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Abstract—In the last decades, with the pervasive utilization of
digital control units and communication networks in modern
electric vehicle powertrains, such safety-critical systems have
become highly vulnerable to potential cyber threats. Current
research primarily focuses on aggressive attacks, which usually
cause drastic changes and disturbances to the systems. However,
little research has addressed how to detect more stealthy attacks
targeting electric vehicle powertrains and distinguish between
such attacks and common physical faults. This paper bridges
this gap by proposing a data-driven approach to detecting and
diagnosing hidden attacks and common physical faults in the
dual-motor electric vehicle powertrain. The proposed method
achieves promising performance in detecting and diagnosing
cyber-attacks and physical faults. It reaches an accuracy of
nearly 100% on detecting anomalies and above 90% on dis-
tinguishing stealthy attacks from common physical faults.

I . I N T RO D U C T I O N

With the pervasive utilization of digital control units and
communication networks in the modern electric vehicle pow-
ertrains, such safety-critical systems become highly vulnerable
to potential cyber threats. In 2010, Koscher et al. experimen-
tally evaluated the cyber-physical security issues on a modern
automobile and demonstrated the fragility of the underlying
system structure [1].

As the traction motor drive is one of the most critical
components in an E V  powertrain, its safety and reliability are
always priorities during design, implementation, and mainte-
nance. So far, there has been much literature on the safety
and security of motor drive systems. Among this literature,
the proposed anomaly detection and root-cause diagnostic
methods lie in model-based and data-driven methods. Most
model-based methods use time-domain or frequency-domain
signals. For example, fast Fourier Transform (FFT) is used
in monitoring steady-state conditions in the frequency do-
main, while short-time Fourier Transform (STFT) is used in
fluctuating load and speed conditions. Other examples are
spectrograms and time-frequency analysis using wavelets and
Wigner-Ville transforms. Usually, the system current, flux,
mechanical vibration, torque, and speed signals are analyzed.
One of the most widely used frequency-domain methods
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NSF-ECCS-1946057 and ECCS-EPCN #2102032.

Jin Ye
School of Electrical and
Computer Engineering
University of Georgia

Athens, Georgia 30602
Email: jin.ye@uga.edu

is motor current signature analysis (MCSA), based on the
F F T  of system line currents. Such methods usually pre-
locate characteristic frequencies for specific fault scenarios
and then use these frequency components’ magnitudes and
phase angles for detection and diagnosis. [2]–[4] Meanwhile,
time-domain methods usually rely on pre-defined residuals.
These methods compare the system outputs and the sets of
reference values. The reference values could be acquired from
two primary approaches. One comes from the signal itself,
such as the average or limit values. The other one often relies
on pre-defined system models from prior system knowledge.
These models calculate the reference values by predicting the
system outputs based on the given inputs at each instant.
Then, the differences between actual outputs and reference
values are defined as residuals. Alarms will be generated
when such residuals exceed some pre-defined thresholds. [5]–
[7] On the other hand, most data-driven approaches follow a
similar framework, which includes three primary tasks: (1) a
preprocessing task where input data from sensors and logs is
normalized and organized for further analysis, (2) a pre-
defined anomaly detector that analyzes the system status, (3) a
pre-trained classifier that, based on the current system status
and monitoring signals, provides a diagnosis for the system.
[8] By following this framework, [9] utilized a statistical
learning approach to differentiate the physical faults from
cyber-attacks based on data generated by the I E E E  30 bus
benchmark test system; Furthermore, [10] proposed an intelli-
gent anomaly identification (IAI) technique for inverter-based
systems by utilizing data-driven artificial intelligence tools
that employ multi-class support vector machines (MSVM)
for anomaly classification and localization. Meanwhile, Ye  et
al. researched the threat detection and attack resilient control
from both global vehicle control level and local motor drive
control level in [11]–[18].

Nevertheless, most current literature only addresses cyber-
security or physical safety individually instead of simultane-
ously. [19] In addition, most studies have focused on really
aggressive attacks. Such attacks usually will cause drastic
changes and disturbances to the systems, which makes these
attacks easier to detect. Meanwhile, little of the current re-
search has addressed the importance of distinguishing between
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Fig. 1.     Diagram of the dual-motor electric vehicle powertrain.

cyberattacks and physical faults.
This paper proposed a data-driven approach to detect and

diagnose cyberattacks and physical faults in the dual-motor
electric vehicle powertrain. The proposed method uses the
motor line current spectra and four widely used data-driven
classification methods to detect anomalies and distinguish
the stealthy cyber-attacks from common physical faults. In
addition, we used motor-bearing faults, inter-turn short circuit
faults, and false data injection attacks as case studies to verify
the performance of the proposed method.

The rest of the paper first describes the bearing fault and
false data injection attack models in section II. Then, it will
discuss the proposed method and the validation results in
section I I I  and section IV, respectively. Finally, section V
addresses the conclusions.

I I . M O D E L S F O R P H Y S I C A L  FA U LT S  A N D C Y B E R A T T A C K S

some periodic vibration pulses due to the impact among the
rolling elements. The types and characteristic frequencies of
these bearing faults are shown below, where the number of
balls is denoted as Nb , the ball diameter is d, and the pitch or
cage diameter is D .  The point of contact between the ball and
the raceway is characterized by the contact angle θ, and f r  is
the mechanical frequency of the rotor. The geometry
parameters of the bearing are shown in Fig. 2.

1) Cage defect hits the outer raceway:
fc o  =  f r  (1 −   d  cos θ);

2) Cage defect hits the inner raceway:
f c i  =  f r  (1 +   d  cos θ);

3) Outer raceway defect hits balls:
fo  =  Nb  

f r  (1 −   d  cos θ);
4) Inner raceway defect hits balls:

f i  =  Nb  
f r  (1 +   d  cos θ);

5) Ball defect hits both raceways:
fb  =  d f r (1  −  D 2  cos2 θ).

The periodic pulses caused by vibration will then introduce
geometry asymmetry to the machine. Such asymmetry will
then change the inductance of the machine. Ideally, the
inductance variation should be composed of an infinite number
of characteristic frequency harmonics. To simplify the model,
we only choose the fundamental frequency component to
represent the inductance variation. Then, we introduce a fault
inductance to the induction machine state-space model in
Eq. (1) and Eq. (2), where u is the stator input voltage, R
and L  are the motor resistance and inductance, ωr  is the
electrical rotor speed, λ  is the flux linkage, subscripts s, r , and
m denote the stator, rotor, and their mutual electromagnetic
parameters. Eq. (3) shows the new inductance after the bearing
fault appears, where L f a u l t  denotes the fault inductance, ωc is

To validate the proposed approach, we first formed a
comprehensive case study in a dual-motor powertrain sys-
tem including one permanent magnet synchronous machine
(PMSM) and one induction machine (IM). Fig. 1 shows a
general diagram of the system. The case study includes motor-
bearing faults in IM, inter-turn shorts faults in PMSM, and
false data injection attacks on controllers of both machine
drives. In this section, the dynamic models of these faults and
attacks are discussed in detail.

Fig. 2.     Geometry parameters of the bearing.
A. Physical Faults: Bearing Faults in IM

Bearing faults are one of the most common physical failures
in electric machines. According to [20], bearing faults account
for more than 40% of all the electric motor failures. Therefore,
it is one of the best candidates to study the differences between
physical faults and cyberattacks. When a bearing fault appears
in the machine, some periodic vibration pulses will be gener-
ated due to the impact among the rolling elements, the bearing
raceways, and the cage. The periodic pulses have different
characteristic frequencies depending on the fault types. As
demonstrated in [21], there are primarily five types of common
bearing faults, and these different bearing faults will generate Fig. 3.     The equivalent circuit of the I T S C  fault.
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the characteristic frequency described above, and ∆ L m  is the
inductance variation magnitude describing the fault severity.

� 
uds       =  R s i d s  +   d λds  −  ωsλq r

uqs        =  R s i q s  +   d λq s  +  ωsλdr

0         =  R r i d r  +   d λd r  −  (ωs  −  ω r )λq r

0         =  R r i q r  +  dt λq r  +  (ωs  −  ω r )λd r

λds =  L s i d s  +  L m i d r

λq s =  L s i q s  +  L m i q r

λd r =  L m i d s  +  L r i d r

λq r =  L m i q s  +  L r i q r

L f a u l t  =  L m  +  ∆ L m  cos ωct (3)

B. Physical Faults: Inter-Turn Short Circuit Faults in PMSM

The inter-turn short circuit (ITSC) fault is caused by
partially short circuit faults in some turns of stator windings
due to isolation aging or failures. Such aging and failures
are usually caused by line current harmonics and chemical
corrosion. When the I T S C  faults appear, a local loop will be
generated in the fault location. This loop will induce a high-
amplitude short circuit fault current and cause local overheat.
Then, further damage to the machine windings. In this paper,
the I T S C  fault is modeled in the context of permanent magnet
synchronous machines. The equivalent circuit of such I T S C
fault is shown in Fig. 3. (Suppose the fault appears in phase
A.) In Fig. 3, there are n turns out of N -turn-winding shorted.
The fault turn ratio µ is then defined as µ =  n  . In addition, the
short circuit contact resistance is defined as R f  , and i f  is the
circulating current caused by the short circuit fault.

According to the equivalent circuit in Fig. 3, the system
equations under I T S C  fault could be written as followings:

va , f  = R s  · i a , f  −  µR s  · i f  +  
dt

λa , f                                                     (4)

vb,f  = R s  · i b , f  +  
dt

λa , f                                                                                    (5)

vc , f  = R s  · i b , f  +  
dt

λa , f (6)

λ a , f  = L a a  · i a , f  +  Mab · i b , f  +  Mac · i c , f

−  µ L a a  · i f  +  λ P M  · cos(θ) (7)
λb , f  =M b a  · i a , f  +  Lb b  · i b , f  +  Mbc · i c , f

−  µMba · i f  +  λ P M  · cos(θ −  
2π

) (8)

λ c , f  =M c a  · i a , f  +  Mcb · i b , f  +  L c c  · i c , f

−  µMca · i f  +  λ P M  · cos(θ +  
2π

) (9)

vf  = 0  =  − ( R f  +  µR s )  · i f  +  µR s  · i a , f  +  
dt

λ f (10)

λ f  = µ L a a  · i a , f  +  µMab · i b , f  +  µMac · i c , f

−  µ2 L a a  · i f  +  µλ P M  · cos(θ) (11)

C. Cyberattacks: False Data Injection Attacks

The cyberattack in this case study is also one of the most
common attacks, the false data injection (FDI) attack. It
means the attacker maliciously injects false data sequences

into the digital control units after compromising, such as
wrong parameters, abnormal register status, Etc. In this paper,
the case study of FDI  attacks includes two types of false
data injections: 1) bias injections to the motor line current
feedback signals; 2) malicious control sequences injected into
the motor voltage commands. These attacks are designed to
mimic the behaviors of I T S C  and bearing faults discussed in
previous sections. The goal of such attacks is to confuse the
original fault detectors and cause unnecessary downtime and
maintenance costs. The attack model is shown in Eq. (12)
and Eq. (13), where ŝ  is the attacked signal, s k      is the
original signal, K a t k  is the bias coefficient, M ·sin ωatk t is the
malicious control sequences, and ωa t k  is selected according to
the characteristic frequencies of bearing faults. The attack
period is denoted as T A T K .

Type I: ŝ  = s k  · K a t k (t � T A T K ) (12)

Type II: ŝ  = s k  +  M · sin ωatk t     (t � T A T K ) (13)

I I I .  D ATA - D R I V E N  A P P R O A C H F O R D E T E C T I N G A N D

DI AG N OS I N G P H Y S I C A L  FA U LT S  A N D C Y B E R A T T A C K S

The proposed approach is to search for features and patterns
in the motor line current spectra, which could distinguish the
system status among the healthy, fault, and attack conditions.
As shown in Fig. 4 - Fig. 6, the line current waveforms of these
three statuses are highly similar and are not distinguishable
via human eyes. Therefore, the traditional rule-based meth-
ods through establishing some pre-defined thresholds are not
feasible in these situations. The proposed approach adopts
and compares four data-driven classification methods, namely
random forests (RF), logistic regression (LR), support vector
machines (SVM), and k-nearest-neighbor (KNN). These four
classification methods represent four of the most widely used
approaches for classification:

1) Random Forests (RF) is a modified decision tree-based
classifier, which operates by constructing a multitude of
decision trees at training and outputting the dominant
class among all the classes generated from each decision
tree.

2) K-Nearest-Neighbor (KNN) classifies the new observa-
tion by a plurality vote of its neighbors in the feature
space and assigns the new observation to the most
common class among its k nearest neighbors.

3) Support Vector Machines (SVM) is a representation
of the training data set as support vectors (or points)
in the feature space, which map the training data set
to the separate classes divided by a clear gap; and new
observations are then mapped into the same space and
predicted to belong to the class based on the side of the
gap on which they fall.

4) Logistic Regression (LR) models the probability func-
tion of a certain class based on the predictors. For
example, l  =  logb 1−p  =  β0 + i = 1  β i x i

The proposed method will monitor the motor line current
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signals using sliding windows. The window size will be
determined by the signal sampling frequency and required
spectrum frequency resolution. The proposed method will first
extract the signal spectra using fast Fourier transformation
at every instant. Then, it will feed the frequency features to
the pre-trained classification models. According to the current
and previous classification results, a majority vote mechanism
will be applied to determine the final detection outcomes.
The detection results will then determine whether or not to
generate an alarm. The detailed algorithm is shown in
Algorithm 1.

Algorithm 1 Anomaly Detection Algorithm for Distinguish-
ing Stealthy Cyber-Attacks from Common Physical Faults

1: Input: Real time line current measurements of both motor
drives.

2: Output: Detection and diagnostic alarms.
3: Setting total voting capacity as vm a x ;
4: for i  =  0, 1, 2, 3, 4, ... do
5: for k =  0, 1, 2, 3, ..., vmax do
6: Recording and storing real-time measurements in a

sliding window with size m and sampling time ts ;
7: Extracting frequency features using FFT;
8: Calculating the classification results by feeding the

frequency features into pre-trained data-drive classi-
fication model;

9: Saving the classification result D k ;
10:         end for
11: Selecting the dominant classification result in D  as A i ;
12: Ouptut detection and diagnostic alarms A i .
13: Clearing the voting array D ;
14: end for

I V.  C A S E  S T U D Y  A N D S I M U L AT I O N R E S U LT S

In this paper, the case study adopted a dual-motor electric
vehicle powertrain to simulate the fault and attack scenarios to
validate the performance of the proposed method. The
general diagram of the powertrain is shown in Fig. 1. The
powertrain consists of two motor drives: the front-wheel-drive
is a permanent magnet synchronous machine (PMSM), and
the rear-wheel-drive is an induction machine (IM). Both ma-
chines are controlled by Filed-Oriented-Control (FOC) with
proportional-integral (PI) regulators. The detector extracts the
motor line winding current signals from both front and rear
drives. The sampling rate is 20 kHz, and a sliding window of
size 400 is adopted. Then, the detector calculates the spectra
from both current signals and extracts the magnitudes for
frequencies ranging from 0 Hz to 1000Hz. The case study
includes 128 scenarios covering different bearing faults, I T S C
faults, FDI  attacks, and operating conditions. The details of
these scenarios are described in TA B L E  I  - TA B L E  IV,  and
some samples of line current waveforms in the case study
are shown in Fig. 4 - Fig. 6. According to the waveforms in
Fig. 4 - Fig. 6, the cyber-attacks and physical faults are hard
to distinguish using traditional residual-based methods.

TA B L E  I
L I S T  OF S T E A D Y- S T AT E  OP E R AT I N G C O N D I T I O N S

No. Machine Speed (rpm) Load Torque (Nm)
1                        1000                                    200
2                        1500                                    150
3                        1000                                     50
4                        1500                                     50

TA B L E  I I
L I S T  OF I T S C  F A U LT  S C E N A R I O S

No. Short-Turn Ratio µ Short Resistance R f

1                      0.10                                      1
2 0.15 1
3 0.20 1
4 0.25 1
5 0.10 5
6 0.15 5
7 0.20 5
8 0.25 5

TA B L E  I I I
L I S T  OF B E A R I N G FA U L T  S C E N A R I O S

( C H A R A C T E R I S T I C  F R E Q U E N C Y I S  C A L C U L AT E D  A C C O R D I N G TO T H E
M O D E L IN S E C T I O N I I -A . )

No. Characteristic Frequency ∆ L m / L m

1                            f c o                                                 0.4
2 f c i 0.4
3                             fo 0.4
4                             f i 0.4
5 fc o 0.6
6 f c i 0.6
7                             fo 0.6
8                             f i 0.6

TA B L E  I V
L I S T  OF F D I  AT T A C K  S C E N A R I O S

No. Bias Injection K a t k Malicious Control
1                       +0.1                                   NA
2 -0.1 NA
3                       +0.2 NA
4 -0.2 NA
5                        NA                     M =  8, fa t k  =  f c o

6                        NA                      M =  8, fa t k  =  f c i

7                        NA                      M =  8, fa t k  =  fo

8                        NA                      M =  8, fa t k  =  f i

With the 128 scenarios in the case study, we generated
12800 samples of the line current frequency features. Among
these samples, 80% are randomly selected as the training data
sets, and the rest 20% are the testing sets.

The testing results and detection accuracy of the four
classification methods are shown in TA B L E  V  - TA B L E  IX .
In addition, normalized confusion matrices of each method
are shown in Fig. 7 as well.
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Among these results, all the classification methods could
achieve an accuracy above 80% apart from the Logistic Re-
gression, and Random Forests could reach an accuracy higher
than 90%. Meanwhile, according to the confusion matrices
and detection outcomes, distinguishing such cyber-attacks
from common physical faults is much more challenging than
distinguishing abnormal conditions from normal conditions.
For all four methods, the accuracy of detecting anomalies is
almost 100%.

TA B L E  V
A C C U R A C Y  O F D ATA - D R I V E N  C L A S S I F I E R S

Fig. 4.     Samples of the line current waveforms with different bearing faults
in the induction machine.

Random Forests              90%
K-Nearest-Neighbor          84%

Support Vector Machine      82%
Logistic Regression           63%

TA B L E  V I
CON FU S I ON M AT R I X  O F T E S T I N G R E U S LT S :  KN N

Attack
Reference Normal

Fault

Prediction
Attack Normal Fault

345             37            273
0 1264 0

64               42            535

TA B L E  V I I
CON FU S I ON M AT R I X  O F T E S T I N G R E U S LT S :  L R

Fig. 5.     Samples of the line current waveforms with different I T S C  faults in
the PMSM.

Attack
Reference Normal

Fault

Prediction
Attack Normal Fault

211            404            40
7 1257 0

51             451           139

TA B L E  V I I I
CON FU S I ON M AT R I X  O F T E S T I N G R E U S LT S :  R F

Attack
Reference Normal

Fault

Prediction
Attack Normal Fault

494               0             161
0 1264 0

69                4             568

TA B L E  I X
CON FU S I ON M AT R I X  O F T E S T I N G R E U S LT S :  S V M

Fig. 6.     Samples of the line current waveforms with different FD I  attacks in
the induction machine.

Attack
Reference Normal

Fault

Prediction
Attack Normal Fault

374            150           131
0 1264 0

79             112           450
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Fig. 7.     Confusion matrices of 4 data-driven classifiers.

V.  C O N C L U S I O N

This paper proposed a data-driven approach to detect and
diagnose stealthy cyberattacks and common physical faults.
The proposed method is tested and validated from a case
study with a simulated dual-motor electric vehicle powertrain.
A  case study includes 128 scenarios covering I T S C  faults,
bearing faults, and FDI  attacks. The detection and diagnostic
results of the case study prove this method’s high accuracy
and performance. Meanwhile, it also demonstrated that dis-
tinguishing stealthy attacks from common physical faults is
much more challenging than detecting anomalies from normal
conditions.
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