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ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular
techniques, offers near real-time monitoring of community-wide transmission of
SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating
the total microbial assemblage in a community. Composite wastewater samples (24 h)
were collected weekly from a manhole between December 2020 and November 2021
in Maryland, USA. RT-gPCR results showed concentrations of SARS-CoV-2 RNA recovered
from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase
in COVID-19 was detected in February 2021, samples were selected for microbiome
analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2
sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important
genetic mutations, such as spike: K417N, D614G, P681H, T716l, S982A, and D1118H,
commonly associated with increased cell entry and reinfection. Microbiome analysis
(DNA and RNA) provided important insight with respect to human health-related factors,
including detection of pathogens and their virulence/antibiotic resistance genes. Specific
microbial species comprising the wastewater microbiome correlated with incidence of
SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic
conditions, namely, temperature, were related to incidence of COVID-19 and detection
of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk
score assessment carried out in this study. In summary, the wastewater microbiome pro-
vides useful public health information, and hence, a valuable tool to proactively detect
and characterize pathogenic agents circulating in a community. In effect, metagenomics
of wastewater can serve as an early warning system for communicable diseases, by pro-
viding a larger source of information for health departments and public officials.

IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in
samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be
detected in feces of infected individuals. Therefore, wastewater samples can be used
to test all individuals of a community contributing to the sewage collection system,
i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control
structures, and force mains, that collects used water from residential and commercial
sources and conveys the flow to a wastewater treatment plant. Here, we profile com-
munity wastewater collected from a manhole, detect presence of SARS-CoV-2, iden-
tify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of
the study area. Using metagenomics analysis, we also detect other microorganisms
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(bacteria, fungi, protists, and viruses) present in the samples. Results show that by ana-
lyzing all microorganisms present in wastewater, pathogens circulating in a commu-
nity can provide an early warning for contagious diseases.

KEYWORDS COVID-19, SARS-CoV-2, wastewater, microbiome, wastewater-based
epidemiology, wastewater monitoring, wastewater surveillance, RT-qPCR, DNA
sequencing, RNA sequencing, metagenomics, whole metagenome sequencing,
metatranscriptomics, shotgun sequencing, risk assessment, environmental risk

lobal change, namely, climate variability, urbanization, rapid long-distance travel, and

the projected human population growth, has increased the risk of infectious disease
outbreaks (1). Pathogen cross-over from animal reservoirs into human populations increas-
ingly has been reported to occur, both in frequency and diversity, over the last century,
namely, Ebola, HIV/AIDS, West Nile Virus, and Middle East respiratory syndrome. The
United Nations predicts further emergence of zoonotic diseases as habitats are ravaged by
wildlife exploration, unsustainable farming practices, and climate variability (2).

In December 2019, several cases of an unknown pneumonia were reported in the
Hebei province of Central China, marking the beginning of the global COVID-19 pan-
demic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and
declared by the World Health Organization in March 2020 (3). By January 2022, over 400
million cases and more than 5 million deaths were reported (4). A significant finding of
the COVID-19 pandemic to date has established aerosols as the primary transmission
route of SARS-CoV-2 (5). However, the role of the ambient and built environment, as well
as climate and weather processes, have begun to be considered important factors in
promoting transmission, namely, via aerosolized viruses (6).

Progression of the pandemic has been monitored primarily by counting the number
of individuals testing positive for presence of SARS-CoV-2, prompted mainly by onset of
symptoms of the disease, generally appearing 2 to 4 days after exposure but, in some
cases, taking up to 2 weeks to present after infection (7). However, in a large proportion
of transmission events, presymptomatic (8) and even asymptomatic (9) transmission has
been observed. Clinical testing programs provide information only on a subset of indi-
viduals that consent to testing (10). Over the counter self-tests, namely, antigenic tests
which are considered less accurate than quantitative reverse transcriptase PCR (RT-
qPCR), especially for asymptomatic subjects (11), have become increasingly popular but
rely on individuals correctly performing the test and reporting positive results to health
departments (12). Hence, the use of clinical data for estimations of COVID-19 prevalence
has the potential to be biased, based on factors such as health-seeking behavior, under-
testing of asymptomatic cases, inequitable access to testing, and selective testing man-
dates applying only to certain groups or regions (10).

Clinical diagnosis of COVID-19 is typically determined by detection of acute infection
targets in the genome of SARS-CoV-2 present in nasopharyngeal, nasal, and saliva swab
samples (13, 14). However, the virus can also be detected in specimens from other sites
of infected individuals, notably in feces (15, 16). Proposed as a complement to clinical
testing, wastewater surveillance (WS; also known as wastewater monitoring or waste-
water-based epidemiology) of samples collected from treatment systems of commun-
ities has been used for early detection of community-wide disease prevalence, notably
for poliovirus (17-19), noroviruses (20), flu (21), and recently COVID-19 (22). WS has also
been employed to assess diverse factors influencing communitywide health, such as
monitoring consumption of local diets, alcohol, illicit drugs, and tobacco, and evaluating
exposure to hazardous chemicals and pharmaceuticals (23, 24). WS of confined popula-
tions, e.g., inhabitants of a single building (25) or university dormitory (26) or small com-
munity sewage collection systems (SCS) of a neighborhood (27), can be considered less
biased, because the evaluation is pooled contributions of all individuals served by a
given catchment area, compared with clinical testing, where only a minority of consent-
ing individuals are tested routinely. Therefore, WS can be a useful public health tool to

July/August 2022 Volume 13 Issue 4

10.1128/mbio.00591-22

mBio

2


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00591-22

Microbiome Analysis for Wastewater Surveillance

Community transmission of SARS-CoV-2
and other pathogenic agents

Shedding of microbiota

Sample processing

£
K)“J

24 hr composite sample

LI
\_2

Pasturize

k@_ Centrifuge
Toesele!

.

mBio

Microbiome analysis
A RT-qPCR

Reverse transcribe ‘
\\REA to cDNA

W |

M \ |

A _

Amplify SARS-CoV-2
o (vt SNAPA)/
T Metatranscriptomic

ZAN sequencing
Viral gem,

sequencing

W—p

Metagenomic sequencing

(feces, saliva, urine, and Supernatant

other sample types)

Microbiome profiling
(CosmoslID-Hub)

5-\

=
Ultrafiltration

Lyse sample

Oooooooo
Oooooooo
Oooooooo

\V) Prepare
nucleic acid

Manhole

Community wastewater

FIG 1 Schematic representation of sample processing. Image created using BioRender.

proactively study emergence and spread of COVID-19 (28). However, it is worth noting
that WS, while able to monitor a given community, is most useful in municipalities with
SCS infrastructure, and representation of rural towns may be diminished given that WS
has the potential to miss those households served by septic systems.

RT-qPCR is widely recognized as the “gold standard” for detection of SARS-CoV-2
RNA in wastewater samples around the world (29-35). However, detection and enumera-
tion only of SARS-CoV-2 markers does not provide comprehensive information, namely,
the full range of enteric microorganisms and virulence and antimicrobial resistance
(AMR) associated genes present in a community at a given time. Shotgun metagenomic
sequencing (SMS) offers an effective WS tool (36-38) that allows bacterial, archaeal, viral,
fungal, and protozoan microbiome community members to be identified to subspecies
taxonomic level and characterized (39). While both RT-gPCR and SMS are established
methods, the interaction of SARS-CoV-2 with other members of the microbial commu-
nity, both in the patient and environment, remain understudied.

This investigation is the first to employ a complete molecular toolset, i.e, DNA metage-
nomics, RNA metatranscriptomics, targeted amplicon sequencing, and RT-gPCR, along with
advanced bioinformatics, to analysis of community wastewater (Fig. 1). We demonstrated
the feasibility and application of assessing trends of SARS-CoV-2 RNA in wastewater samples
collected from a SCS in Maryland, USA, for approximately 1 year, from December 2020 to
November 2021, and simultaneously profiled the microbiome component (DNA and RNA;
bacteria, archaea, fungi, protists, and viruses, and presence of virulence and AMR associated
genes) of a subset of samples. We showed significant positive correlation between environ-
mental risk scores and prevalence of COVID-19 cases in the study area. Results suggest
remote sensing can be used in near real-time to identify geographic regions with increased
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FIG 2 Reported COVID-19 cases and associated risk (left axis) and detection of SARS-CoV-2 N protein via RT-qPCR (right axis). Total daily number of
reported COVID-19 cases for the ZIP code where the study took place was retrieved from the Maryland Department of Health (81). Asterisks represent
truncated bar plot as 273 cases were reported on January 13, 2021. COVID-19 environmental predictive risk was calculated using ambient air temperature
and dew point, as described previously (6). The risk score, a ratio between 0 and 1, is normalized on a scale of 0 to 100, with 100 being the highest risk of
transmission. Wastewater samples were collected between December 30, 2020 and June 29, 2021. Concentration of SARS-CoV-2 was determined by RT-
gPCR analysis. Blue circle indicates detection of SARS-CoV-2; blue circle with superimposed “X” indicates SARS-CoV-2 was not detected. Arrows indicate
date of samples included for advanced molecular analysis (DNA metagenomics, RNA metatranscriptomics, and targeted RNA sequencing). SNVs commonly
associated with known variations detected in consensus sequences are shown as SARS-CoV-2 Pango lineages. Gold bars, daily new cases; dotted black line,
7-day moving average of daily new cases; blue line, N copies/L; red line, COVID-19 risk; ND, not detected.

COVID-19 risk scores, and the wastewater microbiome is a useful public health tool to
detect and characterize pathogenic agents circulating in communities, hence, an early warn-
ing system for communicable diseases.

RESULTS

SARS-CoV-2 RT-qPCR. (i) RT-qPCR quality controls. Calibration model performance
parameters, including slope and y-intercept parameters, linearity (R?), and Amplification ef-
ficiency (AE), are provided in the supporting information (Data set S2). Calibration model
R? values for Nucleocapsid Phosphoprotein (N protein) were = 0.98 and E-values ranged
from 0.73 to 1.02 (average, 0.91). All no template controls (NTCs) were negative for detec-
tion of SARS-CoV-2 RNA. Based on internal control (IC) MS2 bacteriophage testing, amplifi-
cation inhibition was not observed. Hence, all RNA extracts included in subsequent analysis
exhibited negligible matrix interference and passed sample processing control.

(ii) Detection of SARS-CoV-2 RNA and association with epidemiological data.
Detection of genetic markers against SARS-CoV-2 N protein was determined from wastewater
concentrates, representing temporal sampling between December 30, 2020 and November
16, 2021. Of the 48 measurements, 24 (50%) were negative for detection of N protein, 23 were
within the range of quantification (ROQ), and one (11/2/2021; 6.53 x 10° N copies/L) was
above the ROQ. Excluding the measurement above ROQ, N protein was detected at the high-
est concentration during the week of February 17, 2021 (7.80 x 10° N copies/L), followed by
October 5, 2021 (1.65 x 10° N copies/L) and at varying concentrations throughout the study
period (Data set S2).

For the location where the study was conducted, the number of reported COVID-19
cases was higher during the winter compared with warmer months, with a spike in number
of COVID-19 cases reported during the second week of January 2021. Generally, the
amount of SARS-CoV-2 RNA detected in the community wastewater showed a similar pat-
tern to the number of reported COVID-19 cases (Fig. 2). However, because the population
served by this SCS represents ca. 3% of the total population included in the epidemiologi-
cal reports, and viral shedding in feces of infected individuals is extremely variable, no sta-
tistical comparisons between the number of COVID-19 cases and concentrations of SARS-
CoV-2 RNA were determined.

(i) COVID-19 environmental predictive risk. Previous work showed a tolerable am-
bient temperature range of 17°C to 24°C corresponded to a decrease in number of
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COVID-19 cases in the human population (6). A schematic representation of this general-
izable hypothesis governing the dynamics of COVID-19 disease in a human population,
where AT and DPT play a role in potential aerosolization of SARS-CoV-2 via particles in
ambient and built environments (indoors) is shown in the supporting information
(Fig. S1). During this investigation, the change in COVID-19 cases and detected concen-
tration of SARS-CoV-2 RNA in wastewater followed a similar pattern to the change in the
environmental risk scores (Fig. 2). Using parametric (Pearson) and nonparametric
(Kendall tau) measures to determine the association between predicative risk scores and
reported cases yielded statistically significant (P < 0.01) positive correlation of 0.58 and
0.54, respectively. On a weekly scale between December 2020 and November 2021
(47 weeks), when the risk score was greater than 0.5, SARS-CoV-2 was detected in waste-
water samples 88% of the time (15/18 weeks), whereas when the risk score was below
0.5, SARS-CoV-2 was detected at low concentration 31% of the time (9/29 weeks). The
greatest risk scores were detected during the end of January and the beginning of
February, which coincided with highest number of COVID-19 cases. During the week of
April 19, COVID-19 risk scores dropped below 0.5 and remained low throughout the
summer, with slight increases in risk occurring in July and August. During this period of
time only a few COVID-19 cases were reported and SARS-CoV-2 RNA was not detected
by RT-gPCR in the wastewater samples. Subsequently, environmental risk scores
increased during the fall, reaching above 0.5 in November 2021, which was mirrored by
both increases in the number of COVID-19 cases and detection of SARS-CoV-2 at higher
concentrations in wastewater samples. However, it is worth noting that various social
and demographic factors, e.g., asymptomatic carriers, unreported home tests, human
behavior, etc., impact the number of reported cases and could not be controlled for in
this study. Therefore, we present calculated environmental COVID-19 risk scores as a ra-
tio (Data set S3).

(iv) Characteristics of SARS-CoV-2 variants. Using a targeted sequencing approach,
presence of SARS-CoV-2 was confirmed, and consensus sequences were characterized
(Fig. 3). Presence of SARS-CoV-2 was confirmed in five of the six samples processed for
targeted sequencing. The sample collected on April 21, 2021 was negative for presence
of SARS-CoV-2 RNA, in agreement with results of the RT-qPCR analysis for these sam-
ples. An increase in the concentration of SARS-CoV-2 RNA in wastewater was observed
on February 17, and genetic variations detected in the consensus sequence of this
sample were similar to those associated with B.1.351 (Beta, V2). Prior to the February
increase, various mutations commonly described in basal lineages were detected, and
genetic variations associated with the B.1.1.7 (Alpha, V1) lineage were detected in con-
sensus sequences recovered in April. Characteristics of SARS-CoV-2 variants recovered
from wastewater, including the percent of reads that contained each mutation, are
shown in Fig. 3. Across consensus sequences recovered from wastewater, between 20
(February 11, 2021) and 32 (April 15, 2021) single nucleotide variants (SNVs) were
detected. All samples encoded a pyrimidine nucleotide variation at position 241 in the
5’-untranslated region of the virus genome (C241T). The synonymous C3037T (ORF1a:
F924F) mutation was also detected at all time points. Two mutations were observed at
genome position 21,801, including S:D80A (February 17, 2021) and S:D80G (March 10,
2021). Nonsynonymous mutations were detected frequently in the structural protein
coding regions of spike (D614G, P681H, T716l, and S982A) and nucleocapsid (R203K,
G204R, and S235F). However, SNVs in the envelope (E) and membrane (M) proteins
were less common. The E:V57F mutation was observed in the sample collected on
April 15, 2021, but no other E protein SNVs were detected. Detected membrane SNVs
include I181T detected in the sample collected on February 11, 2021 and A97S detected
on April 15, 2021. A genomic deletion was observed on March 10, 2021 (ORF1ab:
GTCTGGTTTT11287G; penetrance = 100%), and three stop codons with 100% penetrance
(ORF1ab:Q4618*, ORF8:Q26", and OFR8:K67*) were detected in the sample collected on
April 15, 2021. Other notable mutations detected in more than one sample include two
synonymous mutations in ORF1ab (5216S and L4715L), four nonsynonymous mutations
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detected in ORF1ab (T265I, 4804L, T5005l, L5304P) and one nonsynonymous SNV in
ORF3a (Q57H).

Metagenomic data analysis. (i) Community microbiome. Shotgun metagenomics
and metatranscriptomics using DNA and RNA prepared from the wastewater samples gen-
erated approximately 3.92 x 108 and 5.53 x 108 reads across the raw sequence libraries,
with a mean of 65.3 and 92.1 million unique reads for metagenomic and metatranscrip-
tomic samples, respectively (Data set S4). Alpha diversity was calculated using CHAO1
index and ranged from 1,059 to 1,358 (average = 1,180.5) for total bacteria and from 29 to
51 (average = 43.3) for total RNA viruses (Table S1). Bacterial communities in wastewater
samples were analyzed by three-dimensional PCoA using Bray-Curtis dissimilarity index
(Fig. S2A), where distance between points indicates degree of difference in bacterial DNA
sequence composition. Each sample contained a relatively distinct bacterial composition.
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FIG 4 Microbiome profiles employing DNA metagenomic sequencing. (A) Stacked bar plot showing relative abundance of detected bacterial phyla. Top
five most abundant phyla are shown, and all other phyla are labeled “other bacteria.” (B) Stacked bar plots showing relative abundance of detected
bacterial genera. Shown are the 20 most abundant genera grouped by family. (C) Heatmap showing universal kingdom relative abundance of most
abundant species. Shown are most abundant taxa, representing >0.2% relative abundance. (D) Heatmap showing universal kingdom relative abundance of
detected archaea, protists, fungi, and viruses.

However, samples collected during February 2021, clustered more closely compared with
those collected during March and early April. Interestingly, the April 21, 2021 sample that
tested negative for SARS-CoV-2 RNA by RT-gPCR did not cluster with any of the other sam-
ples. Bacteria, archaea, fungi, protozoa, and viruses identified by DNA metagenomics are
shown in Fig. 4, representing relative abundance (RA) of microbial species.

For all wastewater samples, significant differences were observed in the microbiota
(Fig. 4, 5A). While SARS-CoV-2 RNA was detected in five of six samples by RT-qPCR, the
virus was not detected by RNA metatranscriptomics in any of the samples. However,
there appeared to be a relation between the number of shared and exclusive bacteria,
i.e., unique taxa detected in a set of samples and not detected in other samples, and
the lineage of SARS-CoV-2 that was detected. A Venn diagram representing bacteria
profiles, with respect to detection of genetic mutations commonly associated with
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FIG 5 Microbiome profiles employing RNA metatranscriptomic sequencing. (A) Heatmap showing relative abundance of detected RNA viruses. (B) Stacked bar
plot showing expression of detected AMR genes. Shown are individual AMR genes colored by class. Qualitative expression is shown relative to GO:0043022.
(C) Stacked bar plot showing expression of detected virulence factors. Shown are individual virulence-associated genes colored by taxa. Qualitative expression
is shown relative to GO:0043022. (D) Heatmap showing relative expression of detected gene ontology terms. Shown are relative expression (copies per million
reads) of the most abundant gene ontology terms grouped by category.

SARS-CoV-2 variants of concern, is included in the supporting information (Fig. S2B).
An increased number of exclusive bacteria was observed in samples corresponding to
detection of Alpha variants (486 spp.) compared with samples where Beta variants
were detected or samples where SARS-CoV-2 was not detected, which contained 137
and 127 exclusive species, respectively. The sample negative for SARS-CoV-2, collected
on April 21, 2021, contained fewer shared bacteria with samples where Beta variants
were detected (26 spp.) compared with samples where Alpha variants were detected
(127 spp.). A total of 167 shared species was observed between samples with Alpha
variants and samples with Beta variants. Analysis of the RNA viral community showed
the sample collected on March 23 contained the greatest number of exclusive taxa
(18), while the other samples contained relatively few exclusive taxa (=5).

A core microbiome, i.e., taxa detected in all samples, was observed for all of the
wastewater samples, with 544 bacterial species detected by DNA metagenomics and
14 RNA viruses detected by metatranscriptomics. RNA metatranscriptomics also allows
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for detection of active members of the microbiome. Overall, a similar core microbiome
was detected between RNA and DNA sequencing. Microbiome profiles employing RNA
metatranscriptomics, including the most abundant genera detected by both sequenc-
ing methods is included in the supporting information (Fig. S3). Generally, core bacteria
detected were assigned to phyla Firmicutes, Proteobacteria, Bacteroidetes, or Actinobacteria.
At the family level, Lachnospiraceae, Bacteroidaceae, and Ruminoccoccaceae were the
most abundant core bacteria detected. However, there was a substantial increase in
Pseudomonadaceae, namely, members of the genus Pseudomonas, detected in the
March 23, 2021 sample (>20% RA), and Bacillaceae, primarily members of the genus
Geobacillus, detected in the sample negative for SARS-CoV-2 (April 21; >15% RA). Across
all samples, the most abundant core microbial species were Acidovorax temperans (bac-
teria; ca. 3 to 4% RA) and Epichloe sylvatica (fungi; ca. 0.02 to 0.04% RA). Pepper mild
mottle virus and tomato brown rugose fruit virus were the most abundant RNA viruses
detected in the core wastewater microbiome. Notable exclusive microbial species
detected in the sample negative for SARS-CoV-2 (April 21) include Geobacillus stearother-
mophilus, Caldibacillus debilis, and Anoxybacillus flavithermus. With respect to samples
positive for detection of SARS-CoV-2 RNA, the results showed a minimal number of
exclusive microbial species detected in samples at high SARS-CoV-2 concentrations com-
pared with lower concentrations.

(ii) Pathogenic wastewater-associated microorganisms. Incorporating an in situ
control for DNA metagenomics allowed for absolute cell number quantification of
detected microbiota following metagenomic profiling (Fig. S4). The sample collected on
February 17, 2021 contained the highest concentration of microbial cells/L (1.34 x 10'9),
followed by April 21 (1.00 x 10'%) and February 11 (8.42 x 10°). The lowest concentra-
tion was detected on March 10, 2021 (1.23 x 109 cell/L). Most microbial cells were pro-
filed as bacteria (min = 1.21 x 10° March 10; max = 1.33 x 10, February 17;
average = 6.30 x 10°), followed by fungi (min = 5.39 x 10°, March 23; max = 5.97 x 107,
February 17; average = 2.64 x 107) and protists (min = 539 x 10° March 23;
max = 5.47 x 107, April 21; average = 1.89 x 107). DNA viruses were detected in all sam-
ples at low abundance (<2 x 105 cells/L), and archaea were rarely detected (=1 x 103
cells/L). Table 1 shows the number of multiple pathogenic microorganisms detected in
wastewater samples. Members of the Enterobacteriaceae family, namely, Escherichia coli
and Klebsiella pneumoniae, and were detected in all samples. Aeromonas hydrophilia was
also detected in all samples, but at lower cell number. Vibrio cholerae was detected at a
concentration of 1.16 x 106 cells/L in the February 11 sample, and at a lower cell num-
ber on February 17 and March 23. Human polyomavirus 2 was the most common DNA
virus, detected in all samples except the sample collected on April 21.

(iii) Functional analysis of wastewater microbiome. RNA metatranscriptomics
allows biological insight into gene expression and functional analysis. Fig. 5B shows the
most abundant gene ontology (GO) terms profiled in each sample. Genes associated
with cellular components (GO:0000015, phosphopyruvate hydratase complex), biological
processes (GO:0000160, phosphorelay signal transduction system, and GO:0070180,
large ribosomal subunit rRNA binding), and molecular functions (GO:0000287, magne-
sium ion binding, GO:0000155, phosphorelay sensor kinase activity, and GO:0000049,
tRNA binding) were detected in all samples. Genes associated with viral RNA genome
replication (GO:0019079) were detected in three wastewater samples (February 11 and
17, and April 21).

(iv) Community resistome and virulome. AMR genes detected in the wastewater sam-
ples are shown in Fig. 5C. The largest number of AMR genes was detected in the February
11, 2021 sample (n = 10), followed by March 23, 2021 (n = 5). AMR genes associated with
macrolide and beta-lactamase antibiotic classes were dominant in these samples. During
the time when an increase in SARS-CoV-2 RNA was detected (February 17, 2021), macrolide
was the only antibiotic class detected, at low abundance, while beta-lactamase was the only
AMR class detected in the sample negative for SARS-CoV-2 RNA (April 21, 2021). A similar
pattern was observed for total number of virulence associated genes (Fig. 5D). Highest
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FIG 6 Co-occurrence of SARS-CoV-2 and microbiota. Shown are rho values, following pairwise Spearman-rank co-occurrence analysis, between concentrations
of SARS-CoV-2 RNA (N copies/L) and detected microbiota (cells/L). Dotted line indicates upper and lower cutoff, for which rho values were determined by
calculating pairwise Spearman rank co-occurrence for each variable with 1,000 permutation iterations. (A) Co-occurrence of SARS-CoV-2 and bacterial genera.
Shown are bacterial genera with rho values (< —0.8, >0.8). (B) Co-occurrence of SARS-CoV-2 and bacterial species. Shown are bacterial species with rho
values (< —0.8, >0.85). (C) Co-occurrence of SARS-CoV-2 and archaea, protists, fungi, and DNA viruses.

frequencies of occurrence of virulence factors were detected in samples collected on
February 11, 2021 (n = 18) and March 23, 2021 (n = 9). Virulence factors (VF) associated with
Bacteroides were dominant in these samples. VF associated with Staphylococcus were
detected in four of the six samples. No VF or AMR associated genes were detected in the
March 10, 2021 sample, collected the week following increase in detected SARS-CoV-2 RNA
on February 17, 2021.

(v) Co-occurrence of SARS-CoV-2 and detected microbiota. Normalizing DNA
sequencing reads to the in situ control allowed successful conversion of sequencing
relative abundance to cells per L, a comparable unit of conversion to concentration of
SARS-CoV-2 RNA detected in wastewater following RT-qPCR. After calculating pairwise
Spearman rank co-occurrence for each variable with 1,000 permutation iterations,
upper and lower quantiles for permuted rho values between concentration of SARS-
CoV-2 (N copies per L) and detected microbiota (cells per L) were calculated, including
bacterial genera (—0.87, 0.88), species (—0.86, 0.88), and combined kingdom (—0.86,
0.88). Microbiota with highest co-occurrence correlation is shown in Fig. 6. Both posi-
tive and negative correlations were observed. However, no microbiota associated with
negative correlation were significant. Of the 345 genera detected across samples, 14
were associated with positive correlation of SARS-CoV-2 RNA and greatest correlation
was associated with Bifidobacterium, Leclercia, Pyramidobacter, Tannerella, Massilimaliae,
and Erythrobacter. A total of 39 bacterial species were associated with significant positive
correlations, most notably, Bordetella bronchiseptica, Enterobacter cloacae, and Leclercia
adecarboxylata. However, various Bifidobacterium spp., Pseudomonas spp., Bacteroides
spp., and Prevotella spp., also showed significant positive correlations. As a result of com-
bined kingdom analysis, JC polyomavirus was the only taxa to show correlation with
SARS-CoV-2, and correlations with archaea, protists, fungi, and other DNA viruses were
not determined to be significant.

DISCUSSION
Wastewater-based epidemiology and COVID-19. An outbreak traditionally

monitored by testing individuals presenting symptoms of the disease. However, disease
incidence thus determined can be delayed or underreported because epidemiological
reports rely on infected people seeking medical aid and medical practitioners reporting
test results. The Centers for Disease Control and Prevention (CDC) reported ca. 41% of
U.S. adults delayed or avoided medical care because of concerns about COVID-19 (98).
Most testing methods for COVID-19 focused on RT-qPCR, an effective method for
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detecting very small amounts of SARS-CoV-2 RNA. However, such molecular tests typi-
cally are performed by centralized high-complexity laboratories with special equipment
and scaling to meet demands of public health testing has been a major challenge glob-
ally (99). During the COVID-19 pandemic, the testing capacity of many public health sys-
tems was overwhelmed and a global shortage of testing reagents and supplies occurred
(100). These major bottlenecks in testing led to turnaround times exceeding 5 to 10 days
in some regions of the U.S., making such tests unreliable in preventing disease transmis-
sion (99). Over-the-counter diagnostic tests, such as rapid antigen detection assays, are
intrinsically quicker and less laborious than RT-gPCR. However, antigenic assays rely on
individuals correctly performing self-tests and reporting positive results and are consid-
ered less accurate than RT-qPCR, especially for asymptomatic subjects (11, 12). These
issues led to underreported cases, along with increases in false positive and false nega-
tive results (101).

Shortly after SARS-CoV-2 was reported to be present in human waste (102), moni-
toring the virus in wastewater gained attention as an effective epidemiological tool for
tracking spatial and temporal dynamics of COVID-19 at the community level (22, 29-
35). A few studies employing WS detected community transmission of SARS-CoV-2
prior to onset of new COVID-19 cases (31, 103, 104), suggesting longitudinal waste-
water analysis could be used to detect viral shedding of infected (symptomatic and
asymptomatic) individuals and identify trends sooner than clinical case reporting.
However, it has been suggested that WS serves as a true early warning system only
when community incidence of COVID-19 is low and clinical testing in the region of in-
terest is scarce or deficient (105). Furthermore, due to the nature of analyzing pooled
samples, e.g., samples collected from a SCS, individual contributions to a positive sam-
ple cannot be determined, and WS is not as effectively employed for contact tracing as
clinical testing of individuals. Hence, WS is best suited as a complement to clinical test-
ing, serving as an independent indicator of disease prevalence (10).

High-throughput molecular methods for microbiome analysis, e.g, DNA metage-
nomics and RNA metatranscriptomics, and SNV analysis of pathogens in wastewater
allows microbiome comparisons between regions and detection of sources of infection
and transmission dynamics (36-38, 106, 40). However, complete microbiome analysis
of wastewater for community surveillance is very much in its infancy. With continued
emergence of new SARS-CoV-2 variants, it is increasingly evident that COVID-19 will
not be eradicated globally. While human-to-human interaction is the major route of
transmission, and wastewater testing can elucidate community epidemiology, understand-
ing the possible role of climatic and weather processes in accelerating such interactions is
also an important component. Elucidating the role of environmental parameters and how
they interact with the microbiome can be very helpful in developing a climate-informed
understanding, translatable to predictive models for estimating risk of the infection in
humans.

Detection and characterization of SARS-CoV-2. In the study reported here, longi-
tudinal wastewater analysis was employed for community surveillance (Fig. 1), with a
manhole (Fig. 7) selected for sample collection because it offers distinct advantages
over testing at a wastewater treatment plant (WWTP). SCSs are designed as tree net-
works, with the community (homes, schools, businesses, industries, etc.) flowing raw
sewage and excess water into the network, which eventually feeds downstream into a
local WWTP. Sampling at an individual manhole provides better understanding of how
microbial communities are associated, distributed, and vary temporally within a geo-
graphically defined area, without being diluted with sewage from other geographic
areas or other kinds of wastes, e.g., industrial. Generally, the amount of SARS-CoV-2
RNA detected in the community wastewater showed a pattern similar to the number
of reported COVID-19 cases in the study area (Fig. 2). Previous studies have reported
detection of an increased RNA load in wastewater prior to manifestation of positive
cases, ca. 2 and 8 days (22), and prior to other pandemic indicators, e.g., COVID-19 hos-
pital and intensive care unit administrations, up to 9 days (107). However, shedding of
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FIG 7 Map of sewage collection system. Map shows location of manhole where wastewater samples
were collected. Black line indicates boundary of the area serviced by the sewer collection system.
Arrow indicates location of manhole where samples were collected. The manhole is downstream of
the area serviced, and wastewater flows from north to southeast. Scale bar corresponds to 100 ft
(30.48 m).

SARS-CoV-2 in feces is variable both in viral load and time course (108). Furthermore,
the population served by this SCS represents ca. 3% of the total population covered by
the epidemiological reports. It is also worth noting that the rate of clinical COVID-19
testing in MD varied in frequency throughout the study (81) and, despite the likelihood
of increased number of reported COVID-19 cases reflecting active spread of the virus,
the potential for a confounding influence of variations in testing frequency must be
considered (109), which complicates calculating correlations between RNA concentra-
tion and number of infected individuals. Therefore, calculation of number of COVID-19
cases versus SARS-CoV-2 RNA concentrations was not done. However, RT-qPCR data
are useful to assess trends in abundance of SARS-CoV-2 RNA detected in the SCS.
Excluding the measurement above ROQ, the highest concentration of SARS-CoV-2 RNA
detected over the course of the 48-week study (7.80 x 10> N copies/L) was similar to
other studies in the United States. employing RT-qPCR to detect SARS-CoV-2 RNA in
raw wastewater influent, with ca. 10° or 107 N copies/L reported (22, 35).

Targeted amplicon sequencing for SARS-CoV-2 for variant calling among popula-
tion-based samples, such as wastewater, compared with SNV analysis of single isolates
recovered from patients and the environment, results in a consensus sequence that
will identify the most prevalent genetic mutations within a sample. However, the
resulting consensus has the potential to mask minor variants or merge mutations from
multiple variants into a single sequence. Nonetheless, population-based variant calling
in wastewater has recently been used to track viral evolution occurring in large WWTPs
(110, 111). Yet, only a few studies have used it for analysis at the small community
level, e.g., single building (25) or university dormitory (26). Those studies and others
reported viral concentrations of ca. 10° genome copies/L to be sufficient for sequenc-
ing SARS-CoV-2. Using methods reported here, we successfully employed targeted
amplicon sequencing for detection and characterization of SARS-CoV-2 in wastewater
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samples with viral concentrations as low as 103 N copies/L. However, calculations
across studies are variable and depend on sample collection and preparation methods,
as well as the sequencing method used, and, therefore, are not directly comparable.
We were not able to detect SARS-CoV-2 using shotgun RNA metatranscriptomics, even
when viral concentrations were relatively high (7.80 x 10> N copies/L). That is, SARS-
CoV-2 detection was successful when more sensitive methods were used, i.e., targeted
amplicon sequencing and RT-gPCR. Spurbeck et al. (25) employed RT-gPCR, targeted
sequencing, and untargeted metatranscriptomics to examine the local dynamics of
SARS-CoV-2 strains and identify other pathogens circulating in the community, and
concluded that alternative sequencing approaches may be required to consistently
detect SARS-CoV-2 for biosurveillance, namely, due to low abundance of viral RNA
compared to total RNA present in wastewater. Hence, multiple methods should be
considered for wastewater surveillance.

On January 12, 2021, the first observation of the alpha variant (B.1.1.7) was reported in
Maryland (112). Interestingly, this is around the time that a dramatic increase in the num-
ber of cases was observed in the study area. Targeted amplicon sequencing (Fig. 3) con-
firmed the presence of genetic mutations associated with this variant and others. An
increase in SARS-CoV-2 RNA was detected in the wastewater samples in early February
2021, and SNVs commonly associated with the B.1.351 (Beta) variant were also detected.
In April 2021, SNVs associated with B.1.1.7 (Alpha) were detected along with genetic
mutations associated other SARS-CoV-2 lineages prior to the February increase and on
March 23, 2021, indicating that multiple variants may have been circulating in the region.
Similar observations have been made during genomic surveillance of SARS-CoV-2 in
Delaware, USA (113), showing how quickly Alpha variants spread throughout a commu-
nity. These data, coupled with what is known about increased transmissibility of B.1.617.2
(Delta) and B.1.1.529 (Omicron), highlight the importance of this type of proactive
genomic surveillance.

Although most mutations may be deleterious or neutral, a few have the potential
to affect viral function, potentially altering infectivity and/or disease severity (76). The
SARS-CoV-2 spike protein recognizes host cells and is the main target of the human
immune response, and some of the protein mutations have been linked to heightened
infectivity and the ability to evade infection-blocking antibodies (114). During the
onset of COVID-19, two major locally transmitted outbreaks occurred in China, one in
Wuhan from December 2019 to April 2020, another in Beijing-Xinfadi in June 2020
(115). Interestingly, SARS-CoV-2 sequences recovered from Beijing-Xinfadi can be dis-
tinguished by a single nucleotide at position 241, a conserved pyrimidine nucleotide
located in the loop region of stem-loop 5B of the 5’-untranslated region (116), com-
pared with those collected in Wuhan. Viral isolates from patients and the environment
generally encode uridine, whereas the viruses isolated in Wuhan encode a cytidine nu-
cleotide at the corresponding position (115). In this study, the C241T variation was
observed at all time points. The S protein mutation D614G, detected in samples, col-
lected on February 11 and 17, 2021 and March 23, 2021, is an important genetic muta-
tion associated with increased SARS-CoV-2 infectivity (117). Interestingly, detection of
S:D614G coincided with the detection of higher SARS-CoV-2 RNA concentrations (Data
set S2). The P681H mutation, detected at four time points in this study—February 11,
2021, March 10 and 23, 2021, and April 15, 2021—is common to B.1.1.7 isolates and
has been characterized as part of the spike S1/S2 cleavage site, with potential to
enhance viral cell entry (118). Other spike SNVs detected in this study, namely, T716l,
S982A, and D1118H, have also been associated with natural mutations observed in
B.1.1.7 isolates that show greater transmissibility than wild-type SARS-CoV-2 isolates
(119). However, it is worth noting that the spike mutation K417N was detected in the
sample collected on February 17, 2021, which corresponds to the time point with highest
concentration of SARS-CoV-2 RNA detected via RT-qPCR (Fig. 2), is commonly associated
with B.1.351 isolates of high concern because they have potential to compromise neutrali-
zation generated by previous infection or vaccination (120, 121).
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Environmental COVID-19 risk score analysis and wastewater surveillance. Usmani
et al. (6) reported transmission of SARS-CoV-2 in the human population increased
when the ambient air temperature (AT) is out of the comfort zone (17°C to 24°C).
When temperatures are uncomfortable, i.e., outside the comfort zone, human behavior
in ambient and built environments is related to increased COVID-19 transmission
(Fig. S1). In addition to AT, increased transmission of SARS-CoV-2 was reported in cold
and dry environments. In this study, the association of AT and DPT with incidence of
COVID-19 in the human population was related to detection of SARS-CoV-2 in waste-
water (Fig. 2). Results showed a statistically significant (P < 0.1) positive correlation
between environmental risk scores and reported cases. When the environmental risk
was greater than 0.5, more COVID-19 cases were reported, and SARS-CoV-2 was
detected 88% of the time (via RT-gPCR) in wastewater. Per contra, when the risk score
dropped below 0.5, only a few COVID-19 cases were reported, and SARS-CoV-2 RNA
was rarely (31% of the time) detected in wastewater and was at low abundance.
Hence, incidence of SARS-CoV-2 in the human population examined here appears
associated with AT and DPT, and hence, WS as a COVID-19 risk score can be a useful
public health tool. Because the environmental predictive risk model has a spatial reso-
lution of 4 km x 4 km, the proposed model is best suited to identify regions with
heightened environmental risk. In turn, WS can be used to provide ground truth for
presence of SARS-CoV-2, along with other pathogens, and determine potential for dis-
ease transmission at a local level, e.g.,, community or neighborhood. Employing such
an approach can reduce human labor and identify targeted regions where there may
be a need for WS to capture finer spatial resolution of disease transmission, thereby
serving as an effective tool to mitigate disease.

Wastewater microbiome. (i) Microbial diversity. DNA metagenomics can be used
to detect and identify the bacteria, virus, fungi, and protists comprising the microbial
community of environmental samples (39), with viability or infectious potential of the
detected microorganisms requiring additional analyses of metabolic activity. RNA meta-
transcriptomics is useful for detecting RNA viruses, but can also give insight into the
functional profile of the microbiome (122). Both DNA metagenomics and RNA metatran-
scriptomics have been used to explore the microbiome of wastewater (36-38, 123).

Bacteria dominated the microbiome of wastewater samples in this study (Fig. S4), consist-
ent with prior observations of microbiomes of samples collected at WWTPs (36, 38, 124).
Similarly, the bacterial phyla (Fig. 4A) were those commonly detected in WWTPs (124), namely,
Firmicutes, Proteobacteria, and Bacteroidetes, as the most abundant. Similarly, Ruminococcaceae,
a microbial family detected in most WWTP samples (124), was present in all samples.
However, Bacteroidaceae, Bifidobacteriaceae, Comamonadaceae, and Lachnospiraceae, were
also dominant in the wastewater microbiome. Genera (Fig. 4B) included Bacteroides,
Bifidobacterium, Acidovorax, Acinetobacter, Pseudomonas, Alistipes, and Prevotella, similar to
reports of other investigators (36, 38, 124). Previous studies suggest Trichococcus spp. are dom-
inant members of the microbial community in urban sewers (125), but species of this genus
were present at lower RA in this study. During a metagenomic survey of wastewater in the
United Kingdom, Arcobacter and Aeromonas were identified as predominant wastewater indi-
cators (126) and those genera were detected in this study.

Several studies investigating the wastewater microbiome have been published.
However, most of those studies use partial 16S rRNA gene sequencing, which usually does
not allow microbial profiling to lowest taxonomic resolution, i.e., subspecies (39). Few stud-
ies detailed microbiome profiles of wastewater to species. Here, we employed SMS to pro-
file the microbial composition of wastewater to subspecies (Fig. 4C). In addition, archaea,
protists, fungi, and viruses were detected and identified (Fig. 4D). Protozoan species com-
mon to wastewater, such as Pseudoperonospora cubensis and Paramecium biaurelia, are
environmental protists associated with infection in plants (127) and frequent symbionts of
green algae in the aquatic environment (128), respectively. Fungi are ubiquitous in the
environment, coexisting and interacting with other microorganisms and regulating a range
of ecological functions. Fungi also are an important group of microorganisms found in

July/August 2022 Volume 13 Issue 4

10.1128/mbio.00591-22

mBio

15


https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00591-22

Microbiome Analysis for Wastewater Surveillance

wastewater, aiding organic decomposition (129). However, some fungal genera commonly
detected in WWTPs are opportunistic pathogens for humans and plants (130), including
Olipidium, Aspergillus, Candida, and Penicillium, and these were detected in this study.
Interestingly, Epichloe sylvatica, found previously to be associated with biofilm in WWTPs
(36), was the most frequent fungal species detected in all samples examined in this study.

(ii) Virome. Traditionally, microbial communities have been defined using culture de-
pendent methods to detect and enumerate microorganisms. However, it is estimated that
the vast majority of prokaryotic genospecies remain uncultured. Accordingly, metagenom-
ics and metatranscriptomics obviate the need to isolate and culture microorganisms.
Furthermore, molecular methods are used to profile viral communities. In the current
study, a combination of molecular methods, i.e., RT-qPCR, targeted amplicon sequencing,
DNA metagenomics, and RNA metatranscriptomics, were used to detect and identify the
wastewater virome. DNA viruses were detected in all samples, with Papillomaviridae and
Polyomaviridae, human viruses, detected in samples positive for SARS-CoV-2 (Fig. 4D). The
most frequently detected RNA viruses included tomato brown rugose fruit virus, pepper
mild mottle virus, cucumber green mottle mosaic virus, tomato mosaic virus, tobacco mild
green mosaic virus, tropical soda apple mosaic virus, tomato mottle mosaic virus, and
melon necrotic spot virus (Fig. 5A). This viral composition was reported in a study of a
WWTP in southern California during the COVID-19 pandemic (123). Results reported here
show RNA metatranscriptomics is effective in detecting the dominant viruses in circulation,
in agreement with prior research (25).

(iii) Resistome and virulome. Metagenomic sequencing has been used to explore
AMR trends in anthropogenically impacted environments (41) and to detect waste-
water associated enteric pathogens (36, 95). However, viability or infectious potential
of detected microorganisms requires additional analysis of metabolic activity. In addi-
tion to detecting RNA viruses (25, 43), high-throughput sequencing of cDNA for RNA
analysis, i.e., RNA sequencing, provides insight into gene expression (44) and has been
used for metatranscriptomic analysis of wastewater (45). In the current study, untar-
geted RNA metatranscriptomic sequencing was employed successfully to analyze the
active microbial community structure of wastewater samples, including functional
activities, active pathways, and AMR and VF associated gene expression (Fig. 5). RNA vi-
ral genes are replicated, expressed, and assembled in association with living host cells
(46). It has been suggested that SARS-CoV-2 can remain viable in sewage up to
4.3 days (47) and other coronaviruses may remain viable in aqueous matrices for over
1 year (48). In the current study, evidence of viral RNA genome replication was
detected in 50% of the wastewater samples examined, suggesting infectious potential
of RNA viruses in wastewater.

AMR is a growing global threat, claiming 700,000 deaths per year, further compli-
cated by the COVID-19 pandemic, (49). Antibiotics have been remarkedly successful in
treating cobacterial infections associated with COVID-19, but these drugs do not work
on viruses, including coronaviruses or influenza (50). In this study, the greatest number
of AMR associated genes, namely those of the Macrolides, were detected in the sample
collected on February 17, 2021, which was the week prior to the observed increase in
SARS-CoV-2 RNA in wastewater. Interestingly, no AMR associated genes were detected
in the sample collected the week following the increase in detected SARS-CoV-2 RNA,
February 17, 2021. A similar pattern was observed with genes coding for VF, where an
increase in VF was observed the week prior to the observed increase in SARS-CoV-2
RNA. VF associated with Bacteroides was dominant in these samples. Bacteroides are
important members of the gut microbiome and have been linked to dysbiosis and the
fecal-viral load during COVID-19 infection (51). While no attempts were made to associ-
ate clinical data to the resistome or virulome of wastewater detected and identified in
this study, the results support previous observations that antibiotic use may be associ-
ated with progression of COVID-19 and bacterial coinfection (52), and may shed light
on changes to the human fecal microbiome during COVID-19 infection (53), with
respect to abundance of opportunistic pathogens and the VF carried.
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Quantitative comparative metagenomics. Detection of wastewater associated
pathogens by employing molecular techniques has been done at WWTPs (36, 38, 124)
and used for source tracking of fecal pollution (126, 95, 54). However, a major hurdle
for WS is communication of the results and their interpretation to public health offi-
cials. Metagenomic surveys are typically presented as the RA of sequencing reads, not
a meaningful parameter for microbiota quantification and can be biased, depending
on the experimental protocol employed (55). To circumvent these issues, we included
an in situ control to the DNA metagenomics, allowing absolute cell number quantifica-
tion, a recent technique increasingly cited in literature (56, 58). Presenting metage-
nomic sequencing results as cell numbers provides more precise microbial load esti-
mates and permits normalization of studies. To present the utility of this application,
the cell number of microorganisms detected in wastewater samples, e.g., pathogens
and bacteria commonly employed as indicators of human fecal contamination (95, 59),
is presented in Table 1, and can be used as a comparative baseline for metagenomic

investigations employing this technique.
Wastewater microbiome and SARS-CoV-2 surveillance. While COVID-19 is gener-

ally considered to be primarily a respiratory illness, gastrointestinal symptoms, e.g., diarrhea,
vomiting, nausea, or abdominal pain, are commonly associated with this disease (60).
Therefore, gut microbiota have been linked to a variety of COVID-19 risk factors for infection
and the gut microbiome is a potential therapeutic target for many other diseases (61).
Emerging evidence suggests SARS-CoV-2 can infect the gastrointestinal tract directly (63).

Using DNA metagenomics, we aimed to evaluate if changes in the wastewater
microbiota could be associated with prevalence of SARS-CoV-2 RNA in a specific com-
munity. The inclusion of an in situ control allowed correlations to be made between quan-
tified microbial load (cells/L) and concentration of SARS-CoV-2 RNA (cells/L) detected in
wastewater samples (Fig. 6). A similar study used Nanopore 16S rRNA sequencing to pro-
file the microbiome of wastewater samples during a COVID-19 outbreak in Chile and
showed correlation between RA, namely percentage, of both bacteria and SARS-CoV-2
(64). Strikingly, members of families Lachnospiraceae and Rumnococcaceae and genus
Alistipes were detected at increased abundance following a COVID-19 outbreak, an obser-
vation supported by findings presented here. Gallardo-Escarate et al. (64) reported strong
association with Prevotella, Bacteroides, Aeromonas, Sulfurospirillum, Arcobacter, Tolumonas,
Citrobacter, Zoologea, and Janthinobacterium. In the current study, a similar correlation was
observed for members of these taxa, but below our threshold of confidence. Statistical dif-
ferences for these taxa may result from the sequencing method used, i.e,, 16S rather than
SMS (39). Because the wastewater microbiome is dominated by human gut bacteria, simi-
lar investigations done in different geographical regions, including areas where the diet
differs, e.g., western versus eastern diets, which can influence the gut microbiome, are
required to confirm these observations.

Here, bacterial genera with co-occurrence correlated with SARS-CoV-2 include
Bifidobacterium, Leclercia, Pyramidobacter, Tannerella, Massilimaliae, and Erythrobacter
(Fig. 6A). Most of the species determined to have significant co-occurrence correlation
with SARS-CoV-2 were bacteria commonly found in the human gut (Fig. 6B). These
include Paraprevotella xylaniphila, Phascolarctobacterium succinatutens, and Slackia piri-
formis, and also various Bifidobacterium spp. (B. adolescents, B. catenulatum, B. pseudo-
catenulatum, and B. pseudolongum), Bacteroides spp. (B. caecimuris, B. nordii, and B.
rodentium), and Prevotella spp. (P. lascolaii, P. marseillensis and P. pectinovora), support-
ing the hypothesis that the resident microbial communities of the gastrointestinal and
respiratory tracts can act as modulators of local and systemic inflammatory activity,
e.g., the gut-lung axis (65). Remarkably, several opportunistic species shown to have
significant correlation with SARS-CoV-2 RNA in wastewater, including Bordetella bronchi-
septica (66), Enterobacter cloacae (67), Leclercia adecarboxylata (68), and Pseudomonas
monteilii (69). These have been identified clinically as coinfecting microorganisms during
COVID-19. Co-occurrence of archaea, protozoa, fungi, and DNA viruses was analyzed
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(Fig. 6C), but results of combined kingdom analysis were inconclusive. Additional investi-
gation is required to elucidate these complex interactions.

Challenges and future directions. Observations in this study were characterized
using samples limited in number, yet illustrative of an outbreak in a single location and
representing temporal shifts in wastewater microbial communities during an increase
in COVID-19 cases. The data presented in this study were not normalized to flow rate
or fecal and urine load, which have shown to be important in comparing microbial
loads in wastewater (70-72). Additional studies are needed to characterize fully the
core wastewater microbiome and establish a comparative baseline to verify microbial
shifts between outbreak and nonoutbreak conditions, and establish public health sig-
nificance. The wastewater microbiome of samples collected from a manhole may differ
from wastewater samples collected from other SCSs, e.g., hospitals, prisons, nursing
homes, WWTPs, etc. In additional to more samples and other locations, different sea-
sons of the year need to be studied. In particular, such investigations will shed light on
significant shifts in SMS and qRT-PCR results relative to COVID-19 outbreak size and du-
ration, as well as incidence of other communicable diseases, notably influenza.

With respect to methods used in this study, because of the complexities of detecting
SARS-CoV-2 in the environment, the decision was to centrifuge samples after collection
to remove large debris and then employ ultrafiltration. It is possible that centrifugation
removed larger microorganisms and those associated with sediment thereby influencing
the microbiome profile. Hence, comparison of sample processing, sequencing, and bioin-
formatics is in progress.

Implementation of SMS for WS requires access to laboratories, trained personnel,
bioinformatics support, and infrastructure for data storage. SMS can take longer to per-
form and currently is more expensive than traditional microbiological testing. The in-
formation provided, however, will prove valuable for public health.

Many short-read sequencing technologies rely on clonal PCR for signal detection.
However, new technologies with long reads and single-molecular sequencing, such as
those of Pacific Biosciences and Oxford Nanopore, are proving useful (42). Recently it
has been shown that rapid variant identification of SARS-CoV-2 can be achieved in
near real-time using a miniature-sized and field-deployable Oxford Nanopore MinlON
sequencing device (73) and also for microbiome analysis (74). Similarly, single cell
sequencing has emerged as a useful molecular tool to identify genetically diverse viral
genomes within single infectious units (75); its application in WS would help navigate
variant calling in samples of a pooled population.

It is important to note that municipalities across the world now track SARS-CoV-2 in
wastewater, and the addition of SMS will provide detailed characterization of waste-
water microbiome and detection of infectious agents circulating within local popula-
tions. This is a crucial step in preparing for future epidemics and pandemics. This
approach can also be used to monitor an array of public health indicators, e.g., obesity
(77), consumption of alcohol, illicit drugs and tobacco, exposure to hazardous chemi-
cals and pharmaceuticals (23, 24), and detection of sexually transmitted disease etio-
logical agents (78, 79). In the meantime, SMS can be usefully applied to clinical and WS
practices directed at both community and global public health.

Conclusion. Wastewater surveillance (WS) is accomplished by WWTPs in many
municipalities globally to track SARS-CoV-2. In the study reported here, detection was
achieved using RT-gPCR but was also combined with advanced molecular sequencing
to characterize SARS-CoV-2 genetic mutations (targeted amplicon sequencing) and
profile the complete microbiome (DNA metagenomics and RNA metatranscriptomics)
of wastewater samples collected from a sewage collection system (a manhole). The micro-
bial communities of the wastewater were associated, distributed, and varied temporally
within a defined geographical area. Trends observed in this study are for a single location,
but when environmental COVID-19 risk prediction was combined with the WS results, it
was observed that after introduction of SARS-CoV-2 into a community, climatic conditions,
namely, temperature, is associated with viral transmission. WS serves as a useful indicator
of disease prevalence, but results show early detection, characterization of SARS-CoV-2,
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and co-infections in a community can be determined using microbiome profiling of waste-
water. Ongoing research will integrate clinical case reports of gastrointestinal and other
communicable diseases prevalent in a community, in addition to COVID-19, to assess
whether changes in the wastewater microbiome are indicative of community health and if
reliable biomarkers can be detected that are applicable to public health.

MATERIALS AND METHODS

Site description. WS was carried out by monitoring a component of a SCS in Maryland, USA (Fig. 7).
The exact location of the study has been masked to protect the privacy of persons living in the area.
Total daily number of reported COVID-19 cases among Maryland residents within the ZIP code where
the study was conducted, which has an estimated population of ca. 22,000 (80), was retrieved from the
Maryland Department of Health (81). The cumulative number of positive COVID-19 cases is presented in
the supporting information (Data set S1). At the beginning of the study period, the SCS serviced 45
buildings with 669 housing units, equating to a population density of roughly 760 residents. The aver-
age daily wastewater flow (ca. 17,610 L per day) was estimated from the average daily accumulative
water flow of all buildings serviced by the SCS between October 26 and November 25, 2021, using a
conversion factor of 80%. Justification of the flow projection based on water consumption in the serv-
iced community is supported by calculations detailed elsewhere (82).

Sample collection. Composite samples were collected weekly from a manhole downstream of the
SCS between December 20, 2020 and November 16, 2021 (n = 48). During each sampling event, an auto-
mated composite sampling unit (Teledyne ISCO, Lincoln, NE, USA) was prepared in the morning with ice
surrounding the collection jar. Samples (60 mL) were collected at 15-min intervals for 24 h, totaling 96
individual sampling attempts and a composite volume of 5.76 L. Temperature of the composite samples
was recorded at time of retrieval and is provided in the supporting information (Data set S2). Samples
were homogenized manually, and an aliquot (110 mL) was pasteurized in a water bath (Polyscience,
Niles, IL, USA) at 60°C for 30 min, transported to the laboratory on ice, and processed the same day. To
remove larger debris, 45 mL were transferred to a sterile polypropylene 50 mL conical Falcon tube
(Corning, Glendale, AZ, USA) and centrifuged at 7,500 RCF for 10 min at 4°C. The resulting supernatant
was transferred to a clean conical tube and concentrated using InnovaPrep Concentrating Pipette Select
with Ultrafilitration PS Hollow Fiber pipette tips (nominal molecular weight limit of ca.100 to 120 kDa;
InnovaPrep, Drexel, MO, USA), following the manufacturer's recommendations for “Wastewater
Application Note, Revision B” (83). InnovaPrep Wet Foam Elution was stored in DNA/RNA shield (Zymo
Research, Irvine, CA, USA), following the manufacturer’s specifications, at —80°C until nucleic acid was
prepared (<48 h). Detection of SARS-CoV-2 RNA was done on all the samples that were collected and
six samples were selected for microbiome analysis.

COVID-19 risk assessment. Usmani et al. (6) hypothesized transmission of SARS-CoV-2 occurs in the
human population when the ambient AT rises above or falls below the “comfort zone” (17°C to 24°C)
and transmission of the virus thereby increases (Fig. S1). This phenomenon is the result of changes in
human behavior in the ambient and built environment, namely, when temperatures become uncomfort-
able. That is, when AT is within the comfort zone, there will be a decrease in COVID-19 transmission.
Furthermore, an increase in aerosolization of SARS-CoV-2 occurs in cold and dry environments. For
example, an increased number of COVID-19 cases were reported in the northern part of the U.S. during
winter months, compared with other seasons. In the current study, we sought to evaluate the feasibility
of employing this hypothesis as a predictive COVID-19 risk score model and demonstrate its potential
use with WS.

To examine this model, details of which are described elsewhere (6), environmental COVID-19 risk
scores were predicted along with epidemiological and experimental data obtained throughout the
study. The difference between AT and dew point temperature (DPT) was used as an indication of mois-
ture availability in the atmosphere, an observation described previously to impact viral survival as a sea-
sonal factor in influenza and poliomyelitis (84, 85). Briefly, DPT, defined as the temperature at which
water vapor condenses to form liquid droplets large enough to settle quickly on Earth’s surface due to
gravity, is directly proportional to moisture content in the air. That is, low DPT indicates lower moisture
in the air and high DPT suggests high moisture content. Hence, DPT must be less than or equal to AT.
The difference between AT and DPT indicates moisture saturation of the ambient air, and the difference
is inversely proportional to air moisture saturation. If the difference between AT and DPT is zero, then
the air is considered fully saturated. As the difference between AT and DPT increases, the air becomes
less saturated. In summary, DPT indicates specific moisture in the air, while the difference between AT
and DPT can be used to determine moisture saturation in the ambient air.

Daily AT and DPT were obtained from the Oregon State University Parameter-elevation Regressions
on Independent Slopes Model (PRISM) climate group products at a resolution of 4 km x 4 km (86).
Prediction of environmental COVID-19 risk was computed weekly using AT and DPT as model input and
quantified according to the hypothesis, where deviation of AT outside the comfort zone was calculated
for the previous 2 weeks. The number of days with a negative DPT and when the difference between AT
and DPT was greater than 5°C was also determined for the same time interval. Variables were deter-
mined using a scale of 0 to 4, with 4 being the maximum value. Environmental risk of COVID-19 was
determined from the normalized sum of quantified variables with equal weight. That is, the risk model
output varies between 0 and 1, with 1 being the highest risk of transmission. Following environmental
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risk assessment, weekly risk score values were compared with RT-gPCR observations of SARS-CoV-2 in
wastewater samples.

Quantitative reverse transcriptase PCR for detection of SARS-CoV-2 RNA. (i) RNA purification.
To serve as internal control (IC) for the RT-qPCR assay, 25 uL of MS2 Bacteriophage, target titer of
1.0 x 10° PFU/mL, (ZeptoMetrix, Buffalo, NY, USA), was added to 115 uL InnovaPrep Wet Foam Elution.
Total RNA was prepared from wastewater concentrates containing MS2 Bacteriophage, employing the
QlAamp Viral RNA minikit (Qiagen, Germantown, MD, USA), following the manufacturer’s instructions for
use on the automated QlAcube Connect platform. RNA extracts were stored in LoBind microcentrifuge
tubes (Eppendorf, Hamburg, Gernamny) at —80°C prior to RT-qPCR amplification (<48 h).

(ii) Reference RNA materials. The SARS-CoV-2 Research Grade Test Material (RGTM 10169; National
Institute of Standards and Technology, Gaithersburg, MD, USA), consisting of two synthetic RNA frag-
ments from the SARS-CoV-2 genome (including SARS-CoV-2 sequences 25949 to 29698 and 12409 to
15962 of isolate USA-WA1/2020) in a background of 5 ng/uL human Jurkat RNA, was diluted over six se-
rial log dilutions with nuclease-free water for use as calibration standards. RNA template of SARS-CoV-2
Nucleocapsid Phosphoprotein (N protein) encapsulated in the MS2 bacteriophage construct (PerkinElmer,
Waltham, MA, USA) was prepared following the manufacturer’s instructions for use as positive control (PC).
Single-use aliquots of reference RNA were stored in LoBind microcentrifuge tubes (Eppendorf, Hamburg,
Gernamny) at —80°C.

(iii) RT-gPCR amplification. The New Coronavirus Nucleic Acid Detection Kit v.7.0 (PerkinElmer,
Waltham, MA, USA) was employed using the QuantStudio 3 System (Thermo Fisher, Waltham, MA, USA),
for multiplexed detection of SARS-CoV-2 N protein and IC, following the manufacturer’s specifications.
The New Coronavirus Nucleic Acid Detection Kit also allows for detection of SARS-CoV-2 Open Reading
Frame 1ab (ORF1ab). However, under the methods detailed below, controlled spike-in experiments have
suggested that N protein provides a more accurate estimation of SARS-CoV-2 abundance in wastewater.
Internal lab results, including multiple temporal samples from different locations, have shown that
wastewater samples presenting detection of ORFl1ab alone (ORFlab positive and N negative) were
extremely rare. Hence, N protein was used as the representative SARS-CoV-2 marker for subsequent
analysis. Amplification efficiency (AE) for each reference DNA calibration model was calculated as fol-
lows: AE = 10~ '/5P¢ _ 1. The lower limit of quantification (LLOQ) was determined by signal-to-noise
ratio of 10:1 and approximated using residual standard deviation (SD) of regression, defined by:
LLOQ = 1075515 o The upper ROQ was defined as the highest calibration standard included in the
standard curve (5 x 10° N copies per reaction). Calibration model performance of each RT-qPCR run is
provided in the supporting information (Data set S2). Following each run, log florescence thresholds
were set manually, and melt curve analysis was done to identify spurious amplicons that could con-
found data interpretation (no spurious amplicons detected). Quantification cycle (Cq) values were
exported to Excel (Microsoft, Redmond, WA, USA) for further analysis.

(iv) Quality control. Method extraction controls (positive, PC; negative, NC; and internal, IC) were
prepared using the New Coronavirus Nucleic Acid Detection Kit (PerkinElmer, Waltham, MA, USA) to
monitor sample processing. Synthetic SARS-CoV-2 N protein RNA template encapsulated in MS2 bacte-
riophage (PerkinElmer, Waltham, MA, USA) was included as PC. For IC, bacteriophage MS2 was used to
monitor the process from nucleic acid extraction to fluorescence detection for amplification inhibition.
Failure to detect PC resulted in an invalid run for all samples. Samples negative for IC, suggestive of
amplification inhibition, or positive for NC, suggestive of potential contamination, were discarded from
further analysis.

Complete microbiome analysis employing next generation sequencing. A total of six samples
were selected for complete microbiome analysis, including shotgun DNA metagenomic and RNA meta-
transcriptomic sequencing, and targeted amplicon sequencing for identification and characterization of
full SARS-CoV-2 genome.

(i) Nucleic acid preparation. Total RNA was prepared from InnovaPrep Wet Foam Elution using
QlAamp Viral RNA minikit, as mentioned previously. To serve as an in situ control for DNA sequencing,
the ZymoBIOMICS High Microbial Load Spike-in Control | (Zymo Research, Irvine, CA, USA) was added to
each sample, per manufacturer’s specifications. Total DNA was prepared from 250 wL of InnovaPrep Wet
Foam Elution using the DNeasy PowerSoil Pro Kit (Qiagen, Germantown, MD, USA), following the manu-
facturer’s instructions for use on the automated QIAcube Connect platform. Nucleic acid concentrations
were determined using Qubit Broad Range Assay Kits (Thermo Fisher Scientific, Waltham, MA, USA) on
an Invitrogen Qubit 4.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) for RNA and double-
stranded DNA, respectively.

(ii) Targeted sequencing for identification of full SARS-CoV-2 genome. Following detection and
quantification of SARS-CoV-2 by RT-qPCR, excess cDNA of selected samples and sample processing con-
trols (method extraction blank and synthetic SARS-CoV-2 RNA) was used as input to establish mutation
profiles. Sequencing libraries were prepared using the Swift Normalase Amplicon SARS-CoV-2 Panel kit
(Swift Biosciences, Ann Arbor, MI, USA), following the manufacturer’s instructions. The Swift Normalase
Amplicon SARS-CoV-2 Panel involves multiplex PCR technology that utilizes multiple overlapping ampli-
cons. Using tiled primer pairs targeting the entire SARS-CoV-2 genome enables library construction from
cDNA, even from low input quantities. The resulting libraries were quantified using Qubit dsDNA High
Sensitivity assay kit (Thermo Fisher Scientific, Waltham, MA, USA) on an Invitrogen Qubit 4.0
Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), and sequenced 2 x 150 bp on an lllumina
HiSeq4000 Instrument (lllumina Inc., San Diego, CA, USA).

General sequencing statistics for all samples and mean sequence quality distribution were measured
by FastQC v.0.11.6 (87). Base-calling error probabilities (P) were evaluated using Phred Quality Score (Q),
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defined by: Q = —10log,,(P). Using a previously defined read quality threshold (88), adapter and quality
trimming of raw sequencing reads were done using Trimmomatic v0.38 (89) to ensure a Phred Quality
Score of at least 17 for at least 80% of the read lengths, i.e., probability of correct base call was at least
98%. Primers used during panel amplification were trimmed using Primerclip v.0.3.8 (Swift Biosciences,
Ann Arbor, MI, USA). Processed sequencing reads were aligned to the Wuhan-Hu-1 genome (NCBI acces-
sion no. NC_045512.2) using BBmap v38.70 (90), and variants were called using bcftools v.1.14 (91).

(iii) DNA metagenomics and RNA metatranscriptomics for complete microbiome analysis.
rRNA (rRNA) of abundant species (human, mouse, and rat) was reduced using Ribo-Zero Plus rRNA
Depletion Kit (lllumina Inc., San Diego, CA, USA). Second strand synthesis of cDNA and preparation of
RNA libraries was achieved using NEBNext Ultra Il Nondirectional RNA Library Prep Kit (New England
BioLabs, Ipswich, MA, USA), following the manufacturer’s instructions for use with lllumina chemistry.
DNA libraries were prepared using Nextera XT DNA Library Prep Kit (Illumina Inc., San Diego, CA, USA).
All sequencing libraries were quantified and sequenced using lllumina chemistry, as mentioned previ-
ously. A no template control (NTC), consisting of nuclease free water, and sequencing standard, i.e.,
ZymoBIOMICS™ Microbial Community Standard (Zymo Research, Irvine, CA, USA), were included for
quality control.

(iv) Microbiome taxonomic profiling. For shotgun DNA metagenomics and RNA metatranscrip-
tomics, adapter and quality trimming of raw sequencing reads was done as described previously.
Unassembled metagenomic and metatranscriptomic sequencing reads were analyzed, as reported else-
where (62, 92-95), using CosmosID-HUB Microbiome Platform (CosmosID Inc., Germantown, MD, USA)
to achieve multikingdom microbiome analysis. Virulence and AMR associated gene profiling was done
using RNA metatranscriptomic data through the CosmosID-HUB. Qualitative gene expression of
detected Virulence and AMR associated genes is presented as the RA compared to ribosome binding
molecular function (GO:0043022), which was detected at roughly equal abundance across all samples
when normalized to copies per million reads. Additional information on the bioinformatics pipeline
employed for taxonomic classification of sequencing reads can be found in the supporting information
(Text S1).

(v) Statistical analysis. Microbiota detected in the NTC (Pseudoxanthomonas spp.) were subtracted
from taxonomic profiling of DNA metagenomics; no microbiota were detected in the RNA metatran-
scriptomic NTC. For DNA metagenomics, microbial cell number of each taxon was normalized to the cell
number of Imtechella halotolerans (Gram-negative) and Allobacillus halotolerans (Gram-positive), follow-
ing the manufacturer’s specifications of the ZymoBIOMICS High Microbial Load Spike-in Control | (Zymo
Research, Irvine, CA, USA). Quantification of the organism RA was defined as the proportion of unique
organism-specific k-mers annotated by each database relative to the total number of unique sequencing
reads generated for that sample. Analysis of community virulome and resistome were achieved by iden-
tifying virulence and AMR associated genes based on percent coverage as a function of gene-specific k-
mer frequency in each sample.

The alpha diversity of bacterial communities associated with wastewater was compared among sam-
ples by calculating the Shannon and Simpson 1-D diversity indices and the Chao-1 richness index using
Vegan v.2.5.7 (96). RA of bacterial taxa in each sample was used for principal coordinate analysis (PCoA)
employing Bray-Curtis dissimilarity index, using CosmosID-HUB Microbiome Platform v.2.0 (CosmosID
Inc., Germantown, MD, USA). Pair-wise Spearman-rank co-occurrence between concentrations of SARS-
CoV-2 RNA (N copies/L) and microbiota (cells/L) was determined using phylosmith v.1.0.6 (57), which is
based on methods described elsewhere (97). Upper and lower cutoffs for which rho values are not likely
to have occurred by random chance were determined by calculating the pairwise Spearman rank co-
occurrence for each variable with 1,000 permutation iterations. Significance for co-occurrence of each
taxa and SARS-CoV-2 was determined using rho value cutoffs and P value (=0.02).

Data availability. Sequencing data generated for all samples included in this study are deposited in the
NCBI Sequence Read Archive database under BioProject ID PRINA812772. Accession numbers for individual
sample sequencing read libraries (SAMN2649443 to SAMN2649459) are provided in the supplementary infor-
mation (Data set S4).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
DATA SET S1, XLSX file, 0.02 MB.
DATA SET S2, XLSX file, 0.01 MB.
DATA SET S3, XLSX file, 0.01 MB.
DATA SET S4, XLSX file, 0.01 MB.
TEXT S1, DOCX file, 0.03 MB.
FIG. S1, DOCX file, 0.4 MB.

FIG. S2, DOCX file, 0.4 MB.
FIG. S3, DOCX file, 0.2 MB.
FIG. S4, DOCX file, 0.2 MB.
TABLE S1, DOCX file, 0.02 MB.
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