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ABSTRACT 

Early fault detection in rolling element bearings is pivotal 
for the effective predictive maintenance of rotating machinery. 
Deep Learning (DL) methods have been widely studied for 
vibration-based bearing fault diagnostics largely because of 
their capability to automatically extract fault-related features 
from raw or processed vibration data. Although most DL models 
in the current literature can provide fairly accurate 
classification outputs, the typical diagnostic procedure is 
performed in an offline environment utilizing powerful 
computers. This centralized approach can lead to unacceptable 
delays in safety-critical applications and can prohibit cost-
sensitive wireless data collection. Meanwhile, very few studies 
have reported on deploying DL models on microprocessor-based 
Industrial Internet of Things (IIoT) devices, where edge 
computing can give users a real-time evaluation of bearing 
health without requiring expensive computational infrastructure. 
This paper demonstrates an IIoT deployment of a physics-
informed DL model inside a commercially available wireless 
vibration sensor for online health classification. The diagnostic 
model here is developed and trained offline, and the trained 
model is then deployed inside the embedded system for online 
prediction. We demonstrate the model’s online diagnostic 
performance by imitating bearing vibration signals on a 
vibration shaker and by performing edge computing on the 
embedded system mounted on the shaker.  

Keywords: Deep learning, bearing health monitoring, edge 
computing, embedded system. 

1. INTRODUCTION 
 Modern industrial equipment is becoming increasingly 
complex due to recent advances in automation. As a result, the 
necessity of equipment health monitoring has increased over the 
years. Because bearing failures are considered to be the primary 
cause of degradation in rotating machines (pumps, motors, 
compressors, etc.), detecting early-stage bearing faults in a 
timely manner would help maintenance teams ensure the safe 
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operation of critical rotating machinery without unexpected 
breakdown [1]. 

There has been extensive research in the field of bearing 
diagnostics, where bearing fault detection is generally conducted 
in three steps: data acquisition, feature extraction, and pattern 
recognition [2]. The data acquisition step uses sensors to collect 
signals that are affected by bearing health. Different sensors have 
been applied for bearing diagnostics, including acoustic, 
vibration, and temperature sensors. The feature extraction step 
extracts fault-related features from the raw sensor data. Signal 
processing techniques such as Fourier transform, wavelet 
transform, and short-time Fourier transform are commonly used 
for extracting fault-related features from the raw data. The 
pattern recognition step uses the extracted features to predict 
bearing health conditions with the help of various machine 
learning or deep learning (DL) techniques. Over the past few 
years, researchers have tested a number of DL models and 
reported decent accuracy using pre-collected test data [3]. 
However, most of these models are built and evaluated in an 
offline manner, and very few researchers reported DL models for 
online bearing fault diagnostics.  
 In the era of the Industrial Internet of Things (IIoT), a 
traditional approach to implementing the diagnostic model is to 
use a local device to collect data and upload that data to the cloud. 
The DL model, deployed in the cloud, then makes predictions 
and sends the results back to the local device [4]. However, 
transmitting raw vibration data to the cloud increases power 
consumption, affecting the battery’s useful life and increasing 
operating costs [5]. As a potential solution to these limitations, 
edge computing has become an important technique for IIoT 
services, where an embedded system performs diagnostic tasks 
locally at the data source. The advantages of edge computing are 
not limited to reducing data transmission costs, as it can also 
provide real-time evaluation results and preserve a user’s data 
privacy.  

This paper presents an IIoT deployment of a physics-
informed DL model for online bearing health diagnostics. We 
incorporate physical knowledge of bearing failure to extract 
fault-related vibration features and develop a memory-efficient 
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algorithm for IIoT implementations. The key contributions are as 
follows: 
• Deploy a signal processing and DL algorithm into an 

embedded system. 
• Evaluate the performance of the embedded diagnostic 

algorithm and compare its prediction accuracy with a 
traditional offline PC model developed in Python using the 
Numpy and Keras packages [6]. 

2. BACKGROUND 
When a bearing with a defect rotates, the contact between 

the defect area and other bearing components causes vibration 
impulses. These bearing fault impulses also excite other bearing 
components, leading to vibration modulation. Envelope analysis 
is used to demodulate the vibration signal and extract low-
frequency fault-related signals. The frequencies of the fault-
related signals, also named bearing fault characteristic 
frequencies, are related to the bearing’s geometry. Further details 
of Hilbert transform-based demodulation and extraction of 
physics-based features can be found in [2]. 

In Ref. [7], we proposed a physics-informed DL 
architecture, which uses a feature weighting layer that assigns 
higher weights to feature values close to the bearing fault 
characteristic frequencies. We then verified that physics-
informed feature weighting helps improve the model’s 
sensitivity in identifying the bearing faults and provides better 
diagnostic accuracy. This paper demonstrates the deployment of 
the same physics-informed convolutional neural network 
(PICNN) inside an embedded system. 

3. METHODOLOGY 
The architecture of the hardware platform is shown in Figure 

1. This embedded system comprises two microprocessors 
(ATSAMG55J19 and ATxmega128A1U) and an accelerometer 
(KX131). The signal processing algorithm and DL model are 
converted from Python into C and compiled into the 
ATSAMG55J19, which can access the accelerometer. The 
ATSAMG55J19 performs signal processing and diagnostics, 
then sends the envelope order spectrum and health class results 
to the ATxmega chip. The ATxmega chip is then used to transmit 
the data to a server. 

 
Figure 1. The architecture of the diagnostic system 

The deployment of signal processing and DL algorithms into 
an embedded system requires considering both memory usage 
and computational complexity [8]. The signal processing section 
contains three algorithms: Hilbert transform, Fourier transform, 
and interpolation. The Hilbert transform could be performed with 
the help of the Fourier transform [9]. To reduce computational 
complexity, we use the fast Fourier transform (FFT) algorithm; 
compared to the Fourier transform, the FFT reduces the 
computational complexity from 𝑂𝑂(𝑛𝑛2)  into 𝑂𝑂(𝑛𝑛 log (𝑛𝑛))  [10]. 
Regarding the DL model, saving all the model parameters and 

outputs of each layer requires too much memory. The memory 
allocation for the embedded system can be treated as an 
optimization problem. Taking a four-layer DL model as an 
example, Figure 2(a) illustrates a naive way of memory 
allocation over time. One dimension is the memory size, and the 
other dimension is the time during which each memory 
allocation must be preserved. For example, the orange 
rectangular “A” represents the input and the parameters for the 
signal processing operation, and “B” represents the output of 
signal processing. In this paper, the bin packing memory 
allocation strategy is adopted to optimize memory usage, as 
shown in Figure 2(b). This strategy places each allocation in the 
first sufficiently large gap or at the end of the buffer if the gap is 
insufficient for memory allocation. After the results of the 
current layer are calculated, the input of this layer is erased from 
the memory, and the erased memory is assigned for the output of 
the next layer.  

 
Figure 2. Memory allocation strategies 

The implementation of the diagnostic model on the wireless 
sensing node is composed of four steps. First, the DL model is 
trained on a PC using Keras, then the model architecture and 
model parameters are converted into a C code. Then, the C code 
is compiled into the sensing node, and finally, we perform online 
experiments to verify model performance. 

4. EXPERIMENTAL VERIFICATION 
Following our earlier work [7], we train two models, a 

PICNN and a CNN, and then deploy them into the embedded 
system separately. Training data is collected from the bearing 
fault simulator, shown in Figure 3b. Two bearings are mounted 
on the shaft of the simulator and driven by an electric motor. The 
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accelerometer (PCB 608A11) is mounted on the bearing housing 
to gather vibration signals. 

We use bearings with (1) an inner race fault, (2) an outer 
race fault, and (3) a combination of faults, which have been 
introduced previously by electrical discharge machining. The 
test bearings are rolling element bearings with 13 balls with the 
inner race, outer race, and ball diameters as 22.1 mm, 29.1 mm, 
and 3.5 mm, respectively. The vibration data is collected under 
shaft speeds ranging from 15 Hz to 30 Hz. A total of 15 vibration 
signals are collected from each bearing at a sampling rate =
12.8 kHz for 20 s. The sliding window signal is divided into 
multiple samples of 1 s per sample with an overlap of 0.5 s. In 
total, the training dataset contains 570 samples (Table 1). 

Table 1. Dataset summary 
 Parameter Value 

Training 
dataset 

Shaft speed (Hz) 15, 16, 17, …, 30 

Bearing condition Healthy, inner race fault, outer race fault, 
combination of faults 

Shaker 
test 

Shaft speed (Hz) 15.5, 20.5, 25.5, 30.5 

Bearing condition Healthy, inner race fault, outer race fault, 
combination of faults 

The architecture of the PICNN is included in Table 2. The 
architectural difference between the CNN and PICNN is that the 
CNN does not have the feature weighting layer. The feature 
weighting layer, which is the first layer of the PICNN, assigns 
higher weights to the features close to the bearing fault 
characteristic frequencies.  

Table 2. Architecture of PICNN 
Layer name Output shape, Activation 
Feature weighting (Samples, 1600,1) 
Conv-1 (Samples,793,8) 
Average-pool (Samples,198,8) 
Conv-2 (Samples,96,16) 
Average-pooling (Samples,32,16) 
Conv-3 (Samples,14,32) 
Average-pooling (Samples,7,32) 
DC-1 (Samples,4) 
Although the signal processing and DL-based diagnostic 

algorithms have been verified on a PC, it is essential to confirm 
that the model can provide identical results after being deployed 
into the embedded system. Thus, a shaker test is conducted 
where an electrodynamic vibration shaker converts voltage 
signals into vibration; with a proportional control algorithm, the 
shaker can replicate the vibration signals collected from the 
bearing test stand. The sensing node is mounted on the shaker to 
perform online diagnostics of the vibration signals. 
  Unlike typical offline tests where pre-collected samples are 
used to evaluate the model’s accuracy, the sensing node here 
performs online diagnostics by classifying bearing health 
immediately after collecting the data. For each experimental 
setting, the wireless sensing node performs five diagnostic 
evaluations. Then, the diagnostic results and the processed 
envelope spectrum are sent to the server. The server with a 
wireless receiver receives the data and performs its own 
diagnostic evaluation using the Keras-based DL model and the 
envelope spectrum. All the test results are summarized in Table 
3. Although test data was collected using different shaft speeds, 
both the PICNN and CNN provide accuracy greater than 90%. 
Also, the results provided by the embedded system are identical 
to those by the PC model, indicating that the diagnostic models 
are successfully deployed in the embedded system. 

Table 3. Diagnostic results 

    

5. CONCLUSION 
This study proposes a methodology for deploying a DL 

model into an embedded system for online bearing fault 
diagnostics. Using a shaker test, we validate that the embedded 
model provides identical results to the PC model. Our future 
work will investigate the applicability of the proposed embedded 
model for online diagnostics using the bearing fault simulator. 
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