Check for
Updates

Reflections on trusting distributed trust

Emma Dauterman”
UC Berkeley

Vivian Fang’
UC Berkeley

Abstract

Many systems today distribute trust across multiple parties
such that the system provides certain security properties if
a subset of the parties are honest. In the past few years, we
have seen an explosion of academic and industrial crypto-
graphic systems built on distributed trust, including secure
multi-party computation applications (e.g., private analytics,
secure learning, and private key recovery) and blockchains.
These systems have great potential for improving security
and privacy, but face a significant hurdle on the path to
deployment. We initiate study of the following problem: a
single organization is, by definition, a single party, and so
how can a single organization build a distributed-trust sys-
tem where corruptions are independent? We instead consider
an alternative formulation of the problem: rather than en-
suring that a distributed-trust system is set up correctly by
design, what if instead, users can audit a distributed-trust
deployment? We propose a framework that enables a devel-
oper to efficiently and cheaply set up any distributed-trust
system in a publicly auditable way. To do this, we identify
two application-independent building blocks that we can use
to bootstrap arbitrary distributed-trust applications: secure
hardware and an append-only log. We show how to leverage
existing implementations of these building blocks to deploy
distributed-trust systems, and we give recommendations for
infrastructure changes that would make it easier to deploy
distributed-trust systems in the future.

CCS Concepts

« Security and privacy — Distributed systems security;

Keywords

distributed trust, multi-party computation

“Equal contribution.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotNets °22, November 14-15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564089

Natacha Crooks Raluca Ada Popa
UC Berkeley UC Berkeley
ACM Reference Format:

Emma Dauterman, Vivian Fang, Natacha Crooks, and Raluca Ada
Popa. 2022. Reflections on trusting distributed trust. In The 21st
ACM Workshop on Hot Topics in Networks (HotNets *22), November
14-15, 2022, Austin, TX, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3563766.3564089

1 Introduction

Distributing trust is a powerful tool for building efficient
systems with strong privacy and integrity properties. A
distributed-trust system is deployed across n parties (we will
subsequently refer to these as trust domains) where, if there
are no more than f independent corruptions, the system pro-
vides certain security, privacy, and/or integrity properties. In
the past few years, we’ve seen an explosion of academic and
industrial cryptographic systems built on distributed trust;
some applications are based on secure multi-party compu-
tation [9, 34, 86] (e.g. private search [23, 24, 64, 82], private
analytics [7, 11, 19, 27, 42] private media delivery [38], pri-
vate blocklist lookups [46], private DNS [72], anonymous
messaging [17, 20, 28, 48, 49, 84], and cryptocurrency wal-
lets [30, 31, 45, 63, 67, 70, 75]), while others are based on
Byzantine fault-tolerant consensus and blockchains [6, 8, 15,
25, 36, 37, 47, 50, 56, 88].

In this paper, we initiate the academic study of an often
overlooked challenge that distributed-trust systems face on
the path to deployment: bootstrapping a distributed-trust sys-
tem is surprisingly difficult. Distributed-trust systems only
provide strong security guarantees insofar as there is no
central point of attack that allows an attacker to compromise
more than an application-specific threshold of parties. Many
academic works simply assume the existence of multiple
non-colluding servers [20, 23, 24, 28, 38, 38, 46, 82], but an
application developer that wants to deploy a distributed-trust
system faces difficult questions: who should have adminis-
trative control over the different trust domains, and how do
you convince another party that you do not control to run
your system? We study the difficulties developers have faced
when deploying distributed-trust systems in §2.

To make this challenge more concrete, consider a simple
application that provides backups for secret keys (e.g., for
end-to-end encrypted messaging or cryptocurrency wallets).
The user splits its secret key across different trust domains via
secret sharing [71]. Therefore, even if the attacker steals se-
cret shares from all but one of the trust domains, the attacker
cannot learn users’ secret keys (Figure 1). As a strawman,

https://doi.org/10.1145/3563766.3564089
https://doi.org/10.1145/3563766.3564089
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563766.3564089&domain=pdf&date_stamp=2022-11-14

HotNets ’22, November 14-15, 2022, Austin, TX, USA

Trust Q Trust
/ domain 0 / domain 0
- Trust Trust
Apphcatlon\ £ : - \
developer domain 1 : Application domain 1

developer
Application developer bootstraps Compromised application developer
systems for storing secret keys : cannot access user’s secret key

User

Figure 1: The application developer sets up a distributed-trust
system for secret-key backups. The developer should not be
a central point of attack in the system.

the application developer could deploy virtual machines on
different cloud providers so that different trust domains cor-
respond to different cloud providers. The problem with this
strawman solution is that the application developer still has
administrative control over the virtual machines and so is
a central point of attack: if the attacker compromises the
developer’s credentials, the attacker can easily recover every
user’s secret key.

To achieve strong security guarantees in practice, we
would like trust domains to be truly independent so that
there is no single point of failure. For security, compromis-
ing any system component should always ideally compro-
mise at most one trust domain. For convenience, a developer
should ideally be able to set up a distributed-trust deploy-
ment cheaply and easily. In reality, absolute separation is
very hard to achieve given the architecture of today’s sys-
tems, and so we must settle for some approximation of inde-
pendence. One good approximation of independence would
be to have the application developer coordinate with and
cede administrative control to different organizations that
manage servers running on different cloud providers with
different hardware, potentially even in different geographic
locations [1, 27, 33, 81]. In this way, even if the developer’s
credentials are compromised, the attacker cannot subvert
every trust domain and compromise the entire system. While
this first attempt provides security, it does not provide conve-
nience, as it requires time-consuming and expensive human
coordination across organizations.

Thus we reach an impasse: how can an application de-
veloper bootstrap a distributed-trust system without herself
becoming a central point of attack?

It is impossible to bootstrap trust out of nothing. We con-
sider an alternative formulation of the bootstrapping prob-
lem: instead of ensuring that a system distributes trust cor-
rectly by design, what if users can audit a distributed-trust
deployment? We are inspired by the widely deployed cer-
tificate transparency infrastructure [51] where, instead of
preventing certificate authorities (CAs) from issuing bad cer-
tificates, users can simply detect CA misbehavior. In our
setting, we also provide transparency: rather than guaran-
teeing that the system always distributes trust correctly, we

39

E. Dauterman, V. Fang, N. Crooks, and R. A. Popa

instead only guarantee that the user will be able to detect
whenever the system does not execute the expected code in dif-
ferent trust domains. Moreover, the user will obtain a publicly
verifiable proof of misbehavior.

We propose a framework that enables a non-expert appli-
cation developer to deploy a distributed-trust system in a pub-
licly auditable way without human-level cross-organization
coordination. To do this, we identify two core, application-
independent building blocks from which an application de-
veloper can bootstrap any distributed-trust application: se-
cure hardware and an append-only log. While both of these
building blocks are themselves challenging to build and in-
troduce additional assumptions, as a community, we have
already built reasonable approximations of both (§4) that we
can leverage to build arbitrary distributed-trust applications.

To provide public auditability, we use secure hardware to
attest to the code running in each trust domain, and we use
the append-only log to allow the developer to commit to the
application code. Secure hardware such as trusted execution
environments (TEEs) [4, 13, 21, 53, 57] allow the client to
verify code integrity (i.e. the secure hardware is running the
code that the client thinks it should be running). To learn
what code each trust domain should be running, the client
can check an application-independent, append-only log (we
discuss different possible implementations of such a log in
§4). The client can query the log for a hash of the code that
the application developer has committed to and then check
that the code run by that trust domain matches the code
in the log. The developer must publish her code to allow
clients to inspect it and check that it hashes to the value in
the append-only log.

Because we use secure hardware, it might seem like dis-
tributed trust is unnecessary now: we can simply run the
entire application inside of secure hardware. However, this
would make a single type of secure hardware a central point
of attack. For example, if we run the application inside Intel
SGX and an attacker finds an exploit in SGX, then they can
compromise the security of the entire system (this seems
plausible given the history of attacks on SGX [18, 35, 65, 68,
76,77, 79, 80]). Many systems use distributed trust precisely
because they do not want security of the entire system to
reduce to the security of a TEE. To address this issue, we set
up our system to split trust across multiple trust domains
and use heterogeneous secure hardware.

We demonstrate how organizations can easily bootstrap a
distributed-trust application by building on cloud offerings
for secure hardware and deployed certificate transparency
infrastructure [51]. While it is possible to use only existing
infrastructure, we also describe infrastructure-level changes
that would make the distributed-trust ecosystem more effi-
cient and sustainable. To demonstrate the feasibility of our
framework, we implement and evaluate a prototype (§5).

Reflections on trusting distributed trust

Limitations. Our proposal still has several limitations. The
first main drawback is the reliance on secure hardware.
We can prevent secure hardware from becoming a central
point of attack by using heterogeneous secure hardware.
The second drawback has to do with performance: running
an running an application inside a TEE is more expensive
than running it natively (§5). In §4.2, we describe how se-
cure hardware manufacturers could design TEEs and how
cloud providers could offer services specifically tailored to
distributed-trust systems to minimize this overhead.

2 Distributed-trust deployments today

We start by examining the challenges organizations face in
deploying distributed-trust applications today. We base our
discussion of organizations’ solutions on published docu-
mentation, including whitepapers and blog posts.

Privacy-preserving analytics. Prio [19] splits trust across
two servers to compute aggregate statistics without reveal-
ing individual users’ data and has been deployed for Firefox
telemetry [27] and COVID-19 exposure notification analyt-
ics [7]. For Firefox telemetry, Firefox runs one server and the
ISRG (the public-benefit corporation behind Let’s Encrypt,
which offers free TLS certificates) runs the other. The COVID-
19 exposure notification system computes statistics across
iOS and Android users where the ISRG and the National
Institute of Health each run a server. To enable other organi-
zations to easily run a Prio system, the ISRG has announced
Divvi Up, a service where the ISRG acts as the second trust
domain for a Prio deployment (the organization building the
application acts as the “first trust domain”) [1, 42].

While Divvi Up will make it easier for organizations to
deploy private analytics systems [11, 19], it still does not
enable general-purpose distributed-trust systems. Moreover,
the challenges ISRG faced in setting up Divvi Up illustrate
just how hard it is to set up a distributed-trust system cor-
rectly [32, 33]. For example, debugging and running inte-
gration tests now must take place across organizations that
don’t have a common release process or deployment system.

Digital advertising. Meta recently announced their Private
Lift Measurement solution [60] in which Meta and an ad-
vertiser run a multi-party computation protocol [9, 34, 86].
Multi-party computation is a cryptographic tool that allows
multiple parties to jointly compute some function over their
secret inputs such that the parties only learn the output of
the computation (and not the other parties’ secret inputs). In
Meta’s use-case, the advertiser can learn how their campaign
is doing without revealing unnecessary information to Meta
or the advertiser. Even with Meta’s resources, Meta reported
that it initially took months to onboard a new advertiser [66].

Private DNS. Cloudflare, Apple, and Fastly authored an IETF
draft for oblivious DNS over HTTPS that splits trust between

40

HotNets *22, November 14-15, 2022, Austin, TX, USA

aproxy and a resolver such that neither learns both the user’s
IP address and query [44, 72, 81]. Internet service providers
PCCW, SURF, and Equinix have committed to launching
proxies, enabling the set of organizations running proxies to
be disjoint from the set of those operating resolvers.

Permissioned ledgers with infrastructure providers. To
run a new ledger, organizations need to start many nodes
quickly. Infrastructure providers like Blockdaemon [10],
Alchemy [3], or Figment [29] offer nodes as a service. For
example, Blockdaemon provides end-to-end nodes for per-
missioned ledgers like Diem [8] and Hyperledger Fabric [6]
(among many others). However, these infrastructure providers
are themselves centralized; compromising a provider like
Blockdaemon could enable an attacker to compromise a sig-
nificant fraction of system nodes. The existence of these
infrastructure providers illustrates that organizations need a
way to easily add nodes to ledger systems.

Financial custody. Users transfer cryptocurrency by sign-
ing transactions, and so transaction signing keys can secure
millions of dollars. Many financial custody companies de-
ploy solutions where the signing key is split across hard-
ware security modules (HSMs), and the HSMs run a multi-
party computation to generate a signature on a transac-
tion [30, 31, 45, 63, 67, 70, 75]. In this way, no HSM ever
holds the entire signing key.

A limitation of the financial custody companies we sur-
veyed is that they only provide security if the company is
honest at setup time. One company deploys and maintains
all of the secure hardware, and the end-user cannot check
that the system is set up and distributes trust in the way that
the company claims. Furthermore, if the company locks itself
out of its machines to defend against post-setup compromise,
there is no way to patch bugs or push updates.

2.1 Our findings
The applications we survey fall into one of two categories:

o The application setup was challenging, application-specific,
and required cross-organization coordination.

o The application architecture compromises on distributed
trust or functionality in some way (beyond what we
could reasonably hope for).

In the first category, we have the ISRG’s Divvi Up, Meta’s
Private Lift Measurement, and oblivious DNS. In all of these
cases, the system splits trust across organizations correctly,
but the developers had to overcome significant hurdles to
coordinate across organizations. In the second category, we
have some permissioned ledger deployments and financial
custody solutions. The challenges we see in these deploy-
ments illustrate how difficult it is to truly eliminate a central
point of attack, especially as the number of parties grows
(e.g. for permissioned ledgers).

HotNets ’22, November 14-15, 2022, Austin, TX, USA

Going forward. While applications in the first category
provide strong security guarantees, setting up this type of
deployment is simply too difficult for many small organi-
zations. In the remainder of this paper, we describe how a
developer can set up a distributed-trust application without
expensive, cross-organization coordination.

3 System overview

We start by describing the building blocks necessary to boot-
strap arbitrary distributed-trust applications (§3.1), then de-
scribe our system architecture (§3.2), and finally state the
properties our system does and does not provide (§3.3).

3.1 Building blocks

Our system requires two core, application-independent build-
ing blocks: secure hardware and an append-only log.

Secure hardware. Secure hardware should be able to attest
to the code that is running. In particular, the client should
be able to verify that it is communicating with a correctly
provisioned piece of secure hardware running software that
hashes to a particular value. In addition, if a developer is
running an integrity-preserving application, the secure hard-
ware should isolate memory or detect tampering, and for
privacy-preserving applications, the secure hardware should
also encrypt the memory contents. Existing industrial [4, 57]
and academic [13, 21, 53] TEEs provide these properties (note
that because TEEs generally do not protect memory access
patterns [14, 39, 52, 54, 59, 69, 78, 85], developers writing
privacy-preserving applications should ensure that memory
access patterns do not reveal secret data). In §4.2, we discuss
future alternatives to TEEs.

Append-only log. The append-only log should provide
integrity: once an entry is added, it cannot be altered or
deleted. This log could be implemented as a permissioned
ledger [6, 8] or a centrally maintained log that permits public
auditing [5, 16, 22, 41, 51, 58, 73, 74]; the only requirement is
that the log itself does not become a central point of attack.
Using an append-only log to bootstrap distributed trust
initially seems contradictory: if we already have an append-
only log built on distributed trust, why do we need to boot-
strap distributed trust? The key distinction here is that the
append-only log is not application-specific. We want to use
some application-independent log to bootstrap an arbitrary
application easily. We will show how to do this with the
currently deployed certificate transparency log [51] (§4.1).

3.2 System architecture

We describe the architecture of a system that distributes
trust across n trust domains (Figure 2). Each trust domain
runs a server equipped with secure hardware. Ideally trust
domains should leverage different types of secure hardware
to minimize the chance that an exploit in one type of secure

41

E. Dauterman, V. Fang, N. Crooks, and R. A. Popa

Trust domain 0
i) 111
Trust :
— |domain 1 —
Application { User
developer
Log server : = Log server

Developer runs update User interacts with system

Trust
domain 1

Figure 2: System architecture. We show two trust domains
for simplicity, but in practice the number of trust domains
is application-dependent. Trust domain 0 is run by the appli-
cation owner without any secure hardware.

hardware compromises the entire system. The application
developer can run one trust domain on her own without any
secure hardware (denoted as “trust domain 0” in Figure 2).

Note that for applications with a small number of trust
domains, it is possible to run each trust domain on a differ-
ent type of secure hardware. For applications with a large
number of trust domains, the fact that there are a compar-
atively small number of secure hardware vendors means
that some trust domains might have to use the same type of
secure hardware, potentially introducing correlated corrup-
tions (the application only provides security or privacy if the
attacker can compromise more than an application-specific
threshold of trust domains). We discuss how to improve this
shortcoming moving forward in §4.2.

The application developer and client should also be able
to interact with an append-only log. The developer can post
code updates here, and the client can then check that the
trust domains are running the correct code.

3.3 System properties

Given a distributed-trust application with n trust domains
that provides security if at least ¢ are honest, we provide the
following guarantees.

Auditable by client. Given access to a shared append-only
log, the client can check that each of the n trust domains
contains a secure hardware element running the code the
application developer committed to. The log ensures that the
application developer commits to the same code for all clients.
Moreover, if the secure hardware is running code that does
not correspond to the hash published in the log, the client
obtains a publicly verifiable proof that the secure hardware
was running the wrong code. The developer must also open-
source her code so that clients can inspect the published
code to make sure that it does what the developer claims and
check that the hash of the published code matches the hash
stored in the log. We provide security if the published code
is running correctly in at least ¢ trust domains.

Reflections on trusting distributed trust

Simple for application developer. Our system enables
application developers to bootstrap distributed-trust systems
using existing cloud resources and infrastructure. Human-
level cross-organization coordination is not necessary.

Supports code updates. Application developers can se-
curely update their code. Code updates are necessary to fix
security-critical bugs and support new features. Clients learn
when the code running in different trust domains is updated,
and they can check that the new code matches the hash
in the log. Moreover, clients can monitor the log to make
sure that the trust domains correctly update to the new code
when the developer publishes an update. Because the code
is open-source, clients can check the contents of updates.

Non-goals. We do not defend against implementation bugs
or backdoors. By examining the application code, the client
can gain confidence that the code is doing what the appli-
cation developer claims, but different implementations or
formal verification would be necessary to protect against
correlated compromise due to the implementation. Similarly,
we can only provide limited protection in the case where
the developer is herself the attacker and is allowed to push
code updates; the developer can insert backdoors that could
be very challenging to detect. Therefore for highly sensitive
applications, a developer might consider disabling her ability
to push code updates to defend against future compromise.

4 System design

We now describe our system design. We first show how
to bootstrap distributed trust today (§4.1). We then outline
infrastructure-level changes that would better enable boot-
strapping in the future (§4.2).

4.1 Deployment today

To bootstrap distributed trust today, we can build on top of
a TEE like Intel SGX or AWS Nitro (for the secure hardware)
and certificate transparency (for the append-only log). Cloud
providers already provide access to TEEs, with Microsoft
Azure supporting Intel SGX and AWS supporting the Nitro
enclave. Certificate transparency is a widely deployed sys-
tem for web certificates [51], and so using the techniques
we describe below, an application developer can deploy a
distributed-trust application immediately. As a starting point,
we first explain how deployment without updates works, and
then we show how to layer on support for updates.

Starting point: deployment without updates. Without
updates, the system design is straightforward: the devel-
oper seals the application code directly inside a TEE in each
trust domain. The client can then use the TEE’s attestation
mechanism to receive a hash of the sealed code, which it can
compare to the hash in the append-only log. If the two match,
the client knows that it is communicating with a secure en-
clave that is running the code that the application developer

42

HotNets *22, November 14-15, 2022, Austin, TX, USA

committed to. Because the code is sealed onto the enclave,
the application developer cannot change the code, which
provides security, but also makes code updates impossible.

Supporting updates. Application developers need the abil-
ity to fix security-critical bugs and support new features.
Supporting updates with current TEEs is challenging be-
cause existing TEEs do not support updating the existing
code while maintaining the current state of the running
application. Moreover, the client needs some way to learn
when an update has happened and check that the update
was performed correctly. Because we need to defend against
malicious updates, we cannot make any assumptions about
the behavior of the new code (e.g., we cannot assume that
the new code will correctly alert the client that an update
occurred).

To address these problems, we add a layer of indirection.
Instead of sealing the developer’s code directly on to the en-
clave, we instead seal an application-independent framework
on to the TEE. This application-independent framework ac-
cepts application code as input and executes it. When the
application developer wants to update the code running, she
sends the new code to the TEE. Before the TEE starts running
the new code, it alerts the client that an update is about to
take place and sends the user a hash of the updated code. The
client can check this hash against the hash in the log. We can
open-source this application-independent framework in or-
der to increase confidence in this framework, and, as before,
the client can use attestation to verify that the framework is
running correctly on the TEE.

We need to ensure that a malicious update does not pre-
vent the application-independent framework from notifying
the client that an update took place. To ensure that the update
cannot interfere with the framework, we run the updated
application code inside of a sandbox [83, 87]. Sandboxing
the application code ensures that the executed code cannot
“escape” the sandbox and have an effect on the system outside
the sandbox (i.e. the framework). We also need to ensure that
the TEE only runs updates from the application developer.
We can do this easily by sealing on to the TEE not just the
framework, but also a public key. Then each subsequent up-
date needs to be accompanied by a signature that verifies
under the original public key.

Leveraging the certificate transparency log. Using the
certificate transparency log [51] means that we do not need
to deploy a new log, but the certificate transparency log is
designed for X.509 web certificates, not application updates.
We can use the subject key identifier field in the X.509 cer-
tificate format to store the application digest. Prior work has
explored transparency logs for application binaries, but in
the context of verifying local client code rather than remote
server code [2, 40, 61].

HotNets ’22, November 14-15, 2022, Austin, TX, USA

4.2 Deployment tomorrow

Infrastructure changes would make deployment even easier
and provide greater flexibility in the future.

Expanding cloud provider offerings. Cloud providers
should offer services specifically tailored for distributed-trust
systems. In particular, cloud providers should allow develop-
ers to submit code and code updates and then run the code
without allowing the developer to inspect or modify appli-
cation memory. Clients interacting with the system could
get some assurance from the cloud provider that the claimed
code is running.

Secure hardware design. TEEs like SGX support sealing
code on to the TEE. This design decision requires us to seal
our general-purpose framework on to the TEE and then
have our framework run the dynamic application code in
a software-based sandbox. Changing the hardware design
could allow us to support updates much more efficiently.
Instead of running the new binaries inside a software sand-
box inside the TEE, the hardware could instead isolate the
framework from the application binary directly. We simply
need the secure hardware to attest to the framework that
is running and provide a mechanism for the framework to
effectively sandbox the new binary. We hope that our work
spurs the development of secure hardware explicitly tailored
to bootstrapping distributed-trust systems efficiently.

Building a distributed-trust log. Leveraging the certificate
transparency log adds unnecessary overhead for certificate
transparency stakeholders. We could instead deploy a log
specifically for bootstrapping distributed-trust systems that
makes it simple to look up binaries [2, 40, 61].

5 Evaluation

We implemented a prototype of our framework and support
execution on AWS Nitro. We use WebAssembly (Wasm) [83]
as our sandboxed execution environment. We compile C++
applications into Wasm using Emscripten [26] and run Wasm
applications inside Node.js [62]. We implement a BLS thresh-
old signature [12] application on top of our framework using
libBLS [55]: each trust domain stores a secret key share, and
the trust domains can jointly sign a message.

We evaluate our framework on a single AWS c5. 4xlarge
instance with a 16-core Intel Xeon 8124M CPU and 32GB
RAM. We allocate 4GB RAM and 2 cores for the Nitro TEE.

Certificate transparency log. Although we did not submit
certificates to avoid log pollution, we observed that it took on
average 35ms to query ct.googleapis.com for a certificate
(1.7ms RTT) and 1ms to hash our application binary.

Framework overheads. Table 3 shows the threshold sign-
ing time for different execution environments. Our baseline
measures the processing time of the C++ implementation

43

E. Dauterman, V. Fang, N. Crooks, and R. A. Popa

Execution Environment Processing Time Increase
Baseline 10.2ms —
Sandbox 14.9ms 46.1%

TEE + Sandbox 15.8ms 54.9%

Table 3: Processing time for producing a BLS threshold sig-
nature share under different execution environments. The
baseline corresponds to native execution (no TEE and no
sandbox).

without a TEE and without sandboxing. Compiling to Wasm
and running inside of Node.js imposes a 46.1% overhead
(comparable to a previous study on Wasm performance [43]).
Running the sandboxed application inside the AWS Nitro
TEE increases processing time by 54.9%. This overhead is
due to the fact that we need two additional sockets: one to
forward request traffic from the client to our framework, and
one inside the TEE to communicate between our framework
and the sandboxed application.

6 Conclusion

Previously, distributed-trust systems were only an option
for organizations that could successfully coordinate with
other organizations. However, bootstrapping without cross-
organization coordination can enable small organizations
to securely deploy distributed-trust systems. For example,
end-to-end encrypted messaging applications could use dis-
tributed trust to establish a public-key infrastructure or back
up secret keys (each trust domain stores a secret key share).
We hope that our work motivates the study of building blocks
(i.e. secure hardware and append-only logs) tailored specif-
ically to distributed-trust systems. We also leave to future
work the question of if these building blocks are necessary
for bootstrapping distributed trust, or if there are a com-
pletely different set of building blocks we could leverage
instead. What other trade-offs can developers make to se-
curely bootstrap distributed-trust systems without requiring
cross-organization coordination?

Acknowledgments. We thank the anonymous reviewers
for their helpful feedback. We also thank Miles Wada for
participating in early stages of this work, as well as Narek
Galystan, Jack Humphries, Aurojit Panda, Samyu Yagati, Wen
Zhang and students in the Sky security group for feedback
that improved the presentation of the paper. This work is
supported by NSF CISE Expeditions Award CCF-1730628,
NSF CAREER 1943347, and gifts from the Alibaba, Amazon
Web Services, Ant Group, Astronomer, Ericsson, Facebook,
Futurewei, Google, IBM, Intel, Lacework, Microsoft, Nexla,
Nvidia, Samsung, Scotiabank, Splunk, and VMware. This
work is also supported by NSF Graduate Research Fellow-
ships and a Microsoft Ada Lovelace Research Fellowship.

Reflections on trusting distributed trust

References

[1] John Aas. Project update and new name for ISRG Prio services: Intro-
ducing Divvi Up, 2021. https://divviup.org/blog/prio-services-update/.
Mustafa Al-Bassam and Sarah Meiklejohn. Contour: A practical system
for binary transparency. In DPM/CBT@ESORICS, 2018.

Alchemy. https://www.alchemy.com/.

Amazon Web Services. Aws nitro enclaves. https://aws.amazon.com/
ec2/nitro/nitro-enclaves/.

Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro,
John Kolb, Hyung-Sin Kim, David E Culler, and Raluca Ada Popa.
WAVE: A decentralized authorization framework with transitive dele-
gation. In USENIX Security, 2019.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger fab-
ric: a distributed operating system for permissioned blockchains. In
EuroSys, 2018.

Apple and Google. Exposure notification privacy-preserving analytics
(ENPA) white paper, 2021. https://covid19-static.cdn-apple.com/
applications/covid19/current/static/contact-tracing/pdf/ENPA _
White_Paper.pdf.

Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis,
Francois Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perel-
man, and Alberto Sonnino. State machine replication in the libra
blockchain. The Libra Assn., Tech. Rep, 2019.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computa-
tion. In STOC, 1988.

Blockdaemon. https://blockdaemon.com/.

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. In IEEE S&P,
2021.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. In ASIACRYPT, 2001.

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and
Srinivas Devadas. MI6: Secure enclaves in a speculative out-of-order
processor. In IEEE/ACM MICRO, 2019.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In USENIX WOOT, 2017.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OSDI, 1999.

Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen
Malvai. Seemless: Secure end-to-end encrypted messaging with less
trust. In CCS, 2019.

David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology, 1(1):65-75,
1988.

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhiqiang
Lin, and Ten H Lai. SGXPECTRE: Stealing Intel secrets from SGX
enclaves via speculative execution. In IEEE EuroS&P, 2019.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In NSDI, 2017.

Henry Corrigan-Gibbs, Dan Boneh, and David Maziéres. Riposte: An
anonymous messaging system handling millions of users. In IEEE S&P,
2015.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security,
2016.

Emma Dauterman, Henry Corrigan-Gibbs, and David Maziéres. Safe-
tyPin: Encrypted backups with Human-Memorable secrets. In OSDI,

[2

—

—
[N)
R

—
(5
[

—_
(=)}
=

—
—
'S

flaar?

[15

=

(16

—

(17

—

(18

[t

(19]

[20

=

[21

—

[22]

44

HotNets *22, November 14-15, 2022, Austin, TX, USA

2020.

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion

Stoica. DORY: An encrypted search system with distributed trust. In

OSDI, 2020.

Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica.

Waldo: A private time-series database from function secret sharing.

In IEEE S&P, 2022.

Sisi Duan, Sean Peisert, and Karl N Levitt. hbft: speculative byzantine

fault tolerance with minimum cost. IEEE Transactions on Dependable

and Secure Computing, 2014.

Emscripten. https://emscripten.org.

Steven Englehardt. Next steps in privacy-preserving telemetry with

Prio, 2019. https://blog.mozilla.org/security/2019/06/06/next-steps-in-

privacy-preserving-telemetry-with-prio/.

[28] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan
Boneh. Express: Lowering the cost of metadata-hiding communication
with cryptographic privacy. In USENIX Security, 2021.

[29] Figment. https://www.figment.io/.

[30] Fireblocks. https://www.fireblocks.com/platforms/mpc-wallet/.

[31] Gemini. Cold storage, keys & crypto: How Gemini keeps assets

safe. https://www.gemini.com/blog/cold-storage-keys-crypto-how-

gemini-keeps-assets-safe.

Tim Geoghegan. Exposure notifications private analytics: Lessons

learned from running secure MPC at scale, 2022. https://divviup.org/

blog/lessons-from-running-mpc-at-scale/.

Tim Geoghegan, Mariana Raykova, and Frederic Jacobs. Exposure

notifications private analytics. In Real World Crypto, 2022.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any

mental game, or a completeness theorem for protocols with honest

majority. In STOC. 1987.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas

Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-

other flip in the wall of rowhammer defenses. In IEEE S&P, 2018.

Rachid Guerraoui, Nikola Knezevi¢, Vivien Quéma, and Marko Vukoli¢.

The next 700 BFT protocols. In EuroSys, 2010.

Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,

Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,

and Alin Tomescu. Sbft: a scalable and decentralized trust infrastruc-

ture. In IEEE DSN, 2019.

Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty,

Lorenzo Alvisi, and Michael Walfish. Scalable and private media

consumption with Popcorn. In NSDI, 2016.

Marcus Hahnel, Weidong Cui, and Marcus Peinado. High-resolution

side channels for untrusted operating systems. In USENLX ATC, 2017.

Benjamin Hof and Georg Carle. Software distribution transparency

and auditability. arXiv preprint arXiv:1711.07278, 2017.

Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang,

and Raluca Ada Popa. Merkle?: A low-latency transparency log system.

In IEEE S&P, 2021.

[42] ISRG. Introducing ISRG Prio services for privacy respecting metrics.
https://www.abetterinternet.org/post/introducing-prio-services/.

[43] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha.
Not so fast: Analyzing the performance of WebAssembly vs. native
code. In USENIX ATC, 2019.

[44] Eric Kinnear, Patrick McManus, Tommy Pauly, and Christopher A
Wood. Oblivious DNS over HTTPS. Internet Engineering Task Force,
Internet-Draft, 2021. https://www.ietf.org/archive/id/draft-pauly-
dprive-oblivious-doh-04.html.

[45] Knox. Knox custody. https://www.knoxcustody.com/security.

[46] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups
with checklist. In USENIX Security, 2021.

[23]

[24]

[25]

[26]
[27]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

https://divviup.org/blog/prio-services-update/
https://www.alchemy.com/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://blockdaemon.com/
https://emscripten.org
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://www.figment.io/
https://www.fireblocks.com/platforms/mpc-wallet/
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://divviup.org/blog/lessons-from-running-mpc-at-scale/
https://divviup.org/blog/lessons-from-running-mpc-at-scale/
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.ietf.org/archive/id/draft-pauly-dprive-oblivious-doh-04.html
https://www.ietf.org/archive/id/draft-pauly-dprive-oblivious-doh-04.html
https://www.knoxcustody.com/security

HotNets ’22, November 14-15, 2022, Austin, TX, USA

[47] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM
TOCS, 2010.

Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan
Ford. Atom: Horizontally scaling strong anonymity. In SOSP, 2017.
Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford.
Riffle: An efficient communication system with strong anonymity. In
PoPETs, 2016.

Leslie Lamport. Byzantizing Paxos by refinement. In International
symposium on distributed computing. Springer, 2011.

Adam Langley, Emilia Kasper, and Ben Laurie. Certificate trans-
parency. Internet Engineering Task Force, 2013. https://tools.ietf.org/
html/rfc6962.

Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada
Popa. An off-chip attack on hardware enclaves via the memory bus.
In USENIX Security, 2020.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and
Dawn Song. Keystone: An open framework for architecting trusted
execution environments. In EuroSys. ACM, 2020.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In USENIX Security, 2017.

libBLS: a C++ library for BLS threshold signatures. https://github.com/
skalenetwork/libBLS.

Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault
tolerance. In SIGSAC, 2019.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Inno-
vative instructions and software model for isolated execution. 2013.
Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Fel-
ten, and Michael] Freedman. CONIKS: Bringing key transparency to
end users. In USENIX Security, 2015.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How SGX amplifies the power of cache attacks. In CHES, 2017.
Graham Mudd. Privacy-enhancing technologies and building for the
future, 2022. https://www.facebook.com/business/news/building-for-
the-future.

Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford.
CHAINIAC: Proactive Software-Update transparency via collectively
signed skipchains and verified builds. In USENIX Security, 2017.
Node.js. https://nodejs.org.

Paxos. https://paxos.com/crypto-brokerage/.

Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada
Popa, and Joseph M Hellerstein. Senate: A maliciously-secure MPC
platform for collaborative analytics. In USENIX Security, 2021.

Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Crosstalk: Speculative data leaks across cores are real. In
IEEE S&P, 2021.

[66] James Reyes. Building the next generation of digital advertising with
mpc. In Real World Crypto, 2022. https://iacr.org/submit/files/slides/
2022/rwc/rwc2022/104/slides.pdf.

Riddle and code. https://www.riddleandcode.com/blog-posts/
hardware-security-modules-vs-secure-multi-party-computation-in-
digital-asset-custody.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, 2019.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In DIMVA. Springer, 2017.

[70] Sepior. https://sepior.com/products/advanced-mpc-wallet.

(48]

[49

-

(50]

[51]

(52]

(53]

(54]

(55]

(56

—

(57]

(58]

(59]

(60]

[61

—

—_ r— =
N N D
=W N
[Ran i e R

(65

[

[67]

(68]

[69]

45

E. Dauterman, V. Fang, N. Crooks, and R. A. Popa

[71] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

[72] Sudheesh Singanamalla, Suphanat Chunhapanya, Marek Vavrusa,
Tanya Verma, Peter Wu, Marwan Fayed, Kurtis Heimerl, Nick Sul-
livan, and Christopher Wood. Oblivious DNS over HTTPS (ODoH): A
practical privacy enhancement to DNS. PoPETs, 2021.

[73] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. Trans-
parency logs via append-only authenticated dictionaries. In CCS, 2019.

[74] Trillian. https://github.com/google/trillian.

[75] Unbound Security. The Unbound CORE MPC key vault.

[76] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In USENIX Security,
2018.

[77] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In IEEE S&P, 2020.

[78] Jo Van Bulck, Nico Weichbrodt, Rudiger Kapitza, Frank Piessens, and

Raoul Strackx. Telling your secrets without page faults: Stealthy page

table-based attacks on enclaved execution. In USENIX Security, 2017.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo,

Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

RIDL: Rogue in-flight data load. In IEEE S&P, 2019.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,

and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache

evictions. In IEEE S&P, 2021.

Tanya Verma and Sudheesh Signanamalla. Improving DNS privacy

with oblivious DoH in 1.1.1.1, 2020. https://blog.cloudflare.com/

oblivious-dns/.

Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan,

and Matei Zaharia. Splinter: Practical private queries on public data.

In NSDI, 2017.

[83] WebAssembly. https://webassembly.org.

[84] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. Dissent in numbers: Making strong anonymity scale. In
OSDI, 2012.

[85] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In IEEE S&P, 2015.

[86] Andrew C Yao. Protocols for secure computations. In SFCS, 1982.

[87] Bennet Yee, David Sehr, Gregory Dardyk,] Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
Native client: A sandbox for portable, untrusted x86 native code. In
IEEE S&P, 2009.

[88] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: BFT consensus with linearity and responsive-
ness. In ACM PODC, 2019.

[79]

[80]

[81]

[82]

https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://github.com/skalenetwork/libBLS
https://github.com/skalenetwork/libBLS
https://www.facebook.com/business/news/building-for-the-future
https://www.facebook.com/business/news/building-for-the-future
https://nodejs.org
https://paxos.com/crypto-brokerage/
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/104/slides.pdf
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/104/slides.pdf
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://sepior.com/products/advanced-mpc-wallet
https://github.com/google/trillian
https://blog.cloudflare.com/oblivious-dns/
https://blog.cloudflare.com/oblivious-dns/
https://webassembly.org

	Abstract
	1 Introduction
	2 Distributed-trust deployments today
	2.1 Our findings

	3 System overview
	3.1 Building blocks
	3.2 System architecture
	3.3 System properties

	4 System design
	4.1 Deployment today
	4.2 Deployment tomorrow

	5 Evaluation
	6 Conclusion
	References

