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Machine learning (ML) workloads have rapidly grown, 

raising concerns about their carbon footprint. We 

show four best practices to reduce ML training energy 

and carbon dioxide emissions. If the whole ML field 

adopts best practices, we predict that by 2030, total 

carbon emissions from training will decline. 

Over the past few years, a growing number of 
papers have highlighted the carbon emissions 
of machine learning (ML) workloads. While 
this work has been instrumental in rightfully 

elevating the discussion around carbon emissions in ML, some 
studies overestimated actual emissions. For example, Thompson 
et al.1 extrapolated future ML energy use from what turned out 
to be faulty estimates in another paper2 and concluded:

“The answers are grim: Training such a model 
would cost US$100 billion and would produce as 
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much carbon emissions as New 
York City does in a month.”

Recent work highlights the complexi-
ties and nuances associated with carbon 
accounting for ML and, more broadly, 
computing workloads.3–5 In this arti-
cle, we contribute the following:

›› We describe four practices that 
reduce the energy use and car-
bon emissions of ML workloads 
by orders of magnitude relative 
to traditional choices.

›› We show that these practices 
have helped to keep ML under 
15% of Google’s total energy use 
for the past three years.

›› We explain why published esti-
mates were 100–100,000× higher 
than real carbon footprints.

Responsible artificial intelligence 
(AI) is a broad topic; we focus on a sin-
gle issue that has received much atten-
tion from the ML community and the 
public: carbon emissions from ML 
training. Emissions can be classified 
as follows:

›› Operational: the energy cost of 
operating ML hardware, includ-
ing data center overheads

›› Lifecycle: the embedded carbon 
emitted during the manufac-
turing of all components, from 
chips to data center buildings.

Like prior work, we focus on operational 
emissions; estimating lifecycle emis-
sions is a larger, future study.

We identified best practices that can 
reduce energy use by up to 100× and 
carbon emissions by up to 1,000× when 
compared to four orthodox choices: 
model, machine, mechanization, and 
map (4Ms), as follows:

1.	 Model: Selecting efficient ML 
model architectures while 
advancing ML quality, such 
as sparse models versus dense 
modes, can reduce computation 
by factors of ~5–10.

2.	 Machine: Using processors opti-
mized for ML training, such as 
tensor processing units (TPUs) 
and recent GPUs (for example, 
the V100 and A100), versus 
general-purpose processors can 
improve performance/watt by 
factors of 2–5.

3.	 Mechanization: Computing in 
the cloud rather than on prem-
ise improves data center energy 
efficiency, reducing energy 
costs by a factor of 1.4–2. (The 
cloud uses custom warehouses 
designed for energy efficiency, 
whereas on-premise data cen-
ters are inefficiently located in 
smaller, older spaces intended 
for other purposes.) 

4.	 Map: Moreover, cloud comput-
ing enables ML practitioners 
to pick the location with the 
cleanest energy, further reduc-
ing the gross carbon footprint 
by factors of 5–10. (Most data 
transmission power is for the 
network equipment of the 

Internet even when idle3; in 
comparison, shipping photons 
over fiber optics is relatively 
trivial. Using carbon-neutral 
clouds, such as Facebook and 
Google, further reduces the 
footprint to zero because the 
services match 100% of their 
operational energy use with 
renewable energy; we exclude 
those offsets. High-perfor-
mance computing data centers 
are efficient but cannot enable 
shifting to green locations.) 

Figure 1 illustrates how four good 
choices together reduce energy con-
sumption by 83× and carbon dioxide 
(CO2) emissions by 747× over four years 
while maintaining the same quality. 
The original modeled estimate rep-
resents training the Transformer model 
in 2017 on an ML-oblivious GPU (the 
2016 NVIDIA P100 was optimized for 
graphics, not ML)  in a typical data cen-
ter using an average energy mix (such as 
in Strubell et al.2). The yellow line shows 
optimizations possible in 2019; the 
green-line optimizations are possible 
today. In both cases, optimized ML hard-
ware reduces energy consumption sig-
nificantly, with newest-generation hard-
ware (TPU v4) providing an additional 
2.4× over the 2019 hardware (TPU v2).  

SELECTING EFFICIENT ML MODEL 
ARCHITECTURES WHILE ADVANCING 

ML QUALITY, SUCH AS SPARSE MODELS 
VERSUS DENSE MODES, CAN REDUCE 
COMPUTATION BY FACTORS OF 5–10.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 03,2023 at 20:31:20 UTC from IEEE Xplore.  Restrictions apply. 



TECHNOLOGY PREDICTIONS

20	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

Using efficient cloud data centers and 
a low-carbon data center region per 
Google’s 24/7 carbon-free energy (CFE) 
methodology further reduces the car-
bon footprint by another order of mag-
nitude (note the log scale y-axis), result-
ing in a 747-fold reduction in the carbon 
footprint compared to the original esti-
mate. In this article, gross CO2 emis-
sions are the carbon emissions resulting 
from a workload in a particular location 
before any compensating actions.

Supported by the results in Figure 1 
and in the “Case Study 1: Transformer 
Versus Evolved Transformer Versus 
Primer” section, we predict that if ML 
communities embrace these 4M best 
practices, the carbon footprint of ML 
training will shrink during this decade, 
as summarized in the following:

›› Two studies show the impact 
of best practices: a 750× emis-
sions reduction without a loss of 
accuracy from the Transformer 
(Figure 1) and a 14× emissions 
reduction from Generative Pre-
trained Transformer 3 (GPT-3) by 
the larger Generalist Language 
Model (GLaM), which improves 
accuracy.

›› Location choices, even within 
one country, can significantly 
impact the carbon footprint.

›› We provide the first report by 
a hyperscaler company of the 
percentage of its overall energy 
use devoted to ML training and 
inference.

›› We show that the carbon foot-
print of searching for better ML 

models can reduce the impact of 
downstream ML tasks by much 
more than the cost of the search.

›› We describe how following the 
4M best practices reduced the 
energy consumption and carbon 
footprint of training signifi-
cantly compared to the faulty 
estimates commonly cited.2,6,7

OVERVIEW OF ENERGY  
AND CO2-EQUIVALENT 
EMISSIONS FOR 
ML TRAINING
We estimate energy and carbon foot-
prints using the following terms:

›› CO2-equivalent emissions (CO2e) 
account for CO2 and all the other 
greenhouse gasses: methane, 
nitrous oxide, and so on.

›› Metric tons are the common 
CO2e unit of measure, abbrevi-
ated tCO2e, representing  
1,000 kg (2,205 lb).

›› Megawatt hours measure 
energy; 1 MWh equals 1 million 
W of electricity used continu-
ously for 1 h. One terawatt hour 
equals 1 million MWh.

›› Power usage effectiveness (PUE) 
is the industry standard metric 
of data center efficiency, defined 
as the ratio between total energy 
use (including all overheads, 
such as cooling) divided by the 
energy directly consumed by a 
data center’s computing equip-
ment. The average industry data 
center PUE in 2020 was 1.58 (58% 
overhead), while cloud providers 
had PUEs of ~1.1.5

›› Carbon intensity (metric tons per 
megawatt hour) is a measure of 
the cleanliness of a data center’s 
energy. The average data center 
carbon emissions in 2020 was 
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FIGURE 1. The reduction in gross carbon dioxide (CO2) emissions since 2017 by apply-
ing the 4M best practices (see the “Case Study 1: Transformer Versus Evolved Trans-
former Versus Primer” section). It shows large end-to-end improvements, broken down 
into four factors. The gross CO2 emissions here exclude Google’s carbon-neutral and 
100% renewable energy credits and reflect its 24/7 carbon-free energy methodology.5 
The yellow line is for the Evolved Transformer7 on TPU v2s in 2019, and the green line is 
for the Primer8 on TPU v4s in 2021; both types run in Google data centers. PUE: power 
usage effectiveness; CO2e: CO2-equivalent emissions.
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0.429 tCO2e/MWh, but the gross 
CO2e per megawatt hour can be 5× 
lower in some Google data centers.

The energy consumption of the serv-
ers performing a training task is pro-
portional to the number of processors 
used and the duration of the training run:

MWh = �hours to train × number of  
processors × average power  
per processor.

We include all server components in 
“processors” (including local memory, 
network links, and so on). Additionally, 

a data center consumes energy to power 
and cool hardware (for example, volt-
age transformation losses and cool-
ing equipment), which is captured by 
the PUE. Thus, the final formula for 
energy consumption:

MWh = �(hours to train× number of  
processors × average power 
per processor) × PUE.

We can then turn energy into car-
bon by multiplying it with the carbon 
intensity of the energy supply:

tCO2e = MWh × tCO2e per MWh.

The real-world values for many 
factors are readily available. ML 
practitioners usually publish the 
number and type of processors and 
hours to train, and the power consump-
tion of most hardware components is 
well known and can be accurately mea-
sured. Many cloud companies publish 
the PUE of their data centers. In com-
parison, carbon intensity is harder 
to obtain. For this article, we use the 
carbon intensity of Google data cen-
ters, derived from Figure 2. We hope 
other providers will publish metrics so 
that carbon intensity can be compared 
across data centers.
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FIGURE 2. The percentage of CFE by Google Cloud location in 2020. The map shows the percentage and how it changes by time of 
day. Chile has a high CFE percentage from 6 a.m. to 8 p.m. but not at night. The U.S. examples range from 19% CFE in Nevada to 93% 
in Iowa, which has strong prevailing winds during the night and day. (Source: https://sustainability.google/progress/energy/.)

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 03,2023 at 20:31:20 UTC from IEEE Xplore.  Restrictions apply. 



TECHNOLOGY PREDICTIONS

22	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

CASE STUDY 1: 
TRANSFORMER VERSUS 
EVOLVED TRANSFORMER 
VERSUS PRIMER
Many of the headline-grabbing advances 
in AI stem from deep neural networks 
(DNNs); indeed, three DNN leaders 
shared the 2018 Association for Com-
puting Machinery A.M. Turing Award. 
DNN computations have two phases: 
training, which constructs accurate 
models through an intensive compu-
tational process involving the iterative 
updating of parameters, and inference, 
which uses trained models to generate 
outputs from model inputs. ML prac-

titioners use different models for vari-
ous tasks: object recognition, language 
translation, and so on. Training “learns” 
parameters that raise the likelihood of 
correctly mapping from input to result. 
Unlike in traditional computing, the 
actual DNN code is relatively small. 
The “smarts” come from training DNNs 
from millions of labeled examples ver-
sus writing millions of lines of code.

The Transformer model debuted 
in 2017 and is used primarily for natu-
ral language processing (NLP). Its dis-
tinguishing feature is focusing atten-
tion on portions of its input. Two years 
later, So et al. used neural architecture 
search (NAS) to discover the Evolved 

Transformer model, which matched the 
Transformer’s quality scores but was 
~1.3× faster.8 In 2021, a different NAS 
found the Primer model, which again 
matched the quality scores but was 4.2× 
faster than the original Transformer.9

Figure 1 plots the end-to-end reduc-
tion in CO2e by applying the best prac-
tices from the beginning of the article. 
The reference point is the Transformer 
model trained on a P100 GPU in an 
average on-premise data center with 
the average PUE of 1.6 in 2017 and 
using the average 0.488 tCO2e/MWh. 
The practices (the 4Ms) are given in 
the following:

1.	 Model: In 2019, the best model 
was the Evolved Transformer; 
in 2021, it was the Primer.

2.	 Machine: Compared to the unop-
timized P100s from 2017, the 
ML-optimized TPU v2 in 2019 and 
TPU v4 in 2021 reduced energy 
consumption by 5.7 and 13.7×, 
respectively. This reduction was a 
function of improved logic (more 
specialized hardware), newer chip 
fabrication technology, and more 
efficient mapping of the training 
task to hardware (better utiliza-
tion of the functional units).10

3.	 Mechanization: The third point 
shows a reduction of 1.4× from 

the better PUE of Google’s cloud 
data center versus the average 
data center.

4.	 Map: A big surprise was how 
much the location of a data 
center affected carbon intensity 
(Figure 2). In 2019, the data cen-
ter in the U.S. region with the 
highest CFE score was in Okla-
homa, with a score of 96%, and 
in 2020, it was in Iowa, at 93%.

To summarize, following the 4M 
best practices yielded a 65× reduction 
in CO2e two years after the Transformer 
was introduced. Two years after that—
with ML model, hardware, and energy 
mix improvements—another 11× was 
possible, for an overall reduction of 
747×. These drastic improvements, as 
well as their trajectory through time, 
suggest that extrapolating current 
parameters to predict future CO2e is 
fraught with peril.

CASE STUDY 2: GPT-3 
VERSUS GLAM
Next is a large NLP model that received 
considerable attention in the ML com-
munity and the press in 2020: GPT-3 is an 
autoregressive language model with 175 
billion parameters, 10× more than any 
nonsparse language model at the time, 
and 100–1,000× more than most other 
ML models.11 To put GPT-3 into perspec-
tive, its predecessor, GPT-2, had 1.5 bil-
lion parameters, and the Transformer 
models used ≤0.2 billion. Developed by 
OpenAI, GPT-3 was trained on 10,000 
V100 GPUs in a Microsoft cloud data cen-
ter (the 2017 NVIDIA V100 is optimized 
for ML). A winner of the best paper award 
at the Conference and Workshop on Neu-
ral Information Processing Systems 
(NeurIPS), a recent GPT-3 paper already 
has >3,500 citations and made main-
stream media headlines. One benefit of 

CLOUD COMPUTING ENABLES ML 
PRACTITIONERS TO PICK THE LOCATION 
WITH THE CLEANEST ENERGY, FURTHER 

REDUCING THE GROSS CARBON 
FOOTPRINT BY FACTORS OF 5–10.
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large models such as GPT-3 is that they 
do not need to be retrained for every new 
task—called few-shot generalization—
unlike smaller models.

GLaM is a new language model using 
7× more parameters than GPT-3. It is a 
mixture-of-experts model that selec-
tively activates experts based on the 
input so that no more than 95 billion 
parameters (8%) are active per input 
token. The dense GPT-3 activates all  
175 billion parameters on every token. 
More parameters and sparsity enable 
GLaM to exceed GPT-3 on quality and 
efficiency.12 Figure 3 compares them. 
GPT-3 took 405 V100 years to train in 
2020. OpenAI trained in the Microsoft 
cloud to leverage a low PUE but with an 
energy mix that matched the U.S. data 
center average.5 In comparison, GLaM 
trained on TPU v4s in 2.8× fewer accel-
erator years, using 2.8× less energy than 
GPT-3. Additionally, GLaM ran in the 
Oklahoma data center, where the CO2e 
per megawatt hour were ~5× lower (0.088 
versus 0.429). The Evolved Transformer 
and Primer improve energy use and CO2e 
while maintaining quality scores, but 
GLaM betters all three metrics.

ML researchers are continuously 
improving the efficiency of large lan-
guage models through innovations in 
algorithms and model architectures. 
Only 18 months after GPT-3, GLaM can 
reduce the gross carbon footprint by 
~14× despite raising accuracy. These 
drastic improvements again show that 
extrapolating current ML trends to pre-
dict future ML energy use and CO2e can 
greatly overestimate consumption, as 
there are continuous, significant improve-
ments in algorithms and hardware.

OVERALL ML ENERGY 
CONSUMPTION
The preceding sections investigated 
the energy consumption of a single 

training task. Here, we discuss the 
overall footprint of all ML work-
loads at a major user, Google. Many 
hyperscalers regularly publish their 
energy consumption metrics. Accord-
ing to their sustainability reports, 
the annual energy consumption in 
2020 was 15.4 TWh for Google and 
10.8 TWh for Microsoft. These reports 
put the training energy of large mod-
els into perspective. Training GPT-3 
was ~0.012% of Microsoft’s energy 
consumption in 2020, and GlaM was 
~0.004% of Google’s. For further com-
parison, the portion of the 22,000 peo-
ple from 68 countries who in 2019 flew 
to attend the two major ML confer-
ences (NeurIPS and the Conference on 
Computer Vision and Pattern Recog-
nition) collectively had a CO2e impact 
that was likely ~10–100× higher than 
that of training all the ML models in 
this article.5

While Google’s overall energy con-
sumption increases as usage rises, our 

data show that despite the growth of 
ML applications, the ML portion of the 
company’s overall energy consump-
tion is not expanding. To estimate that 
fraction, we measured the energy con-
sumption (including data center over-
heads) of the following components:

›› All TPUs and GPUs in Google 
data centers, including associated 
dedicated servers and network-
ing equipment: Virtually all ML 
training executes on TPUs and 
GPUs, and most inference, as 
well. We can differentiate train-
ing versus inference runs on 
TPUs and GPUs.

›› Any CPU consumption attribut-
able to ML inference: No signif-
icant training was done solely 
on CPUs.

To estimate the CPU portion of infer-
ence, we inspected Google-Wide Pro-
filing results to measure the CPU 
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FIGURE 3. The parameters, accelerator years of computation, energy consumption, and 
gross CO2e for GPT-3 (V100 in 2020, in red) and GLaM (TPU v4 in 2021, in green). If 
instead of outperforming GPT-3 on quality scores, GLaM were trained only to match, it 
would halve the time, energy, and CO2e. Google’s renewable energy purchases further 
reduce the impact to zero.
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consumption of the libraries used for 
ML inference. We then converted CPU 
utilization into energy consumption 
by using sensors that measure server 
power. Our numbers likely overesti-
mate because some libraries are used 
in non-ML cases, as well. Also, we may 
double count some host CPUs that are 
already accounted for in the TPU/GPU 
measurements, and some GPU use is 
for graphics.

We retroactively performed these 
calculations based on data for one 
week of April in 2019, 2020, and 2021. 
Each time, the ML portion was 10–15% 
of Google’s total energy consumption, 
despite ML representing 70–80% of the 
FLOPS at Google. While ML use cer-
tainly increased during those years, 

algorithmic and hardware improve-
ments kept that expansion to a rate 
comparable with overall energy growth 
at the company. Across all three years, 
about three-fifths of the ML energy 
use was for inference, and two-fifths 
were for training. These measurements 
include all ML energy consumption: 
research, development, testing, and 
production. Consequently, we take the 
stable fraction for ML as a strong indi-
cation that despite ML’s increasing pop-
ularity, when following the 4M best 
practices, its energy consumption is not 

skyrocketing, contrary to commonly 
expressed fears. This stability may 
reflect economic factors in addition to 
technical ones: after all, everything has 
a budget, and budget limits encourage 
the efficient use of ML resources.

Worldwide data center energy con-
sumption is not growing quickly either. 
Masanet et al.4 observe that global data 
center energy consumption increased 
by only 6% from 2010 to 2018 despite 
data center computing capacity grow-
ing 550% through the same period and 
contrary to 2010 predictions of a 70% 
increase by 2018. One key factor was the 
shift from conventional data centers to 
cloud data centers. Not only are cloud 
data centers often more efficient, cloud 
servers typically have significantly 

higher utilization than on-premise 
ones. That enables the same workloads 
to be served with less hardware and thus 
less energy, just as books purchased 
for libraries are more frequently read 
than those bought for home use. As of 
2021, only 15–20% of all workloads have 
moved to the cloud,13 so there is plenty 
of headroom for cloud growth to replace 
inefficient on-premise data centers.

Finally, most cloud companies com-
pensate at least partially for their car-
bon emissions. In particular, Google 
(since 2017) and Facebook (since 2020) 

annually purchase enough renewable 
energy to match 100% of their use, so 
each megawatt hour of new consump-
tion is offset by one 1 MWh of new renew-
able energy, albeit not necessarily in the 
same location. Microsoft’s similar goal 
is for 2025. Thus, the net carbon impact 
of ML computations for some companies 
could be considered zero. Such multibil-
lion-dollar direct energy purchases by 
hyperscalers have substantially spurred 
the growth of renewable energy: in some 
countries, the companies are more sig-
nificant investors in renewable energy 
than government subsidies.14

ADDITIONAL FACTORS
For completeness, we will briefly address 
two other concerns about ML energy 
use: the impact of NAS, which may exe-
cute thousands of training runs as part 
of a single search—potentially explod-
ing overall energy consumption—and 
ML’s impact on client-side energy use. 
A commonly expressed concern is that 
automated methods might increase 
training energy consumption. As the 
name implies, NAS employs comput-
ers to find models, with higher quality 
and efficiency than human experts can 
achieve. NAS is generally not performed 
once per model training but once per 
problem domain + architectural search 
space combination. The Evolved Trans-
former and Primer are examples of 
the benefits of NAS.8,9 It has also been 
applied to find models that have better 
quality and run faster by adapting them 
to a given processor.15

The NAS producing the Evolved 
Transformer used 7.5 MWh. The use of 
the Evolved Transformer while train-
ing the large Meena model saved 15× 
the energy cost of the NAS.5 Finding the 
even faster Primer used only 6.2 MWh. 
Overall, NAS is a net environmental 
gain if a discovered model is trained 

GLOBAL DATA CENTER ENERGY 
CONSUMPTION INCREASED BY ONLY 

6% FROM 2010 TO 2018 DESPITE DATA 
CENTER COMPUTING CAPACITY GROWING 

550% THROUGH THE SAME PERIOD.
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more than a few times. Often, the more 
efficient models found by NAS are open 
sourced and reused hundreds and even 
thousands of times.5 Consequently, as a 
whole, it is likely that NAS reduces total 
ML energy consumption by producing 
more efficient models whose down-
stream use more than compensates for 
the initial search effort.

To estimate ML energy use on cli-
ent devices, Patterson et  al.16 studied 
mobile phones. Most modern phones 
have ML accelerators; for example, the 
Google Pixel 6 has an edge TPU, which 
runs most of the ML workload. Their 
upper bound for ML energy use on 
today’s mobile phones is 1.5%.

The estimated global energy use of 
the 6.6 billion mobile phones in 2022 
was 40 to 58 TWh, assuming nightly 
charging and accounting for charger 
inefficiency.16 The upper bound for 
ML on mobile phones is, then, 0.6 to  
0.9 TWh. Google’s ML server energy 
use in 2020 was ~3 to 4× higher than 
this conservative estimate of ML on all 
mobile phones. This calculation does 
not include the energy consumption of 
ML at other cloud companies, so serv-
er-side ML energy use clearly domi-
nates client-side use.

RELATED WORK
Henderson et  al.17 conducted a simi-
lar study that provides a framework 
to understand the potential climate 
impacts of ML research. They also 
offered a leaderboard to foster compe-
titions on reducing the CO2e of ML and 
a tool to collect energy use and CO2e 
from the preliminary training runs. 
Patterson et al,5 the authors of this 
article, produced a 22-page technical 
report that goes into greater detail on 
many of the issues discussed here.

Schwartz et  al.18 warn of the dan-
ger of “Red AI,” which focuses on 

model quality gains regardless of the 
training cost and CO2e. They encour-
age embracing “Green AI,” where the 
emphasis is on computing efficiency 
as well as model quality. Arguing that 
it can be difficult to measure energy 
and CO2e, they recommend minimiz-
ing the number of floating-point oper-
ations (FLOPs) to train a model. Alas, 
FLOPs are not a good metric, for time 

and energy can be uncorrelated with 
them. For example, automated ML 
found faster models that used 2.4×  
as many FLOPs.15 An underlying rea-
son is that main memory accesses are 
much slower and consume signifi-
cantly more energy than FLOPs today. 
A dynamic random-access memory 
access is ~6,000× the energy of 16-bit 
FLOPS (1,300 versus 0.21 pJ).10 Another 
reason is that scaling up the FLOPS per 
second is much easier for ML acceler-
ators than scaling up memory band-
width. To improve efficiency further, 
ML practitioners should focus more 
on reducing memory accesses than 
FLOPs. More successful attempts to 
simplify the calculation of energy are 
online calculators, such as the ML 
Emissions Calculator.5,19

The opening quote in this article is 
based on a 2019 project from the Uni-
versity of Massachusetts Amherst that 
estimated the environmental impact 
of training.2 More than 1,250 papers 

cite Strubell et al.2 as the source for the 
impact ML models have on carbon emis-
sions, including Bender et al.,20 Freitag 
et  al.,7 Schwartz et  al.18 Thompson et al,1 
and Thompson et  al.6 The study calcu-
lated the energy consumed and the car-
bon footprint of the NAS by So et  al.8 
that led to the Evolved Transformer. 
Their estimate (they did not run the NAS 
code) was 284 tCO2e for NAS; the actual 

number was only 3.2 tCO2e, a factor of 88 
smaller. The reasons for the overshoot 
include the following:

1.	 Since the authors of the original 
NAS paper didn’t include energy 
and emissions for Google sys-
tems, their estimate was based 
on older GPUs not optimized for 
ML instead of TPU v2 and on the 
average data center PUE and U.S. 
average carbon intensity instead 
of the real numbers for a Google 
data center (they used the P100; 
the most recent GPU available 
was the V100, which was much 
faster, in part because it was opti
mized for ML, unlike the P100). 
This difference explains 5×. 

2.	 There was also confusion about 
the computational cost of NAS. 
Described subtly in So et al.,8 the 
Evolved Transformer NAS used 
a small proxy task to search for 
the best models to save time, 

GOOGLE (SINCE 2017) AND FACEBOOK 
(SINCE 2020) ANNUALLY PURCHASE 

ENOUGH RENEWABLE ENERGY TO MATCH 
100% OF THEIR USE.
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money, and energy and then 
scaled up the found models to 
full size. However, Strubell et al.2 
assumed the search was done 
with full-size tasks. The result-
ing NAS computation estimate 
was another 18.7× too high.

The actual overshoot was 18.7× for 
computation and 5× for Google versus 
the average data center, so the real emis-
sions for the one-time search were 88× 
less (3.2 versus 284 tCO2e). The faulty 
estimates are understandable given the 
lack of access to internal information. 
It is likewise understandable that those 
estimates were propagated in other 
papers. Unfortunately, many papers 
confuse the one-time cost of the NAS of 
So et al.16 with the relatively tiny “every 
time” cost that is incurred from train-
ing (the NASs for the Evolved Trans-
former and Primer produce 1,347 and 
1,618× more CO2e, respectively, than 
their training). 

This confusion led them to believe 
Evolved Transformer used more than  
2 million GPU hours to train, cost 
millions of dollars, and its emissions 
were five times the lifetime of a car 
(284,019 kg).1,6

In reality, the training cost of the 
medium Evolved Transformer, which 
achieves the same accuracy level as 
the Transformer-big model,

›› 120 TPU v2 hours, not 2 million 
GPU hours, which is >15,000× less

›› US$40 to train on Google Cloud 
(four TPU v2s cost US$1.35/h), 
not millions of dollars, which is 
>50,000× less

›› Fewer than 2.4 kg of CO2e, or 
0.00004 car lifetime emis-
sions, not 284,019 kg and five 
car lifetimes, translating to 
120,000× less.

The gap is nearly as large as confus-
ing the CO2e from manufacturing a car 
with the CO2e from driving a car and 
then overestimating the production 
cost by ~100×. The gap between these 
quotes and actual measurements illus-
trates the importance of authors calcu-
lating and publishing energy consump-
tion and carbon footprints, as accuracy 
is difficult if estimated retrospectively.

ML workloads have rapidly grown 
in importance, raising legit-
imate concerns about their 

energy use. Fortunately, the real-world 
energy use trend of ML is fairly bor-
ing. While overall energy use at Google 
grows annually with greater consump-
tion, the percentage for ML held steady 
for the past three years, representing 
<15% of total energy use. Inference 
represents about three-fifths of the 
total ML energy use at Google, owing 
to the many-billion-user services that 
incorporate ML. GLaM, the largest nat-
ural language model trained in 2021, 
improved model quality yet produced 
14× less CO2e than training the previ-
ous state-of-the art model from 2020 
(GPT-3) and accounted for only 0.004% 
of Google’s annual energy.

Furthermore, we illustrated that in 
large-scale production ML deployments, 
minimizing emissions from training is 
not the ultimate goal. Instead, the com-
bined emissions of training and serving 
need to be minimized. Approaches such 
as NAS increase emissions but lead to 
more efficient serving and a strong over-
all reduction of the ML carbon footprint. 
Another perspective is that some con-
sider the carbon footprint to be erased 
entirely if a cloud provider matches 100% 
of its energy consumption with renew-
able energy, as Google and Facebook have 
done and as Microsoft will soon do.

While ML workloads exploded over 
the past decade, and while the number 
of computations per training run has 
similarly increased by orders of mag-
nitude, our data show that technology 
improvements have largely compen-
sated for this greater load. We believe 
that this consistent overall low per-
centage is testimony to the benefits of 
the following the 4M best practices:

›› Data center providers should 
publish the PUE, CFE percentage, 
and CO2e per megawatt hour per 
location so that customers who 
care can understand and reduce 
their energy consumption and 
carbon footprint.

›› ML practitioners should train 
using the most effective proces-
sors in the greenest data centers 
they have access to, which today 
is often in the cloud.

›› ML researchers should continue 
to develop more efficient ML 
models,8,9 such as by leverag-
ing sparsity12 and integrating 
retrieval into smaller models. 
They should also publish their 
energy consumption and carbon 
footprint to foster competition 
on more than just model quality 
and ensure accurate accounting 
of their work, which is difficult 
to do with precision post hoc.

These numbers may vary across com-
panies, but the 4M practices we have 
identified are applicable to virtually 
every ML training workload and open to 
all to use. As a result, we predict that if 
all ML communities embrace these 4M 
best practices, we can create a virtuous 
circle that will bend the curve so that in 
this decade we will see the total carbon 
footprint of ML training at first plateau 
and then shrink. Finally, we showed that 
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published studies overestimated the 
cost and carbon footprint of ML training 
by 100–100,000× because they didn’t 
have access to the right information or 
because they extrapolated point-in-time 
data without accounting for algorith-
mic and hardware improvements.

Climate change is important, so we 
must get the numbers right to ensure 
that we work on the biggest challenges. 
Many efforts are underway to reduce 
the operational energy and CO2e of 
ML training, as illustrated by the 4Ms. 
Thus, within information technology, 
we believe the biggest climate change 
challenge is not the operational cost of 
ML but more likely the lifecycle cost 
of manufacturing computing equip-
ment of all types and sizes: IT manu-
facturing for 2021 included 1.54 billion 
smartphones, 0.34 billion PCs, and 
0.01 billion data center servers.  
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