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Abstract
Digibox is a prototyping environment for IoT applications. It
enables a novel scene-centric prototyping where developers
can program an ensemble of simulated devices to capture
not only their individual but also their coordinated behaviors,
making it possible to test, debug, and evaluate the behav-
iors of an IoT application. Using Digibox, developers can
download and reuse existing scenes, customize, and repur-
pose them towards developing new applications; or replicate
others’ experiment results from scientific research. Digibox’s
Kubernetes-based runtime further allows developers to eas-
ily scale the prototyping environment from a single laptop
to a cluster running simulated devices and scenes at a scale
appropriate to the application.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems; • Software and its engineering → Abstrac-
tion, modeling and modularity;
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1 Introduction
The proliferation of IoT devices is giving rise to exciting new 
applications such as smart spaces [4, 18, 24, 30], intelligent 
transportation [27, 32], urban sensing [12, 14, 39], and indus-
trial automation [2, 11, 37]. For instance, a smart building 
app may monitor room occupancy, alert building managers 
about overcrowding during a pandemic, or predictively adjust 
lighting and HVAC settings [16, 30], while a supply chain app 
can track cargo and inventory conditions to audit, automate, 
and optimize operational logistics [4, 11].
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Prototyping environments are key enablers for application
research and development. For IoT applications, it can be
time-consuming and cost-prohibitive to set up a testbed using
real-world devices [41, 43, 44] or physics engines [22]. Mean-
while, we notice there are extensive works in the systems and
networking community that provide easy-to-use prototyp-
ing environments, e.g., NS, Mininet, iBox [21, 34, 47]; and
in AI/ML, robotics, and autonomous driving communities
likewise [38, 42, 48, 50]. These purpose-built prototyping
environments are used extensively in research, class, train-
ing, demoing, validation, product development and so forth.
Inspired by the huge success of these projects, we aim to
build a flexible and extensible prototyping environment for
IoT applications1 with the following design goals:

• Generality: It can support a wide range of existing and
emerging IoT applications.

• Ensemble support: Developers can easily program the
test cases as an ensemble of devices capturing their
correlated status and behaviors.

• Interactivity: They can interact with the simulated
devices during testing as if these were real devices.

• Reproducibility: Both the setup and the experiment
results can be shared and replicated.

• Scalability: Easy to run a few and tens of simulated
devices in a laptop to thousands and more in cloud or
machine cluster.

• Customizability and reusability: It should be simple
to extend existing simulated devices and reuse them
when prototyping new applications.

Meeting these goals simultaneously is non-trivial. Com-
pared to prototyping with real-world testbed or physics en-
gines, existing device simulators [17, 20, 29] are more easily
accessible and achieve much better scalability. However, they
typically simulate individual devices by generating data for
a particular device in isolation. As a result, such simulators
fall short in capturing real-world events such as device in-
teractions (e.g., correlating the detection of motion across
occupancy sensors) and human inputs (e.g., tuning the light
intensity of a simulated lamp). Such a lack of ensemble sup-
port and interactivity makes it difficult for developers to cor-
rectly test, validate, and demonstrate application correctness
under more realistic and sophisticated scenarios.

Further, due to a lack of canonical tooling and native
support for reproducibility in existing IoT prototyping ap-
proaches, it can be tedious for others to reproduce the setup

1Note that our focus in Digibox isn’t on prototyping device hardware,
firmware, or driver [51] but the applications that leverage device capabilities.
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and results. For example, we observe that 11 recent publi-
cations in system/networking and security conferences (e.g.,
EuroSys, MobiSys, SOSP, BuildSys, Usenix Security [33, 43–
46, 52, 53]) use 8 different prototyping frameworks or tools.
As such, both the authors and those who attempt to repli-
cate the results need to spend significant efforts dealing with
documentations, scripts, and configurations.

This paper proposes Digibox, a prototyping environment
that achieves these goals simultaneously. To do so, Digibox
enables a novel scene-centric prototyping with two abstrac-
tions: mockup device (or mock for short) and scene. The mock
simulates individual device behaviors (e.g., sensors generat-
ing data, actuators responding to application/user commands),
while the scene may generate events (e.g., human presence in
a room) and ensemble the behaviors of mocks attached to it
(e.g., the room scene correlates the detected motion of mock
occupancy sensors attached to it and in response to human
presence). Developers can easily program mocks and scenes–
their event generation and simulation logic–using Digibox’s
programming library in Python. Digibox uses containers and
Kubernetes [19] to run mocks and scenes as microservices
on a single laptop or a cluster. Moreover, note that the scene-
centric design achieves a clean separation of app logic (i.e.,
how the application processes data and reacts) and scene logic
(i.e., how devices coordinately behave). This decoupling sim-
plifies application development, and improves reusability of
the testing scenarios (i.e., the scenes).

To facilitate reproducibility, Digibox implements the con-
cept of Infrastructure-as-Code (IaC) [31] where developers
can describe and version the setup (i.e., mocks, scenes, and
how they are related) succinctly in a standard configuration
file that others can download and recreate. Besides reproduc-
ing the setup, Digibox logs all events, actions, and messages
generated by the mocks and the scenes to allow easy debug-
ging, replay, and sharing any experiment results.

Digibox is open-source and under active development.2

We create a mock and scene repository using Digibox which
currently contains 20 device mocks (e.g., occupancy, fan,
lamp, HVAC) and 18 scenes (e.g., building, campus, retail,
supply chain, home) with more underway. We hope to create a
virtuous circle in which researchers and developers contribute
new mocks, scenes, and test data while building upon others’
contributions. Finally, as IoT continues to grow - devices
become more pervasive and gain new sensing and actuating
capabilities [1, 5, 27] - there are open design questions and
challenges such as how to incorporate high-fidelity physical
effects in Digibox which we’ll discuss in the paper.

2 IoT Applications and Prototyping
An IoT application communicates with devices3 via device
drivers, sending/receiving messages either directly from/to
devices, or via a device hub [23], or a message broker [9]. The
messages sent to a device (e.g., a command setting a lamp’s
power to “on”) may trigger an actuation (e.g., the physical
2https://digi.dev/digi; mocks and scenes: https://digi.dev/mocks.
3A device could be an actuator, a sensor, or a mixture of both.
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Figure 1: Digibox Workflow. Using Digibox for application pro-
totyping and reproducibility.
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Figure 2: Application and mocks exchange messages in Digibox.

lamp powers on) and the ones received by the application
may contain status updates from the device, e.g., the lamp re-
ports its current power status, or an occupancy sensor reports
motion being detected.

IoT applications are typically developed in the context
of a scene. We define a scene as the environment where the
application runs, which includes the devices, their interactions
with the physical world (e.g., human actions, other devices),
and the applications. While the exact semantics of a scene may
vary across applications, the common property to highlight
here is that the device behaviors are usually correlated and
affected by the events in the scene. For example, consider a
meeting room with lamps and occupancy sensors, one on the
ceiling and the others on the desks. In this scenario, the lamps
might be turned on/off by humans and the occupancy sensors
have correlated motion readings (e.g., when a desk occupancy
is triggered the ceiling one must be so too). Therefore, the
prototyping environment must allow developers to specify
test cases over these devices as an ensemble to reflect the
correct scene semantics and thereby test an application in a
robust manner, e.g., to test whether the app calculates room
occupancy in face these two types of sensors and reacts to
human actions correctly.
Digibox: Scene-centric prototyping. Digibox provides first-
class abstractions and primitives for developers to program
not only the behaviors of individual simulated devices (i.e.,
the device logic) but also their correlated and interactive be-
haviors as an ensemble (i.e., the scene logic). For instance, in
the meeting room scenario, developers can program the room
scene to ensure that the readings from the desk occupancy
sensors and the ceiling sensor are always consistent. Note
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that the scene logic differs from how an application will pro-
cess these device data (i.e., the app logic), e.g., deriving the
room occupancy based on these occupancy sensor readings.
A testbed in Digibox can include multiple scenes.

Fig.1 depicts the high-level workflow of using Digibox to
prototype applications and for others to reproduce the setup
and results. For prototyping, as shown in the left two columns,
a developer writes her application in an application framework
(①), e.g., SmartThings, Home Assistant, dSpace [13, 25, 44]),
while writing scenes (②) using Digibox’s programming li-
brary The developer may specify the scene logic relevant to
the application functionalities in the scenes; alternatively, she
can download, reuse, and customize existing scenes created
by other developers. The developer can run the scene(s) with
Digibox’s command-line tool (③), run the application (④),
and have the application use the scene.

Fig.2 zooms in and shows how the application talks to the
scene at run-time. The application sends and receives mes-
sages to/from the mock with communication protocols such
as MQTT or REST commonly used by real-world devices.
During execution, Digibox logs the events, actions, and mes-
sages generated by/in the scene so that the developer can use
them to debug/analyze the application (⑤). The developer
may iterate on this workflow by updating the application and
the scenes. Further, the developer can upload and share her
Digibox scenes with others. As shown in the rightmost col-
umn of Fig.1, others can download/pull the scene, run the
scene, and replay the logs also shared by the developers.

It’s worth noting that with the above workflow, Digibox
achieves a clean separation of app logic and scene logic. This
simplifies the development of the two given they each can
use dedicated programming/runtime support and is easier to
evolve. This also improves reusability since one scene can be
shared and reused to test many different applications.

3 Digibox Workflow
We first present Digibox’s core abstractions, mockup device
(mock) and scene controller (scene), followed by how to write
mocks and scenes (§3.2), how to use them during prototyping
(§3.3), along with other useful features of Digibox including
sharing, logging, and reproducing testbed and experiments
(§3.4, §3.5). We use a smart building application as the walk-
through example with details described as we go.

3.1 Core Abstractions
A testbed in Digibox consists of mockup devices (mocks) and
scene controllers (scenes). A mock simulates the behavior of
a real device and keeps track of the device status. A mock can
generate events, e.g., a mock occupancy sensor can generate
random motion readings. A scene coordinates the mocks that
are attached to it by generating events and configuring the
correlated status of the mocks accordingly. Specifically, each
mock and scene has the following components:
Model. A model contains a collection of key-value pairs to
describe the status of the mock or scene as well as the desired
status of it (i.e., intent). Fig.3 depicts a few examples.

1 meta:
2 type: Occupancy
3 version: v1
4 name: O1
5 managed: true
6 # ..more config
7 triggered: true
8 ---
9 # Lamp L1

10 # ..
11 power:
12 intent: "on"
13 status: "on"
14 intensity:
15 intent: 0.2
16 status: 0.4

1 meta:
2 type: Room
3 version: v2
4 name: MeetingRoom
5 managed: true
6 human_presence: true
7 attach: [L1,O1,..]
8 ---
9

10 meta:
11 type: Building
12 version: v3
13 name: ConfCenter
14 managed: false
15 num_human: 2
16 attach: [MeetingRoom,..]

Figure 3: Example models: mock occupancy sensor (left-top),
lamp (left-bottom, “meta” fields omitted), room scene (right-top),
and building scene (right-bottom). The occupancy sensor O1 and
lamp L1 are attached to the MeetingRoom, which is in turn attached
to the ConfCenter building.

Event generator. It generates and mimics real-world events
(e.g., motion in an occupancy sensor, L8 in Fig.4) by which
the mock or scene configures the model status.
Simulator. A simulator is a piece of code that contains the
simulation logic of the mock or the scene. For mocks, this
logic specifies how the device behaves according to the in-
tent (e.g., configuring light intensity, L19-28 in Fig.4), which
is similar to today’s device simulators [20, 29]. For scenes,
the simulator provides ensemble support by coordinating the
mocks attached to it (e.g., configuring mock occupancy sen-
sors, L8-19 in Fig.5).
Logger. It logs events, changes to the models, and messages
for reproducing test runs and debugging.

Further, scenes in Digibox can be nested, i.e., a scene can
be attached to higher-level scene (e.g., rooms to a building)
allowing the higher-level scene controller to write to the lower-
level scene’s status (e.g., the building scene can configure
human presence in different rooms, L28-40 in Fig.5). This
allows one to reuse mocks and scenes in a hierarchy. Finally,
the model also includes metadata (field “meta”) including
type, version, name, whether they are managed (§3.2) and
other configuration parameters used for event generation (e.g.,
interval, random seed) or simulator (e.g., value range).

3.2 Writing Mocks and Scenes

To write a new mock or scene, developers first define the
schema of its model - which fields/key-value pairs should the
model include (e.g., a “triggered” field for an occupancy sen-
sor). Developers can then program the mock or scene using
the dbox library in Python. Fig.4 presents simple examples
for a mock occupancy sensor and a mock lamp. For the event
generation, developers supply a handler (e.g., L6-9) that up-
dates the status of the mock (e.g., indicating whether the
sensor detects a motion). The decorator dbox.loop allows
the handler to be run periodically with configurable param-
eters (e.g., seed, loop interval or distribution) in the code or
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1 import random
2 from digi import dbox, on
3

4 """Mock occupancy sensor"""
5 # handler for event generation
6 @dbox.loop(cond=dbox.managed)
7 def gen_event():
8 motion = random.choice([True, False])
9 dbox.model.update({"triggered": motion})

10 # handler for simulation
11 @on.model
12 def sim(status):
13 dbox.broker.publish(status)
14 """Mock lamp (in separate .py)"""
15 # handler for simulation
16 @on.model
17 def sim_intensity(model):
18 power = model["power"]
19 intst = model["intensity"]
20 if power["status"] == "off":
21 intst["status"] = 0.0
22 else:
23 intst["status"] = intst["intent"]
24 dbox.broker.publish({
25 "power": power,
26 "intensity": intst})

Figure 4: Example mock occupancy sensor and mock lamp.

from the “meta” field in the model. Developers supply han-
dler(s) that perform simulation, e.g., L11-13 specifies when
the sensor’s model is updated it will generate and publish a
message to the default message broker. As another example,
we can specify how the light intensity status is set for a lamp
according to its current power status (L16-26).

Developers can program scenes in a similar manner. Fig.5
shows a simple example of a room and a building scene.
Different from the mock whose simulation handlers provide
device behaviors, developers supply simulation handlers that
coordinate the status of mocks attached to it. For instance,
Fig.5 includes the simulation handler of the room scene (L7-
17) which ensures the occupancy sensors of two different
types - room-level (type: Occupancy) and desk-level (type:
Underdesk) - in the room have consistent “triggered” value
based on the human presence.

Fig.6 shows an example mock/scene hierarchy correspond-
ing to the code examples in Fig.4, Fig.5, and models in Fig.3
(not all are shown). In this example, the building scene gener-
ates number of humans in the building and randomly assigns
them to the rooms in the building and configure the human
presence (e.g., L35-37). The room in turn configures the sta-
tus of the occupancy sensors in the room, e.g., to ensure the
occupancy sensors readings are consistent (L10-16).

3.3 Using Mocks and Scenes
In what follows, we elaborate how to use Digibox to run the
prototyping workflow mentioned earlier in Fig.1.
Using dbox command line. Developers use the dbox com-
mand line tool to create and interact with mocks and scenes.
Table 1 lists the APIs in Digibox. As an example, one calls
dbox run Lamp L1 to create a mock lamp named “L1”.
Likewise, to create a scene “MeetingRoom”, they call dbox

1 """Room scene."""
2 @dbox.loop(cond=dbox.managed)
3 def event():
4 presence = random.choice([True, False])
5 dbox.model.update(
6 {"human_presence": presence})
7 @on.model
8 def sim_occupancy(model, atts):
9 presence = model["human_presence"]

10 occs = atts.get("Occupancy", {})
11 for _, occ in occs.items():
12 occ["triggered"] = presence
13 desks = atts.get("Underdesk", {})
14 for _, desk in desks.items():
15 if not presence:
16 desk["triggered"] = False
17 ...
18 """Building scene (in separate .py)."""
19 @dbox.loop(cond=dbox.managed)
20 def event():
21 # decide number of humans in building
22 num_human = random.randint(0, 2)
23 dbox.model.update(
24 {"num_human": num_human})
25 @on.model
26 def sim_room_presence(sv, atts):
27 rooms = atts.get("room", {})
28 names = list(rooms.keys())
29 if len(names) < 1:
30 return
31 # decide which rooms have human
32 picked = set(random.choices(names,
33 k=model["num_human"]))
34 # configure room status
35 for name, room in rooms.items():
36 room["human_presence"] = \
37 name in picked

Figure 5: Example room scene and building scene.
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Figure 6: Mocks and scenes in the smart building application.

run Room MeetingRoom. Developers can then attach
the mocks to scene and scene to other scenes with the dbox
attach command.
Testing applications. Developers test the application by hav-
ing it use/communicate with the mocks as if they were real
devices. To check and debug/reason about the application,
developers can obtain the status of the mocks or scenes via
dbox check, which displays the current model states in the
console, any time during the execution; or use dbox watch
to monitor the models continuously. Digibox will also log the
events, messages, and changes of the model generated by the
mocks and scenes (more in §3.5), by which developers can
also analyze Digibox logs to validate whether the application

27



Rapid Prototyping for IoT Applications with Digibox HotNets’22, November 14-15, 2022, Austin, Texas

API Functionality
dbox run/stop type name Run/stop a mock or scene
dbox check/watch name Display model changes in console
dbox attach name name Attach a mock or scene to a scene
dbox commit type name Update or create a mock or scene type
dbox pull/push type Up/download a mock or scene
dbox replay name Replay the scene trace

Table 1: Digibox command-line APIs.
behaves as expected. Besides, akin to the common practices
in software testing, developers can specify test cases (e.g., in-
puts and expected outputs) to validate application correctness.
For example, developers can pause event generation in the
scene (e.g., setting building’s “managed” field to “true”, L14
in Fig.5) and add input-output pairs (i.e., scene status and the
expected mock status).

Further, developers can specify scene properties, condi-
tions that should be met in the scene, e.g., “the lamp should
always be turned off when the occupancy sensor is not trig-
gered” as disallowed model states expressed in k-v pairs,
which Digibox checks at run-time and reports any violations.
We are working on supporting scene properties with more
sophisticated approaches such as temporal logic [53].
Interacting with mocks. During testing, developers can in-
teract with the mocks in Digibox to emulate real-world user
interactions such as turning on/off lamps. Fig.3 shows the
models for the simple room scene and the mocks (lamp and
occupancy sensor) in it. Developers can edit the model of
the mock with dbox edit L1 to set the intent fields of
the lamp L1 (e.g., L12 in Fig.3) and test how the application
reacts to the user turning on/off the lamp. Developers can
also introduce or remove mocks from the scene, e.g., to add
lamp L1 to the meeting room one can run dbox attach
L1 MeetingRoom and to remove L1 with the -d option.
3.4 Sharing and Customizing
Developers can commit their Digibox setup which will gen-
erate a set of shareable configuration files describing all the
mocks and scenes - based on their models - and how they
are attached to one another in the current setup. These files
point to the configuration files of mocks and scenes which in
turn point to the container images (of the simulator and event
generator code) which are managed by Digibox. As such,
developers can share and publicize (via dbox push) the
configuration files to the scene repository where others can
download (via dbox pull) the files. By default, Digibox
uses Git and GitHub [10] as the scene repository following
standard practice of Infrastructure-as-Code [31] (§4).

One can add new mocks and new scenes and/or customize
existing ones with updated device/scene logic. A typical
workflow is where developers create mocks and attach to a
scene (with dbox attach NAME s1) and use the dbox
commit s1 command to create a new version of the scene
that includes all the mocks or scenes attached to it. This new
scene can then be publicized in the scene repository.
3.5 Reproducing and Logging
To recreate the setup, the Digibox at the receiver side will
parse the shared configuration files, and run the mocks and

scenes and attach the mocks to scenes and scenes to scenes
accordingly, which includes pulling the container images [8]
from the container repository [7].
Logging and replay. In addition to reproducing the setup, Di-
gibox also allows reproducing a trace. Digibox logs the model
changes, generates events, and sends messages for each mock
and the scene. For example, when the scene sets the power
of the lamp to off, this is logged both at the scene controller
and the lamp mock. Traces are shared as a zip file which the
recipient Digibox can parse and replay. A simplified sample
trace is shown below:
1 {name:confcenter,num_human:1,ts:00:01}
2 {name:meetingroom,human_presence:false,ts:00:03}
3 {name:kitchen,human_presence:true,ts:00:03}
4 {name:o1,triggered:true,ts:00:04}
5 {name:l1,triggered:true,ts:00:05}

To replay this trace, developers first run the building scene
corresponding to this trace. Then developers run dbox re-
play building-trace which instructs the mocks and
scenes to replay the behaviors according to the trace for de-
bugging, analysis, and performance validation.
Logging with real devices. Note that the logging function-
ality can be used when real devices are used by the appli-
cation by including the dbox library and explicitly using
dbox.logger. This allows Digibox to capture real-world
device behaviors which can be used by others to test or im-
prove the fidelity of emulation which we’ll discuss in §5.

4 Deployment and Scalability
We implement Digibox (runtime) using a recent open-source
IoT framework dSpace [44] where we deploy each mock
and scene controller as a “digi” microservice on Kubernetes.
We use EMQX [9] as the default MQTT message broker.
Specifically, we made the following design choices:
Containers, Kubernetes, and dSpace. Similar to Mininet,
containers allow us to simulate multiple devices in a laptop
and easily share them. Using Kubernetes allows us to scale
the scene across multiple machines in a cloud environment.
Using dSpace allows Digibox to easily manage the lifecycles
of mocks and scenes as digi [44] microservices.
Infrastructure-as-Code (IaC). Refers to the use of declara-
tive configurations that uniquely reproduce the setup. One can
use a version control (VCS) to manage these configuration
files. For Digibox, this allows users such as researchers to
easily reproduce the experiment setup (e.g., during artifact
evaluation) as described in §3.5.

We microbenchmark the Digibox in local and cloud en-
vironments to understand whether Digibox is performant at
different deployment scales. For the local environment, we
run Digibox in a Macbook Air M1 laptop (with Docker en-
gine [6] and its Kubernetes distribution) where we are able
to run 50 occupancy sensors in 2 room scenes with average
request latency (the time it takes for a REST GET to return a
mock’s status) under 20ms. It’s able to run 1000 occupancy
sensors across 100 rooms and 5 buildings with 2 m5.xlarge
EC2 instances, with the average request latency (network
delay included) under 60ms. Since prior work [44] shows
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Figure 7: Simulation fidelity. (1) IoT applications require varied
levels of fidelity; (2) Scene-centric simulator supports a wide range
of apps; (3) Extending Digibox to support higher fidelity levels.

that device message and actuation latency can take tens to
hundreds of milliseconds, our early results suggest Digibox’s
microservice-based implementation is sufficiently performant.
We’ll discuss the scalability issues further in §5.

5 Use Cases and Related Work
In what follows, we briefly discuss IoT applications, highlight
how Digibox may help facilitate their research and develop-
ment, and how it complements related work.
Smart spaces. This refers to the applications that leverage IoT
devices in the living spaces to improve the quality, efficiency,
and safety of our daily life/work such as smart homes [33,
33, 41, 44, 52, 53] and smart buildings [36, 40, 43]. Research
work here can involve highly different testbed setup (e.g.,
devices, scripts, configurations) and Digibox can simplify
the steps to reproduce the setup and results, e.g., for system
artifact evaluation [28]. Besides, for smart space product-
s/apps [13, 15, 16, 25], developers can leverage Digibox to
build mocks and scenes for testing which can be (re)used and
customized across different applications and frameworks.
Supply chain logistics. This includes applications that mon-
itor and optimize the supply chain operations [3, 11]. Sup-
ply chain applications can incorporate data feeds from IoT
devices spans across different locations and administrative
domains (e.g., transportation companies) with a large amount
of IoT devices. Besides the aforementioned benefits, Digi-
box can help model these scenes with its microservice-based
architecture and the ability to scale to large deployment sizes.
Urban sensing. These applications involve having mobile
devices such as users’ phones to collect data about the envi-
ronment (e.g., occupancy, temperature, noise levels); the data
are later aggregated across users to provide insights. Proto-
typing the urban sensing applications often need to cope with
the device mobility which can be emulated by dynamically
re-attaching mocks to different scenes in Digibox.
Device simulators. There exist device simulators either as
part of IoT frameworks [17, 26] or as standalone products [20,
29]. These simulators provide scalable simulation of indi-
vidual devices, similar to the mocks in Digibox. However,
they lack native support for scene-centric prototyping (pro-
gramming scene logic, sharing, customizing, and reproducing
scenes etc.) which Digibox targets at addressing.
IoT frameworks. While there exist numerous IoT frame-
works [13, 25, 41, 44, 52] for application development in

industry and academia, Digibox works in complementary
with existing IoT frameworks: developers build the applica-
tion (i.e., program the app logic) using IoT frameworks while
building scenes (i.e., program the scene logic) using Digibox
to test the functionalities and performance of the application.

6 Open Challenges and Research Questions
High-fidelity simulation. As shown Fig.7, IoT applications
may require different levels of fidelity of the simulation. First,
correctly simulating each individual device is sufficient for
some home automation applications [15, 52] and thus device-
centric prototyping is good enough. Second, for a wide range
of IoT applications [15, 44, 52], correctly emulating the corre-
lation across devices is important, but faithfully emulating the
physical world is an overkill. For these applications, scene-
centric prototyping, as we proposed in this paper, is a great
fit. Third, more forward-looking applications such as domes-
tic robots [1] require simulating the physical effects in the
real-world to make the right actions, including more compre-
hensive support for human interactions and device mobility.

While Digibox currently supports both device-centric and
scene-centric prototyping, how to enable Digibox to cover
higher-level fidelity remains an interesting future work. In
particular, Digibox should provide additional APIs that al-
low developers to easily model (1) Human interactions and
device mobility; (2) Hardware intricacies such as device actua-
tion delays, faults/failures, and network connectivity between
devices; and (3) Physical effects, e.g., via integrating with
existing physics engines [49, 50].
Efficient simulation. While the microservice-based imple-
mentation allows Digibox to scale to large amounts of mocks
and scenes (§4), an open question is how to make these
large-scale simulations more efficient, i.e., running a higher
number of mocks/scenes with a fixed amount of compute
resource budget. E.g., given the event-driven nature of IoT
apps, whether/how we can leverage Function-as-a-Service
(FaaS) to run the simulator logic of mocks and scenes.
Supporting new applications. Digibox currently provides
20 simulated devices and 18 scenes; still, simplifying the
task of supporting the broad spectrum of IoT applications
(§5) and their test cases remains challenging. First, there
are devices/scenes that are highly complex and thus require
expert-based modeling (e.g., HVAC systems in commercial
buildings). As such, Digibox should allow developers and re-
searchers to easily integrate Digibox with existing modeling
tools (e.g., using Brick ontology [36] in a building scene to
model the HVAC systems). Further, the IoT market is highly
fragmented today: devices from different vendors may dif-
fer in the command/message schema, format, and behaviors,
even when they provide similar functionalities. While we
envision/encourage community support for contributing and
maintaining the mocks (and scenes), manually creating and
maintaining the mocks can be a tedious task. We are inves-
tigating technical solutions such as schema inference [35]
and programming synthesis [53] to simplify/automate the
generation and maintenance of mocks and scenes.
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