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Abstract—The involvement of different entities in the life
cycle of wireless electronics has increased the risk of adversary
attacks, in particular, hardware Trojans (HTs). Wireless network
hardware need to be compliant with a set of minimum security
requirements to protect the data that these systems exchange
and ensure the system reliability, however, HTs make them
vulnerable. Hardware-based malicious attacks and defense mech-
anisms are continuously being analyzed to provide prevention
and detection capabilities against them. Considering the unpre-
dictability of HTs, there is a need for blind countermeasures that
can detect and identify HTs without any previous knowledge
of their characteristics: fingerprint-based methods. This paper
presents a technique for the detection of unanticipated HTs
based on antenna input reflection coefficient measurements (S11)
over a wide range of frequencies expanding far beyond the
antenna operation frequency. This work includes the design,
manufacturing and testing of printed circuit boards with a WiFi
system-on-chip (ESP8285), a meandered inverted-F antenna, and
a HT that shorts the antenna to disrupt the communication
link. The effects of the insertion of the HT in both operational
and non-operational modes are successfully used to detect its
presence without anticipation of its characteristics using data
similarity and distance measures (Pearson’s coefficient, Euclidean
and Manhattan distances) that can be extrapolated to machine
learning algorithms for large scale analyses.

Index Terms—Machine learning, physical-layer security, RF
fingerprinting, Trojan detection, wireless networks.

I. INTRODUCTION

HE growth of RF technology and capabilities has enabled

an increment in the quantity and quality of data that
wireless networks are continuously sharing. Considering the
global use of these systems, external attacks have been advanc-
ing at a fast pace, providing software and hardware tools to
perform spoofing, jamming and eavesdropping attacks to these
systems. Experienced changes in hardware design, fabrication,
and distribution have increased the number of hardware vul-
nerabilities and attacks of wireless systems, presenting a threat
for the data that these systems exchange [1].

The hardware supporting the security of communications
technologies needs to be prepared against a wide variety of
sources of attack. There are hardware-based operation and
function vulnerabilities that can be introduced to integrated
circuits (ICs) by untrusted entities that participate in their

life cycle: hardware Trojans (HTs) [2],[3]. Hardware Trojans
are a focused of concern due to the wide range of undesired
behaviours that they can cause and how unpredictable they
can be. The operational margins of wireless ICs are examples
of wireless networks vulnerabilities that can facilitate HT
activities. Among the different HT detection and prevention
methods, fingerprint-based mechanisms are one of the main
focuses proposed by the research community due to their
unanticipated detection, low cost, low complexity and non-
destructive characteristics [4]-[7].

In this work, a method that takes advantage of antenna fea-
tures to detect hardware Trojan presence in wireless modules
is presented. A printed circuit board (PCB) is designed based
on commercial-off-the-shelf (COTS) modules that include a
WiFi system-on-chip (SoC), a meandered inverted F antenna
(MIFA), signal conditioning components, and a HT can be
activated with the SoC and short-circuits the antenna, com-
promising the communications link. The design allows the
measurement of the S;; parameter of the antenna to analyze
the effect of the HT during operational and non-operational
phases. The measured data is exploited to detect the presence
of HTs with straightforward statistical analyses using Pearson
coefficient and Euclidean and Manhattan distances [8]. The
results prove that without previous knowledge of the HT
characteristics, the malicious hardware can be detected as an
abnormal behavior of the antenna fingerprint beyond its res-
onance frequency. For large scale HT detection applications,
this method allows the use of machine learning classifiers, such
as one-class support vector machine (SVM), trained with data
from Trojan-free modules, to detect Trojan-infected units [9].

II. METHODOLOGY AND PROCEDURES
A. Wireless Module Design

The design of the PCB used in this work is based on
commercially available COTS modules that include the WiFi
Espressif ESP8285 system-on-a-chip (SoC). MIFA designs
are included in these modules for their low-cost and high-
efficiency capabilities, such as the 2.4 GHz MIFA presented in
Fig. 1 and used in this work. Ansys HFSS Electronics Desktop
2021 1is utilized to simulate the antenna performance, and to
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optimize its dimensions (Table I) to achieve resonance at 2.4
GHz. The substrate selected for the module is FR-4 with a
dielectric constant of 4.5 and a loss tangent of 0.016, and the
thicknesses of the substrate and the copper are 1.6 mm and
0.0356 mm, respectively, specified by the PCB manufacturer.
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Fig. 1. Meandered inverted F antenna - baseline design.

TABLE I
MEANDERED INVERTED F ANTENNA DESIGN PARAMETERS
Parameter | Value Parameter | Value Parameter | Value
A [mm] 5.0 D [mm] 1.4 G [mm] 2.65
B [mm] 0.5 E [mm] 4.9 H [mm] 2
C' [mm] 2.7 F' [mm] 1.7 I [mm] 0.5
J [mm] 0.9

The ESP8285 SoC includes RF conditioning components
(e.g., power amplifier, filters), WiFi functionalities (IEEE
802.11 b/g/n at 2.4 GHz), a 32-bit processor, and on-chip
SRAM in a 32-pin QFN package. The compactness of the SoC
minimizes the size (32.6 mm x 25.2 mm) and signal condition-
ing components of the 2-layers PCB design presented in Fig.
2. EAGLE electronic design automation (EDA) PCB software
is used to create the schematic and board layout, which
considers the tracing requirements to enhance the overall
antenna performance and dimensions of the module. As it can
be seen in Fig. 2, the design includes probing traces to measure
the antenna parameters, and the inserted malicious hardware
(HT). The HT includes the Analog Devices HMCS550A switch,
which allows to control signals from DC to 6 GHz with low
insertion losses and very low current consumption. As it can
be seen in Fig. 2, the switch is placed close to the end of the
antenna, connecting it to ground (short-circuiting) in its “On”
state, when it receives a control signal from the SoC.

B. Hardware Trojan Detection

The hardware Trojan detection procedure presented in this
work utilizes the S;; parameter of the antenna, far beyond its
operation frequency, as a fingerprint for the type of module un-
der analysis to determine its trustworthiness. The preparation
and validation of the procedure comprises the following steps:
(1) measure the Si; parameter of the antenna of populated
boards without the HT for a wide frequency range (e.g., 0.1
GHz to 18 GHz) that expands far beyond the antenna operating
frequency, (2) measure the Sy; parameter of the antenna of
populated boards with the HT for a wide frequency range
(e.g., 0.1 GHz to 18 GHz), (3) perform statistical analyses for
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Fig. 2. EAGLE PCB design (3D View): (L) top and (R) bottom layers.

different combinations of the data to identify a measure that
can detect anomalies from the Trojan-free cases, and (4) apply
this measure to identify the Trojan-infected modules. These
steps are common in machine learning algorithms for large-
scale applications, which usually include data preparation,
comparison and classification stages. Additionally, the Si;
parameter of the antenna is also measured when the board is
completely populated and the HT is activated (i.e., antenna is
short-circuited) for effect analyses and future considerations.
All the S;; parameters of the antenna are measured using a
GGB Industries 40A-GS 750 pum pitch microwave probe, as
presented in Fig. 3, and a Keysight N5227B 67 GHz PNA
calibrated with a GGB Industries CS-11 calibration substrate.
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Fig. 3. Populated PCB antenna S;; measurement - probing.

To analyze the Si; measurements, data similarity and dis-
tance metrics are used. While the dimension of the data used
in these cases can vary depending on the number of points
selected for our measurements and methods, it is important to
note that each “Frequency - S1;” pair of values are a distinct
feature used to extract information for the antenna/module
fingerprint. For the large frequency range, a total of 201
data points/features are used in the analyses. Among other
metrics, Pearson coefficient, and Euclidean and Manhattan
distances are considered in this work, widely used in learning
algorithms to classify data. Pearson coefficient or correlation
coefficient (equation I) measures the linear correlation between
two different sets of data. In this case, the data from two
identical PCB designs is assumed to be as linearly similar as
possible, manufacturing and components imperfections con-
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sidered. Manhattan (equation II) and Euclidean (equation III)
are the most commonly used distances for vector comparison,
presenting similar formulas to determine the total difference
among the set of features of the measurements.

poy = cov(z, y) N
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These metrics are used for:

e Measure the similarity/distance between Trojan-free
PCBs. The PCBs are populated, but the HT is not in-
cluded, to obtain the fingerprint of the Trojan-free module
or commonly known as golden module/reference.

o Measure the similarity/distance between Trojan-free and
Trojan-infected PCBs. The PCBs are populated but one
of them includes the HT components.

o Set a threshold to classify data from new modules.

In terms of distances, a threshold for automatic classification
can be more complex and time consuming to set than with the
correlation coefficient. However, they present great qualities to
be considered as tools for analysis and comparison purposes.

III. TESTS AND RESULTS

The PCB design, manufacturing and soldered components
can alter the parameters of the antenna. Fig. 4 presents the
simulated and measured antenna S;; parameters, using a
populated PCB for the measured data. As it can be seen,
the simulated and measured results agree, with difference in
bandwidth likely due to effects of additional devices around
the antenna not accounted in the simulations.
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Fig. 4. Simulated and measured MIFA performance.

To compare Trojan-free and Trojan-infected PCBs and be
able to extract the classification metrics, it is essential that the
PCB modules present S1; parameters as similar as possible.
Fig. 5 presents the comparison of these parameters for two
PCBs that are not populated. As it can be seen, the results
match presenting most part of the differences for frequencies
higher than 12 GHz. When both PCBs are populated strictly
using the same method, some additional differences may
appear. Manufacturing and soldering defects can be the major
cause of differences in these measurements, but both empty
and populated PCBs can be considered golden modules if a
high level of similarity is maintained.
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Fig. 5. S11 measurement comparisons of empty/not populated PCBs.

The differences caused by the presence of the HT can be
seen in Fig. 6, in which the data from two populated PCBs,
with and without HTs, is presented. As it can be seen, the mea-
surements are slightly different in all the considered frequency
range, specially between 4 GHz and 6 GHz. The scatter plot
presented in Fig. 7 confirms the aforementioned assumptions:
the relationship between data from boards without HT presents
a high positive correlation, and the relationship between data
from boards with and without HT presents a low positive
correlation. For classification and general application purposes,
it should be considered that these differences are specific for
this HT design.

Based on the presented results, when compared with the
data of a golden module, the selected metrics are expected
to provide higher correlation coefficients and lower distances
when the new board under analysis is Trojan-free, as confirmed
in Table II. Considering Fig. 6 results, the metrics are also
evaluated in the frequency range where the differences are
higher, from 4 GHz to 6 GHz, enhancing the classification
capabilities of the used metrics. It is important to highlight that
the values obtained for the distances cases differ more than the
ones obtained for the correlation coefficient, specially due to
manufacturing and soldering defects, which demonstrates in
which case it would be easier setting a threshold for classifi-
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Fig. 6. S11 measurement comparison of PCB with and without HT.
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Fig. 7. Scatter plot comparison of S11 measurements for PCBs without HT
and PCBs with and without HT.

cation. For the presented cases, using the Pearson coefficient
as the classification measure, the data presenting a coefficient
lower than approximately 0.85-0.90 when compared to the
golden module data can be considered from an untrustful
module.

TABLE I
S11 SIMILARITY AND DISTANCE MEASURES

Measure Freq. Range | Golden Mod. | With-Without HT
Pearson Coeff. 0.1-18 GHz 0.92 0.82
Euclidean Dist. 0.1-18 GHz 33.05 44.5
Manhattan Dist. 0.1-18 GHz 214.7 386.2
Pearson Coeff. 4-6 GHz 0.99 0.77
Euclidean Dist. 4-6 GHz 2.94 21.8
Manhattan Dist. 4-6 GHz 9.4 77.2

IV. CONCLUSIONS AND FUTURE APPROACHES

In this paper, a method that uses antenna S;; parameters
far beyond its operation frequency, as a module fingerprint
to detect hardware Trojan presence in wireless modules is
presented. To validate the method, a PCB is designed based
on COTS modules that include a WiFi SoC, a MIFA, signal
conditioning components, and a HT that can short-circuit the
antenna. Similarity and distance metrics are used to compute
a classification threshold to identify modules that are not
reliable. The results present capabilities to use a correlation
coefficient threshold of approximately 0.85-0.90 to identify
the untrustful modules for the case under study, considering
low manufacturing and PCB preparation errors to maintain
a high correlation coefficient between golden modules. The
application range of this method is limited by the effect of
the HT insertion on the fingerprint of the antenna, which it
is highly dependent on the type of HT used, the footprint of
the hardware or its position in the PCB design, among other
considerations.

To evaluate the accuracy of this method, future work in-
cludes the testing of a large set of PCBs and the implemen-
tation of a one-class classifier to classify the modules with
malicious hardware. Future work also includes the analysis of
the transmission parameters when the HT is activated to create
additional features to be considered to improve the generated
fingerprint of the module and the classifier.
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