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Fast Detection for Cyber Threats in Electric
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Abstract— While cyber-physical security of electric vehicles
(EVs) is gaining increased concerns due to the fast development of
vehicle onboard communication networks, the existing literature
focuses on the vehicle level and it does not explicitly address
cyber-threat detection for the EV powertrain traction motor
drives. Therefore, in this article, we propose a fast, model-free
approach to detect cyber threats in EV traction motor drives
with only four easy-to-get, trustworthy sensor signals. First,
the trustworthy motor current signals are selected to undermine
the impacts of the vehicle’s random driving cycles. Then, a set
of innovative time-domain current features that are the most
sensitive to a wide range of anomalies are selected to reduce
the number of observations needed, thus vastly reducing the
computational burden and the time-to-detect. Next, four binary
classifiers are developed to detect cyber threats, while a majority
vote mechanism is adopted to reduce the false alarm rate. Finally,
the proposed method is validated by the real-time hardware-
in-the-loop simulations. Validation results show that the pro-
posed detection method achieves much faster detection compared
with traditional current signature analysis (CSA). Furthermore,
the proposed detection methods achieve an accuracy higher
than 98% with the false alarm rate less than 0.01%.

Index Terms—Pattern classification, road vehicle reliability,
traction motor drives.

I. INTRODUCTION

N RECENT years, researchers have witnessed the drastic

development of electric vehicles (EVs). Meanwhile, due
to the benefits of the modern electric platforms, the vehicle
onboard communication networks and vehicle-to-X (V2X)
techniques are also developed to adapt to the market require-
ment of advanced vehicle functionalities and performances.
Therefore, large amounts of electronic units are deployed
to the vehicle networks to realize modern vehicle technolo-
gies, such as online powertrain optimizations and advanced
driver assistance systems (ADASs). According to [1], even
for a premium-class automobile in 2009, the vehicle con-
tains approximately 100 million lines of codes executed on
70-100 electronic control units (ECUs). While this progress
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has driven significant advancements in efficiency, func-
tionality, and safety, it has also brought cyber threats,
including electronic device failures and malicious cyberat-
tacks. These threats could cause severe consequences to the
drivers, passengers, and surrounding traffic systems. In 2010,
Koscher ef al. [2] experimentally evaluated the cyber-physical
security issues on a modern automobile and demonstrated
the fragility of the underlying system structure. They demon-
strated that an attacker who can infiltrate virtually any ECUs
could completely circumvent a broad array of safety-critical
systems. Over a range of experiments, both in the lab and
in the road test, they demonstrated the ability to control
a wide range of automotive functions adversarially while
ignoring the driver’s requirements, for instance, disabling
the brakes, power interruption, and other safety-critical func-
tions. Recently, the IEEE Power Electronics Society (PELS)
launched a cyber-physical-security initiative to address cyber
networks’ reliability and security issues in power electron-
ics systems. Furthermore, according to Forbes, more than
150 cybersecurity incidents were reported in 2019 targeting
the automotive industry. It states that the first vehicle-targeted
hack happened in 2002, in which the hackers reprogram
powertrain calibrations of Audi, Porsche, and Ford for more
aggressive performance. Meanwhile, one of the most recent
incidents happened in 2020. The hackers exposed security
flaws of Ford and Volkswagen range from remotely exposing
private customer information to disabling the traction control
system [3].

Many communities have studied cyber-physical security
issues in the past decades. For example, Han et al [4]
classified the intrusion detection techniques for the
cyber-physical system from two different aspects based on
the proposed four-layer structure of cyber-physical systems.
Vukovi¢ and Dan [5] addressed the detection and localization
of false data injection attacks against state estimation in
distribution power systems (PSs) based on the evolution of
the exchanged data and the convergence properties of the
distributed algorithms. Meanwhile, Cui et al. [6] devoted
their efforts to enriching the detection solutions from the
following perspectives: 1) attacker versus defender dynamics
and 2) distributed attack detection and state recovery.
Kwon et al. [7] researched the intelligent cyberattacks
that can avoid being detected by the current monitoring
system, and Dan and Sandberg [8] studied the stealthy
false-data attacks against state estimators in PSs. Besides
the above work, other techniques and methodologies have
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proven effective for attack detection, such as the onboard
self-detection method in [9], the collaborative detection
strategies in [10]-[13], and the remote offloaded detection
techniques in [14].

In addition, there is related research in the aircraft com-
munity as well. Baskaya et al. [15] reviewed current fault
detection and diagnosis methods using machine learning tech-
niques. Chen et al. [16] proposed an improved version of
fault diagnosis method via convolutional neural networks.
Imai er al. [17] developed a self-healing avionics mechanism
using a dynamic data-driven approach. Also, Wu et al. [18]
analyzed the cascading failure based on operational process
states.

Nevertheless, most studies from the above communities
cannot be directly applied to the EV traction systems for the
following reasons.

1) Considering the fact that vehicles are operating in rel-
atively random scenarios while current research targets
such as PSs and common process control systems (PCS)
have relatively more stationary operation cycles, current
approaches developed for PS and PCS may not be feasi-
ble. Loukas et al. [19] pointed out that most of existing
techniques may not be feasible for modern vehicles due
to the dynamic and unique operation characteristics.

2) Due to the limitations of vehicle onboard space and
computational resources, a simple and fast detection
method is required before triggering advanced root
cause diagnosis based on resource-consuming diagno-
sis process, such as current signature analysis (CSA)
[20]-[22] and redundant control [23].

3) As cyber threats include malicious cyberattacks from
public networks, the trusted information is also limited.
Most of the current detection methods use signals from
networked ECUs, which could already be modified by
those attacks. For example, in [23], they use the control
sequence uy to calculate the residual-based metrics, but
actually, uy itself is not trustworthy due to potential
cyber threats. In this case, if the attacker sends a
“healthy” u; to the monitor but sends a modified
to the actuator, the attacks could bypass the existing
monitoring systems. Therefore, a cyberattack detector
using only trustworthy physical signals is preferred to
avoid such issues.

Although the cyber-physical security of EVs has received
increasing attention, most of the research still focuses on the
vehicle level rather than traction motor drives. For exam-
ple, in [24]-[26], the cyber-physical security of the energy
management system and steering system for EVs is studied,
in which the issues of cybersecurity and system stability are
addressed. However, as the focus is on the vehicle system
level, a linear vehicle model is used for the analysis. Thus,
it does not work effectively for device-level analysis such as
for powertrain traction motor drives, as these systems suffer
from severe nonlinearity and uncertainty.

In this article, we propose a binary-classifier-based fast
detection method for cyber-physical security of traction
motor drives using four easy-to-get sensor signals. The gen-
eral diagram of the proposed method is shown in Fig. 1.
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Fig. 1. General diagram for the proposed detection method.

The proposed method includes two stages: the design stage
and the implementation stage. Training datasets are collected
from the experiments and simulations in the design stage and
then fed to a preselected statistical learning model to generate
the binary-classifier-based detector. Then, in the implemen-
tation stage, the monitors acquire real-time measurements,
calculate the instantaneous features, and feed the well-trained
binary classifier. During the implementation stage, a majority
vote mechanism is also included for better detection perfor-
mance. The novelty and contributions for the proposed method
are summarized as follows.

1) The proposed detection method selects motor current
and position signals that are easier to obtain and secure
compared with cyber signals, such as control signals,
so these signals and proposed algorithms are considered
trustworthy against cyberattacks.

2) The proposed detection method uses the motor current
signals in the dqO reference frame to undermine the
impacts of the vehicle random driving cycles. The reason
is that the operational patterns for motor currents are
limited by the motor control algorithms regardless of
the vehicle driving cycles. For example, if the trac-
tion drives are well controlled by maximum torque
per ampere (MTPA) and proportional-integral (PI) con-
trollers, the normal current features under the dqO ref-
erence frame should be restricted to certain boundary
established by the control algorithms. This will be
further demonstrated in Section III and Figs. 8 and 9.

3) The proposed detection method achieves much faster
detection compared to traditional CSA through selecting
a set of innovative time-domain current features. These
time-domain features are selected to be the most vul-
nerable to a wide range of anomalies, so a shorter time
period of observations is needed, largely reducing the
computational burden and the time-to-detect.

4) The proposed detection method does not rely on the
physical model of motor drive systems compared to
traditional residual-based methods that estimate or pre-
dict information from the linear model. Thus, strong
nonlinearity and uncertainty of motor drive systems can
be better addressed to improve detection accuracy and
robustness.

The rest of the article is organized as follows. Section II
clarifies the model assumptions and the trusted signals.
Section III elaborates the details of the proposed approach.
Section IV demonstrates the proposed method by real-time
simulation results. Section V addresses the conclusions.
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Fig. 2. Three-phase current waveform of IPM motor drive in a machine
short-circuit fault case study.

II. MODEL ASSUMPTIONS AND TRUSTED SIGNALS

The general idea of the proposed method is to establish
a boundary between all the extracted physical features using
binary classifiers, which could distinguish whether or not the
system is operating under healthy conditions. In order to better
illustrate the proposed approach and to maintain the focus
of cyber threats, some assumptions are elaborated in this
section. In addition, the trusted signals assumptions will also
be elaborated in this section.

A. Physical Faults and Failures

Generally, the anomalies of a traction motor drive include
both physical faults and cyber threats. However, in this article,
we only focus on the cyber threats and assume that there
are no physical faults or failures in the target systems. The
reasons for this assumption could be explained as follows.
First, the physical faults could be classified into two categories:
one is short-term faults and the other one is long-term faults.
The former ones have short transient periods between the
fault occurrence and the system failure, such as power switch
open-circuit faults and electric machine short-circuit faults.
For such faults, the system operation point will suddenly
deviate from the normal trajectory; and such faults could
also be detected by the proposed method due to its sim-
ilar characteristics on the proposed features. For example,
Fig. 2 shows the three-phase current waveform of the inte-
rior permanent magnet (IPM) motor drive from a machine
short-circuit fault case study. In this case, a dual-phase par-
tially short-circuit fault is simulated after time 53 s. We then
extract 50 samples of the fault current waveform and test
them using our proposed method. The results show that all
50 samples are correctly detected. The other type of faults has
a relatively longer transient period between the fault occur-
rence and the system failure, such as inter-turn short-circuit
faults of electric machines. These kinds of faults tend to evolve
slowly after their appearances and will only cause severe
damages after a certain amount of time, so such faults actually
provide much larger time windows for the fault detectors than
other faults. In addition, it usually requires a long period
of observations to extract the evolving trends of such faults,
so these kinds of faults are not the main focus of the proposed
fast detection method. Therefore, to maintain the focus of
cyber threats, we will assume that there is no physical fault in
the target systems in the rest of this article.
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Fig. 3. General control framework of the traction motor drives.

B. General Control Framework of Traction Motor Drives

In this article, we assume that the traction motor drives have
a general control framework shown in Fig. 3, which includes a
networked motor controller (or ECU), traction inverter, electric
machine, current sensors, and rotor position encoder. More
specifically, we will use an IPM synchronous machine drive
for demonstration, whose detailed control diagram is shown
in Fig. 4. Meanwhile, we also assume that winding current
can be directly or indirectly controlled.

C. System-Level Cyber Threats

As shown in Fig. 3, the motor controller also communicates
with the vehicle onboard networks and exchanges information
such as reference signals and system operation conditions.
In this article, we define threats occurring on this communi-
cation channel as system-level cyber threats and define threats
within the motor controller as device-level threats. Then,
the proposed method only focuses on detecting device-level
threats. The reason is that, first, as shown in Fig. 5 [26], [27],
in order to detect the system-level threats, the detector will
need information from other subsystems connected to the
vehicle networks, and this target could be achieved by the
system-level detector. Second, as long as the reference signals
shown in Figs. 3 and 5 do not exceed the safety margins of
the traction motor drives, such threats will not cause direct
damages to the motor drive systems. Therefore, the proposed
method will only focus on the device-level attacks, which
could cause direct impacts on the motor drive systems.

D. Trusted Signals

Whenever dealing with the problems of cyberattacks,
the assumption of trusted signals is always one of the most
important questions. As shown in Figs. 3 and 5, the motor
controller is directly connected to the vehicle onboard net-
works. This indicates that the motor controller is directly
exposed to all the cyber threats in the networks. Therefore,
all the information and signals in the motor controller are not
trustworthy as any one of them may be modified. Fig. 6 shows
three common cyberattacks targeting on motor drives, which
are shown as follows.

1) Attacks on the feedback signals, where y; # V.

2) Attacks on the control sequences, where uy 7~ fi.

3) Attacks on the control parameters.
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Fig. 5. General configuration of the EV onboard networks.

In this article, we assume four sensor signals are trustworthy,
which are three-phase current sensor signals i,, ip, and i,
and the rotor position encoder signal 6,. The reasons could be
summarized as follows.
1) Motor drive sensors are physical components, which are
not connected to the vehicle networks.
2) Extra sensors from a third party, which are completely
isolated, could also be easily installed to the system.
For the reasons above, the proposed approach will be based
on these four trustworthy signals.

III. CYBER ATTACK DETECTION METHOD
USING BINARY CLASSIFIERS

As shown in Fig. 1, the proposed approach is to establish
a boundary among all the target system physical features so
that the anomalies of the traction motor drive could be detected
within a very short time period. The proposed approach could
be separated into two stages: the detector design stage and the
detector implementation stage.

For the design stage, the general process is described by
Algorithm 1, and the major target for this stage is to generate
an optimal fast detector for the target system. Details of each
step will be elaborated later in this section.

The second stage is the implementation of the optimal fast
detector acquired in the first stage. Fig. 7 shows a general
diagram of this stage. The general algorithm is shown in
Algorithm 2 and each step will be discussed in detail in the
following contents.

Fig. 6. Some common attacks targeting on the motor controllers.

Algorithm 1 Design Algorithm for Model-Free Fast Detector
Using Binary Classifiers

1: Input: Four sensor data (i, i, i., ) and related condition
label.

2: Output: Optimal binary classifier based fast detector
model.

3: Input data re-sampling using sliding window with length
of m and sampling time of #;

4: Time-domain feature extraction from the re-sampled obser-
vations;

5: Model fitting based on the extracted time-domain features
with different binary classifiers;

6: Optimal Model selection by comparing the k-fold cross
validation results of different fit models;

A. Time-Domain Feature Extraction

As shown in Algorithms 1 and 2, time-domain feature
extraction plays an important role in both stages, as those fea-
tures are used as predictors in the binary classifier models. The
reason why choosing time-domain features is that compared
with frequency- and time-frequency domain, time-domain
features could reflect the system instant characteristics with
much smaller window size as they do not need to consider
the tradeoff between the frequency resolution and the window
size. This point is crucial for the fast detector as large window
size will consume a lot of online memory and computational
resources. More specifically, the proposed method chooses
16 features from the two traction drives’ current signals in
the dqO reference frame, iy and i,. Such signals are transferred
from the original real measurements i,, i, i, and 6, using the
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Fig. 7. General diagram of the implementation stage (Algorithm 2).

Algorithm 2 Implementation Algorithm for the Optimal Fast
Detector Acquired in the First Stage

1: Input: Well trained fast detector model and real time
measurements of i, ip, i, 0,.
2: Output: Abnormal detection results.
3: Generating a sliding window with the same length m and
sampling time #; as in stage 1;
4:for k=0tom—1do
5. read and save i, ip, ic, 0, at t = k xt; to form the initial
monitoring window W), ¢t = 0 is the initial point;
6: end for
7: setting the number of voting decision v = 0 and total voting
capacity as 0y
g:fork=mm+1,m+2,m+3,...do
9: time domain feature extraction from monitoring window
Wk—m;

10:  classifying the feature of Wj_,, using the input binary
classifier model and generate the decision Dy_,;

11:  if v < v,4 then

12: save the decision Dy, as voting candidate Vj_,,;

13: v+ +;

14:  else

15: conducting a majority vote among the voting candi-

dates kamfum,u to kamfl;

16: if more votes for “threats” then

17: output “cyber threat alert”;

18: else

19: output “healthy condition”;

20: end if

21: save the decision Dy, as voting candidate Vj_,,;

22: delete voting candidate Vi_,,—,, . ;

23:  end if

24: end for

Park transformation. The expression for the transformation is
shown as follows:

. ia
lg 2 .
dl=Z.p. 1
|:1q} 3 ;h (1)
cos(@.)  cos(f. — &) cos(f, + %)
P=| . ? . N e)
—sin(@,) —sin(f, — %) —sin(b. + )
where 6, = 0, * polepairs. In addition, the 16 features

extracted from i; and i, are developed from the four sam-
ple moments (mean, variance, skewness, and kurtosis) of
the data within the sliding window, which depict the data

distribution characteristics. The detailed expression of the four
sample moments is shown as follows:

1 m
Mean = u = = Z(Xi) (3)
i=1
1 m
Variance = ¢2 = — Z(Xi — ,u)2 4)
meg
1 ” X,—,u 3
Sk = = — —_— 5
ewness = 3 m;( - ) (5)
Kurtosi ! Z Xi—nY' (6)
urtosis = g4 = — —_
= o

i=1
where X represents iz and i,.

Generally speaking, these 16 features describe the data
distribution of the d- and g-axis currents. The reasons for
choosing such features could be summarized by two aspects:
simplicity and interpretability. First, as shown in (3)—(6),
the four sample moments are extremely easy to calculate,
especially for sliding window, as only two data points will be
changed in single step, the first data points in the previous win-
dow and the new observation. This largely reduces the online
computation requirement and is crucial for the fast detector as
discussed in Section I. Meanwhile, these 16 features could
accurately reflect the system operation characteristics from
multiple angles. The mean value depicts the instant current
level, which should alongside the trajectory of the optimized
current reference if the system operates in a healthy condition,
as the motor drive either directly or indirectly controls the
winding currents. For example, in our demonstration, we use
an IPM drive with MTPA optimization method; therefore,
the mean values of d- and g-axis currents should be alongside
the MTPA current profiles when the IPM drive is operating
in a healthy condition. In addition, the variance could reveal
the current ripple level, skewness could imply the asymmetry
of the current profiles, and the kurtosis could examine the
extreme values in the sliding window like sudden changes in
the system. For example, Fig. 8 shows a sample of current
mean-value features in the dq0 frame. It could be seen that
each one of the features alone cannot fully distinguish the
normal and abnormal conditions due to variation of feature
sensitivity in different case scenarios. Therefore, the proposed
approach needs to use all 16 features in the binary classifier
models. Meanwhile, as discussed in Section II, the short-term
physical faults will have similar characteristics, such as the
mean value deviating from the optimized current trajectory,
large current ripple reflected by the variance, and sudden
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change of system states implied by skewness and kurtosis.
These similarities imply that the proposed fast detector could
also detect the short-term physical faults as stated in Section II.

B. Binary Classifier

In this article, we select four binary classifier candi-
dates, which are the random forest (RF)-based classifier, the
k-nearest-neighbor (KNN)-based classifier, the support vec-
tor machine (SVM)-based classifier, and the adaptive boost-
ing (AdaBoost) classification tree-based classifier. The reason
for adopting binary classifier-based detector is their simplicity
and interpretability, which are both important in the context
of cyber-threats detection. Among these four classifier candi-
dates, each of them has its own characteristics and has different
levels of sensitivity to different cyber threats and different
systems.

1) Random Forest Classifier: RF classifier is a modified
decision tree-based classifier, which operates by constructing
a multitude of decision trees at training and outputting the
dominant class among all the classes generated from each
individual decision tree. RF output model contains the node
information and its splitting criteria of all the decision trees in
the forest; thus, the model computational size depends on the
number of nodes and trees in the forest. Therefore, in order
to further reduce the consumption of computational resources,

it is necessary to simplify the final model by adjusting the
predictors with respect to the mean decrease Gini index of
each predictor.

2) K-Nearest-Neighbor Classifier: KNN classifier is a non-
parametric method, which classifies the new observation by a
plurality vote of its neighbors in the feature space and assigns
the new observation to the most common class among its
KNNs. KNN is a common classifier with good prediction
accuracy; however, due to its nonparametric nature, the KNN
classifier tends to occupy a lot more online computational
resources, especially when the training data size is large. The
reason why KNN classifier is still chosen as the candidate
classifier is that for some contexts when the boundary for
healthy operation conditions is clear, such as drives with
limited operation trajectories, adopting KNN could largely
reduce the simulation and experiment cases.

3) Support Vector Machine Classifier: SVM model is a rep-
resentation of the training dataset as support vectors (or points)
in the feature space, which maps the training dataset to the
separate classes dividing by a clear gap, and new observations
are then mapped into the same space and predicted to belong
to the class based on the side of the gap on which they fall.
SVM is a robust classifier with benefits of low consumption
of online computational resources as it only needs to store the
support vectors that map the gap between the two classes.

4) AdaBoost Classification Trees: AdaBoost is a boosting
algorithm in machine learning. Improving week learners and
creating an aggregated model to improve model accuracy is a
key concept of boosting algorithms. A weak learner is defined
as the one with poor performance or slightly better than a
random guess classifier. AdaBoost classification trees improve
those classifiers by increasing their weights and get their votes
to create the final combined model.

Generally speaking, these four classifier candidates repre-
sent the typical characteristic of the commonly used binary
classifiers: RF and AdaBoost methods represent the rule-based
classification tree algorithms, KNN represents the nonparamet-
ric classifier, and SVM represents the support vector-based
classifier. The reason for choosing multiple classifier candi-
dates is that the detection results depend on the time-domain
feature characteristics, such as the optimized current trajec-
tory. Therefore, in order to overcome such variations among
different traction drive systems, it is necessary to choose mul-
tiple classifier candidates and select the model with optimal
performance for stage 2 implementation. For the proposed
approach, we adopt k-fold cross validation to estimate the
detector performance.

C. Majority Vote Mechanism

As shown in Algorithm 2, a majority vote mechanism is
adopted before the final decision. This is because there are
many uncertainties in real-world traction motor drives, such
as road conditions and temperature variations. Such external
uncertain factors may cause a lot of false alerts, and therefore,
the majority vote mechanism could effectively reduce the
number of false alerts. In addition, the number of voters vy 1S
chosen with respect to the tradeoff between the time to detect
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Fig. 11. Hardware-in-the-loop real-time simulation platform.

and the number of false alarms. When vy, is large, the time
for detection will increase as it requires a certain amount of
votes to determine the system has cyber threats, but there will
be more redundancy for the external uncertain factors. In this
article, vpax 1S set to Six.

IV. METHOD DEMONSTRATION
WITH REAL-TIME SIMULATION

Considering the potential risk of conducting cyber-threat
experiments on real-world EV powertrain testbed, we use
the OPAL-RT real-time simulation instead to demonstrate
and validate the proposed detection method. Fig. 11 shows
a picture of the simulator platform and Fig. 12 shows four
samples of the motor three-phase current waveform during
the attacks in our case studies. In order to fully emulate
the real-world EV powertrain operation conditions, a detailed
real-time EV powertrain model is adopted. Fig. 10 shows the
powertrain structure used in the hardware-in-the-loop (HIL)
real-time simulation. The model includes two IPM traction
motor drives at the front axis and the rear axis, respectively.
In addition, vehicle mechanical systems, including reduction
gear box, shaft stiffness, and tire-road interactions, and vehi-
cle dynamics, including road conditions and aerodynamics,
are also considered in the real-time simulation models. The
detail descriptions of this testbed are elaborated in [28].
Meanwhile, the vehicle model is tested in the New European
Driving Cycle (NEDC) driving cycles shown in Fig. 13 and
40 cyber-threat cases described in Table I. The case studies

focus on the d- and g-axis current references of the two
traction motors (totally four target signals). In order to emulate
the behavior of a typical false data injection attack, we adopt
a random walk time series model, which is shown in (7),
where the true data and false data are denoted as y and ¥,
respectively, and the attack period is Tark = [to, to + Ta]- R
is a normal distribution random variable with zero mean and
0.5 variance. [R ~ N(0, 0.5)]

. Vks (t ¢ Tark)
Vi = (7
V-1 + R, (t € Tark).

From the real-time simulation of the 82 case studies
among three standard vehicle testing driving cycles, NEDC,
urban dynamometer driving schedule (UDDS), and High-
way Fuel Economy Test Cycle (HWFET). We then generate
200 windows of abnormal observations from each case, thus
totally 16400 observations, labeled as “attack.” Among the
16400 abnormal observations, we randomly choose 13120
(80%) of them to participate in the training process so that,
during the testing, there will be 3280 new observations, which
does not participate in the training. Then, we also randomly
select 13120 observations from the normal conditions to
participate in the training process. In order to demonstrate
the performance of the classifier candidates, we conduct
extra testing with all the 82 attack cases to calculate their
corresponding time to detect. In addition, we also use the
3208 normal observations from the testing datasets to test the
model false alarm rates.

In the following sections, the proposed method is demon-
strated and validated from three aspects: performance of the
proposed method in vehicle driving cycles, evaluation of
online memory savings with window size comparison, and
time-to-detect of different binary classifiers.

A. Performance of the Proposed Method Based on Testing
Datasets

For demonstration purpose, we choose four binary classi-
fiers, as described in Section III. In Table II, the accuracy,
the x statistics, and the 95% confident interval of four binary
classifier candidates based on the testing data are listed,
the confusion matrices are shown in Fig. 14, and the histogram
of these results is shown in Fig. 15 for a clear compari-
son. According to these results, the classification accuracy
of all four classifiers is above 95%, which suggests that
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Fig. 12.  Samples of the motor three-phase current waveform from the case

the time-domain features extracted from the d- and g-axis
currents are able to distinguish most of the attack conditions
from the normal conditions. Furthermore, RFs and AdaBoost
classification tree classifiers achieve an accuracy above 99%,
which suggests that these two classifiers are highly sensitive
to the anomalies reflected by the extracted features and could
detect almost all the abnormal observations.

Meanwhile, Table III shows the results of the false
alarm rates among the 3280 normal observations that do
not participate in the training process. From Table III, the
RF classifier and the AdaBoost classifier could achieve a false
alarm rate less than 0.5%, while the other two can achieve a
false alarm rate less than 4%. However, these results only show
the performance of the classifiers, if including the assistance
of the majority vote mechanism, the false alarm of all four
binary classifiers will be completely eliminated. However, the
majority vote mechanism will increase the time to detect the
anomalies and the computational resources as well. In our
simulations, we adopt a voting mechanism with vote capacity
of six.

In addition, impacts of the distorted position signals are
discussed as follows. First of all, as discussed in Section II,
the reason we assume that d- and g-axis current signals are
secure is that these two signals could be calculated from the
three-phase measurements and the rotor position directly. More
specifically, the three-phase measurements could be acquired
from the original sensors or extra third-party sensors. Both
ways could easily guarantee the security of the current signals.
On the other hand, the rotor position could be acquired from
the original rotor encoders or estimated from the three-phase
currents. Therefore, if we could guarantee the security of
three-phase current signals, we could assume that the position
is secure.

300 Samgle #3

Attacked

Normal

current [A]

-300
487.9 488.0 488.1
time [s]
250 Saml')le #4

Normal Attacked

studies.

NEDC Speed Profile (1220s)

30
225
E
2 15
& 10

0 200 400 800 1000 1200

600
Time (s)
UDDS Speed Profile (1370s)

30
225
E
315
@ 10

0 200 400 600 800
Time (s)

HWFET Speed Profile (766s)

1000 1200 1400

0 0 100 200 300 500 600 700 800

400
Time (s)

Fig. 13.  Plots of the driving cycles.

Second, if the position signal gets distorted, the motor
drive controller will receive incorrect d- and g-axis current
feedback. Then, the actual currents fed to the detector will
be deviated from the normal region and the proposed detector
will be able to detect these kinds of anomalies.
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TABLE I
L1sTS OF CASE STUDIES

Case No. | Driving Cycle Attack Time (s) (attacks last 0.5 seconds)
1-40 NEDC [54 98 171 250 289 366 488 573 758 873]
41-80 UDDS [23 168 357 458 523 572 647 777 1058 1169]
81-82 HWFET [320]

TABLE 1I
PERFORMANCE STATISTICS OF THE BINARY CLASSIFIER

RF SVM KNN | AdaBoost
Accuracy 0.9979 | 0.9809 | 0.9562 0.9994
K 0.9957 | 0.9619 | 09125 0.9988
95% Confident Interval (lower) | 0.9964 | 0.9773 | 0.9510 0.9984
95% Confident Interval (upper) | 0.9988 | 0.9841 | 0.9611 0.9998
TABLE III
FALSE ALARM TEST RESULTS AMONG 3280 NORMAL OBSERVATIONS
Detect Results RF | SVM | KNN | AdaBoost
Normal 3266 | 3163 | 3163 3278
Attack 14 117 117 2
False Alarm Rate (%) 043 | 3.57 3.57 0.06
Normal (with Majority Votes) | 3280 | 3280 | 3280 3280
Attack (with Majority Votes) 0 0 0 0

SVM Classifier

Prediction: normal

Random Forest Classifier

Prediction: normal

3266

Reference: normal
Reference: attack
Reference: normal
Reference: attack

Prediction: attack
AdaBoost Classifier

Prediction: normal

Prediction: attack
KNN Classifier

Prediction: normal

Reference: normal
Reference: attack
Reference: normal
Reference: attack

Prediction: attack Prediction: attack

Fig. 14. Confusion matrix of testing results of the four binary classifiers.

Therefore, the proposed detection method will still work
even if the position signal gets distorted.

B. Evaluation of Computational Resource Savings With
Window Size Comparison

In order to evaluate the computational resource sav-
ings, we compare the proposed methods with traditional

Accuracy and Kappa Statistics of
the Binary Classifier

0.95
0-9 I
0.85
RF SVM KNN

H Accuracy ®Kappa

AdaBoost

Fig. 15.  Accuracy and « statistics of the binary classifiers.

spectrum-based methods from two aspects: online memory
savings and computational complexity. First, to compare the
online memory savings, we use the monitoring window size as
the evaluation criteria, because saving observations occupies
most of the online memory and the larger window size required
by the algorithms, the more online memory is required.
As stated in [21], using CSA requires a high-resolution
frequency spectrum. Commonly, the frequency resolution for
CSA is less than 10 Hz, and therefore, Table IV lists the
window size requirement for the proposed method and the
CSA with different frequency resolutions. The results are
based on a sampling time of 0.2 ms (5-kHz sampling fre-
quency). As the results suggest, even the frequency resolution
is 10 Hz, and the window size requirement is still twice the
one for the proposed method. Therefore, the proposed method
will save huge amount of online memory. In addition, from
the aspect of computational complexity, the proposed method
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TABLE IV

WINDOW SIZE REQUIREMENT FOR THE PROPOSED ALGORITHM
AND THE CSA WITH DIFFERENT FREQUENCY RESOLUTIONS

Proposed Method Traditional CSA
Resolution NA 2Hz | 5Hz | 10Hz
Size (points) 500 5000 | 2000 | 1000
Size (s) 0.1 1.00 | 0.40 | 0.20

requires linear computational time, O(n), because it is based
on the calculation of mean, variance, skewness, and kurtosis.
Meanwhile, the spectrum-based method requires quadratic
computational time, O(n*). Apparently, the proposed method
requires less online computational resources than the tradi-
tional spectrum-based methods.

C. Time-to-Detect of Different Binary Classifiers

As the time-to-detect of anomalies depends on many exter-
nal factors, such as hardware computational performance and
sensor sampling frequency, we compare the time-to-detect of
the proposed method with traditional spectrum-based methods
by comparing the number of sliding windows required to gen-
erate an anomaly alarm. For the proposed methods, the detec-
tion accuracy of RF classifiers and AdaBoost classifier could
achieve as high as 99.9%. This means that a detector based on
these two classifiers could immediately generate an anomaly
alarm, even without majority vote mechanisms. Therefore, for
these detectors, the number of sliding windows required is 1.
The other candidate binary classifiers have lower accuracy;
therefore, they need the assists of majority vote mechanisms.
Among them, the KNN-classifier-based detector has the worst
performance, and it requires a vote capacity of six to achieve
100% accuracy. This means that the proposed method at most
requires six sliding windows to generate an accurate anomaly
alarm. On the other hand, considering the high sampling rates
of the traditional spectrum-based methods, they require much
longer observations to reflect the attack impact on the spec-
trum. Therefore, in our case studies, the spectrum-based meth-
ods require at least 20 sliding windows to generate an accurate
anomaly alarm. These results support that the proposed method
could detect those anomalies in a lot shorter time.

V. CONCLUSION

In this article, we proposed fast anomaly detection
approaches for the EV traction motor drives due to cyber
threats. The proposed approach uses only four easy-to-get
sensor signals and highly compact binary classifier models so
that the proposed detector could detect the cyber threats at the
early stage and does not require many online computational
resources. With the validations conducted by real-time simula-
tion, the proposed method has been proven to be effective and
efficient on detecting different cyber threats in a very short
time period.
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