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Efficient Analysis of Stationary
Dynamics of Piecewise-Linear
Nonlinear Systems Modeled
Using General State-Space
Representations
In this paper, a new technique is presented for parametrically studying the steady-state
dynamics of piecewise-linear nonsmooth oscillators. This new method can be used as an
efficient computational tool for analyzing the nonlinear behavior of dynamic systems with
piecewise-linear nonlinearity. The new technique modifies and generalizes the bilinear
amplitude approximation method, which was created for analyzing proportionally
damped structural systems, to more general systems governed by state-space models;
thus, the applicability of the method is expanded to many engineering disciplines. The
new method utilizes the analytical solutions of the linear subsystems of the nonsmooth
oscillators and uses a numerical optimization tool to construct the nonlinear periodic
response of the oscillators. The method is validated both numerically and experimentally
in this work. The proposed computational framework is demonstrated on a mechanical
oscillator with contacting elements and an analog circuit with nonlinear resistance to
show its broad applicability. [DOI: 10.1115/1.4054152]

1 Introduction

Piecewise-linear (PWL) systems are often utilized to model the
dynamic behavior of many physical systems with nonsmooth
properties. The analysis of the dynamics of these systems is of
importance in many fields including health monitoring of engi-
neering structures [1–3], design of electrical circuits [4,5], and
gene regulatory networks modeling in biological systems [6,7].
The analysis of the nonlinear behavior of these nonsmooth systems
is usually computationally challenging, since the techniques that
have been developed for analyzing nonlinear dynamical systems
require much more computational cost than traditional linear meth-
ods [8,9]. Thus, it is crucial to develop efficient computational tools
for predicting the dynamics of nonsmooth systems so that efficient
parametric studies can be performed in a reasonable time frame.

The nonsmooth properties of engineering systems are usually
triggered by discrete events in their dynamic responses. For
instance, the intermittent contact observed in engineering struc-
tures due to cracks or delamination [10–13], or interface among
components [14] often results in nonsmooth features. Also, the
nonsmooth dynamics and mechanics are of great importance for
modeling jointed structures [15]. A great amount of research has
been carried out on the nonlinear modeling of mechanical joints
over the last decade [16–18]. Furthermore, the nonsmooth property
also occurs in many electrical systems when current-limit elements
such as diodes are utilized to realize particular functions [4]. Since
the nonlinearity induced by the discrete event usually dominates
the dynamics of these nonsmooth systems, they are often modeled
using PWL systems in which the dynamics are assumed to behave
linearly in each of the systems’ subregimes. Therefore, an effective
computational tool that can capture the dynamic features of PWL
systems is required for analyzing these nonsmooth systems.

Although PWL systems usually consist of multiple linear sub-
systems, traditional liner analysis techniques such as modal analy-
sis [19] are not able to capture the event-triggered nonlinearity in

these systems since they usually exhibit strong nonlinear features
[5,20]. Therefore, numerical integration (NI) is usually required to
compute the time response of these nonlinear systems. Common
NI techniques include Runge–Kutta methods [21] and Newmark
methods [22]. Although these methods are commonly employed
in nonlinear system analyses, NI usually requires a fairly small
time-step to predict the nonsmooth evolution of nonlinear varia-
bles in nonsmooth systems and hence reduces computational effi-
ciency significantly. Recently, a new class of transient dynamic
analysis tools has been developed to speed up time marching in
the simulation process [23,24]. These techniques are referred to as
the hybrid symbolic numeric computational (HSNC) method and
have been shown to be more efficient than NI for simulating the
dynamic response of PWL systems. The HSNC method employs
the analytical solution of the system in each of its linear regimes
and stitches these PWL responses together using a numerical
incremental search process. Since the method only requires
numerical computation at transition points where the system
switches its state, the computational cost can be reduced signifi-
cantly compared to traditional NI methods. The HSNC method is
particularly useful for analyzing transient and chaotic responses of
complex PWL systems. The method has been recently adapted to
analyze the nonlinear rattling behavior of gear systems [25,26].

Although efficient transient dynamic analyses for PWL systems
can be achieved using HSNC, a method that can directly capture
the steady-state dynamics of these systems is preferred when para-
metric studies are needed. Thus, another branch of techniques
based on the harmonic balance (HB) method has been developed
to capture the steady-state vibrational response of PWL non-
smooth systems [27–31]. These methods have been applied to a
broad array of nonlinear systems and are not limited to PWL
applications. These HB-based methods approximate the periodic
response of nonlinear systems using a truncated Fourier series
with the unknown coefficients being solved using numerical meth-
ods. Although these methods are more efficient than transient
dynamic analysis tools, numerous harmonics are usually required
to capture the nonsmoothness in PWL systems in particular.
Thus, these methods still require considerable computational cost
and often incur convergence issues when dealing with PWL
systems.
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Recently, a new efficient method has been created to approxi-
mate the steady-state dynamic response of PWL systems. This
method is referred to as the bilinear amplitude approximation
(BAA) method [32] and is applicable for capturing the vibrational
response of a subset of PWL nonsmooth systems whose dynamic
behavior is dominated by two distinct linear states. The BAA
method is based on a similar idea as that of HSNC; namely, the
nonlinear dynamic response of PWL systems can be obtained by
stitching together the analytical responses of the system in each of
its linear regimes. The method derives a set of constraint equa-
tions to enforce the continuity condition of the PWL responses
within a vibrational cycle. A numerical optimization solver is then
used to solve for the unknown parameters in the analytical
responses when combining each individual linear response to
obtain the nonlinear vibrational response. It has been shown that
the BAA method is more efficient than the transient dynamic anal-
ysis tools and HB-based techniques [32]. Furthermore, the BAA
method does not have similar convergence issues as that of HB-
based methods, since this method only requires a few linear
modes to obtain an accurate approximated response. The BAA
method has been successfully applied to investigate the nonlinear
dynamics of complex structures with cracks [33]. Also, the
method has been extended to develop an efficient technique that is
able to capture the vibrational response of systems with Coulomb
friction [34]. Note that the idea of utilizing a semi-analytic
approach for computing the dynamic response of PWL systems
was also used in some previous studies [35,36]. These studies are
focused on investigating the nonlinear behaviors of single degree-
of-freedom (DOF) oscillators in contrast to the BAA method,
which was developed for enabling the analysis of high-
dimensional structural systems that contain stationary dynamics.

Although the BAA method is an efficient and effective tool, it
is developed based on the standard form of equations of motion of
structural systems. It also requires the system to be proportionally
damped since its formulation to obtain the analytic solution of the
modal response is built off of second-order differential equations.
Hence, the goal of this paper is to extend the original BAA
method to more general PWL systems so that physical systems in
a variety of disciplines (e.g., electrical engineering) modeled
using state-space models can also be efficiently investigated. In
the extended method, the complex analytical expression of PWL
responses of bilinear state-space models is derived, and a numeri-
cal tool is used to find the parameters in the analytical expressions
by enforcing appropriate compatibility conditions. Nonlinear
vibrational responses of the system can then be obtained by cou-
pling the analytical solutions of the system in each linear regime.
The extended method is as efficient as the original BAA method
since they both utilize efficient analytical approaches in determin-
ing the PWL responses. However, the extended method is also
able to analyze state-space models whose modal properties are
quantified using complex numbers. This capability significantly
extends the applicability of the method. Also, the proposed
method is validated by both numerical simulation and experimen-
tal measurement in this work.

The remainder of the paper is organized as follows. First, the pro-
posed method is introduced. Next, the results of applying the pro-
posed method for a spring-mass mechanical oscillator and a nonlinear
electrical circuit are presented. Finally, conclusions are discussed.

2 Methodology

In this section, an extended BAA method is introduced for ana-
lyzing general PWL systems represented by a state-space model.
In general, the state-space representation of engineering systems
can be expressed as

_u ¼ AðuÞuðtÞ þ BðuÞqðtÞ (1)

where AðuÞ and BðuÞ represent the state matrix and input matrix,
respectively. Note that AðuÞ has the size of n� n and BðuÞ has

the size of n� p. Furthermore, uðtÞ 2 IRn and qðtÞ 2 IRp represent
the state vector and input vector, respectively. For systems whose
dynamics can be modeled using two distinct linear subsystems,
the state matrix and input matrix can be formulated as

AðuÞ ¼
A1 if unl � a

A2 if unl < a

8<
:

BðuÞ ¼
B1 if unl � a

B2 if unl < a

8<
:

(2)

where unl represents the nonlinear state variable that determines
the system’s state, A1 and A2 represent the state matrices in the
first and second linear states, and B1 and B2 represent the input
matrices in the first and second linear states. These matrices are
all constant matrices since they represent the system matrices of
the linear subsystems. Note that a in Eq. (2) represents a threshold
that distinguishes the first and second linear states.

Since the dynamic response of the system in each of its linear
regimes can be expressed analytically, eigendecompositions A1

and A2 are performed to obtain the closed-form solution of the lin-
ear subsystems. However, A1 and A2 in state-space models are
generally nonsymmetric matrices and the eigenvalues of these
matrices could be complex. Also, the eigenvectors of these matri-
ces are not mutually orthogonal. This leads to the following
adjoint eigenvalue problem. The eigenvalue problem of the matri-
ces A’s can be expressed as

Axj ¼ kjxj; where j ¼ 1;…; n (3)

kj and xj represent the eigenvalues and right eigenvectors of the
state matrices A’s. Note that if kj and xj are a set of complex
eigenvalue and eigenvector, then the complex conjugates kj and
xj are also a set of eigenvalue and eigenvector. Next, the adjoint
eigenvalue problem of the transposed matrices AT can be formu-
lated as

ATyr ¼ kryr; where r ¼ 1;…; n (4)

Note that AT and A share the same eigenvalues, and the right
eigenvectors xj’s and the left eigenvectors yr’s satisfy the follow-
ing biorthogonality:

yTrAxj ¼ 0; if kj 6¼ kr (5)

These eigenvectors can be normalized, by enforcing yTr xj ¼ djr
where djr is the Kronecker delta, to obtain

YTAX ¼ K (6)

where the matrix Y ¼ ½y1;…; yn� includes the left eigenvectors,
the matrix X ¼ ½x1;…; xn� includes the right eigenvectors, and
K ¼ diag½k1;…; kn� is the corresponding eigenvalue matrix.
Equation (6) can be reformulated as

A ¼ XKYT (7)

Note that Eq. (7) represents the modal decompositions of the mat-
rices A’s. Next, the state vectors uðtÞ of the linear subsystems in
Eq. (1) can be expressed as a linear combination of the right
eigenvectors by applying the state space expansion theorem [19]

uðtÞ ¼ XnðtÞ (8)

where nðtÞ include the modal coordinates. Then, substituting
Eq. (8) into the linear subsystems in Eq. (1) and premultiplying by
YT , the equations of motion in the modal space are obtained
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_nðtÞ ¼ KnðtÞ þ nðtÞ (9)

where nðtÞ ¼ YTBqðtÞ. Note that Eq. (9) is a set of independent
modal equations

_njðtÞ ¼ kjnjðtÞ þ njðtÞ; where j ¼ 1;…; n (10)

Note that njðtÞ ¼ yTj BqðtÞ.
Next, a hybrid analytic-numerical process is employed to obtain

the nonlinear forced response of the PWL systems. If the system
is excited by a harmonic force qðtÞ ¼ q0e

ixt, the modal coordi-
nates of the system in its linear states can be represented as combi-
nations of the transient dynamic motion and the steady-state
dynamic motion

nj;1 tð Þ ¼ cj;1e
kj;1t þ

yTj;1B1q0

ix� kj;1
ei xtþwð Þ

nr;2 tð Þ ¼ cr;2e
kr;2t þ

yTr;2B2q0

ix� kr;2
ei xtþwð Þ

(11)

where nj;1ðtÞ (j ¼ 1;…; n) represents the modal response of the
PWL system in the first state; nr;2ðtÞ (r ¼ 1;…; n) represents the
modal response of the system in the second state; cj;1; cr;2 2 C
are scalar complex amplitude coefficients of the transient
responses; x 2 IR represents the frequency of excitation; and w 2
IR represents the phase difference between the excitation and the
steady-state responses. Note that w is included as an additional
phase shift so that the time origin can be reset when coupling
these PWL responses. The coupling process will be explained
shortly. Also note that the phrases “transient response” and
“steady-state response” represent the responses of the system in
each of its linear states and should not be confused with the total
nonlinear response of the nonsmooth system. Furthermore, if nj
associated with the eigenvector xj is a complex coordinate, its

complex conjugate nj is also a modal coordinate and the eigenvec-

tor associated with nj is xj , the complex conjugate of xj. Thus,

complex coefficients cj and cj exist in conjugate pairs. The physi-
cal coordinates of the system in its linear regimes can be
obtained by applying the transformation u1ðtÞ ¼ X1n1ðtÞ and
u2ðtÞ ¼ X2n2ðtÞ, where the subscripts 1 and 2 represent the two
states in Eq. (8). The key idea of the method is to couple u1ðtÞ and
u2ðtÞ to construct the nonlinear vibrational response of the PWL
system by applying appropriate compatibility conditions. Note that
the modal expression Eq. (11) used in this work is derived for com-
plete eigenproblems. For systems whose state matrices are defec-
tive, the generalized eigenvectors are required to complete the
eigenbasis and Eq. (11) needs to be modified for those cases [37].

A steady-state vibrational cycle of the PWL system is schemati-
cally shown in Fig. 1. Note that when the nonlinear state variable
unl � a, the system’s dynamics is described by the first linear sub-
system; when unl < a, the system’s dynamics is governed by the
second linear subsystem. T1 represents the period of time the sys-
tem stays in the first linear state; T2 represents the period of time
the system stays in the second linear state; and T represents the
full period of the nonlinear vibrational cycle. In order to construct
this vibrational cycle, a set of compatibility conditions is derived
and applied to obtain the unknowns cj;1; cr;2, and w in Eq. (11)

u1ðT1Þ ¼ u2ðT1Þ
u1ð0Þ ¼ u2ðTÞ

unl;1ð0Þ ¼ a

unl;1ðT1Þ ¼ a

(12)

The first equation and the second equation in Eq. (12) represent
the continuity condition for all of the state variables. The variables
must satisfy the first condition at the moment the system switches
from the first state to the second state; similarly, the variables

must satisfy the second condition at the moment the system
switches from the second state to the first state. The third and
fourth equations represent the threshold value of the nonlinear
variable unl at the moments of transition. Note that the period of
vibration T can be determined by the user. If the system responds
at the excitation frequency, then the period of vibration can be cal-
culated by T ¼ 2p

x . If sub- or super-harmonic motions are of inter-
est, then, the period is assumed to be a multiple or a factor of
T ¼ 2p

x . Furthermore, T1 in Eq. (12) is an additional unknown that
needs to be obtained to construct the full nonlinear vibrational
cycle and T2 can be calculated by T � T1 once T1 is obtained.
Next, Eq. (8) is employed in Eq. (12) to obtain the modal repre-
sentation of the compatibility conditions

X1n1ðT1Þ � X2n2ðT1Þ ¼ 0

X1n1ð0Þ � X2n2ðTÞ ¼ 0

Xnl;1n1ð0Þ � a ¼ 0

Xnl;1n1ðT1Þ � a ¼ 0

(13)

where Xnl;1 is the portion of the mode shapes corresponding to the
nonlinear variable unl;1. In other words, Xnl;1 represents the kth
row of X1, where the kth variable in uðtÞ is the nonlinear state
variable unl(t). The unknowns (cj;1; cr;2; w, T1) in Eqs. (11) and
(13) can be solved using numerical optimization tools. The opti-
mization solver “lsqnonlin” in MATLAB [38] was used in this work
to find these parameters by minimizing the residual in Eq. (13).
The solver uses the trust-region-reflective algorithm to iteratively
search for a local minimum of the objective function until a toler-
ance is achieved. Note that if the system is driven by q0 cosxt,
only the real part of Eq. (13) needs to be solved; if the system is
excited by q0 sinxt, only the imaginary part of Eq. (13) needs to be
solved. In practice, one can arbitrarily choose either the real or
imaginary part to solve since the phase delay in the excitation does
not affect the steady-state vibration properties of the system. A
steady-state vibrational cycle of the PWL system can then be con-
structed by coupling the solved linear responses of each linear state.

Since the proposed method is able to obtain the steady-state
response of PWL systems, it is particularly useful for conducting
parametric studies. A parametric sweep can be efficiently per-
formed by starting from an initial parameter value. At this initial
parameter value, multiple random initial guesses for (cj;1; cr;2; w,
T1) are provided to the nonlinear optimization solver and the solu-
tion with the minimum residual of Eq. (13) is chosen as the initial
values for the second parameter point. In the remaining sweep
process, the solution from the previous parameter value is used as
initial values for computing the variables at the next parameter
point. This sweep strategy ensures convergence while speeding up
the analysis. Note that although the method is proposed for PWL
systems with two distinct linear subsystems in this work, Eq. (13)
can be expanded to include additional compatibility conditions for
systems with more linear states (i.e., more general PWL systems
that are not simply bilinear). Also note that the stability of the

Fig. 1 One vibrational cycle for the nonlinear state variable unl
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obtained solutions can be determined by the modified Floquet
theory proposed by Leine [39].

3 Results

The proposed method is demonstrated on both mechanical and
electrical systems to verify its broad capability of analyzing PWL
nonsmooth systems in general fields. Results of applying the
methodology to a mechanical oscillator with contacting elements
and a nonlinear analog circuit with a diode are discussed.

3.1 Mechanical Oscillator With Contacting Masses. A
three DOF spring-mass oscillator with contacting elements as
shown in Fig. 2(a) is analyzed using the proposed method. The
masses, spring constants, and damping coefficients are set to be
m1 ¼ m2 ¼ 2:0 kg, m3 ¼ 10 kg, k1 ¼ 1:20 N/m, k2 ¼ 1:68 N/m,
k3 ¼ 8:00 N/m, c1 ¼ 0:060 kg/s, c2 ¼ 0:0168 kg/s, and c3 ¼
0:400 kg/s. Also, the initial gap size is g¼ 0 m. Note that the
damping coefficients are chosen such that the system is not pro-
portionally damped and must be modeled using a state-space rep-
resentation; thus, the system studied in this work represents a

fairly general mechanical oscillator that the original BAA method
[32] would not be able to handle. In this case study, a harmonic
excitation FðtÞ ¼ f0 cosðxtÞ with amplitude f0 ¼ 0:01 N is applied
on mass m3. In order to model the intermittent contact phenom-
enon between the masses m1 and m2, two linear subsystems are used
to model the dynamics of the nonsmooth oscillator in each of its lin-
ear states. The first subsystem shown in Fig. 2(b) represents the linear
state of the oscillator when the gap is open; the second subsystem
shown in Fig. 2(c) represents the linear state of the oscillator when
the gap is closed. In the second subsystem, a set of contact stiffness
k� and damping c� is added to the model for minimizing the penetra-
tion between the contacting masses. In this case study, the values
k� ¼ 1000 N/m and c� ¼ 50 kg/s are used to model the contact stiff-
ness and damping, which are at least two orders of magnitude larger
than the structural stiffness and damping. The equations of motion of
the nonsmooth oscillator can be expressed as

M1€x1 þ C1 _x1 þK1x1 ¼ FðtÞ if x1 � x2 < 0

M2€x2 þ C2 _x2 þK2x2 ¼ FðtÞ if x1 � x2 � 0
(14)

where the subscripts 1 and 2 of the system matrices and the coor-
dinate vectors x’s represent the linear states of the system when
the gap is open and closed, respectively. The coordinate vectors
x ¼ ½x1; x2; x3�T represent the displacements of m1, m2, and m3,
respectively. The matrices in Eq. (14) can be expressed as

M1 ¼ M2 ¼

m1 0 0

0 m2 0

0 0 m3

2
664

3
775

C1 ¼

c1 0 �c1

0 c2 �c2

�c1 �c2 c1 þ c2 þ c3

2
664

3
775

C2 ¼

c1 þ c� �c� �c1

�c� c2 þ c� �c2

�c1 �c2 c1 þ c2 þ c3

2
664

3
775

K1 ¼

k1 0 �k1

0 k2 �k2

�k1 �k2 k1 þ k2 þ k3

2
664

3
775

K2 ¼

k1 þ k� �k� �k1

�k� k2 þ k� �k2

�k1 �k2 k1 þ k2 þ k3

2
664

3
775

(15)

Since the linear subsystems are not proportionally damped, the
equation of motion Eq. (14) needs to be transformed to its state-
space form as shown in Eq. (1). In the state-space representation
the coordinate system is expanded to u ¼ ½x1; x2; x3; _x1; _x2; _x3�T
and the corresponding state matrices and the input matrices are

A1 ¼
0 I

�M�1
1 K1 �M�1

1 C1

" #

A2 ¼
0 I

�M�1
2 K2 �M�1

2 C2

" #

B1 ¼
0

M�1
1

" #

B2 ¼
0

M�1
2

" #
(16)

where I represents the identity matrix.

Fig. 2 (a) Three DOF spring-mass oscillator with contacting
elements. (b) The linear subsystem associated with the open
state. (c) The linear subsystem associated with the closed
state.
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Next, the nonlinear vibrational response of the system is com-
puted using the proposed method. Since the state of the system
depends on the relative displacement of m1 and m2, the nonlinear
variable for this mechanical oscillator is unl ¼ x1 � x2 and the
threshold value is set to a¼ 0. In order to apply the proposed algo-
rithm, the original state vector u is converted to an appropriate
coordinate system u ¼ ½unl; x2; x3; _x1; _x2; _x3�T by applying the
transformation u ¼ au, where

a ¼

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

(17)

The system matrices associated with the converted state vector
can also be obtained by applying the transformation
A1 ¼ aTA1a; A2 ¼ aTA2a; B1 ¼ aTB1a, and B2 ¼ aTB2a. Note
that unl is the only variable that determines the state of the system
in the converted coordinate system. The proposed method is then
applied to the transformed system, and the computed forced
response is compared with the one obtained using NI in Fig. 3.
For performing NI, the explicit Runge–Kutta method [21] and the
event function in MATLAB [38] are employed in the computation.
Figure 3 shows that the steady-state responses obtained using the
proposed method and NI have an excellent agreement over the
plotted frequency range in which multiple resonances are accu-
rately captured by the extended BAA method. Furthermore, the
proposed method only requires 0.039 s to obtain the steady-state
vibrational response for a specific frequency. By contrast, the aver-
age CPU time required by NI is 2.557 s. The computations are con-
ducted using a Dell XPS 15 laptop (Round Rock, TX) (2.60GHz),
and the extended BAA method only requires 1.53% of the CPU
time of NI. The proposed method is expected to have increasing
computational savings with respect to NI in the same way as the
original BAA method as the system investigated becomes more and
more complex [33,40].

3.2 Nonlinear Analog Circuit With a Nonsmooth Resist-
ance. In this section, the proposed method is used to analyze the
response of the analog circuit shown in Fig. 4. This circuit is com-
posed of a capacitor (C), an inductor (L), several resistors (R, R1,

R2), and a diode. Note that the resistor in the circuit is PWL since
the diode restricts the current flow to one direction. If the circuit
system is excited by an AC voltage source with frequency x and
amplitude f0, the system can be modeled as

_u ¼ AðvÞuðtÞ þ B sinðxtÞ (18)

where uðtÞ ¼ ½vðtÞ; iðtÞ�T . Note that the state variable v(t) repre-
sents the voltage across the capacitor C, and the state variable i(t)
is the current across the inductor L and the resistor R. The system
matrices in Eq. (18) can be expressed as

Fig. 3 Steady-state forced response of the three DOF spring-mass oscillator. ½(22); (2); ( � � � )�
represents the responses of ½m1;m2;m3� computed using the proposed method, and
½(w); (�); (�)� represent the responses of ½m1;m2;m3� computed using NI.

Fig. 4 A nonlinear circuit with PWL resistance: (a) circuit dia-
gram and (b) physical realization of the circuit on a breadboard
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A vð Þ ¼

� R1 þ R2ð Þ
CR1R2

1

C

�1

L

�R

L

2
6664

3
7775 if v � 0

�1

CR1

1

C

�1

L

�R

L

2
6664

3
7775 if v < 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

B ¼
0

f0
L

2
4

3
5

(19)

The steady-state response of the circuit is analyzed using the
proposed method. In this study, the parameter values are chosen
as R ¼ 50X, L¼ 10mH, R1 ¼ 2500X; R2 ¼ 500X, and f0 ¼ 9
V. The phase portraits of the system for a few capacitor values
(C ¼ 0:01lF, 1lF, and 100 lF) and driving frequencies
(x ¼ 10Hz, 100Hz, 1 kHz, and 10 kHz) computed using the pro-
posed technique and NI are compared in Fig. 5. In each plot, ð�Þ
and ð�Þ represent the solutions computed using the proposed
technique and NI, respectively. Note that the plots in the same
row represent phase portraits with the same driving frequency,

and the plots in the same column represent phase portraits with
the same capacitor values. Figure 5 shows an excellent agreement
between the solutions computed using the proposed method and
NI solutions. Furthermore, the system exhibits stronger nonlinear-
ity as the capacitor value and/or the driving frequency is
decreased since the trajectories in these phase portraits are more
twisted.

Next, the extended BAA method is used to conduct a frequency
sweep to validate its capability of capturing the dynamic response
in a broad parameter range. The peak-to-peak voltage of the sys-
tem for a couple of capacitor values (C ¼ 1 lF and C ¼ 100 lF)
is shown in Figs. 6(a) and 6(b), respectively. The excitation fre-
quency range in these case studies is chosen as ½10Hz; 104:5 Hz�.
The frequency sweep curves computed using the proposed method
(–) are compared with the ones obtained by NI (	) and experimen-
tal measurement (þ). It is shown that the responses obtained using
the proposed method, NI, and experimental measurement exhibits
excellent agreement in the plotted frequency. The average CPU
time required by the new method to compute the vibrational
response for a specific frequency is 0.08 s. By contrast, NI requires
3.01 s to simulate to a steady-state response at each frequency.
The new method only requires 2.7% of the CPU time of NI. Thus,
the proposed method can be used as an efficient computational
framework for designing circuit systems when current-limiting
elements are required. Furthermore, this work provides the first
experimental validation of the proposed hybrid analytic-numeric

Fig. 5 Phase portraits of the nonlinear circuit for a few capacitor values and driving frequencies. In each plot,
(2) and (�) represent the solutions computed using the proposed method and NI, respectively. The horizontal
axis represents the voltage v[V] and the vertical axis represents the current i[A] in each plot.
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method and shows its excellent agreement for analyzing an elec-
trical system. The original BAA method was only validated on a
structural system [41].

Next, a multivariable parametric study is conducted using the
proposed method to analyze the dynamic properties of the circuit.
The driving frequency x and the capacitor C are chosen as the
control parameters in this study. Note that this type of parametric
study can be efficiently performed using the proposed method and
is generally computationally challenging using traditional NI. The
peak-to-peak amplitude of voltage and current for the frequency
range ½10Hz; 104:5 Hz� and capacitor range ½10�2 lF; 102 lF� are
computed and plotted in Figs. 7(a) and 7(b), respectively. Figure 7
shows that the circuit exhibits a low-pass behavior since the ampli-
tude of voltage drops quickly after a cutoff frequency. Also, the
bandwidth shrinks as the capacitor value increases. Furthermore, it is
observed that the amplitude of current rises around the cutoff fre-
quency. Although this nonlinear circuit exhibits similar low-pass
behavior as a simple linear resistor-inductor-capacitor circuit, the sys-
tem is different due to how the diode element affects the electrical
load and the nonlinearity must be accounted for when analyzing it.
The investigation of these properties is critical since the system
exhibits a stronger nonlinear behavior in the lower frequency range
as discussed above.

4 Conclusions

In this paper, an efficient methodology for analyzing the
steady-state periodic response of piecewise-linear (PWL)

nonsmooth systems in general fields is introduced. The technique
extends the bilinear amplitude approximation method, which was
developed previously for capturing the dynamic response of pro-
portionally damped structural systems, to more general systems so
that PWL oscillators modeled using state-space representations
can also be efficiently investigated. The new method employs the
eigen-decomposablility of a state-space model in distinct linear
regimes to obtain the closed-form solution for each linear subsys-
tem. The steady-state vibrational response of the PWL oscillator
is then constructed by coupling the closed-form solutions with
appropriate compatibility conditions. An efficient computation of
the nonlinear dynamics can be achieved using the proposed hybrid
analytical-numeric approach.

The method is successfully demonstrated on a mechanical
oscillator with contacting elements and an electrical circuit with a
diode to show its broad applicability. Also, the method is vali-
dated both numerically and experimentally. The proposed method
shows the capability of capturing the nonlinear vibrational
response of PWL nonsmooth oscillators for a wide parameter
range and is an efficient computational framework for investigat-
ing the effects of multiple parameters on the system dynamics.
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