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Machine learning (ML) workloads have rapidly grown,
raising concerns about their carbon footprint. We
show four best practices to reduce ML training energy
and carbon dioxide emissions. If the whole ML field
adopts best practices, we predict that by 2030, total
carbon emissions from training will decline.

ver the past few years, a growing number of  elevating the discussion around carbon emissions in ML, some
papers have highlighted the carbon emissions  studies overestimated actual emissions. For example, Thompson
of machine learning (ML) workloads. While etal. extrapolated future ML energy use from what turned out
this work has been instrumental in rightfully  tobefaulty estimatesin another paper2 and concluded:

“The answers are grim: Training such a model
would cost US$100 billion and would produce as
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much carbon emissions as New
York City does in a month.”

Recent work highlights the complexi-
ties and nuances associated with carbon
accounting for ML and, more broadly,
computing workloads.3™ In this arti-
cle, we contribute the following:

) We describe four practices that
reduce the energy use and car-
bon emissions of ML workloads
by orders of magnitude relative
to traditional choices.

)» We show that these practices
have helped to keep ML under
15% of Google’s total energy use
for the past three years.

) We explain why published esti-
mates were 100-100,000x higher
than real carbon footprints.

Responsible artificial intelligence
(AI) is a broad topic; we focus on a sin-
gleissue that hasreceived much atten-
tion from the ML community and the
public: carbon emissions from ML
training. Emissions can be classified
as follows:

) Operational: the energy cost of
operating ML hardware, includ-
ing data center overheads

) Lifecycle: the embedded carbon
emitted during the manufac-
turing of all components, from
chips to data center buildings.

Like prior work, we focus on operational
emissions; estimating lifecycle emis-
sionsis alarger, future study.

We identified best practices that can
reduce energy use by up to 100x and
carbon emissions by up to1,000x when
compared to four orthodox choices:
model, machine, mechanization, and
map (4Ms), as follows:

. Model: Selecting efficient ML

model architectures while
advancing ML quality, such

as sparse models versus dense
modes, can reduce computation
by factors of ~5-10.

. Machine: Using processors opti-

mized for ML training, such as
tensor processing units (TPUs)
and recent GPUs (for example,
the V100 and A100), versus
general-purpose processors can
improve performance/watt by
factors of 2-5.

Internet even when idle3; in
comparison, shipping photons
over fiber optics is relatively
trivial. Using carbon-neutral
clouds, such as Facebook and
Google, further reduces the
footprint to zero because the
services match 100% of their
operational energy use with
renewable energy; we exclude
those offsets. High-perfor-
mance computing data centers
are efficient but cannot enable
shifting to green locations.)

SELECTING EFFICIENT ML MODEL
ARCHITECTURES WHILE ADVANCING
ML QUALITY, SUCH AS SPARSE MODELS
VERSUS DENSE MODES, CAN REDUCE
COMPUTATION BY FACTORS OF ~5-10.

. Mechanization: Computing in

the cloud rather than on prem-
ise improves data center energy
efficiency, reducing energy
costs by a factor of 1.4-2. (The
cloud uses custom warehouses
designed for energy efficiency,
whereas on-premise data cen-
ters are inefficiently located in
smaller, older spaces intended
for other purposes.)

. Map: Moreover, cloud comput-

ing enables ML practitioners
to pick the location with the
cleanest energy, further reduc-
ing the gross carbon footprint
by factors of 5-10. (Most data
transmission power is for the
network equipment of the

Figure 1 illustrates how four good
choices together reduce energy con-
sumption by 83x and carbon dioxide
(CO,) emissions by 747x over four years
while maintaining the same quality.
The original modeled estimate rep-
resents training the Transformer model
in 2017 on an ML-oblivious GPU (the
2016 NVIDIA P100 was optimized for
graphics, not ML) in a typical data cen-
ter using an average energy mix (such as
in Strubell etal.?). The yellow line shows
optimizations possible in 2019; the
green-line optimizations are possible
today. Inboth cases, optimized ML hard-
ware reduces energy consumption sig-
nificantly, with newest-generation hard-
ware (TPU v4) providing an additional
2.4x over the 2019 hardware (TPU v2).
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Using efficient cloud data centers and
a low-carbon data center region per
Google’s 24/7 carbon-free energy (CFE)
methodology further reduces the car-
bon footprint by another order of mag-
nitude (note the log scale y-axis), result-
ing in a 747-fold reduction in the carbon
footprint compared to the original esti-
mate. In this article, gross CO, emis-
sions are the carbon emissions resulting
from a workload in a particular location
before any compensating actions.

Supported by the results in Figure 1
and in the “Case Study 1: Transformer
Versus Evolved Transformer Versus
Primer” section, we predict that if ML
communities embrace these 4M best
practices, the carbon footprint of ML
training will shrink during this decade,
as summarized in the following:

= 1,000

)

~

Two studies show the impact

of best practices: a 750x emis-
sions reduction without a loss of
accuracy from the Transformer
(Figure 1) and a 14x emissions
reduction from Generative Pre-
trained Transformer 3 (GPT-3) by
the larger Generalist Language
Model (GLaM), which improves
accuracy.

Location choices, even within
one country, can significantly
impact the carbon footprint.

We provide the first report by

a hyperscaler company of the
percentage of its overall energy
use devoted to ML training and
inference.

We show that the carbon foot-
print of searching for better ML

100

747.4

82.7

57.4

-
o
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Training the Transformer on P100 in

Average Datacenter and Energy Mix in 2017 =

Modeling

+ Optimized
Hardware

+ Datacenter
CO,e/MWh

+ Datacenter
PUE

FIGURE 1. The reduction in gross carbon dioxide (CO5) emissions since 2017 by apply-
ing the 4M best practices (see the “Case Study 1: Transformer Versus Evolved Trans-
former Versus Primer” section). It shows large end-to-end improvements, broken down
into four factors. The gross CO, emissions here exclude Google's carbon-neutral and
1009% renewable energy credits and reflect its 24/7 carbon-free energy methodology.5
The yellow line is for the Evolved Transformer” on TPU v2s in 2019, and the greenline is
for the Primer® on TPU vis in 202 1; both types run in Google data centers. PUE: power
usage effectiveness; CO,e: CO5-equivalent emissions.
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models can reduce the impact of
downstream ML tasks by much
more than the cost of the search.
» We describe how following the
4M best practices reduced the
energy consumption and carbon
footprint of training signifi-
cantly compared to the faulty
estimates commonly cited.?®7

OVERVIEW OF ENERGY

AND CO,-EQUIVALENT
EMISSIONS FOR

ML TRAINING

We estimate energy and carbon foot-
prints using the following terms:

) CO,-equivalent emissions (CO,e)
account for CO, and all the other
greenhouse gasses: methane,
nitrous oxide, and so on.

Metric tons are the common
CO,e unit of measure, abbrevi-
ated tCO,e, representing

1,000 kg (2,205 1b).

Megawatt hours measure
energy; 1 MWh equals 1 million
W of electricity used continu-
ously for 1 h. One terawatt hour
equals 1 million MWh.

Power usage effectiveness (PUE)
isthe industry standard metric
of data center efficiency, defined
as the ratio between total energy
use (including all overheads,
such as cooling) divided by the
energy directly consumed by a
data center's computing equip-
ment. The average industry data
center PUE in 2020 was 1.58 (58%
overhead), while cloud providers
had PUEs of ~1.1.

Carbon intensity (metric tons per
megawatt hour) is a measure of
the cleanliness of a data center'’s
energy. The average data center
carbon emissions in 2020 was

~

~

~

~
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0.429tCO,e/MWh, but the gross
CO,e per megawatt hour can be 5x
lower in some Google data centers.

The energy consumption of the serv-
ers performing a training task is pro-
portional to the number of processors
used and the duration of the training run:

MWh = hours to train x number of
processors x average power
per processor.

We include all server components in
“processors” (including local memory,
network links, and so on). Additionally,

Oregon
90%

Nevada s

19%

adata center consumes energy to power
and cool hardware (for example, volt-
age transformation losses and cool-
ing equipment), which is captured by
the PUE. Thus, the final formula for
energy consumption:

MWh = (hours to trainx number of
processors x average power
per processor) x PUE.

We can then turn energy into car-
bon by multiplying it with the carbon
intensity of the energy supply:

tCO,e = MWh x tCO,e per MWh.

The Netherlands %

The real-world values for many
factors are readily available. ML
practitioners usually publish the
number and type of processors and
hourstotrain,andthe power consump-
tion of most hardware components is
well known and can be accurately mea-
sured. Many cloud companies publish
the PUE of their data centers. In com-
parison, carbon intensity is harder
to obtain. For this article, we use the
carbon intensity of Google data cen-
ters, derived from Figure 2. We hope
other providers will publish metrics so
that carbon intensity can be compared
across data centers.
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FIGURE 2. The percentage of CFE by Google Cloud location in 2020. The map shows the percentage and how it changes by time of
day. Chile has a high CFE percentage from 6 a.m. to 8 p.m. but not at night. The U.S. examples range from 19% CFE in Nevada to 93%
in lowa, which has strong prevailing winds during the night and day. (Source: https://sustainability.google/progress/energy/.)
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CASE STUDY 1.
TRANSFORMER VERSUS
EVOLVED TRANSFORMER
VERSUS PRIMER

Many of the headline-grabbing advances
in AI stem from deep neural networks
(DNNs); indeed, three DNN leaders
shared the 2018 Association for Com-
puting Machinery A.M. Turing Award.
DNN computations have two phases:
training, which constructs accurate
models through an intensive compu-
tational process involving the iterative
updating of parameters, and inference,
which uses trained models to generate
outputs from model inputs. ML prac-

Transformer model, which matched the
Transformer’s quality scores but was
~1.3x faster.® In 2021, a different NAS
found the Primer model, which again
matched the quality scores but was 4.2x
faster than the original Transformer.”

Figure 1plots the end-to-end reduc-
tion in CO,e by applying the best prac-
tices from the beginning of the article.
The reference point is the Transformer
model trained on a P100 GPU in an
average on-premise data center with
the average PUE of 1.6 in 2017 and
using the average 0.488 tCO,e/MWh.
The practices (the 4Ms) are given in
the following:

CLOUD COMPUTING ENABLES ML
PRACTITIONERS TO PICK THE LOCATION
WITH THE CLEANEST ENERGY, FURTHER

REDUCING THE GROSS CARBON

FOOTPRINT BY FACTORS OF 5—10.

titioners use different models for vari-
ous tasks: object recognition, language
translation, and so on. Training “learns”
parameters that raise the likelihood of
correctly mapping from input to result.
Unlike in traditional computing, the
actual DNN code is relatively small.
The “smarts” come from training DNNs
from millions of labeled examples ver-
sus writing millions of lines of code.
The Transformer model debuted
in 2017 and is used primarily for natu-
ral language processing (NLP). Its dis-
tinguishing feature is focusing atten-
tion on portions of its input. Two years
later, So et al. used neural architecture
search (NAS) to discover the Evolved

22 COMPUTER

1. Model: In 2019, the best model
was the Evolved Transformer;
in 2021, it was the Primer.

2. Machine: Compared to the unop-
timized P100s from 2017, the
ML-optimized TPUv2in 2019 and
TPUv4 in 2021 reduced energy
consumption by 5.7and 13.7x,
respectively. This reduction was a
function of improved logic (more
specialized hardware), newer chip
fabrication technology, and more
efficient mapping of the training
task to hardware (better utiliza-
tion of the functional units).10

3. Mechanization: The third point
shows areduction of 1.4x from

the better PUE of Google's cloud
data center versus the average
data center.

4. Map: A big surprise was how
much the location of a data
center affected carbon intensity
(Figure 2). In 2019, the data cen-
terin the U.S. region with the
highest CFE score was in Okla-
homa, with a score of 96%, and
in 2020, it was in Iowa, at 93%.

To summarize, following the 4M
best practices yielded a 65x reduction
inCO,etwoyearsafterthe Transformer
was introduced. Two years after that—
with ML model, hardware, and energy
mix improvements—another 11x was
possible, for an overall reduction of
747x. These drastic improvements, as
well as their trajectory through time,
suggest that extrapolating current
parameters to predict future COye is
fraught with peril.

CASE STUDY 2: GPT-3
VERSUS GLAM

Next is a large NLP model that received
considerable attention in the ML com-
munity and the pressin 2020: GPT-3isan
autoregressive language model with 175
billion parameters, 10x more than any
nonsparse language model at the time,
and 100-1,000x more than most other
ML models.! To put GPT-3 into perspec-
tive, its predecessor, GPT-2, had 1.5 bil-
lion parameters, and the Transformer
models used <0.2 billion. Developed by
OpenAl, GPT-3 was trained on 10,000
V100 GPUs in a Microsoft cloud data cen-
ter (the 2017 NVIDIA V100 is optimized
for ML). Awinner of the best paper award
at the Conference and Workshop on Neu-
ral Information Processing Systems
(NeurlIPS), a recent GPT-3 paper already
has >3,500 citations and made main-
stream media headlines. One benefit of
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large models such as GPT-3 is that they
do notneed to be retrained for every new
task—called few-shot generalization—
unlike smaller models.

GLaM is anew language model using
7x more parameters than GPT-3. It is a
mixture-of-experts model that selec-
tively activates experts based on the
input so that no more than 95 billion
parameters (8%) are active per input
token. The dense GPT-3 activates all
175 billion parameters on every token.
More parameters and sparsity enable
GLaM to exceed GPT-3 on quality and
efficiency.!? Figure 3 compares them.
GPT-3 took 405 V100 years to train in
2020. OpenAl trained in the Microsoft
cloud to leverage a low PUE but with an
energy mix that matched the U.S. data
center average.5 In comparison, GLaM
trained on TPU v4s in 2.8x fewer accel-
erator years, using 2.8x less energy than
GPT-3. Additionally, GLaM ran in the
Oklahoma data center, where the CO,e
per megawatt hour were ~5x lower (0.088
versus 0.429). The Evolved Transformer
and Primer improve energy use and CO,e
while maintaining quality scores, but
GLaM betters all three metrics.

ML researchers are continuously
improving the efficiency of large lan-
guage models through innovations in
algorithms and model architectures.
Only 18 months after GPT-3, GLaM can
reduce the gross carbon footprint by
~14x despite raising accuracy. These
drastic improvements again show that
extrapolating current ML trends to pre-
dict future ML energy use and CO,e can
greatly overestimate consumption, as
there are continuous, significant improve-
mentsin algorithms and hardware.

OVERALL ML ENERGY
CONSUMPTION

The preceding sections investigated
the energy consumption of a single

training task. Here, we discuss the
overall footprint of all ML work-
loads at a major user, Google. Many
hyperscalers regularly publish their
energy consumption metrics. Accord-
ing to their sustainability reports,
the annual energy consumption in
2020 was 154 TWh for Google and
10.8 TWh for Microsoft. These reports
put the training energy of large mod-
els into perspective. Training GPT-3
was ~0.012% of Microsoft's energy
consumption in 2020, and GlaM was
~0.004% of Google’s. For further com-
parison, the portion of the 22,000 peo-
ple from 68 countries who in 2019 flew
to attend the two major ML confer-
ences (NeurIPS and the Conference on
Computer Vision and Pattern Recog-
nition) collectively had a CO,e impact
that was likely ~10-100x higher than
that of training all the ML models in
this article.®

While Google's overall energy con-
sumption increases as usage rises, our

1,600

1,200

800

400

Accelerator
Years

Parameters
(Billions)

data show that despite the growth of
ML applications, the ML portion of the
company'’s overall energy consump-
tionisnotexpanding. To estimate that
fraction, we measured the energy con-
sumption (including data center over-
heads) of the following components:

) AlITPUs and GPUs in Google

data centers, including associated
dedicated servers and network-
ing equipment: Virtually all ML
training executes on TPUs and
GPUs, and most inference, as
well. We can differentiate train-
ing versus inference runs on
TPUs and GPUs.

Any CPU consumption attribut-
able to ML inference: No signif-
icant training was done solely
on CPUs.

~

To estimate the CPU portion of infer-
ence, we inspected Google-Wide Pro-
filing results to measure the CPU

1,287

Energy Gross CO,e
Consumption (tCOoe)
(MWh)

FIGURE 3. The parameters, accelerator years of computation, energy consumption, and
gross CO5e for GPT-3 (V100in 2020, inred) and GLaM (TPU v4in 2021, in green). If
instead of outperforming GPT-3 on quality scores, GLaM were trained only to match, it
would halve the time, energy, and CO,e. Google's renewable energy purchases further

reduce the impact to zero.
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consumption of the libraries used for
ML inference. We then converted CPU
utilization into energy consumption
by using sensors that measure server
power. Our numbers likely overesti-
mate because some libraries are used
in non-ML cases, as well. Also, we may
double count some host CPUs that are
already accounted for in the TPU/GPU
measurements, and some GPU use is
for graphics.

We retroactively performed these
calculations based on data for one
week of April in 2019, 2020, and 2021.
Each time, the ML portion was 10-15%
of Google’s total energy consumption,
despite ML representing 70-80% of the
FLOPS at Google. While ML use cer-
tainly increased during those years,

skyrocketing, contrary to commonly
expressed fears. This stability may
reflect economic factors in addition to
technical ones: after all, everything has
a budget, and budget limits encourage
the efficient use of ML resources.
Worldwide data center energy con-
sumption is not growing quickly either.
Masanet et al. observe that global data
center energy consumption increased
by only 6% from 2010 to 2018 despite
data center computing capacity grow-
ing 550% through the same period and
contrary to 2010 predictions of a 70%
increase by 2018. One key factor was the
shift from conventional data centers to
cloud data centers. Not only are cloud
data centers often more efficient, cloud
servers typically have significantly

GLOBAL DATA CENTER ENERGY
CONSUMPTION INCREASED BY ONLY
6% FROM 2010 TO 2018 DESPITE DATA
CENTER COMPUTING CAPACITY GROWING
550% THROUGH THE SAME PERIOD.

algorithmic and hardware improve-
ments kept that expansion to a rate
comparable with overall energy growth
at the company. Across all three years,
about three-fifths of the ML energy
use was for inference, and two-fifths
were for training. These measurements
include all ML energy consumption:
research, development, testing, and
production. Consequently, we take the
stable fraction for ML as a strong indi-
cation that despite ML's increasing pop-
ularity, when following the 4M best
practices, its energy consumption is not

24 COMPUTER

higher utilization than on-premise
ones. That enables the same workloads
tobe served with less hardware and thus
less energy, just as books purchased
for libraries are more frequently read
than those bought for home use. As of
2021, only 15-20% of all workloads have
moved to the cloud,'® so there is plenty
of headroom for cloud growth to replace
inefficient on-premise data centers.
Finally, most cloud companies com-
pensate at least partially for their car-
bon emissions. In particular, Google
(since 2017) and Facebook (since 2020)

annually purchase enough renewable
energy to match 100% of their use, so
each megawatt hour of new consump-
tionisoffsetby one1MWh of new renew-
able energy, albeit not necessarily in the
same location. Microsoft’s similar goal
is for 2025. Thus, the net carbon impact
of ML computations for some companies
could be considered zero. Such multibil-
lion-dollar direct energy purchases by
hyperscalers have substantially spurred
the growth of renewable energy: in some
countries, the companies are more sig-
nificant investors in renewable energy
than government subsidies.**

ADDITIONAL FACTORS

For completeness, we will briefly address
two other concerns about ML energy
use: the impact of NAS, which may exe-
cute thousands of training runs as part
of a single search—potentially explod-
ing overall energy consumption—and
ML's impact on client-side energy use.
A commonly expressed concern is that
automated methods might increase
training energy consumption. As the
name implies, NAS employs comput-
ers to find models, with higher quality
and efficiency than human experts can
achieve. NAS is generally not performed
once per model training but once per
problem domain + architectural search
space combination. The Evolved Trans-
former and Primer are examples of
the benefits of NAS.%? It has also been
applied to find models that have better
quality and run faster by adapting them
to a given processor.'”

The NAS producing the Evolved
Transformer used 7.5 MWh. The use of
the Evolved Transformer while train-
ing the large Meena model saved 15x
the energy cost of the NAS.® Finding the
even faster Primer used only 6.2 MWh.
Overall, NAS is a net environmental
gain if a discovered model is trained

WWW.COMPUTER.ORG/COMPUTER
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more than a few times. Often, the more
efficient models found by NAS are open
sourced and reused hundreds and even
thousands of times.> Consequently, as a
whole, it is likely that NAS reduces total
ML energy consumption by producing
more efficient models whose down-
stream use more than compensates for
the initial search effort.

To estimate ML energy use on cli-
ent devices, Patterson et al.!® studied
mobile phones. Most modern phones
have ML accelerators; for example, the
Google Pixel 6 has an edge TPU, which
runs most of the ML workload. Their
upper bound for ML energy use on
today’s mobile phones is 1.5%.

The estimated global energy use of
the 6.6 billion mobile phones in 2022
was 40 to 58 TWh, assuming nightly
charging and accounting for charger
inefficiency.'® The upper bound for
ML on mobile phones is, then, 0.6 to
0.9 TWh. Google’s ML server energy
use in 2020 was ~3 to 4x higher than
this conservative estimate of ML on all
mobile phones. This calculation does
not include the energy consumption of
ML at other cloud companies, so serv-
er-side ML energy use clearly domi-
nates client-side use.

RELATED WORK
Henderson et al.’” conducted a simi-
lar study that provides a framework
to understand the potential climate
impacts of ML research. They also
offered a leaderboard to foster compe-
titions onreducing the CO,e of ML and
a tool to collect energy use and CO,e
from the preliminary training runs.
Patterson et al> the authors of this
article, produced a 22-page technical
report that goes into greater detail on
many of the issues discussed here.
Schwartz et al.'® warn of the dan-
ger of “Red AI"” which focuses on

model quality gains regardless of the
training cost and COye. They encour-
age embracing “Green AI” where the
emphasis is on computing efficiency
as well as model quality. Arguing that
it can be difficult to measure energy
and COge, they recommend minimiz-
ing the number of floating-point oper-
ations (FLOPs) to train a model. Alas,
FLOPs are not a good metric, for time

cite Strubell et al.2 as the source for the
impact ML models have on carbon emis-
sions, including Bender et al.,20 Freitag
et al.” Schwartz et al.!® Thompson et al!
and Thompson et al.® The study calcu-
lated the energy consumed and the car-
bon footprint of the NAS by So et al.®
that led to the Evolved Transformer.
Their estimate (they did not run the NAS
code) was 284 tCO,e for NAS; the actual

GOOGLE (SINCE 2017) AND FACEBOOK
(SINCE 2020) ANNUALLY PURCHASE
ENOUGH RENEWABLE ENERGY TO MATCH
100% OF THEIR USE.

and energy can be uncorrelated with
them. For example, automated ML
found faster models that used 2.4x
as many FLOPs.'”> An underlying rea-
son is that main memory accesses are
much slower and consume signifi-
cantly more energy than FLOPs today.
A dynamic random-access memory
access is ~6,000x the energy of 16-bit
FLOPS (1,300 versus 0.21pJ).}° Another
reason is that scaling up the FLOPS per
second is much easier for ML acceler-
ators than scaling up memory band-
width. To improve efficiency further,
ML practitioners should focus more
on reducing memory accesses than
FLOPs. More successful attempts to
simplify the calculation of energy are
online calculators, such as the ML
Emissions Calculator.>*®

The opening quote in this article is
based on a 2019 project from the Uni-
versity of Massachusetts Amherst that
estimated the environmental impact
of training.2 More than 1,250 papers

number was only 3.2tCOye, afactor of 88
smaller. The reasons for the overshoot
include the following:

1. Sincethe authors of the original
NAS paper didn'tinclude energy
and emissions for Google sys-
tems, their estimate was based
on older GPUs not optimized for
ML instead of TPUv2 and on the
average data center PUEand U.S.
average carbon intensity instead
of the real numbers for a Google
data center (they used the P100;
the most recent GPU available
was the V100, which was much
faster, in part because it was opti-
mized for ML, unlike the P100).
This difference explains 5x.

2. There wasalso confusion about
the computational cost of NAS.
Described subtly in So etal.,® the
Evolved Transformer NAS used
a small proxy task to search for
the best models to save time,
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money, and energy and then
scaled up the found models to
full size. However, Strubell et al.2
assumed the search was done
with full-size tasks. The result-
ing NAS computation estimate
was another 18.7x too high.

The actual overshoot was 18.7x for
computation and 5x for Google versus
the average data center, so the real emis-
sions for the one-time search were 88x
less (3.2 versus 284 tCO2e). The faulty
estimates are understandable given the
lack of access to internal information.
It is likewise understandable that those
estimates were propagated in other
papers. Unfortunately, many papers
confuse the one-time cost of the NAS of
So et al.!® with the relatively tiny “every
time” cost that is incurred from train-
ing (the NASs for the Evolved Trans-
former and Primer produce 1,347 and
1,618x more CO,e, respectively, than
their training).

This confusion led them to believe
Evolved Transformer used more than
2 million GPU hours to train, cost
millions of dollars, and its emissions
were five times the lifetime of a car
(284,019 kg).1.6

In reality, the training cost of the
medium Evolved Transformer, which
achieves the same accuracy level as
the Transformer-big model,

) 120 TPU v2 hours, not 2 million
GPU hours, which is >15,000x less

) USS$40 to train on Google Cloud
(four TPU v2s cost USS1.35/h),
not millions of dollars, which is
>50,000x less

) Fewer than 2.4 kg of COye, or
0.00004 car lifetime emis-
sions, not 284,019 kg and five
car lifetimes, translating to
120,000x less.
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The gap is nearly as large as confus-
ing the CO,e from manufacturing a car
with the CO,e from driving a car and
then overestimating the production
cost by ~100x. The gap between these
quotes and actual measurements illus-
trates the importance of authors calcu-
lating and publishing energy consump-
tion and carbon footprints, as accuracy
is difficult if estimated retrospectively.

L workloads have rapidly grown
in importance, raising legit-
imate concerns about their
energy use. Fortunately, the real-world
energy use trend of ML is fairly bor-
ing. While overall energy use at Google
grows annually with greater consump-
tion, the percentage for ML held steady
for the past three years, representing
<15% of total energy use. Inference
represents about three-fifths of the
total ML energy use at Google, owing
to the many-billion-user services that
incorporate ML. GLaM, the largest nat-
ural language model trained in 2021,
improved model quality yet produced
14x less CO,e than training the previ-
ous state-of-the art model from 2020
(GPT-3) and accounted for only 0.004%
of Google's annual energy.
Furthermore, we illustrated that in
large-scale production ML deployments,
minimizing emissions from training is
not the ultimate goal. Instead, the com-
bined emissions of training and serving
need to be minimized. Approaches such
as NAS increase emissions but lead to
more efficient serving and a strong over-
all reduction of the ML carbon footprint.
Another perspective is that some con-
sider the carbon footprint to be erased
entirely ifa cloud provider matches 100%
of its energy consumption with renew-
able energy, as Google and Facebook have
done and as Microsoft will soon do.

While ML workloads exploded over
the past decade, and while the number
of computations per training run has
similarly increased by orders of mag-
nitude, our data show that technology
improvements have largely compen-
sated for this greater load. We believe
that this consistent overall low per-
centage is testimony to the benefits of
the following the 4M best practices:

) Data center providers should
publish the PUE, CFE percentage,
and CO,e per megawatt hour per
location so that customers who
care can understand and reduce
their energy consumption and
carbon footprint.

) ML practitioners should train
using the most effective proces-
sorsin the greenest data centers
they have access to, which today
is oftenin the cloud.

) ML researchers should continue
to develop more efficient ML
models,37 such as by leverag-
ing sparsity'? and integrating
retrieval into smaller models.
They should also publish their
energy consumption and carbon
footprint to foster competition
on more than just model quality
and ensure accurate accounting
of their work, which is difficult
to do with precision post hoc.

These numbers may vary across com-
panies, but the 4M practices we have
identified are applicable to virtually
every ML training workload and open to
all to use. As a result, we predict that if
all ML communities embrace these 4M
best practices, we can create a virtuous
circle that will bend the curve so that in
this decade we will see the total carbon
footprint of ML training at first plateau
and then shrink. Finally, we showed that
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TECHNOLOGY PREDICTIONS

published studies overestimated the
costand carbon footprint of ML training
by 100-100,000x because they didn't
have access to the right information or
because they extrapolated point-in-time
data without accounting for algorith-
mic and hardware improvements.
Climate change is important, so we
must get the numbers right to ensure
thatweworkonthebiggestchallenges.
Many efforts are underway to reduce
the operational energy and CO,e of
ML training, as illustrated by the 4Ms.
Thus, within information technology,
we believe the biggest climate change
challenge is not the operational cost of
ML but more likely the lifecycle cost
of manufacturing computing equip-
ment of all types and sizes: IT manu-
facturing for 2021 included 1.54 billion
smartphones, 0.34 billion PCs, and
0.01billion data center servers.

ACKNOWLEDGMENTS

We had a great deal of help from others
along the way for an earlier study [16]
that eventually led to this version of the
article. Emma Strubell made several
suggestions for the prior article, includ-
ing the recommendation to examine
giant NLP models. Christopher Berner,
Ilya Sutskever, OpenAl, and Microsoft
shared information about GPT-3. Dmi-
try Lepikhin and Zongwei Zhou did a
great deal of work to measure the per-
formance and power of GPUs and TPUs
in Google data centers. Hallie Cramer,
Anna Escuer, Elke Michlmayr, Kelli
Wright, and Nick Zakrasek helped with
the data and policies for energy and
COye at Google. Talia Ringer provided
helpful suggestions on how to better
present related work.

REFERENCES
1. N.C.Thompson, K. Greenewald,
K. Lee,and G. F. Manso, “Deep

28 COMPUTER

10.

learning’s diminishing returns: The
cost of improvement is becoming
unsustainable,” IEEE Spectr., vol. 58,
no. 10, pp. 50-55, 2021, doi: 10.1109/
MSPEC.2021.9563954.

E. Strubell, A. Ganesh, and A. McCal-
lum, “Energy and policy consider-
ations for deep learning in NLP,” in
Proc. Annu. Meeting Assoc. Comput.
Linguistics, 2019, pp. 13,693-13,696.
J. Koomey and E. Masanet, “Does
not compute: Avoiding pitfalls
assessing the Internet’s energy and
carbon impacts,” Joule, vol. 5, no. 7,
pp. 1625-1628, 2021, doi: 10.1016/j.
joule.2021.05.007.

. E.Masanet, A. Shehabinuoa, L.

Smith, and J. Koomey, “Recalibrat-
ing global datacenter energy-use
estimates,” Science, vol. 367, no. 6481,
2020, doi: 10.1126/science.aba3758.
D. Pattersonetal., “Carbon emissions
and large neural network training,”
2021, arxiv:2104.10350.

N. C. Thompson, K. Greenewald, K.
Lee, and G. F. Manso, “The computa-
tional limits of deep learning,” 2020,
arxiv:2007.05558.

C. Freitag, M. Berners-Lee, K. Wid-
dicks, B. Knowles, G. S. Blair,and A.
Friday, “The real climate and trans-
formative impact of ICT: A critique of
estimates, trends, and regulations,”
Patterns, vol. 2, no. 9, p. 100,340, 2021,
doi: 10.1016/j.patter.2021. 100340.
D.R. So, C.Liang,and Q. V. Le, “The
evolved transformer,” in Proc. Int.
Conf. Mach. Learn., pp. 6010-6022.
D.R. So, W. Marike, H. Liu, Z. Dai,

N. Shazeer,and Q. V. Le, “Primer:
Searching for efficient transformers
forlanguage modeling,” in Proc. Conf.
Neural Inf. Process. Syst., 2021.

N. Jouppietal., “Ten lessons from
three generations shaped Google’s
TPUvVA4i,” in Proc. Int. Symp. Comput.
Arch., 2021, pp. 1-14.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T.B.Brownetal., “Language models are
few-shotlearners,” in Proc. Conf. Neural
Inf. Process. Syst., pp. 1877-1901, 2020.
N. Duetal., “GLaM: Efficient scaling
oflanguage models with mixture-
of-experts,” 2021, arxiv:2112.06905.
B. Evans, “Amazon shocker: CEO
Jassy says cloud less than 5% of
allIT spending,” Cloudwars, 2021.
https://cloudwars.co/amazon/
amazon-shocker-ceo-jassy-cloud
-less-than-5-percent-it-spending/

S. Schechner, “Amazon and other
tech giants race to buy up renewable
energy,” The Wall Street Journal, Jun.
23,2021. [Online]. Available: https://
www.wsj.com/articles/amazon
-and-other-tech-giants-race-to-buy
-up-renewable-energy-11624438894
S.Lietal., “Searching for fast model
families on datacenter accelerators,”
in Proc. Conf. Comput. Vis. Pattern
Recognit., 2021.

D. Patterson et al., “Energy analysis of
smartphones and machine learning’s
role,” submitted for publication.

P. Henderson, J. Hu, J. Romoff, E.
Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting
of the energy and carbon footprints
of machine learning,” J. Mach. Learn.
Res., pp. 8085-8095, 2020.

R. Schwartz, J. Dodge, N. A. Smith,
and O. Etzioni, “Green AI” Commun.
ACM, vol. 63, no. 12, pp. 54-63, 2020,
doi: 10.1145/3381831.

A.Lacoste, A. Luccioni, V. Schmidt,
and T. Dandres, “Quantifying the
carbon emissions of machine learn-
ing,” 2019, arxiv:1910.09700.

E. M. Bender, T. Gebru, A. Mcmillan-
Major, and S. Shmitchell, “On the
dangers of stochastic parrots: Can
language models be too big?” in Proc.
ACM Conf. Fairness, Accountability,
Transparency, 2021, pp. 610-623, doi:
10.1145/3442188.3445922.

WWW.COMPUTER.ORG/COMPUTER

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 03,2023 at 20:31:20 UTC from IEEE Xplore. Restrictions apply.



