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ABSTRACT

Early fault detection in rolling element bearings is pivotal
for the effective predictive maintenance of rotating machinery.
Deep Learning (DL) methods have been widely studied for
vibration-based bearing fault diagnostics largely because of
their capability to automatically extract fault-related features
from raw or processed vibration data. Although most DL models
in the current literature can provide fairly accurate
classification outputs, the typical diagnostic procedure is
performed in an offline environment utilizing powerful
computers. This centralized approach can lead to unacceptable
delays in safety-critical applications and can prohibit cost-
sensitive wireless data collection. Meanwhile, very few studies
have reported on deploying DL models on microprocessor-based
Industrial Internet of Things (IloT) devices, where edge
computing can give users a real-time evaluation of bearing
health without requiring expensive computational infrastructure.
This paper demonstrates an IloT deployment of a physics-
informed DL model inside a commercially available wireless
vibration sensor for online health classification. The diagnostic
model here is developed and trained offline, and the trained
model is then deployed inside the embedded system for online
prediction. We demonstrate the model’s online diagnostic
performance by imitating bearing vibration signals on a
vibration shaker and by performing edge computing on the
embedded system mounted on the shaker.

Keywords: Deep learning, bearing health monitoring, edge
computing, embedded system.

1. INTRODUCTION

Modern industrial equipment is becoming increasingly
complex due to recent advances in automation. As a result, the
necessity of equipment health monitoring has increased over the
years. Because bearing failures are considered to be the primary
cause of degradation in rotating machines (pumps, motors,
compressors, etc.), detecting early-stage bearing faults in a
timely manner would help maintenance teams ensure the safe
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operation of critical rotating machinery without unexpected
breakdown [1].

There has been extensive research in the field of bearing
diagnostics, where bearing fault detection is generally conducted
in three steps: data acquisition, feature extraction, and pattern
recognition [2]. The data acquisition step uses sensors to collect
signals that are affected by bearing health. Different sensors have
been applied for bearing diagnostics, including acoustic,
vibration, and temperature sensors. The feature extraction step
extracts fault-related features from the raw sensor data. Signal
processing techniques such as Fourier transform, wavelet
transform, and short-time Fourier transform are commonly used
for extracting fault-related features from the raw data. The
pattern recognition step uses the extracted features to predict
bearing health conditions with the help of various machine
learning or deep learning (DL) techniques. Over the past few
years, researchers have tested a number of DL models and
reported decent accuracy using pre-collected test data [3].
However, most of these models are built and evaluated in an
offline manner, and very few researchers reported DL models for
online bearing fault diagnostics.

In the era of the Industrial Internet of Things (IIoT), a
traditional approach to implementing the diagnostic model is to
use a local device to collect data and upload that data to the cloud.
The DL model, deployed in the cloud, then makes predictions
and sends the results back to the local device [4]. However,
transmitting raw vibration data to the cloud increases power
consumption, affecting the battery’s useful life and increasing
operating costs [5]. As a potential solution to these limitations,
edge computing has become an important technique for IIoT
services, where an embedded system performs diagnostic tasks
locally at the data source. The advantages of edge computing are
not limited to reducing data transmission costs, as it can also
provide real-time evaluation results and preserve a user’s data
privacy.

This paper presents an IloT deployment of a physics-
informed DL model for online bearing health diagnostics. We
incorporate physical knowledge of bearing failure to extract
fault-related vibration features and develop a memory-efficient
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algorithm for IIoT implementations. The key contributions are as

follows:

e Deploy a signal processing and DL algorithm into an
embedded system.

e Evaluate the performance of the embedded diagnostic
algorithm and compare its prediction accuracy with a
traditional offline PC model developed in Python using the
Numpy and Keras packages [6].

2. BACKGROUND

When a bearing with a defect rotates, the contact between
the defect area and other bearing components causes vibration
impulses. These bearing fault impulses also excite other bearing
components, leading to vibration modulation. Envelope analysis
is used to demodulate the vibration signal and extract low-
frequency fault-related signals. The frequencies of the fault-
related signals, also named bearing fault characteristic
frequencies, are related to the bearing’s geometry. Further details
of Hilbert transform-based demodulation and extraction of
physics-based features can be found in [2].

In Ref. [7], we proposed a physics-informed DL
architecture, which uses a feature weighting layer that assigns
higher weights to feature values close to the bearing fault
characteristic frequencies. We then verified that physics-
informed feature weighting helps improve the model’s
sensitivity in identifying the bearing faults and provides better
diagnostic accuracy. This paper demonstrates the deployment of
the same physics-informed convolutional neural network
(PICNN) inside an embedded system.

3. METHODOLOGY

The architecture of the hardware platform is shown in Figure
1. This embedded system comprises two microprocessors
(ATSAMGS55J19 and ATxmegal28A1U) and an accelerometer
(KX131). The signal processing algorithm and DL model are
converted from Python into C and compiled into the
ATSAMGS55J19, which can access the accelerometer. The
ATSAMGS55J19 performs signal processing and diagnostics,
then sends the envelope order spectrum and health class results
to the ATxmega chip. The ATxmega chip is then used to transmit
the data to a server.
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Figure 1. The architecture of the diagnostic system

The deployment of signal processing and DL algorithms into
an embedded system requires considering both memory usage
and computational complexity [8]. The signal processing section
contains three algorithms: Hilbert transform, Fourier transform,
and interpolation. The Hilbert transform could be performed with
the help of the Fourier transform [9]. To reduce computational
complexity, we use the fast Fourier transform (FFT) algorithm;
compared to the Fourier transform, the FFT reduces the
computational complexity from 0(n?) into O(n log (n)) [10].
Regarding the DL model, saving all the model parameters and

outputs of each layer requires too much memory. The memory
allocation for the embedded system can be treated as an
optimization problem. Taking a four-layer DL model as an
example, Figure 2(a) illustrates a naive way of memory
allocation over time. One dimension is the memory size, and the
other dimension is the time during which each memory
allocation must be preserved. For example, the orange
rectangular “A” represents the input and the parameters for the
signal processing operation, and “B” represents the output of
signal processing. In this paper, the bin packing memory
allocation strategy is adopted to optimize memory usage, as
shown in Figure 2(b). This strategy places each allocation in the
first sufficiently large gap or at the end of the buffer if the gap is
insufficient for memory allocation. After the results of the
current layer are calculated, the input of this layer is erased from
the memory, and the erased memory is assigned for the output of
the next layer.

(a) Naive Memory usage

Figure 2. Memory allocation strategies
The implementation of the diagnostic model on the wireless
sensing node is composed of four steps. First, the DL model is
trained on a PC using Keras, then the model architecture and
model parameters are converted into a C code. Then, the C code
is compiled into the sensing node, and finally, we perform online
experiments to verify model performance.

4. EXPERIMENTAL VERIFICATION

Following our earlier work [7], we train two models, a
PICNN and a CNN, and then deploy them into the embedded
system separately. Training data is collected from the bearing
fault simulator, shown in Figure 3b. Two bearings are mounted
on the shaft of the simulator and driven by an electric motor. The
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Figure 3. (a) Shaker test stand and (b) bearing fault simulator



accelerometer (PCB 608A11) is mounted on the bearing housing
to gather vibration signals.

We use bearings with (1) an inner race fault, (2) an outer
race fault, and (3) a combination of faults, which have been
introduced previously by electrical discharge machining. The
test bearings are rolling element bearings with 13 balls with the
inner race, outer race, and ball diameters as 22.1 mm, 29.1 mm,
and 3.5 mm, respectively. The vibration data is collected under
shaft speeds ranging from 15 Hz to 30 Hz. A total of 15 vibration
signals are collected from each bearing at a sampling rate =
12.8 kHz for 20 s. The sliding window signal is divided into
multiple samples of 1 s per sample with an overlap of 0.5 s. In
total, the training dataset contains 570 samples (Table 1).

Table 1. Dataset summary

Parameter Value
. Shaft speed (Hz) 15,16, 17, ...,30
Training .
. . Healthy, inner race fault, outer race fault,
dataset Bearing condition S
combination of faults
Shaft speed (Hz) 15.5,20.5,25.5, 30.5
Shaker .
. .\ Healthy, inner race fault, outer race fault,
test Bearing condition

combination of faults

The architecture of the PICNN is included in Table 2. The
architectural difference between the CNN and PICNN is that the
CNN does not have the feature weighting layer. The feature
weighting layer, which is the first layer of the PICNN, assigns
higher weights to the features close to the bearing fault
characteristic frequencies.

Table 2. Architecture of PICNN

Layer name Output shape, Activation
Feature weighting (Samples, 1600,1)
Conv-1 (Samples,793,8)
Average-pool (Samples,198,8)
Conv-2 (Samples,96,16)
Average-pooling (Samples,32,16)
Conv-3 (Samples,14,32)
Average-pooling (Samples,7,32)
DC-1 (Samples,4)

Although the signal processing and DL-based diagnostic
algorithms have been verified on a PC, it is essential to confirm
that the model can provide identical results after being deployed
into the embedded system. Thus, a shaker test is conducted
where an electrodynamic vibration shaker converts voltage
signals into vibration; with a proportional control algorithm, the
shaker can replicate the vibration signals collected from the
bearing test stand. The sensing node is mounted on the shaker to
perform online diagnostics of the vibration signals.

Unlike typical offline tests where pre-collected samples are
used to evaluate the model’s accuracy, the sensing node here
performs online diagnostics by classifying bearing health
immediately after collecting the data. For each experimental
setting, the wireless sensing node performs five diagnostic
evaluations. Then, the diagnostic results and the processed
envelope spectrum are sent to the server. The server with a
wireless receiver receives the data and performs its own
diagnostic evaluation using the Keras-based DL model and the
envelope spectrum. All the test results are summarized in Table
3. Although test data was collected using different shaft speeds,
both the PICNN and CNN provide accuracy greater than 90%.
Also, the results provided by the embedded system are identical
to those by the PC model, indicating that the diagnostic models
are successfully deployed in the embedded system.

Table 3. Diagnostic results

| [l Healthy [1 Inner race fault [ Outerracefault [0 Combination of faults

Embedded model results Keras model results
Item CNN PICNN CNN PICNN
O 0 B BE|H O @ B/ @ 0 @ B O @ @
5 O 20 0 0 0|20 0 0 0|20 0 0 020 O 0 0
om0 17 0 3 0 18 0 2 0 17 0 3 0 18 0 2
E W 0 0 20 o0 0 0 20 0 0 0 20 0 0 0O 20 0O
F B o 2 0 18| 0 1 0 19| 0 2 0 18| 0 3 0 18
Accuracy 93.75% 96.25% 93.75% 96.25%

5. CONCLUSION

This study proposes a methodology for deploying a DL
model into an embedded system for online bearing fault
diagnostics. Using a shaker test, we validate that the embedded
model provides identical results to the PC model. Our future
work will investigate the applicability of the proposed embedded
model for online diagnostics using the bearing fault simulator.
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