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Abstract—In recent decades,the utilization of digital control
units and communication networks in modern manufacturing
systems has increased significantly. These valuable and safety-
critical systems are facing new threats from physical and cyber
domains. There is still a gap between studies of physical faults
and cyber-attacks on motor drives. it is critical for future motor
drives in manufacturing systems to develop attack and fault
detection and diagnostic solutions to guarantee system safety and
security. To narrow this gap, this paper proposes a data-driven
method for detecting and distinguishing cyber-attacks and some
common physical faults for manufacturing motor drives. The
proposed method integrates the PCC line current spectra and
four widely used data-driven classifiers to detect and distinguish
cyber-attacks and physical faults. We form a comprehensive case
study to validate the proposed methods, including sophisticated
false data injection attacks and the two most common physical
faults, inter-turn short circuit faults and bearing faults. The final
testing results suggest that the proposed method could achieve
95% or higher detection accuracy.

Index Terms—motor drives, manufacturing, security, anomaly
detection, diagnostics

I. INTRODUCTION

Valuable and safety-critical systems are facing new threats
from physical and cyber domains due to the pervasive utiliza-
tion of digital control units and communication networks in
modern manufacturing systems. There is an urgent need for
future manufacturing systems to have an advanced monitoring
solution targeting physical faults and cyber-attacks, especially
for high-power motor drives. Gap still exists between stud-ies
of physical faults and cyber-attacks on motor drives. Such
a gap could be summarized in three aspects. First, cyber-
attacks and physical faults have different dynamics and
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mechanisms. Physical faults will essentially change part of
the fundamental physics of the systems. For example, inter-
turn short circuit faults will create a local short circuit loop
within the fault winding. Moreover, bearing faults will cause
machine shaft vibrations, leading to periodic changes in the
machine winding inductances. However, cyber-attacks will not
necessarily change the system’s fundamental physics. Instead,
they will directly or indirectly change the digital controller
behaviors to achieve some objectives established by attackers.
The second gap is that cyber-attacks and physical faults
have different countermeasures. For physical faults, the most
common protocol is to shut down and isolate the fault system
and conduct thorough maintenance to eliminate the faults.
On the other hand, when the system detects cyber-attacks,
some standard approaches include rebooting the system or
conducting a hot patch. Finally, in most recent literature,
cyber-attacks and physical faults are still two different topicsin
different communities. Therefore, most research focuses on
physical faults or cyber-attacks individually instead of
simultaneously. [1] For motor drives, studies of physical faults
are more mature than cyber-attacks. In the last decades, there
have been many literatures addressing physical faults from
different directions, such as motor current signature analysis
[2]-[4], time-domain analysis [5]-[7], data-driven methods
[8]-[10], etc. Nevertheless, studies addressing cyber-attacks
on motor drives did not arise until recent years. For example,
[11] studied the vulnerabilities of motor drives due to sensor
attacks, and [12], [13] proposed a fast attack detection method
based on motor time-domain and frequency-domain features,
respectively. Meanwhile, most studies addressing cyber-attacks
focused on general cyber-physical systems instead of motor
drives. For example, [14]-[16] propoosed some detection solu-
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tions using the attacker versus defender dynamics, distributed
attack detection, and state recovery.

To guarantee system safety and security of thr future motor
drives in manufacturing systems, it is critical to developing fast
detection and accurate diagnostic solutions targeting cyber-
attacks and physical faults. To narrow this gap, this paper
proposed a data-driven method for detecting and distinguishing
cyber-attacks and common physical faults for manufacturing
motor drives.

The rest of the paper first describes fault and attack models in
Section II. Then, it will discuss the proposed method and the
validation results in Section Il and Section IV, respectively.
Finally, Section V addresses the conclusions.

Il. MODELING

In most motor drive literature, physical faults and cyber-
attacks are still two different topics in different communities.
Therefore, they addressed physical faults and cyber-attacks
individually instead of simultaneously. For future motor drives
in manufacturing systems, it is necessary to develop solutions
targetting faults and attacks at the same time. This paper forms
a comprehensive case study to achieve such goals, including
common physical faults and cyber-attacks in a dual-motor
network. Such a network consists of a permanent magnet
synchronous machine (PMSM) and an induction machine
(IM), and fig. 1 shows its system diagram. This section will
discuss the mathematical models adopted for these fault and
attack scenarios.

A. Physical Fault Modeling

This paper adopts two of the most common physical faultsin
motor drives: the inter-turn short circuit faults (ITSCs) and the
bearing faults. As shown in fig. 1, the ITSCs are considered in
the PMSM, and the bearing faults are in the IM.

1) Inter-Turn Short Circuit Faults in PMSM: The Inter-turn
short circuit (ITSC) fault is caused by partially short circuited
faults in some turns of stator windings due to isolation aging or
failures. Such aging and failures are usually caused by
mechanical frictions and chemical corrosion. The equivalent
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Fig. 2. The equivalent circuit of the ITSC fault.

circuit of the such ITSC is shown in Fig. 2. (Suppose the fault
appears in phase A.) As shown in Fig. 2, the ITSC fault will
change the winding structures and lead to winding parameter
changes, such as inductance, resistance, and back-EMF. In
Fig. 2, there are n turns out of N-turn-winding shorted. The
fault turn ratio W is then defined as = 2. The short circuit
contact resistance is defined as R¢, and i¢ is the circulating
current caused by the short circuit fault.

2) Bearing Faults in IM: Bearing faults are one of the
primary fault conditions in the induction machine. Such faults
account for more than 50% of the total failure cases in real-
world applications. [17] Bearing faults are usually caused by
mechanical frictions and chemical corrosion. When a bearing
fault appears, it will cause the eccentricity to the rotor shaft
and break the symmetry among all the phase windings. Such
eccentricity will lead to periodic changes in the machine
winding inductance. The periodic changes have different char-
acteristic frequencies depending on the fault types. Below
are five typical bearing faults and the related characteristic
frequencies.

- Cage defect hits outer raceway:
feo = % “(1- DQ cos(8))
- Cage defect hits inner raceway:
fei = %’ -(1+ 4 cos(8))
« Quter raceway dDefect hits balls:
fo = Nyp - % (1- & cos())
« Inner raceway defect hits balls:
fi = Np- = (1+ £ cos(6))
- Ball defect hits both raceways:
fo= Np-2 - fr - (1- S5 cos?(6))
where Ny is the number of balls, f. is the mechanic rotating
frequency of the rotor, and the geometry parameters of the
bearing is shown in Fig. 3.

B. Cyber-Attack Modeling

The primary attack surface in manufacturing motor drive
networks is the communication network. [18] Attackers could
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Fig. 3. Geometry parameters of the bearing.
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Fig. 4. Diagram of attack targets on manufacturing motor drive controllers.

compromise different digital controllers by exploring the vul-
nerabilities of various communication protocols and controller
firmware. For example, communication buses like Modbus and
CAN are widely used in manufacturing systems, but these
communication protocols are commonly designed without
sufficient encryptions and authentications. Therefore, there
have been many reports on the vulnerabilities of these pro-
tocols. Then, after compromising the networks or the digital
controllers, the attacker could seek various objectives, such as
damaging the devices and causing unexpected financial loss.

We summarize primary targets for the motor drive con-
trollers into three categories: controller feedback signals, con-
troller reference settings, and critical register data. Fig. 4
depicts a diagram of these attack targets on manufacturing
motor drive controllers. The attackers could easily manipulate
the motor drive behaviors by maliciously modifying these data,
usually referred as false data injection attacks. For example,
the attacker could deliberately increase or decrease the motor
speed and change control parameters to lower the system
performance.

To formally quantify these cyber attacks in motor drive
networks, we adopted the threat models in this paper. This
model uses the available adversary’s resources to map different
attacks into a three-dimension attack space. Fig. 5 shows a
conceptual diagram to visualize the attack space.

The adversary’s resources include the a priori system model
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Fig. 5. Diagram of the attack space.
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Fig. 6. Diagram of the adversary model.

knowledge, disclosure resources, and disruption resources. The
a priori model knowledge can be used by the adversary to
construct more complex attacks, possibly harder to detect,
and with more severe consequences. The disclosure resources
enable the adversary to obtain sensitive information about the
system during the attack by violating data confidentiality. Note
that disclosure of resources alone cannot disrupt the system
operation. On the other hand, the disruption resources can be
used to affect the system operation. For instance, when data
integrity or availability properties are violated.

Based on the above attack space, every cyber attack could
be developed through the adversary model shown in Fig. 6.1In
this model, the attack is composed of an attack policy and the
adversary’s resources.

I1l. METHODOLOGY

The detection method proposed in this paper is based on
four different types of data-driven classifiers and uses only
the line current signals from the Point of Common Coupling
(PCC).

Fig. 7 shows a flowchart of the proposed method. The
detection algorithm first acquires independent measurements
from the isolated current sensors at the PCC. Then, the
line current data is transformed to the frequency domain
with Fast-Fourier-Transformation (FFT). After extracting and
normalizing the spectrum features, the algorithm will then
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feed these features to four individual classifiers, namely k-
nearest-neighbor (KNN), support vector machine (SVM), ran-
dom forests (RF), and logistic regression (LR). These four
classifiers will calculate the detection results independently.
Finally, the algorithm will conduct a majority vote among the
results generated from the classifiers, and generate an alarm
when three or more classifiers detect a fault or an attack.
The rest of this section will discuss each step in more detail.

A. Independent Measurements at PCC and Feature Extraction

The proposed method uses only the line current signals at
the PCC for the following reasons:

1) It will be much easier to guarantee the safety and
security of the monitoring system since it only requires
one set of sensors at the PCC;

2) It will be possible to isolate the entire monitoring
system from the original system and those vulnerable
communication networks.

3) The monitoring system will be easy to install or upgrade
due to its simplicity.

4) The overall cost of the monitoring system will be much
lower than other solutions requiring extra information
from individual machines.

In addition, it should be pointed out that the sampling fre-
quency of these measurements should be no less than 2kHz
because the maximum spectrum frequency required by the
algorithm is at least 1kHz.

After acquiring the measured line current signals, the al-
gorithm uses a sliding window to segregate the measurement
data into batches. Within each sliding window, FFT is adopted
to extract the current spectrum.

B. Data-Driven Classificatiers

Because the cyber-attacks targetting motor drive controllers
could be highly sophisticated and it is challenging to dis-
tinguish such attacks from physical faults, using a single
classifier will result in low detection accuracy. Therefore, this
paper adopted four different types of data-driven classifiers to
improve detection accuracy. Each classifier processes the same
features independently, and then a majority vote procedure
will determine the final results based on the outcomes of
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each individual classifier. Such an approach will largely reduce
the false detection results. The four classifiers represent four
typical classification methods with different characteristics:

- RF represents classification tree based methods;
« KNN represents non-parametric classifiers;
« SVM represents support vector based classifiers;
« LR represents regression based algorithms.

IV. SIMULATION

As stated in Section Il, this paper formed a comprehensive
case study including physical faults and cyber-attacks in a
dual-motor manufacturing motor drive network. Fig. 1 shows
the system diagram of the simulation model for this dual-
motor network. The system consists of two motor drives:
a permanent magnet synchronous machine (PMSM) and an
induction machine (IM). Both machines are controlled by
Filed-Oriented-Control (FOC) with proportional-integral (PI)
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Fig. 10. Spectrum of PCC line currents in different fault and attack scenarios.

regulators on motor speed and current. The detector locates at
the PCC, denoted as a grey dashed circle in fig. 1 and extracts
the PCC line current signals.

In this case study, the fault scenarios include the inter-turn
short circuit faults in PMSM stator windings and bearing faults
in the induction machine. Different fault scenarios are de-
signed by setting different fault parameters in the fault models
described in section Il. Meanwhile, the cyber-attack scenarios
are also designed using the adversary models described in
section Il. According to the adversary model, the attacks are
dependent on the available resources to the attackers. Usually,
the more resources they have, the more sophisticated the
attack will be. On the other hand, naive attacks with limited
adversary resources are more likely to cause drastic impacts
on the systems. Such naive attacks are comparably easier to
detect because the attack impacts are more significant and
noticeable to the detectors. However, the impacts will be
more subtle and much more challenging to detect for more
sophisticated attacks. For these more sophisticated attacks,
traditional detectors will not be sufficient. Therefore, the attack
scenarios considered in this paper are specifically designed
to achieve the objectives established by the attackers. More
specifically, these attacks will try to emulate some of the
fault responses and trigger the false alarms to the original
system monitors. Recently, as many applications have adopted
physical fault detectors based on current signature analysis, the
detection results heavily depend on specific frequency com-
ponents. Therefore, these attacks could confuse the original
fault detectors and trigger false alarms, leading to unnecessary
shutdown and maintenance. For example, fig. 8 and fig. 9 show
some waveforms of IM and PMSM in different fault and such
types of attack scenarios. In these scenarios, the attackers use
FDI attacks on the motor drive controller current feedbacks
and voltage command outputs to mimic the bearing and ITSC
faults in IM and PMSM, respectively. As suggested by these
waveforms, the faults and attacks are highly similar. However,
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TABLE |
CONFUSION MATRIX OF TESTING REUSLTS (NORMALIZED)
(OVERALL DETECTION ACCURACY: 95.5%)

Prediction
Attack | Normal | Fault
Attack 0.96 0.01 0.03
Reference Normal 0 1 0
Fault 0.04 0.01 0.95

these attacks are not identical and leave traces in the PCC
line currents. Fig. 10 shows some PCC line current spectra
from the above scenarios. According to the spectra, there are
still some distinguishable signatures, but it will be challenging
for traditional current signature analysis because the signatures
are too subtle. Therefore, it is beneficial to adopt the proposed
data-driven detection method in these situations.

In summary, the case study in this paper includes 128
scenarios covering different bearing faults, ITSC faults, FDI
attacks, and operating conditions, and, with these scenarios,
we generated 12800 samples of the PCC line current mea-
surements. Among these samples, 80% are randomly selected
as the training data sets, and the rest 20% are the testing sets.

Table | shows the overall testing results, and fig. 11 shows
the detection results of individual classification methods.
According to the results, the individual classifiers tend to
have poor performances as predicted, and the majority vote
procedure is proved promising.

V. CONCLUSION

This paper first studied the impacts of different cyber-attacks
and physical faults on manufacturing motor drives in different
scenarios and then proposed a data-driven approach to detect
and distinguish sophisticated cyber-attacks and common phys-
ical faults. The proposed method is tested and validated from a
comprehensive case study with a simulated dual-motor-drive
network in manufacturing systems. The final testing results
suggest that the proposed method could achieve 95% or higher
detection accuracy.
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