a reduction from [FRMD to
IRMD that preserves the communication complexity. Note that by
this lemma, Theorem 3.3 will be an immediate corollary of Theo-
rem 3.5.

Lemma 3.6. Let n,k,a be the parameters. Suppose there exists a
protocol for IRMD using at most s bits communication with advan-
tage 8, then there exists a protocol for IFRMD using at most s bits
communication with advantage 6.

ProoF. Suppose we have an instance of IFRMD with input
(A¢,c,» w¢) to the t-th player. We show how to transform this into an
instance of IRMD. For each ¢, the ¢-th player performs the following
computations on his/her input:

(1) Use A4, ¢, to compute the underlying hypermatching M; (by
identifying the set of nonzero columns for each block of k —1
rows of Ay ¢,) and compute the corresponding matrix IT;.

(2) Foreachi € [an], sample a;,; € Zg uniformly at random. Let
Z; € ng" be defined by (Zt)(i—l)k+j = (Wt)(i—l)k+j + ag,i
foreachj=1,2,...,k—1and Zt, ik = At

We claim that the inputs (A, z;) correspond to an instance of IRMD.
It suffices to show that if ({(As,c,, Wt)}se[r] X*) follows the YES
(resp. NO) distribution of IFRMD, then ({(A¢,z¢)}¢[1], X*) follows

the YES (resp. NO) distribution of IRMD.

) @)
106 -

corresponding to A; ¢, (in order), with (egt))k =cqi.
We first focus on the YES case. Then, note that for j =
1,2,...,k—1, we have

Let m = an. For each t, let e ces eﬁf) be the hyperedges

(Zt)(i—1)k+j = Wed(i—1)k+j + Gs,i

— * * .
= (x(e(,))j + xc“) +ag;
1

* *
=X +(X;, . +agi).
(egt))j ( Ct,i t*l)
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Moreover,

(zt)ik =ari=xs  +(xp  +ari)=x"

ik i Cri Cr i i (eﬁt))k

Thus, it follows that z; = ITI;x* + by, where b; = (bs,1,....bs,an)
is given by by ; = (xﬁt , tai) - 1 where 1 is the all 1 vector of
length k.

Since a;,; is uniform over Zg, this takes care of the YES case.

The NO case is easier to see: II; encodes a random k-
hypermatching of size an and z; is uniform over Zfl‘k”. O

+ (xim_ +agi).

PROOF OF THEOREM 3.3 USING THEOREM 3.5. For the sake of
contradiction, suppose there exists a protocol for IRMD with
advantage 6 using fewer than zn bits of communication. Then
by Lemma 3.6 there exists a protocol for IFRMD with advantage
§ using fewer than rn bits of communication, which contradicts
Theorem 3.5. This completes the proof of Theorem 3.3. O

In the following section we show how Theorem 3.3 yields the
claimed hardness of streaming problems. In the rest of this paper,
we focus on the proof of Theorem 3.5, i.e., the linear communication
lower bound for IFRMD.

4 STREAMING PROBLEMS AND HARDNESS

In this section we state and prove our main technical theorem
establishing linear space lower bounds for the approximability of
many CSPs.

Below we define the two crucial constants associated with a

family # which lay out the “trivial” approximability, and the inap-
proximability that we prove. In particular we define the notion of
a width w(¥) € [1/q, 1] for every family ¥. The notion of a wide
family from Theorem 1.1 corresponds to a family with maximum
width, i.e., o(F) = 1.
Definition 4.1 (Minimum value, Width of F). For a family ¥, we
define its minimum value pyin(F) to be the infimum over all in-
stances ¥ of Max-CSP(F) of valy. For b € Z’; and f : ZZ —
{0,1} we define b-width of f, denoted wy(f) to be the quantity
%bmk):l}l. The width of f, denoted w(f), is given by
w(f) = maxy 7k {wp(f)}. Finally for a family F, we define its width
to be o(F) = minpcr{w(f)}. We say that a family ¥ is wide if
o(F) = 1.

As described above ppin () may not even be computable given
¥, but as pointed out in [4] it is a computable function. Key to this

assertion is the following equivalent definition of pyi, () which
follows from Definition 2.4 and Proposition 2.5 of [4].

Proposition 4.2 ([4, Proposition 2.4]). For every k,q,F C {f :
Z]; — {0,1}} we have

Pmin(F) = p(F) = > frrélAr} - { Dglﬁ)[(q]) {f~z>fa~z)k[f (a)]}} .

We are now ready to prove the main theorem of the paper on
the approximability of CSPs by applying Theorem 3.3.

Theorem 4.3 (Linear Space Inapproximability of CSPs). For every
k,q. 7 € {f : Z’; — {0,1}} and every ¢ € (0,1/10) we have the
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LN
w(F)
approximation algorithm for Max-CSP(F) requires Q(n) space.

following: Every randomized single-pass streaming (1 + ¢) -

PRrOOF. Given ¥ and ¢ € (0,1/10), we let & = £/(100k?q) and T
be some large enough constant that only depends on g, k, F, ¢, .
Let ALG be a space s algorithm distinguishing instances from the set
{¥ | valy > (1-¢/3)w(F)} from instances from the set {¥ | valy <
(1 + ¢/3)p(F)} with success probability at least 2/3. We show how
to use ALG to device an s-bit communication protocol for IRMD =
IRMD,, T with advantage at least 1/6.

For f € #,let by € Zg be a sequence maximizing wa(f)

and let S = {by + a¥la e Zg}. Further let Dy € A(F) be a
distribution achieving the minimum in the equivalent definition of
p(F) from Proposition 4.2. Let o = (o1, . .., 0y ) be an instance of
IRMD with T players, so that m = Tan and o; = (j(i), z(i)) where
jli) e [n]k isa sequence of k distinct elements of [n] and z(i) € Zfl.
For each o; we either generate 0 or 1 constraint of Max-CSP(¥) as
follows: We sample f(i) ~ D and output the constraint (f(i), j(i))
ifz(i) € Sy(;) and output no constraint otherwise. Applying this step
independently to each o; generates an instance ¥ of Max-CSP(¥)
with m < m constraints on n variables. We make the following
claims about ¥.

(1) Prygs[m > (1 +¢/10) - g%~V . m] = o(1) and Pryo[m <
(1 —5/10)‘q_(k_1)-m] = 0(1),1i.e., the number of constraints i
does not deviate (in the wrong direction) from its expectation
q_(k -1 . m with too high a probability.

(2) If o is generated from the YES distribution with hidden vec-
tor x* then with high probability the number of constraints
of ¥ satisfied by x* is at least (w(F) — ¢/10) - q’(k’l) - m.
In particular, Prygg[valy < (1 —¢/3) - o(F)] = o(1).

(3) If o is generated from the NO distribution with hidden vector
x* then with high probability for every v the number of
constraints of ¥ satisfied by v is at most (p(F) + ¢/10) -
q_(k_l)-m.lnparticular, Pryolvaly > (1+¢&/3)-p(F)] = o(1).

With the above claims in hand, it is straightforward to convert
ALG into an O(s)-bit communication protocol for IRMD with ad-
vantage at least 1/6 — the t-th player gets the state of ALG after
processing constraints corresponding to the first t — 1 blocks from
the (¢t — 1)-th player; generates the constraints corresponding to
the t-th block of the stream o, and simulates ALG on this part of
the stream corresponding to ¥, and passes the resulting state on to
the (¢ + 1)-th player. The T-th player outputs 1 if ALG outputs 1
and 0 otherwise. It is straightforward to see that if ALG is correct
on every input with probability 2/3 and Claims (1)-(3) above hold,
then the resulting communication protocol achieves advantage at
least 1/3 — o(1) > 1/6 on IRMD. Finally, we invoke Theorem 3.3
and conclude that s = Q(n).

We thus turn to proving claims (1)-(3). Given o1, ..., 0, and
v € Z, we create a collection of related variables as follows: For
i € [m], let X; = 1if o; results in a constraint and 0 otherwise.
Further, let Y;(v) = 1if X; = 1 and the resulting constraint is
satisfied by the assignment v. (Note all these are random variables
depending on o). Below, we bound the expectations of the sums of
these random variables in the YES and NO cases, and also argue
that these variables are close to their expectations (or at least give
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bounds on deviating from the expectation in one direction). This
will suffice to prove claims (1)-(3) and thus the theorem.

Proof of Claim (1). We start with i = 37 | X; in the NO case: In
this case E[X;] = |Sf|/qk = q’(k’l) (note that |Sy| = g for every f).
Furthermore the X;’s are independent since z(i)’s are uniform and
independent of each other. Thus X is sharply concentrated around
q_(k_l) -m and we get that Pryo[m ¢ (1+¢/10)- q_(k_l) -m] = o(1).

Turning to the YES case, since z(i)’s are no longer independent,
the X;’s are correlated. To enable the analysis, we define a vector x*
to be y-good for y > 0 if for every r € Zg we have Pr;¢,[x} = 7] €
(1£y)(1/q). Note that for every constant y > 0, the probability that
x* is not y-good is o(1). Fix x* that is y-good. We claim that in this
case, B[X; | X1:i-1] < q_(k_l)-(1+y+aqk)k. To see this note that the
effect of conditioning on Xj.;—1 only affects X; due to the fact that
now j(i) is chosen from a smaller set of variables and not all of [n].
Let t € [T] denote the block containing i (i.e., i € ((t — 1)an, tan]).
Let S denote the set of variables that do not participate in the edges
j((t = Dan+1),...,j@i — 1). Note |S| > (1 — ka)n and so for every
T € Zg we have Prees [x’z, =] < (1+y +akq)/q. We conclude that
the probability Pr[x* lio) € Sp | Xui-1] < IS¢l - (1 + y+akq)/q)k =
g%V . (1 + y + agk)k. Setting y = ¢/(100k) and using a <
£/(100k2q), we conclude E[X; | X1.i_1] < ¢~V . (1+¢/(50k))k <
q_(k_l) - (1 + ¢/20). Applying Lemma 2.5 we conclude that here
again we get that Prygs[m = >,; X; > (1 + 5/10)q‘<k—1)m] =o0(1).

Proof of Claim (2). Now we analyze the number of satisfiable
constraints of the resulting instance ¥ in the YES case, where we
argue that x* satisfies a large fraction of constraints with high
probability. Again with probability 1 — o(1) we have that x* is y-
good. Now an argument similar to the one in the analysis of X in
the YES case shows that for every b € zZk, pr[x* iy =Pl Yri-1] =
(1-¢/50) - . Fix f(i) and let T = S¢(;y N f(i)7'(1). Note by
definition of w(¥) that |T| > w(¥) - q. The event that the i-th
constraint is satisfied by x* is equivalent to the event that x;‘(l.) eT
and the probability of this event, conditioned on Y7.;—1 is at least
IT| - (1-¢/50)- 7% > (1-£/50) - w(F)- q_(k_l). Using Lemma 2.5
we conclude again that Pr[Y(x*) = X2, Y;(x*) < (1-¢/10)- o(F)-
q_(k_l) - m] = o(1). Combining this with the lower bound on m
from Claim (1) we conclude that Pr[valy < (1—¢/3)- o(F)] = o(1).

Proof of Claim (3). Finally we analyze the number of satisfi-
able constraints in the NO case. Fix v € ZI,; and let D € A(Zg)
be the distribution obtained by sampling a uniformly random
¢ € [n] and outputting v,. By Proposition 4.2 we have that
Efwz)%bw@k[f(b)] < p(¥F). We use this to prove that for every
i € [m], EYi(v)[Yrim1(v)] < (1 +¢/50) - p(F) - g~ kD).

First, as in the proof for Claim (2) we have that the total
variation distance between b ~ DK and iy Yr:i-1(v)} is at
most k?a. (In particular, this is upper bounded by the probability
that k uniformly and independently chosen elements of [n]
either collide or fall in a set of size at most k(an — 1).) We
conclude that the probability that the i-th “potential constraint”
(given by (£(i),j(i))) is satisfied is at most p(F) + k?a. Next,
note that the event X; = 1 (i.e, the i-th constraint is chosen
in ¥) is independent of Y;(v) since in the NO case z(i) € Z](; is
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uniform and independent of all other random variables. We con-
clude that E[Y;(v)|Yii(v)] < (1 + ¢/50) - p(F) - g kD).
Finally, we apply Lemma 2.5 again to conclude that
PrY(v) = 37, Yi(v) > (1+¢/10) - p(F) - ¢ KD . m] < ¢
where ¢ > 1 depends on g, k, ¥, @, ¢ but not on T or n. Thus by
setting T large enough, we can bound ¢™™ < ¢~2". This allows
us to use the union bound to conclude that the probability that
there exists v € Zg such that Y(v) > (1 + ¢/10) - p(F) - q_(k_l) -m
is at most ¢~ = o(1). Combining with the lower bound on m
from Claim (1) we get that with probability 1 — o(1) we have
valy < (1+¢/3) - p(F) in this case.

This concludes the proofs of the claims and thus the proof of The-
orem 4.3.
]

Theorems 1.1 and 1.2 follow immediately from Theorem 4.3 as
we show below.

ProoF oF THEOREM 1.1. The theorem follows from the fact that
for a wide family w(#) = 1 and in this case Theorem 4.3 asserts
that a p(7) + ¢ approximation requires linear space. O

ProoFr oF THEOREM 1.1. The theorem follows from the fact that
for every non-zero function f we have w(f) > 1/q and so for every
family ¥ also we have w(¥) > 1/q. Thus Theorem 4.3 asserts that
a p(F) - q + € approximation requires linear space, where p(%)
approximation is trivial. O

Some examples. We now give some examples illustrating the
power of Theorem 4.3. Our first example is the familiar g-coloring
problem.

Example 1 (Max-qCol).
Letk =2andq > 2. Let ¥ = {f : Z?[ — {0,1}} where

f(u,v) = 1if and only if u # v. The “Max g-Coloring”
problem is defined to be Max-qCol = Max-CSP(¥). It is
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every f €  we have that B, ). p2[f(©, v)] = 1/q. So for
every D¢ € A(F) we have Er.pE(y )~ p2[f(,0)] =
1/q. This proves p(F), p(F’) = 1/q. To get the upper
bound we let D¢ be uniform over 7'. For every (u,v) € Z(ZZ
we have Ef.p [f(u,v)] 1/q and so for every dis-
tribution D € A(Zg) (which is more than we need)
we have Er.p, B(y,0)~p[f(w,v)] < 1/q. This proves
p(F"), p(F) = 1/q (since D is supported on F”).

Now turning to w(F ), note that for every f, € ¥’ we have
{(b+a,b)lbeZy} C £71(1). Thus o(f,) > &(q,0)(fa) = 1.
It follows that w(F”) = 1.

Our third example talks about constraints that are general linear

systems.
Example 3 (Max-Ling , o).

For k > 2 and prime g and 0 < r < k, we define
Max-Ling . 4 = Max-CSP(¥) for F = Fy , 4 = {fap :
Zk — {0,1}|A € Z¥k, b € Z} where fy ,(x) = 1if and
only if Ax = Ab. (Thus constraints are systems of satisfiable
linear equations with solutions of dimension at least k —r.)
Let 7:k’,r,q = {fap € Fi,r,qlA-1 =0} Itis easy to ver-
ify that for every k,r, q, p(?‘_k" r’q) > p(Fk,r,q) 2 ¢ - By
choosing D to be uniform over fy 1, with full rank matri-
ces Asatisfying A-1 = 0, we get p(%%. 1, ¢)» p(?'k” r’q) =q".
For r < k, we also get w(F’) = 1 and thus, applying Theo-
rem 1.1 to ' we get that Max-CSP(F”) is approximation-
resistant. The same holds for Max-qUG = Max-CSP(¥)
by monotonicity.*

“We believe this system is not approximation resistant for 7 = k. This is

proved for g = 2 in [5, Lemma 2.14]. The case of general g may not have
been explicitly resolved in previous work.

Finally we mention one more problem. This problem arises in
the work of Singer, Sudan and Velusamy [15] who use it to show
the approximation resistance of the “maximum acyclic subgraph”
problem.

easy to verify p(¥) = 1 - 1/q and o(F) = 1. We thus
conclude by Theorem 1.1 that Max-gCol is approximation
resistant.

Next we turn to the Unique Games Problem. Example 4 (Max-Less-Than,).

Example 2 (Max-qUG). For k = 2and g > 2 we define ¥ = {<4} where <4: Zé —
{0,1} is given by <4 (u,v) = 1if and only ifu < v. It
is possible to show p(F) = %(1 = 1/q). Also wg,1)(<q) =
1 — 1/q and this can be used to show that w(F) = 1 —
1/g. By Theorem 4.3 it follows that 1/2 + e-approximating
Max-CSP(¥) requires linear space.

Let k 2. Let ¥ {f
{0,1}| £71(1) is a bijection}. The “g-ary Unique Games”
problem is defined to be Max-qUG = Max-CSP(¥). We
show below that p(¥) = 1/q. We also show that there
exists ¥/ C F such that p(¥') = 1/q and (') = 1.
Applying Theorem 1.1 to ¥’ we get that 1/q + ¢ approxi-
mating Max-CSP(¥”) requires linear space and the same
holds for Max-qUG = Max-CSP(¥) by monotonicity.

We define the family ¥’ to be ¥ = {fa|a € Z4} where
fa(u,v) = 1ifand only if u = v +a. Let D = Unif(Zg). For

>

= 2and q > =

2
Zq—>

LOWER BOUND ON THE
COMMUNICATION COMPLEXITY

In this section we prove a linear lower bound on the communication
complexity of IFRMD (Theorem 3.5). Our proof is via a hybrid
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argument which starts with all players receiving inputs from the
NO distribution, and switching the players’ input distribution one
at a time starting with Player 1 to the YES distribution. We state a
key “hybrid lemma” (Lemma 5.1) which asserts that any one step
of switching does not alter the distribution of the message output
by the switched player.

To state our lemma we recall some notations and set up a few
new ones. Let a,n,k,q,T,m = an € N denote the usual param-
eters of IFRMD. Recall that the player ¢t gets as input a matrix

At € Z;k—l)an corresponding to a k-uniform hypermatching
M; consisting of m hyperedges folded over the center vector c;

(k-1)m
q

and a vector w; € Z . For notational convenience, we will

separate the input A; ¢, into a matrix A; € Z(qk_l)mxn and the
center c;. For a sequence of objects 01,02, ...,0r, we denote
O1:t = {01,04,...,0;} for every t € [T]. With this notation we
have that the message S; sent by the ¢-th player is a function of
Aq.p, 1.4, Wy and Sp.;—1.> Next, note that by Yao’s principle, we
may assume that the messages sent by the players in [FRMD are
all deterministic.

Namely, a protocol for IFRMD can be specified by de-
terministic message functions ri,rg,...,rr so that S;
rt (A1, €1:¢, S1:—1, W) denotes the message sent by the ¢-th player.
The communication complexity of a protocol is defined as the
largest output length of r;.

When (A;.1, ¢1.7, Wi.T) is drawn from the YES distribution (resp.
the NO distribution), we denote SIY:  (resp. S{YT) to be the result-
ing messages. Without loss of generality St is just a bit ““Yes/No”
indicating the output of the protocol. Thus, to prove Theorem 3.5
we need to show that S% and SITV are close in total variation dis-
tance. For the induction we prove the much stronger statement that
(Ar.T, Cl:T751Y:T) and (AT, cl:T,Sf:JT) are close in total variation
distance, i.e.,

(AT, c1.T, Slyj“) - (ArT,C1T, S{\;]T)”tvd <34.

The following lemma provides the key step in this analysis.
Roughly it says that if the first ¢ — 1 players’s inputs are according
to the YES distribution then the ¢-th player’s output on the YES
input is typically distributed very similarly to the output on the
NO distribution (even conditioned on all previously announced
hypermatchings, centers and messages). Formally, the lemma iden-
tifies a sequence of events &; D &2 D --- D &7 such that (i) &;
enforces a “typicality” restriction on the messages and inputs that
the t-th player receives and (ii) if the messages and input received
by the t-th player are typical then the player cannot distinguish
whether its input is sampled from the YES distribution or the NO
distribution (assuming all previous players’ inputs were from the
YES distribution).

Lemma 5.1 (Hybrid lemma). For every q,k € N, there exists o €
(0, 1/k) such that for every a € (0,), T € N, and § € (0, 1), there
exist ng € N, and v € (0, 1) such that for every n > ng the following
holds:

LetII = (ry,...,rr) be a deterministic protocol for IFRMD where
each message function r; outputs a message of at most tn bits. Let x ~
Unif(Zg) and let My, . .., Mt be independent random hypermatching

3Note that even though the ¢-th player does not have access to Aj.;_1, €1:4-1, and
S1:¢—2, allowing them to see these only makes our lower bound stronger.
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of size an over [n]. Let (As, c;) be an independent random folded
encoding of M; for allt € [T]. Let StY and Sg‘] be the Yes and No
message of the t-th player defined previously for message function
ry for allt € [T]. Then there exists a sequence of events &1 D Ep D
-+- D &7 such that (i) E; only depends on (A1.,c1.) and SIY:t_l, (ii)
Pr(&1] = 1 - 6/T, (iii) Pr[E; | E4-1] < 8/T forallt = 2,3,...,T,
and (iv) for every fixed (Ai:t, c1:+) and Sllft_l satisfying E;, one has

ISY = re(Avecre,SY, 1 Ullroa < 8/T, (5.2)

where Uy ~ Unif(ZEIk_l)an).

The proof of Lemma 5.1 will be provided in Section 5.4. Theo-
rem 3.5 follows almost immediately from Lemma 5.1 as shown in
Section 5.1. In the rest of this section and the following sections
we prove Lemma 5.1. Here we give an overview of this part of the
proof.

The general idea behind the proof of Lemma 5.1 is to argue that
information about x* “leaked” by the messages of the first t — 1
players (i.e., S1:—1) is not sufficient for the ¢-th player to distinguish
between the case where w; = A; ¢, x* (the YES case) and the case
where w; is uniform. The earlier proofs of this type (in particular
as in [11]) simply counted the total information gleaned about
x* which is bounded by the total communication. Such proofs
are inherently limited to achieving only a y/n lower bound. To
go further, as in [13], one needs to argue about the structure of
the information learned about x*, and in particular note that no
player sees x* directly, and the t'-th player only sees Ay ¢, - X"
(In particular no coordinate of x* is revealed directly, though the
sum of many pairs of coordinates are directly revealed.) Thus the
information about x* comes from a “reduced space” and we would
like to capture and exploit the structural restriction imposed by
this restriction. Information-theoretic tools seem to fail to capture
this restriction and the key to the work of [13] is to give a Fourier
analytic condition, that they call “boundedness”, that captures this
restriction.

The boundedness condition applies to what we call the “poste-
rior distribution” of x*, i.e., the distribution of x* conditioned on
the first t messages. This distribution turns out to be the uniform
distribution over a set By C Zg (see Lemma 5.6). The boundedness
condition places restrictions on the Fourier spectrum of the indica-
tor function of this set. (See Definition 5.11.) To use this condition
we need three ingredients elaborated below, which we abstract as
lemma statements in this section and prove in later section. Given
these three lemmas the proof of Lemma 5.1 follows and is given in
Section 5.4.

The first ingredient we need is that boundedness of B;_1 does
imply that the t-th player is unable to distinguish between its input
being from the YES distribution or the NO distribution. This is
stated as Lemma 5.16. Next we need to show that given information
about At,ctx*, the posterior distribution of x* is indeed bounded,
and we assert this in Lemma 5.15. Note that this also serves as the
base case of our induction. Finally we argue that if B;_1 is bounded,
then for most matchings A; (and every center c; of A;) the resulting
set B; is bounded. This is asserted in Lemma 5.17. In the rest of
this section, after showing that Lemma 5.1 implies Theorem 3.5 in
Section 5.1, we introduce the posterior sets and discuss their basic
properties in Section 5.2, we introduce boundedness and state the
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three lemmas above in Section 5.3, and finally conclude with the
proof of Lemma 5.1 in Section 5.4.

5.1 Proof of Theorem 3.5

We now show how the lemma suffices to prove Theorem 3.5. The
proof is analogous to the proof of Lemma 6.3 in [13]. We remark
that the lemma is not immediate and effectively depends on the
fact that players can jointly sample from the NO distribution on
their own. (Note the players can’t jointly sample from the YES
distribution since these samples are correlated by the hidden vector
x*. So the proof is inherently asymmetric visavis the treatment of
the YES and NO distributions.)

Proor oF THEOREM 3.5. For the sake of contradiction, assume
that there exists a protocol II = (ry, . . ., r7) that solves IFRMD with
advantage more than § and less than zn bits of communication for
some n > ng. In what follows, we will show that ||(Ay.1, c1.T, SIY:T)_
(Ay.T,C1.T, S{YT)de < 8, which implies that the advantage of the
protocol cannot be greater than §, hence producing a contradiction.

For every ¢,k € N, we set o9 € (0,1/k) and 7p € (0,1) as
in Lemma 5.1. For every a € (0,a9], T € N, and §’ = §/2, we set
no € Nand r € (0, 1) as in Lemma 5.1.

Let & D &2 D -+ D &1 be the sequence of events guaranteed
by Lemma 5.1 such that Pr [8_t|8t—1] <& /Tfort=23...,T.
Note that by the properties of these events, with probability at least
1 - 8, we have ||S} — re(Ars, e ST, Un)llrog < & /T for all
t € [T]. We use || - [l;04,8, to denote the total variation distance
of distributions conditioned on &;. We inductively show that for
every t € [T],

’
At ST — (Aneecn. SYllro 6, < .
(Induction hypothesis)

First, we prove the base case t = 1. Recalling that Sg = Sév, we

have

(AL e1,8)) = (A1, e, 5 v 6,

= (A1, e1,8)) = (A, e, 1M1, €1, S, Ul ro. &,

= [I(A1, e1,87) = (Ar,er, M1, €1, 83, Ul roa. &, -
Observe that for every fixed Aj, ¢; and 53’ satisfying &1, we have

||SlY —r1(My, cq, Sg, Ullfoa < %, where the randomness is over
SlY and Uj. It follows from Lemma 2.3 that

5’
(A1, e1,87) = (A, e, 1My, €1, S . UD)llroa. s, < 7

which completes the base case.
Next, we tackle the induction step. For every t = 2,...,T, we
have

Y N
(A1t c1:2, Sl:t) - (Art,c11, Sl;t)”tvd,st
Y Y
= ||(A1!t7 Cl:ts Sl:t—l’ rt(Al:ty C1:¢, St_l’At,CtX*))
- (Al:t,Cl:tssﬁ]t,l’rt(AlztsCl:t’sﬁl:Ut))”tvd,S, .

Y Y N
Let us define Q, (Ar:t-1,€1:6-1, 51, _) and Q4
(A1:4-1, €121, Sfft_l). Then, we can rewrite the above expression
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for total variation distance in terms of the new notation as follows:
[I(A1:¢, €12t 551_1, re(Ars, c1, StY_I,At,c,X*))
—(Avp,cre, SN, re(Avs, e, SN, Utod, s,
= Qi1 Ars er.1e((Q) 1. Ars €1, Ate, X))
- (Qﬁl,At,Ctart(Qﬁl,Ahct, U)lltva, &, -
We now apply Lemma 2.4. Applying this lemma with X! = QtY_l,

X2 =N 7' = (A, 1. Are,X"), Z% = (A1, c1,Up)), and f as the

function that maps the tuple (X, (B, C)) to (B, r:(X, B, C)), we get
10Q: 1 Aes et re(Q) 1 Ars e, Are, X))
- (QtAll,At’ ct, rt(QﬁlsAt, ct, Ulroa, s,
< 19/ = Qi lroa, &, +
Q)1 Arser.re(Q) 1 Arser, Ar,e, X))
—(Q)_1 A et r(Q) 1 A et U lrwa, &,
=101 = O i llrod, 8,1+
||(QZ_1,At,Ct,rt(QtY_pAt,Ct,At,ctX*))

Y Y
—(Q;i_sArs e, 1(Qs_1, A, €6, UDliwa, &, »

where the last equality follows from the fact that &; ¢ &;-1 and

condition (i) of Lemma 5.1 which states that &;—1 only depends on

(Ap:t-1.¢1:4-1) and SY, .

Now, by applying the induction hypothesis, we have that
(t-1)8"

Y N
||Qt_1 - Qt_1”tvd,8,,1 < T (5~3)

Next, we bound the second term on the right hand side, i.e.,
Q1. At et re(Q) 1. Ar.er, Ar, e, X"))
Y Y
—(Qi_1s A, e, 1(Q_1, A, €6, U lliwa, 8, »

by applying condition (iv) from Lemma 5.1. According to this con-
dition, for every fixed (A1, c1.¢) and Sly: ;1 satisfying &, we have

’
T
). Thus, by Lemma 2.3, it follows that

Ire(Aies e1:, S 15 Arie, X7) = re(Aves €16, SY 1 U o <

where U; ~ Unif(ZEZk_l)an

1)L 1, Ars e, re(QF 1, Ary s At e, X))
- (Q}]_I,At, ct, rt(QtY_pAt, ct, U)ltva, &,
5/
< =
T
Combining all the above equations, we have

(5.4)

/7
Y N o't
“(Al:h C1:t, Sl:t) - (Alzts C1:¢» Slzt)”wd,s, < T,
which completes the induction.
Substituting t = T, we conclude that
Y N
(AT, e1:1, Sp.p) — ArTs e Sl ewd, 7 < 67

Finally, by removing the conditioning on &7, we have
|(Ar.7, c1.1s Slsz) - (Ar,crrs S{\:]T)”tvd

< |(Args e SEp) = (Avrs 11, SNl od, 65 + PrET]
<8 +6 <6,
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This implies that IT cannot have advantage more than §, which
contradicts the assumptions of the theorem statement. Therefore,
we conclude that any protocol for IFRMD with advantage  requires
rn bits of communication, as desired. m]

5.2 Posterior Sets and Functions

The main challenge in proving Lemma 5.1 lies in the condition
(iv), i.e., requiring the closeness of the Yes message (i.e., Sf =
ri(A1:¢, €15 51):1_1’At.ctX*)) and the hybrid No message (i.e., Sg\[ =
ri(A1.s, €14, SIY:t—l’ Uy)). Intuitively, if x* ~ Unif(ZZ) and is inde-
pendent of the other arguments, then A ¢, x* is uniformly dis-

(k-1)an
Zg

tributed over and hence SY follows the same distribu-

tion as r+(A1:z, €1:¢, SY. U;). However, x* is correlated* with the

L=t
previous messages S1 ;_1 S0 the above ideal situation would not
happen in general. Nevertheless, we are able to analyze the condi-
tional distribution of A;, ¢, x* on the previous messages by explicitly
characterizing the posterior distribution of x* after receiving the
messages from the first t — 1 players. That is, the conditional dis-
tribution of A ¢,x* can be described by first sampling x* from the
posterior distribution and then applying A; ¢, .

For every fixed Aj.;, ¢1:; and S1.;, we would like to identify a
distribution D; over Zg such that 9Dy is the conditional distribution
of x* given messages Si.;. Note that by the choice of the No case,
the conditional distribution of x* given messages Sy.; is simply the
uniform distribution over Zg. Thus, we only need to worry about
the Yes case.

Definition 5.5 (Posterior sets and functions). Under the setting
described above, for each t and fixed A1, ¢1.¢, and S1.;, define

o (Reduced posterior set) By,; C ng_l)m be the set of possible

values of z; = Ay, c,x that leads to message Sy ; Note that By ;
should be thought of as a function on A;, c;, and S; in the
sense that By 1 = g;(S¢) where g;(-) = r¢(Av:t, €1:4, St:2-1, -
Let q be the indicator function of By ;.

o (Posterior set and function) Let

By = {X € ZZ |At,C[X S Br,t} .

Also, let1p, : Z; — {0, 1} be the indicator function of B;.
o (Aggregated posterior set and function) Let

Bl:t = {XEZZ|AF,C,/X€BVJ’ t =1,. t}— th/
t'=1
Also, let1p,, : ZZ — {0, 1} be the indicator function of B1.;.
Namely, 1g,,, = [1%,_, 13,
Now, we show that 1p, captures the posterior distribution (i.e.,
the conditional distribution) of x given messages S1, Sa, . . ., S¢:

Lemma 5.6 (Posterior function 1p,, captures the posterior dis-
tribution.). For every t € [T], the conditional distribution of x
given messages S1, Sz, ..., Sy is exactly given by 1p,.,(x)/lI1B,, 1.
In particular, for fixed Ai:, cit, and Slt ;> we have StY =
re(Avr, e, SY,_ 1 At e, X"), wherex* ~ UnifiBy.;).

PRrOOF. Proof is given in the full version [6]. O

4In particular, x* has to be consistent with the previous messages 51 1
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Note that we have a characterization of the posterior distribution
of x*, the following corollary shows that Equation 5.2 (i.e., the
condition (iv) of Lemma 5.1) can be simplified to bounding the
total variation distance between the posterior distribution and the
uniform distribution.

Corollary 5.7 (Reducing Equation 5.2). Let

rt,S1 +—1»A1:t, C1:t, Brt, Uy be defined as before, we have

Y Y
”rt(Al:h Ci:t, Slzt,l,At,ctX*) - rt(Alzt, Ci:t, Sl:t,p Ut)”t’ud
< ”(At,c,,x*) - Ut“t‘ud
where x* ~ Unif(By.t).
Proor. By Lemma 5.6, we have
StY = Vt(Alzt,Cl:t,SK[,l,At ¢ X")

where x* ~ Unif(By.;). Note that when we fix Ay.;, ¢1.4, and Sl 1
(hence By is also fixed), by data processing inequality (see item 2
of Proposition 2.2) we have

Ire(Aves e1:,SY_ s Arie,X7) = re(Aves €16, S 1 U lrwd
< Az e, x*) = Urlltpa -
o

Namely, Equation 5.2 (i.e., the condition (iv) of Lemma 5.1) can
be replaced with ||(A¢,¢,x*) = Utll;q < y/T, i.e., after applying a
random folded hypermatching matrix A; ¢, to the posterior distri-
bution Unif(By.;), the distribution of the resulting string is close to
the uniform distribution Unif(ZEIk_l)an).

Finally, the following lemma shows that when the amount of
communication is small, the posterior set is large with high proba-
bility.

Lemma 5.8 (Posterior set is large). LetII = (rq,...,rr) be a deter-
ministic protocol for IFRMD where each message function r; outputs
a message of length at most s bits for some 1 < s < n. Let B; be
the posterior set defined in Definition 5.5 for everyt € [T]. For every
6 €(0,1) andt € [T], we have |B¢| > § - "% with probability at
least 1 — 6 over the randomness of x € Zg.

Proor. Fix a hypermatching M and centers c, the ¢-th message
function induces a partition Py U P, U --- U Pps of ZZ. For each
X € Zg, we define P(x) to be the part that contains x, i.e, if x € P;,
then P(x) = P;. Note that

Prer" x € Pj]

[P(x)l ] Z |Pi

By Markov’s inequality, we have |P(x)| < § - ¢""~° with probability
at most § as desired. O

25 _
Pilg 2
=2 T s

n
xEZ i

5.3 Fourier Analytic Conditions

In this subsection, we define and analyze Fourier-analytic properties
of the posterior set B and show that these properties are sufficient
for the condition (iv) (i.e., Corollary 5.7) of Lemma 5.1.

Recall that given a matching M = (ey, . .., en) and centers ¢ =
(c1,...,¢m), Ac is the c-centered folded encoding of M. We are
going to define three properties for sets B in Zg. First, we say a set
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B cC ZZI’ is (M, c)-restricted if B is restricted to a union of shifted
null spaces of Ac.

Definition 5.9 (Restricted set). Let M be a k-hypermatching of size
m and c be centers. We say a set B C Z;’ is (M, c)-restricted if there

exists a (“reduced”) set By C ng_l)m such that B = {x € Zg | Acx €
B, }.

Next, we say a set B is bounded if the Fourier spectrum of the
indicator function 1p can be properly bounded in an appropriate
range of the spectrum. This is analogous to Definition 4.3 in [13].
First, we introduce some notation:

1, h=0
h/2
C
Uc,s(h) = ( ){E , 1<h<s (5.10)
2q%e’n h/2
( 7 ) , h>s

Definition 5.11 (Bounded set). Let n,q € N,0 < s < n,C > 0,
and B C Zg. We say B (as well as its indicator function 1) is (C, s)-
bounded if, for every h € [s],

> 1 ] < U, (5.12)
uEZZ
[lullo=h

Remark 5.13. As we keep track of posterior sets that are induc-
tively refined, we will need the entire Fourier spectrum of the cor-
responding indicator functions to be bounded from above by the
function Uc, s (for appropriate C, s > 0), which is defined piecewise
on the low, medium, and high regimes. This allows us to show
that A¢x is close to the uniform distribution on Z(k_l) “" when x is
drawn from such a posterior set B C Z’ql (see Lemma 5.16). How-
ever, the upper bound given by Uc, s(h) in the high regime h > s
is guaranteed automatically as long as B is large enough. Thus,
we only need to keep track of the Fourier spectrum for weights in
the middle regime; hence, the (C, s)-boundedness property that we
maintain inductively only concerns Fourier weights in this regime.

More specifically, if a set B € Zg is (C, s)-bounded and satisfies
|B| > g™, then we have that

> 1 Tl < Ue.s(w

n
ueZq
[lullo=h

forall0 < h <n.

Finally, in what follows we will show that the intersection of a
bounded set with a “restricted set” is also bounded and this will
be the core of our induction. To do this we need to understand the
Fourier behavior of restricted sets. It turns out that restricted sets
satisfy a property stronger than being bounded, which we term
“reduced”-ness below.

Definition 5.14 (Reduced set). Let n,q € N,0 < s < n,C > 0,
and B C Zg. Let M be a k-hypermatching. We say B (as well as its
indicator function 1g) is (M, C, s)-reduced if the following hold.

o Foreveryu € Z7, if there exists i € [n] such that u; = 1 but i

is not contained in M, then 1g(u) = 0.

287

STOC 22, June 20-24, 2022, Rome, Italy

e Foreveryu € Z, if there exists a hyperedge e; of M such that
(u,e;) # 0 mod g, then 1(u) = 0.
e Foreveryhe {1,...,s} andv e Z2,

q" |~
2 g @< Uesth.
uezZg
lu+vllo=h

There are two key lemmas about these Fourier analytic condi-
tions. The first lemma establishes the base case of the induction
toward showing the aggregated posterior set being (C, s)-bounded
(for some C = O(1) and s = Q(n)). In fact, we show a stronger
guarantee in which every posterior set B; is (M, C, s)-reduced.

Lemma 5.15 (Base case). For every q,k > 2, a € (0,1/k), there
exists a constant C such that for every k-hypermatching M on [n] of
sizem < an, suppose n € N is large enough and 0 < b < s < n/32,
then the following holds. Let B C Zg. If (i) there exists a sequence of

centers ¢ such that B is (M, ¢)-restricted and (ii) |B| > ¢"~?, then B
is (M, C, s)-reduced.

The proof of Lemma 5.15 is given in the full version [6]. (We note
that the proof yields that C > 22 ek2q3k where { is the constant
from Lemma 2.11.)

Recall from Corollary 5.7 that the condition (iv) in Lemma 5.1
are implied by showing Acx is close to the uniform distribution
over Zflk_l)m with high probability over to choice of Ac where
x is sampled uniformly from the posterior set By.;. The second
key lemma shows that Acx* is indeed close to uniform when the
posterior set is bounded.

Lemma 5.16 (Boundedness implies closeness to uniformity). For
everyq,k > 2 and § € (0,1/2), there exists ag = ao(k, q) such that
for every a € (0,a9), C > 0, there exists 1o = 10(q, k, a, 5, C) such
that the following holds for any t € (0, 7o) and sufficiently large n:
Let B C Zg be a (C,s)-bounded set with |B| > q"_b, for
4log(3/8) < b < s < tn. Let M be a random k-hypermatching
of size an and c be a sequence of centers for M and let A. denote the c
centered folded encoding and M. Then, with probability at least 1 — §

over the choice of M, we have that for every zy € ng_l)an, we have

(k-1)an Pr

1-6<
a x~Unif(B)

[Acx=12z9] <1+6.

As a consequence, we also have
(1) [(Acx) — Ulltpa < O where x
. k-1
Unifiz D),

(2) For every non-negative function f over

IEX~Unif(B) [f(Acx)]
EZ~UnI')‘(Z(‘Ik71)an) [f(Z)

Unif(B) and U ~

(k-1)an
zktan,

(1-9)<

] <(1+9).

The proof of Lemma 5.16 is given in the full version [6].
Our final lemma of this section asserts that if 1p,, is (C,s)-
bounded, then fi.;+1 is (O(C), s)-bounded with high probability.

Lemma 5.17 (Induction step). For every q,k € N there exist ag €
(0,1/k) and Cy > 0 such that for every a € (0,], C > Cy, and
8 € (0,1/2), there exist C' > 0, ng € N, and 19 € (0,1) such that
the following holds. For every n > ng, every 0 < b,b’,s < 1on,
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and every B C Zy that satisfies |B| > q"b and is (C, s)-bounded,
let M be a uniformly random k-hypermatching of size at most an,
with probability at least 1 — 48 over the randomness of M, for every
(M, Co, s)-reduced set B'  Zg with [B'| > " Y and |BNB'| >
(1-6)-1|B|-|B’|/q"™ = q"*"%, we have BN B’ is (C’, s)-bounded.

Lemma 5.17 is proved in the full version [6]. In our inductive
application of the lemma above, we set B « By.;—1 and B’ < B;
for every t € {2,3,...,T} to get that all the B;’s are bounded and
this is the core of the proof of Lemma 5.1.

5.4 Proof of Lemma 5.1

PRrOOF OF LEMMA 5.1. For every ¢,k € N, we choose o to be the
minimum of the ag’s from the induction step (i.e., Lemma 5.17) and
the “boundedness implies uniformity” lemma (i.e., Lemma 5.16). We
set Cp according to Lemma 5.17 and for every a € (0, a(’)], T € N,
and § € (0,1), we invoke Lemma 5.16 with §" = §/10T and C = Cy
to get 79 = 10(q, k, @, 6’,Cp) > 0 and set s = ron. Let 7 > 0 be
a small constant. (We will explicitly fix this quantity later.) Let
b=1mn+ Iogq(10/5’). We choose 7 such that 2Tb < s = ryn. Let

C1 = Cy. We define &; to be the event that |B;| > q"_Zb and B
is (Cy, s)-bounded, where By refers to the posterior set defined in
Definition 5.5. By the “posterior set is large” lemma (i.e., Lemma 5.8)
and the “base case” lemma (i.e., Lemma 5.15) we have Pr[&;] <
8’/10 < &/T as desired. This satisfies condition (ii) of Lemma 5.1.

Next, for each t € {2,3,..., T}, let& =& N---NE1 NE]
where & denotes the event that the aggregate posterior set Byt
is large, ie., |B1:| > q"_th and By.; is (Cy, s)-bounded, where
C; > 0 is a constant that will be inductively chosen later. Note
that by construction &; only depends on (A1, c1.;) and SlY: 1
and hence satisfies condition (i) of the lemma. To show that &;
happens with high probability conditioned on &;—_1, note that by
the “posterior set is large” lemma (i.e., Lemma 5.8) and the “base
case” lemma (i.e., Lemma 5.15), we have |B;| > q"_b and By is
(M¢, Cy, s)-reduced with probability at least 1 — §’. Moreover, the

event &;_1 implies that By.;—1 is (C;—1, s)-bounded and hence if we

sett < 19(q, k, @, 8, Ct—1), by the “boundedness implies uniformity”

(k—-1)an
Zq

lemma (i.e., Lemma 5.16), , we have the following claim.

Claim 5.18. When 2Tb < s, conditioned on &E;—1, with probability
at least (1 — &’) over the choice of My, the set By.; satisfies

|Bl:t| > (l - 5,) : |B1:t—l| : |Bl’|/qn .

PRrOOF. Proof is given in the full version [6]. O

Thus, by invoking the “induction step” lemma (i.e., Lemma 5.17)
on By.;—1 and B; with C = C;_1, there exists a constant C; such
that that By.; = B1:¢—1 N Bt is (Cy, s)-bounded with probability at
least 1 — 46’. Namely, we have Pr[&; | ;1] < 56’ < 6/T. This
satisfies condition (iii).
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Finally, for every t € [T], if we set r < 79(q, k, @, 6’,Cs—1), by
the “boundedness implies uniformity” lemma (i.e., Lemma 5.16),
we know that ||(Acx*™) — Utll;oq < 8’ where x* ~ Unif(By.)
Uy ~ Unif(ZEIk_l)“n). As 51Y:t = r,(Al;t,clzt,SIY:til,At,Cx*) where

x* ~ Unif(By.), by the data processing inequality we have

||S[Y —r(Arg, cl;t,SIY:t_l, Ui)llzva < 0/T as desired. This satisfied
condition (iv).

To conclude, we set 7 > 0 to be a small constant that satisfies
2Tb < on and 7 < 19(q, k, @, 8’,Cs—1) for all ¢ € [T] where C; is
inductively chosen as described above. This completes the proof
of Lemma 5.1.

m}
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